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Abstract

Purpose: The GHQ–12 is a self-report instrument for measuring psychological morbidity.

Previous work has suggested several multidimensional models for this instrument, although it

has recently been proposed that these may be an artefact resulting from a response bias to

negatively phrased items. The aim here was to explore the dimensionality of the GHQ-12.

Methods: Cluster analysis, exploratory factor analysis and confirmatory factor analysis were

applied to waves of data from the English Longitudinal Study of Ageing (ELSA wave 1 and 3),

in order to evaluate fit and factorial invariance over time of the GHQ-12.

Results: Two categories of respondents were identified: high and low scorers. Item variances

were higher across all items for high scorers and higher for negatively-phrased items (for both

high and low scorers). The unidimensional model accounting for variance observed with

negative phrasing (Hankins, 2008) was identified as having the best model fit across the two

time points.

Conclusions: Item phrasing, item variance and levels of respondents distress affect the

factor structure observed for the GHQ-12 and may perhaps explain why different factor

structures of the instrument have been found in different populations.

Keywords: GHQ-12, factor structure, factorial invariance, cluster analysis, confirmatory factor
analysis, community sample, elderly population, ELSA
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Abbreviations

GHQ-12: General Health Questionnaire – 12

ELSA: English Longitudinal Study of Ageing

BIC: Bayesian Information Criterion

EFA: Exploratory Factor Analysis

PCA: Principal components analysis

CFA: Confirmatory Factor Analysis

RMSEA: Root-Mean-Square Error of Approximation

ECVI: Expected Cross-Validation Index

ANOVA: Analysis of Variance

ANCOVA: Analysis of Covariance
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Introduction

The General Health Questionnaire (GHQ) was designed for assessing psychological

morbidity in both community and non-psychiatric settings [1]. The instrument has undergone a

number of modifications over time from the original GHQ comprising 60 items to a more

recent 12-item version, the GHQ–12. The GHQ–12 is a well-validated instrument for

assessing psychological morbidity [2], yet despite its brevity there remains considerable

debate about the factor structure of the instrument, which has important implications for the

use of the instrument, particularly in a clinical context. A number of exploratory and

confirmatory factor analysis studies have found evidence for two and three factor structures

despite the fact that the GHQ–12 was originally intended as a unidimensional instrument.

Factor analysis studies have proposed a number of two-factor models for the GHQ–

12. A principal components factor analysis by Politi et al. [3] identified a two-factor structure

for the GHQ–12 corresponding to a seven-item ‘General Dysphoria’ factor consisting of the

anxiety and depression items, and a six-item ‘Social Dysfunction’ factor, consisting of items

relating to daily activities and ability to cope, with one item (item 12, “Not feeling happy”)

loading weakly onto both factors. A very similar two-factor structure (Anxiety/Depression and

Social Dysfunction with seven and five items respectively) with overall happiness loading only

on Social Dysfunction and a decision-making item loading onto Anxiety/Depression has also

been determined by another study [4].

Other two-factor models proposed include a six-item Anxiety/Depression factor and a

five-item Daily Activities and Social Performance factor [5], as well as two factors representing

the domains Depression and Social Dysfunction [2].

A number of three-factor models have also been suggested [6–7], including a

structure consisting of three factors (‘Social Performance’, ‘Anhedonia’ and ‘Loss of

confidence’) with three cross-loading items (e.g. ‘concentrate’, ‘enjoy normal activities’, and

‘feeling reasonably happy’) [8-9]. In addition to this a significant number of population-based

studies have provided support for Graetz’s [10] three-factor model comprising Anxiety /

Depression, Social Dysfunction and Loss of Confidence [11–15].

It has been argued that separate factor loadings may be based on item valence with

positively and negatively worded items loading onto two separate factors. For instance, an
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item response analysis (Rasch) of the GHQ-30 suggested a two-factor structure based on

positive and negatively worded items respectively [16]. Similarly, subsequent analyses on an

8-item GHQ have also demonstrated a two-factor structure reflecting item valency [17–18]. A

recent study has suggested that the various models proposed for the GHQ–12 may be in fact

be an artefact caused by a response bias to the negative wording of six of the items with

these items creating additional variance not produced by positively phrased questions [19].

The results of the latter study indicated that when higher levels of variance for negatively

phrased items were accounted for in a confirmatory factor analysis by allowing error terms on

the negatively worded items to correlate (within the three-factor model, for instance Graetz’s,

these “negative” items are distributed across the anxiety/depression and confidence factors),

this resulted in better model fit for a unidimensional structure for the GHQ–12, in comparison

to other two and three factor structures. Some support has recently been found [20] for this in

a study comparing this unidimensional model with Graetz’s three factor, as well as a two-

factor model (the Andrich and van Schoubroeck model), where the unidimensional model

proved to have marginally better fit compared to the other two models.

As is evident from the above there remains uncertainty surrounding the factor

structure of the GHQ–12. The high degree of correlation reported between factors has often

led a number of authors to recommend using the summed GHQ–12 scores [12–13] despite

the various multidimensional models proposed. The factor structure has important

implications for the clinical use in interpreting scores and for how the GHQ–12 should be used

to identify psychological morbidity. This is particularly the case for an ageing population given

the fact that mental health (such as anxiety and depression) is frequently both under-

diagnosed and under-treated in the elderly both in the community as well as in residential

care [21–22].

Therefore, the aims of this study were twofold: firstly to apply a cluster analysis to the

GHQ–12 completed by a large (N=6237) representative sample of the ageing population

(aged 50+) to ascertain whether there are subgroups of respondents, and secondly to explore

the factor structure of the GHQ–12 in particular to evaluate, at two time points, a number of

competing models for any potential subgroups identified in the cluster analysis to test the

stability of the models.
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Method

This study utilises data from Wave 1 and Wave 3 of English Longitudinal Study of Ageing

(ELSA). ELSA is a longitudinal survey of individuals aged 50 and over. It covers a diverse

range of topics necessary to understand the economic, social, psychological and health

elements of the ageing process. The sample in this study comprises of individuals who had

completed data at Wave 1 and Wave 3 (N=6237). The first and third waves of ELSA were

collected between March 2002 – March 2003 and May 2006 – August 2007 respectively (see

Marmot et al [23], for further information on Wave 1). The two waves of data from the ELSA

were used to compare the stability of the GHQ-12 factor structure models.

The GHQ–12 is a 12-item instrument designed for assessing and detecting

psychological morbidity [24]. There are four response categories which can be scored using

the original dichotomous scoring system (0-0-1-1), as well as a modified dichotomous system

(0-1-1-1). Finally, the GHQ–12 may also be scored as a Likert scale (on a 0-1-2-3 scale).

There is evidence to suggest that ordinal, Likert scoring of the GHQ–12 allows better

discrimination between competing models in confirmatory factor analyses of the GHQ–12

[25], therefore this scoring method was employed in this study. However, given that the

dichotomous scoring is also commonly used to identify clinical levels of psychological

distress this method was also used within the confirmatory factor analysis.

A two-step cluster (SPSS 15) was applied to the GHQ–12 for Wave 1 and Schwartz

Bayesian Information Criterion (BIC) used to determine the number of clusters. Subsequently,

variance of the positive and negatively phrased items was determined and an exploratory

factor analysis (EFA) was applied to this wave, i.e. the entire sample to establish a

benchmark model against which to compare subsequent factor structures. Principal

components analysis with varimax rotation was used for the EFA.

A confirmatory factor analysis (CFA) was applied to the Wave 1 sample and the

subgroups derived from the cluster analysis using AMOS 7. The CFA compared four models

(unidimensional with/out correlated error terms, the two factor structure – positive and

negative phrased items, and the three-factor model). Maximum likelihood estimation was

used for the CFA. The goodness-of-fit of each model was assessed using the Sattora–Bentler

scaled chi-square, the Comparative Fit Index (CFI, [26]) and the Incremental Fit Index (IFI,
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[27]). Additionally, the Root-Mean-Square Error of approximation (RMSEA, [28]) was included

with 90% confidence intervals. Non-significant chi-squares and values greater than 0.95 are

considered as acceptable model fit for the CFI and IFI. RMSEA values below 0.08 are

considered to reflect acceptable fit to the model and values smaller than 0.05 as good fit [29].

Finally, a comparison of fit between the various models was also included using the Expected

Cross-Validation Index (ECVI). The smallest value for the ECVI was used to indicate the best

model fit [13].

The CFA was also applied to the second wave (Wave 3) of data for the subgroups

defined in the earlier analysis.

Differences between scores by patient cluster and item valence were investigated

using a one-way analysis of variance (ANOVA). The partial eta squared values were also

recorded to determine the amount of variance explained by the independent variable (cluster).
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Results

Wave 1 – Cluster Analysis

The results of the cluster analysis revealed two groups of : high and low scorers. Low scorers

tended to score lower on negatively phrased items in respect of positively phrased items, as

well as in comparison with high scorers (Figure 1).

Wave 1 – GHQ–12 scores

Item variances for negatively phrased items were higher than for positively phrased items

(Table 1). The analysis of variance revealed (ANOVA) statistically significant differences were

found between mean scores for the positive and negatively worded items, as well as GHQ–12

total by group: F(1, 6235) = 1470.82, p < 0.0001; F(1, 6235) = 9564.56, p < 0.0001; and F(1,

6235) = 6991.51, p < 0.0001, respectively. The partial eta squared value for the total GHQ–12

was 0.53; the values for the positive and negatively phrased items were 0.19 and 0.61

respectively, suggesting that patient cluster accounted for substantially more of the variance

for the negatively phrased compared to the positively phrased items.

This latter finding confirms the earlier results reported by Hankins [19]. In addition,

item variances were higher across all items for high scorers in comparison with the low

scorers, and item variances were particularly high for this group for the negatively phrased

items, suggesting a three-way interaction between item valence, item variance and level of

distress as shown by Figure 2.

This suggests that high scorers (i.e. people with high levels of emotional distress)

may be disproportionately affected by negatively phrased items. If, indeed, a response bias

lies at the heart of explaining the various factor models proposed for the GHQ–12 the

unidimensional model accounting for differences in variance would provide the best fit, in

particular for the group of high scorers.

Wave 1 – Exploratory and Confirmatory Factor Analysis

The EFA of Wave 1 suggested a two-factor structure consisting of positive and negatively

phrased items. The factor structure accounted for 54.9% of the variance explained.
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Table 2 shows the results of the Confirmatory Factor Analysis for Wave 1. For the overall

sample the best model fit (χ
2

= 903.66, df = 39, p < 0.0001) was demonstrated by the

unidimensional model with shared variance (Hankins, 2008) based on all four fit criteria (e.g.

RMSEA = 0.06, 90%CI 0.056 – 0.063). This model also produced the best fit (on all criteria)

for the low scorers (RMSEA = 0.039, 90%CI 0.035–0.044). Graetz’s model [10] also revealed

good fit statistics for the low scorers with the RMSEA demonstrating overlapping 95%

confidence intervals with Hankins’ model for this group. Both Hankins’ and Graetz’s model

had the best fit for the high scorers, in particular the former model although the RMSEA fit

statistic fell just outside acceptable fit levels (e.g. RMSEA = 0.087, 90%CI = 0.082–0.093).

Results from the CFA using the dichotomous scoring method revealed very similar

model fit statistics (not shown). Taken together the results demonstrated that Hankins’

model provided the most optimum fit for all three groups: overall sample, low and high

scorers.

Wave 3 – GHQ–12 scores

The means and standard deviations for GHQ–12 scores at Wave 3 are shown in Table 3. It

can be seen once again that although negatively worded items produced higher levels of

variance in comparison to positively worded items across groups, item variance was

considerably higher for the high scorers. Statistically significant differences were again found

between mean scores for the positive and negatively worded items, as well as GHQ–12 total

by group on the ANOVA: F(1, 6235) = 3624.32, p < 0.0001; F(1, 6235) = 10382.46, p <

0.0001; and F(1, 6235) = 7006.09, p < 0.0001, respectively. The partial eta squared value for

the total GHQ–12 was 0.53. The partial eta squared was 0.18 for positively phrased items

compared to 0.63 for the negatively phrased items, i.e. patient cluster accounted for greater

degree of the variance for the latter. These results confirm a three-way interaction between

item valence, item variance and level of distress (Figure 3).

Wave 3 – Confirmatory Factor Analysis

The results of the confirmatory factor analysis at Wave 3 demonstrated (Table 4) that the

unidimensional model with shared variance also provided the best fit over time (e.g. Overall
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RMSEA = 0.059, CI 90% 0.056–0.063, High scorers RMSEA = 0.064, CI 90% 0.059–0.070,

Low scorers RMSEA = 0.056, CI 90% 0.051–0.060). These results were replicated for the

dichotomously scored data with the exception of Graetz’s model (1991) for low scorers

where only the saturated model fit the data (results not shown).
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Conclusion

Previous studies have suggested a number of competing models for the GHQ–12. The aim of

this study was to apply a cluster analysis to GHQ–12 data to determine whether any

subgroups of respondents could be identified. Additionally, we aimed to evaluate a number of

models previously proposed for the GHQ–12.

The results of the cluster analysis identified two groups of respondents, high and low

scorers, both with different response patterns to the GHQ-12, but particularly the low

scorers who tended to score low on negatively worded items. In contrast to item variance for

the high scorers was particularly high (at both time points).

The results of the exploratory factor analysis suggested a two-factor model consisting

of positively and negatively worded items. The results of the confirmatory factor analysis

demonstrated that the unidimensional model with shared variance provided the best fit across

all groups and over time (including for dichotomous scores). Accounting for the additional

variance observed in the high scorers group improved fit significantly, suggesting that a

response bias to negatively phrased items may contribute to the different factor structures

proposed for the GHQ–12 (see for example Hankins [19]).

It had been anticipated that any differences observed between the clusters identified

in terms of the item variance would be accounted for by the correlated error terms. This would

lead to the hypothesis that best fit would be observed for the correlated error term model,

particularly for those clusters with high levels of variance on negatively phrased items. The

results of the confirmatory factor analysis demonstrated that this was the case: this model

(Hankins, [19]) displayed the best model fit at the two time points. A closer inspection of the

item variance for both waves reveals that high scorers have high levels of item variance

irrespective of item valence. Similarly, average item variance for the negatively worded items

for low scorers is comparable to the average item variance for the positively worded items for

the high scorers. In other words there was an interaction between item valency and item

variance, also explaining why controlling for item variance (for the negatively worded items)

has an effect on model fit, particularly for Wave 3. In fact, the high level of variance for the

high scorers may suggest there was an issue with variance stability. In order to assess this

we re-ran the analysis using a square-root transformation in order to counteract any potential
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variance instability. The results of this additional analysis revealed the same results with the

unidimensional model with shared variance demonstrating the best fit.

Hankins’ [19] has suggested that negatively worded items give rise to a response

bias. Our study extends these findings by demonstrating that the response bias is potentially

moderated by levels of distress. Studies investigating the interaction between cognitive biases

and anxiety have demonstrated that anxious individuals display an information processing

bias with preferential attention to threatening and ambiguous stimuli [30–31]. We explored this

possible link further by running an analysis of covariance (ANCOVA) on the positive and

negatively phrased items from Wave 3 with patient cluster as the independent variable and

the GHQ-12 total score from Wave 1 as the covariate. The results showed statistically

significant results both by patient cluster (positive items: F(1, 6234) = 747.17, p < 0.0001;

negative items: F(1, 6234) = 7625.49, p < 0.0001) and the GHQ–12 (positive items: F(1,

6234) = 298.42, p < 0.0001; negative items: F(1, 6234) = 781.48, p < 0.0001). The partial eta

squared values were higher for the negatively phrased items for both GHQ–12 total scores

(0.11 for negative items versus 0.05 for positive items) and patient cluster (0.55 versus 0.11).

These results add further weight to cognitive bias as a potential explanation for the interaction

between item phrasing, item variance and levels of distress.

Taken together this suggest that levels of distress prevalent in a population may

potentially affect the factor structure of the GHQ–12 and may therefore also help explain why

different models have been proposed and/or discovered with different populations. If the

results are replicated in future studies then this would have significant implications on

the use of GHQ-12 in research. Hankins [19] has previously noted that the presence of

a response bias to negatively phrased items could have an impact on the interpretation

of GHQ-12 data, for instance, in an epidemiological context, as well as impacting on

the reliability of the instrument. Evidence of an interaction between the level of

psychological distress and negative phrasing further adds to the potential issues,

given that the results of this study also suggest that any factor structure imposed on

the data (without prior analysis) may well be sample dependent. Taken together these

results and those of Hankins [19] suggest that at the very least a lelve of
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circumspection is warranted when analysing and interpreting GHQ-12 data within

research.

There may also be implications for clinical practice. The utility of using brief

measures such as the GHQ–12 as screening tools has been questioned [32] given the

relatively low positive predictive value of these measures (largely due to the low prevalence of

conditions severe enough to warrant intervention). Nevertheless some authors have

recommended continuing to use a summary index of the GHQ–12 despite the presence of

multiple factors [12]. Yet the results of this and other studies recommending a three-factor

structure (“social dysfunction”, “anxiety/depression” and “loss of confidence”) suggest that the

GHQ–12 may only have limited utility as a screening instrument when used to produce a

single summary score leading to an inflation in the numbers of patients identified as requiring

further investigation. Using individual factors from the GHQ–12 to identify more specific

emotional disorders may improve sensitivity and reduce the number of false positives,

however this needs to be balanced against the likelihood of a reduction in the positive

predictive value as prevalence would decrease when moving from identifying general distress

to a more specified state (i.e. anxiety or depression). Continued use of the GHQ–12 in

summary form will also restrict its use in research through not only a possible misidentification

of respondents, but also a misrepresentation of scores. These issues will therefore require

further empirical work.

A potential limitation of this study is that the sample consisted of respondents aged

50 and above, and as such is perhaps less representative than other studies (e.g. Hankins,

2008), nevertheless this is mitigated by the large numbers of respondents and stability of the

models over time. Furthermore, to our knowledge no other study has applied this

methodology to a representative sample of elderly individuals living in the UK. It is a novel

approach to identify subgroups based on GHQ scores and to assess the GHQ factor structure

based on the subgroups identified. Understanding the psychological morbidity of this

population is of particular importance as the elderly are more likely to suffer from long

standing co-morbidities [33].

In conclusion, this study extends previous work on the factor structure of the GHQ–

12, particularly studies that have focused on item variance [19], and has refined this analysis
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further by focusing on subgroups of respondents identified in the cluster analysis, i.e. high

and low scorers. The latter finding may have therapeutic implications in terms of, for instance,

relapse prevention. The study suggests that in addition to the valency of items levels of

distress also need to be taken into account when comparing across clusters of respondents,

which in turn may have important research implications.
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Figure 1 Mean GHQ–12 scores by cluster for Wave 1
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Table 1 Means, standard deviations & variances for GHQ12 (Wave 1)

Group N Mean

Std.
Deviatio

n

95% Confidence
Interval for Mean

Min Max
Lower
Bound

Upper
Bound

Positive
items

low 3830 11.63 1.06 11.60 11.66 6 16

high 2407 13.20 2.13 13.11 13.28 6 24

Negative
items

low 3830 8.05 1.54 8.00 8.10 6 13

high 2407 13.16 2.59 13.06 13.26 9 24

GHQ total low 3830 19.68 1.86 19.62 19.74 12 25

high 2407 26.36 4.35 26.18 26.53 20 48
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Figure 2. Item variance for positively and negatively worded items by group (Wave 1)
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Table 2 – Confirmatory Factor Analysis of the GHQ–12 at Wave 1

Groups Overall High Low

Models 1 2 3 4 1 2 3 4 1 2 3 4

X
2

4651.59 903.656 2327.0 1504.84 1493.13 754.64 1453.29 990.27 1732.30 269.68 615.71 359.15

df 54 39 53 51 54 39 53 51 54 39 53 51

p 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

RMSEA 0.12 0.06 0.08 0.07 0.11 0.087 0.11 0.09 0.09 0.039 0.05 0.04

RMSEA
95%

0.114-
0.12

0.056-
0.063

0.08-
0.086

0.065-
0.071

0.101-
0.110

0.082-
0.093

0.10-
0.109

0.083-
0.092

0.086-
0.094

0.035-
0.044

0.049-
0.056

0.036-
0.044

ECVI 0.76 0.16 0.39 0.25 0.65 0.36 0.64 0.44 0.47 0.097 0.18 0.11

IFI 0.84 0.97 0.92 0.95 0.84 0.92 0.85 0.90 0.60 0.95 0.87 0.93

CFI 0.84 0.97 0.92 0.95 0.84 0.92 0.85 0.90 0.60 0.95 0.87 0.93

Models:
1
unidimensional

2
unidimensional with correlated error

3
two-factor structure (+/-ve items)

4
three-factor structure (Graetz, 1991)
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Table 3 Means, standard deviations & variances for GHQ–12 (Wave 3)

Group N Mean Std.
Deviation

95% Confidence
Interval for Mean

Minimum Maximum

Lower
Bound

Upper
Bound

Positive
items

high 2744 13.23 2.19 13.15 13.32 6 24

low 3493 11.70 1.01 11.66 11.73 6 16

Negative
items

high 2744 12.87 2.58 12.77 12.97 7 24

low 3493 7.68 1.38 7.64 7.73 6 12

GHQ
total

high 2744 26.10 4.38 25.94 26.27 20 48

low 3493 19.38 1.63 19.33 19.43 12 24
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Figure 3. Item variance for positively and negatively worded items by group (Wave 3)
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Table 4 – Confirmatory Factor Analysis of the GHQ–12 at Wave 3

Groups Overall High Low

Models 1 2 3 4 1 2 3 4 1 2 3 4

X
2

4414.38 897.46 2249.54 1578.09 1337.00 426.72 930.41 687.58 2831.17 502.59 1318.84 890.46

df 54 39 53 51 54 40 53 51 54 39 53 51

p 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

RMSEA 0.11 0.059 0.082 0.069 0.099 0.064 0.083 0.072 0.116 0.056 0.079 0.066

RMSEA
95%CI

0.11-0.12 0.056-
0.063

0.079-
0.084

0.066-
0.072

0.095-
0.104

0.059-
0.07

0.078-
0.088

0.067-
0.077

0.112-
0.12

0.051-
0.06

0.075-
0.083

0.062-0.069

ECVI 0.72 0.16 0.39 0.27 0.59 0.22 0.42 0.44 0.76 0.16 0.36 0.25

IFI 0.85 0.97 0.93 0.95 0.89 0.97 0.93 0.95 0.77 0.96 0.90 0.93

CFI 0.85 0.97 0.93 0.95 0.89 0.97 0.93 0.95 0.77 0.96 0.90 0.93

Models:
1
unidimensional

2
unidimensional with correlated error

3
two-factor structure (+/-ve items)

4
three-factor structure (Graetz, 1991)


