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Abstract 
We studied the rules by which visual responses to luminous targets are combined across the two 

eyes.  Previous work has found very different forms of binocular combination for targets defined 

by increments and by decrements of luminance, with decrement data implying a severe 

nonlinearity before binocular combination. We ask whether this difference is due to the luminance 

of the target, the luminance of the background, or the sign of the luminance excursion. We 

estimated the pre-binocular nonlinearity (power exponent) by fitting a computational model to 

ocular equibrightness matches. The severity of the nonlinearity had a monotonic dependence on 

the signed difference between target and background luminance. For dual targets, in which there 

was both a luminance increment and a luminance decrement (e.g. contrast), perception was 

governed largely by the decrement. The asymmetry in the nonlinearities derived from the 

subjective matching data made a clear prediction for visual performance: there should be more 

binocular summation for detecting luminance increments than for detecting luminance decrements. 

This prediction was confirmed by the results of a subsequent experiment. We discuss the relation 

between these results and luminance nonlinearities such as a logarithmic transform, as well as the 

involvement of contemporary model architectures of binocular vision. 

 

Keywords: binocular vision, luminance, contrast, matching, binocular summation 

 

 

1  Introduction 

 
Binocular combination of luminance has been 

studied for over 150 years (e.g. Fechner, 1860). 

A typical experimental paradigm involves 

matching the brightness (i.e. the perceptual 

experience of luminance) of a standard binocular 

stimulus—with the same luminance in each 

eye—to a matching stimulus with different 

luminances in each eye. By varying the 

interocular ratio of luminances in the matching 

stimulus, an equibrightness contour can be 

constructed, on which each point represents a 

stimulus combination (L, R) with equivalent 

brightness to the standard (B) (see Levelt, 1965; 

Engel, 1970; Anstis & Ho, 1998). 

 

An example of such a contour is shown in Figure 

1a, normalized and replotted from Engel (1970). 

Also shown are three canonical curves 

representing linear summation of left and right 

luminance excursions (B = L + R), quadratic 

summation (B
2
 = L

2
 + R

2
) and a winner-take-all 

operation (B = MAX[L R]). The data fall close to 

the linear contour over most of the range, but 

fold back to lower luminance excursions close to 

each axis. The fold back is related to Fechner’s 

paradox—the observation that the appearance of 

unequal luminances in the two eyes can seem 

dimmer than the brighter luminance viewed 

monocularly (Fechner, 1860, Curtis & Rule, 

1980). 
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Figure 1: Equibrightness contours for stimuli with various luminance levels in each eye. (a) Data are replotted from 

Engel (1970; Figure 5a) for luminance increments against a dark background, normalized to the standard 

luminance. Results are averaged over six target sizes and two observers. (b) Data are replotted from Anstis & Ho 

(1998; Figure 9c). The conditions are similar to those in (a) except they are for luminance decrements against a 

light background (0.7° disc, decrement of 70% of background luminance, data for one observer).  In both panels, 

the thin lines/curves show predictions for linear, quadratic and winner-take-all combination rules, as described in 

the text. We use the term ‘excursion’ to mean ‘difference from background’, which can apply to increments or 

decrements of luminance, or contrast. 

 
This finding is typical when the target region 

involves luminance increments against a dark 

background (Levelt, 1965; Engel, 1970; Anstis & 

Ho, 1998). However, very different results have 

been reported when the target luminances are 

lower than their background (Anstis & Ho, 1998). 

For this arrangement, the results are much closer 

to the winner-take-all prediction, implying that 

the eye viewing the darker target (i.e. the greater 

luminance excursion relative to the background) 

determines perceived brightness (see Figure 1b).  

 

What is the critical factor for obtaining these 

different types of results (Fig. 1)? There are three 

possibilities: the absolute luminance of the target, 

the absolute luminance of the background, and the 

polarity (increment or decrement) of the target 

relative to the background. To answer this 

question and to better understand the rules of 

binocular combination, we performed a series of 

binocular luminance matching experiments for a 

stimulus set that included both increments and 

decrements in luminance and combinations of the 

two (i.e. changes in contrast). Our results are 

described by a simple equation and discussed in 

relation to other results in the literature, similarly 

(re-)analysed. We also discuss more elaborate 

models, such as a contemporary binocular gain 

control model, and consider contrast metrics that 

might be applied to increment and decrement 

stimuli. 

 

 

 

2 Methods 

 
2.1 Apparatus & Stimuli 

 

All stimuli were presented on a Clinton Monoray 

monitor using a ViSaGe stimulus generator 

(Cambridge Research Systems, Kent, UK) 

controlled by a PC. Ferro-electric shutter goggles 

(CRS, FE-1) allowed presentation of different 

stimuli to the left and right eyes with negligible 

crosstalk. The monitor was gamma corrected 

using a four-parameter function that accounted for 

the true luminance output at an input level of 0 

(i.e. the ‘black level’). This ensured that a dark 

background was as close to 0 luminance as 

possible. We measured the luminance range using 

a photometer (Minolta LS-110) as having a 

minimum of <0.01cd/m
2
 and a maximum of 

160cd/m
2
.
  

All luminances were subject to a 

further eightfold attenuation (0.9 log units) by the 

frame-interleaving shutter goggles, which are 

equivalent to a neutral density filter. All 

luminances reported below are those at the eye, 

following this attenuation. 

 

The main stimulus was a disc 1° in diameter, 

displayed in the centre of a square background 

region 18.5° wide. The luminance of the disc and 

that of the background were manipulated in the 

experiments (with 14-bit resolution). We also ran 

a condition in which the target was a bipartite 

field, the upper half of which was an increment 

relative to the background and the lower half a 

decrement of equal magnitude. Examples of all 
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stimuli are shown in Figure 2. The luminances of 

the standard were 1, 2, 4 and 8 cd/m
2
 for the 

increment on a dark background. For the mid-grey 

background, standard luminance excursions for 

increments and decrements were ±0.5, 1, 2 and 4 

cd/m
2
. For the bipartite field, the standard 

contrasts were 5, 10, 20 and 40%, where contrast 

is percent Michelson contrast (=100*(Lmax-

Lmin)/(Lmax+Lmin), where L is luminance).  

 

(b)

(c) (d)

(a)

 
Figure 2: Example stimuli and details of experimental 

conditions. (a) Luminance increment on a dark 

background (<0.01cd/m
2
). (b) Luminance increment on 

a mid-grey background (10cd/m
2
). (c) Luminance 

decrement on a mid-grey background. (d) Bipartite 

stimulus used in the contrast conditions. In the 

experiments, the square background had a width of 

18.5°. 

 

2.2 Procedure 

 
Experiments were conducted in a windowless 

room, in which the only light source was the 

monitor. Observers viewed the display from a 

distance of 57cm, with their head in a support on 

which the goggles were mounted. The 

experiments were carried out in separate sessions 

for each target and background type. Within each 

session, blocks of trials were run with trials 

interleaved to measure the point of subjective 

equality for an individual ratio of left:right and 

right:left eye intensities.  

 

A two-interval matching procedure was used to 

estimate the point of subjective equality at which 

the standard and matching stimuli appeared equal 

in luminance or contrast. The standard always had 

the same luminance or contrast in each eye, the 

magnitude of which was varied experimentally.  

The matching stimulus had a fixed ratio of 

luminance (or contrast) across the eyes, the 

absolute magnitude of which was controlled by a 

pair of 1-up, 1-down staircases (Meese, 1995) 

moving in logarithmic steps of luminance (or 

contrast). The ratios of left:right eye magnitude 

were 0, 0.16, 0.32, 0.51, 0.73 and 1, with 

equivalent values for the right:left eye ratios. 

Stimuli were presented for 200ms, with an 

interstimulus interval of 400ms. The staircase data 

were fit with a cumulative log-normal function 

using Probit analysis (Finney, 1971) to estimate 

the point of subjective equality, which was plotted 

as a function of left- and right-eye intensity (see 

Figures 3-6). Note that for data gathered this way, 

the error bars lie on radial lines that converge at 

the origin
1
. 

 
2.3 Observers 

 

Two of the authors served as observers (DHB & 

SAW). Both were psychophysically experienced 

and had normal stereopsis, no abnormalities of 

binocular vision and no need for optical 

correction. 

 

3 Results 

 
Results for luminance increments on a dark 

background are shown in Figure 3. These are 

consistent with typical findings in the literature 

(Levelt, 1965; Engel, 1970; Anstis & Ho, 1998), 

showing near-linear behaviour for much of the 

function but folding back near to each axis. The 

linear portion of the functions extend over a 

greater range at higher standard luminances 

(stated in each panel), particularly for DHB. 

 

For increments on a lighter (mid-grey) 

background, the results were markedly different 

(Figure 4), with fewer points falling near the 

linear predictions shown by the oblique dotted 

lines.  These results imply a stronger nonlinearity 

underlying binocular combination on a light 

background than on a dark background, although 

the nonlinearity is not as severe as winner-take-all 

behaviour (dashed lines).  

 

This change in character could be caused by either 

the higher background luminance or the smaller 

difference between background and target 

luminances in this condition. Legge & Rubin 

(1981) reported similar functions for full-field 

luminance increments on a background (pedestal) 

luminance of 10cd/m
2
. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
   A	
   data	
   point	
   lying	
   on	
   an	
   axis	
   had	
   a	
   left:right	
   eye	
  

luminance	
   excursion	
   ratio	
   of	
   1:0	
   (i.e.	
   it	
   was	
  

monocular),	
   so	
   the	
   error	
   bar	
   is	
   constrained	
   to	
   lie	
  

only	
   along	
   the	
   axis.	
   For	
   a	
   ratio	
   of	
   1:1,	
   the	
  

luminances,	
  and	
  hence	
  the	
  errors,	
  are	
  equal	
  in	
  both	
  

x	
   and	
   y	
   directions,	
   so	
   the	
   error	
   bar	
   is	
   at	
   45°.	
  

Intermediate	
   ratios	
   produce	
   error	
   bars	
   at	
   angles	
  

between	
  these	
  extremes.	
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Figure 3: Results for luminance increments against a dark background. Data are normalized to the appropriate 

standard luminance and shown for two observers in different panels. The standard luminance is given in the upper 

right corner of each plot and the background luminance was always <0.01cd/m
2
. The error bars (showing ±1SE) 

are radial because the matching luminances for the left and right eyes were constrained to be a fixed ratio for each 

point (see the Procedure section). In most cases these are smaller than the symbols. The dotted and dashed lines 

show predictions of linear and winner-take-all combination rules respectively (see Figure 1). Curves are the best 

fit of an equation described in the text, which had one free parameter. 
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Figure 4: Results for luminance increments on a mid-grey background (10cd/m

2
), plotted in the same format as 

Figure 3. 
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Figure 5 shows results for a condition in which 

the background luminance (10 cd/m
2
) was the 

same as in the previous experiment but the 

central target  luminance was lower than this 

(i.e. it was a luminance decrement).  The red 

curves fall increasingly close to the winner-take-

all predictions as the standard decrement 

becomes larger. This result is consistent with the 

findings of Anstis & Ho (1998) and is most 

profound for the greatest decrements, as we 

demonstrate and discuss in the modeling section 

below.  

 

In a fourth condition, we manipulated target 

contrast using a bipartite field as the stimulus.  

The curves measured in this condition (Figure 6) 

resemble those for decrements on a mid-grey 

background (Figure 5). We also found similar 

results for one observer (DHB) using a 1c/deg 

Gabor patch as a target (not shown). 

 

 

0.5cd/m
2

1cd/m
2

4cd/m
2

2cd/m
2

0.5cd/m
2

1cd/m
2

4cd/m
2

2cd/m
2

 
Figure 5: Results for luminance decrements on a mid-grey background (10cd/m

2
), plotted in the same format as 

Figure 3. Note that here the luminance excursion was a reduction in luminance relative to the background. 

 
 

4 Computational modeling 

 
4.1 A descriptive model 

 

Several computational models have been proposed 

to describe binocular luminance and contrast 

matching results (see Grossberg & Kelly, 1999 for 

a review). One of the earliest and most general is 

the equation proposed by the physicist Erwin 

Schrödinger (1926; see MacLeod (1972) for 

details). This is defined as, 

 

  B =
L
2"
+ R

2"

L
"
+ R

"
,  (1) 

 

 

where L and R are the left and right eye absolute 

luminance deviations (e.g. L = abs(Lcentre-Lsurround)) 

or, for the bipartite fields, target contrasts, and γ is 

the only free parameter. Varying γ produces a 

family of equibrightness contours of differing 

curvature, as shown in Figure 7a. Note that the 

denominator term influences the overall 

nonlinearity, so that even when 2γ=1, the model is 

not equivalent to the simple linear model discussed 

in the Introduction. The other effect of the 

denominator is to produce the fold back close to 

the axes, often observed empirically but not a 

property of the more simplistic binocular 

combination schemes described above. 
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40%20%

5% 10%

40%20%

 
Figure 6: Results for the bipartite stimulus for which contrast matching was performed against a mid-grey 

background (10cd/m
2
). Data are plotted in the same format as Figure 3, except that here the excursions refer to 

Michelson contrast. 

 

 
Figure 7: Example luminance- or contrast-matching predictions for equation 1. (a) Equibrightness curves 

produced by  equation 1 for different values of γ. The dotted and dashed lines indicate linear and MAX operations 

for comparison. (b) Example fit of equation 1 to data for DHB for a standard luminance increment of 4cd/m
2
 on a 

dark background. Data are normalized to the standard luminance and the error of the fit was calculated in the 

radial direction. 

 

Equation 1 provides a good description of the 

family of curves obtained in binocular 

luminance and contrast matching experiments. 

The value of the single parameter (γ) provides a 

quantitative index of the nonlinearity implied by 

an equibrightness contour. We exploit this 

property in order to simplify the presentation of 

our results and to address the relationship 

between the effects of target and background 

luminance in binocular combination. 

 

Each set of equibrightness data was normalized 

by expressing it as a percentage of the 

luminance (or contrast) of the appropriate 

standard. We then used a simplex algorithm (in 

Matlab) to find the value of γ that minimised the 

root mean square (RMS) error between model 

and data in logarithmic (dB) units and in the 

radial direction. An example fit is shown in 

Figure 7b and model curves for each condition 

are plotted in Figures 3-6. Fits produced a mean 

RMS error across the data set of 0.83dB (N=32 

equibrightness contours) with the poorest fit in 

the set having an RMS error of 1.32dB (lower 

right panel of Figure 3a). 
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Figure 8: Fitted exponents as a function of luminance difference between target and background. (a) 

Exponents from the present study (the parameter γ in equation 1). (b) Exponents for fits to data from the 

literature. (c,d) Equivalent to (a,b) but using the log luminance ratio between target and background as the 

input to equation 1. Symbol conventions follow those of Figures 3-6, with symbol edges denoting background 

luminance (dark or grey), and symbol centres indicating either increment, decrement or edge-contrast. Symbol 

shapes indicate observer (a, c) or study (b, d), as detailed in the figure legends, and are unrelated to the shape 

of the target in a given experiment. Negative luminance differences indicate decrements (where the target is 

lower in luminance than the background). Values for contrast are also plotted this way, except for in the inset 

to panel (a) (see text). 

 

As might be expected from examining the raw 

data, increments tend to produce lower 

exponent values (i.e. less nonlinear behaviour) 

than decrements. Figure 8a shows the fitted 

exponents plotted against the luminance 

difference between target and background 

(negative differences indicate decrements). The 

relationship between luminance difference and 

exponent is monotonic and approximately 

linear when plotted with a logarithmic ordinate 

(as here). Also included are exponent values 

for the bipartite contrast condition (data from 

Figure 6).  These are plotted against the 

luminance difference between the background 

and the decrement portion of the bipartite field. 

This provides a good correspondence with the 

exponents from the other conditions, whereas 

plotting the exponent against the difference 

between the background and the increment 

portion does not (see inset to Figure 8a). This 

provides a powerful demonstration that the 

decrement region of the bipartite field 

determines the character of binocular 

combination (when inputs are expressed in 

linear units – see below). 

 

Figure 8b shows exponent values derived from 

our fits to previous results in the literature. 

(Data were scanned in from the relevant figures 

and then fitted in the same way as those from 

the present study. See figure legend for the 

origin of each data point.) These results follow 

a similar trend to our own (Figure 8a). Note 

that the range of luminance values within the 

meta analysis (Figure 8b) is considerably 

greater than was available to us in our own 
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study. Neither plot (Figure 8a or 8b) appears 

well disposed to delivering a precise relation 

between luminance difference and exponent. 

However, the clear message from both analyses 

is the general trend that the exponent increases 

as the luminance difference decreases.  

Luminance increments tend to produce quasi-

linear binocular summation (low exponents, 

g~0.25-0.5), while luminance decrements 

promote winner-take-all (high exponents, g~2-

4). 

 

4.2 Metrics for luminance and contrast 

 

One of the central aims of this study was to 

attempt to understand binocular matching for 

luminance increments, luminance decrements 

and contrast changes within a single 

framework. To do this it is necessary to derive 

an appropriate metric that can describe all three 

conditions. Plotting results as luminance and 

contrast excursions (Figs 3-6) is equivalent to 

using the delta contrast metric (D = 

∆L/Lbackground; see e.g. Peli, 1997), which is 

linear with respect to ∆L for both increments 

and decrements. We wondered whether a 

luminance nonlinearity could account for the 

variation in exponent value that we found when 

the difference between luminance target and 

background was varied (Figure 8a). 

 

One commonly used metric is Michelson 

contrast (M =(Lmax-Lmin)/(Lmax+Lmin)), which is 

linear with ∆L for DC-balanced luminance 

excursions (e.g. a sinusoidal or bipartite 

stimulus), and mildly nonlinear for increments 

and decrements against a light background. 

However, it is not useful for increments against 

a dark background, since it produces M=1 for 

all target luminances (when Lmin = 0, M = 

Lmax/Lmax). 

 

An alternative metric for contrast is that 

proposed by Whittle (1986), which is similar in 

form (W = (Lmax-Lmin)/Lmin) to the Michelson 

contrast equation. This metric produces an 

output which is linear with ∆L for all 

increments but  nonlinear for both decrements 

and DC-balanced contrast. Although W was 

first proposed to explain luminance 

discrimination (i.e. objective performance) 

data, it is also relevant to matching and scaling 

(i.e. subjective perceptual) tasks (Whittle, 

1992). We found that using W as the input to 

equation 1 reduced but did not eliminate the 

dependency of g on luminance difference (not 

shown).  

 

Our reviewers suggested using a logarithmic 

transform on the ratio of target and background 

luminances. Specifically, |log(Ltarget/Lbackground)| 

has the desirable properties of accelerating 

(with respect to ∆L) for decrements (when 

Ltarget < Lbackground) and saturating (with respect 

to ∆L) for increments (when Lbackground < Ltarget). 

(Note that this is equivalent to taking the 

difference of log luminances). This log 

luminance metric successfully removed the 

dependency of γ on signed luminance 

difference for our data (Figure 8c), with the 

caveats that Lbackground = 1 for a dark 

background to avoid division by zero, and that 

for contrast stimuli Ltarget was the luminance of 

the dark part of the stimulus (see Figure 8a). 

The slope of the best fit regression line reduced 

to near zero, and the (geometric) mean 

exponent value was γ=1.11. Using the log 

luminance difference did not increase the 

number of free parameters (this remained at 

one per curve), and did not affect the goodness 

of fit (mean RMS error was 0.83dB using both 

methods). 

 

We confirmed that the log luminance ratio 

removed the effect of luminance sign on the 

exponent in equation 1 by calculating the 

Pearson correlation between luminance 

difference and exponent. For the present data, 

the correlation was highly significant (R
2
=0.61, 

p<<0.01) for linear scaling (Figure 8a), but not 

significant (R
2
=0.0002, p=0.94) for the log 

luminance metric (Figure 8c). For the data 

from previous studies, the correlation was 

greatly reduced (from R
2
 = 0.55 to R

2
 = 0.13) 

by the use of the log luminance ratio. Although 

both correlations were significant at p<0.05, 

the latter correlation (Figure 8d) was strongly 

influenced by the outlier sitting on the x-axis of 

this panel. Removing this outlier further 

reduced the correlation, below the level of 

significance (R
2
 = 0.10, p>0.06). These 

analyses demonstrate that the log luminance 

ratio successfully accounted for the apparent 

change in nonlinearity as a function of 

luminance difference between target and 

background. 

 

4.3 Binocular summation 

 

Binocular summation is the improvement in 

sensitivity for two eyes compared with one. If 

luminance increments are processed in a more 

linear fashion than decrements, they should 

also produce higher binocular summation ratios 

(BSRs). This is because the amount of 

binocular summation is controlled by the 

nonlinearities placed before binocular 

combination, as illustrated by the curve in 

Figure 9b (see also Meese et al., 2006; Baker, 

Meese & Summers, 2007). In this section we 
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assume that the binocular response can be 

approximated as resp = L
m
 + R

m
, where L and 

R are the input contrast or luminance values for 

the left and right eyes, and m is an exponent. 

The value of m is assumed to encompass all 

nonlinearities occurring prior to binocular 

combination. It is thus the net nonlinearity (x-

axis of Figure 9b), and so is not equivalent to 

the g parameter of equation 1. 

 

A linear system (m = 1) produces linear 

summation (BSR = 2), because to reach a 

criterion (threshold) response, a single eye 

must be given twice the input required by two 

eyes (assuming late additive noise). A system 

which squares its monocular inputs (m = 2) 

before binocular combination (e.g. the 

quadratic summation model of Legge, 1984b) 

will produce weaker summation (BSR = √2) 

because a single eye requires less than twice 

the input given to two eyes in order to produce 

the same response (since 2
2
 > (1

2
 + 1

2
)). 

Further nonlinearities after binocular 

combination do not affect summation (BSR), 

since equal responses at combination will 

remain equal thereafter, regardless of which 

eye(s) produced the response. 

 

A consequence of the above exposition is that 

we should expect stimuli processed with a 

weak nonlinearity (i.e. increments) to show 

substantial binocular summation. Those 

processed with a strong nonlinearity (i.e. 

decrements) should show less summation. 

Despite the large number of studies reporting 

binocular summation for contrast (see Meese et 

al., 2006 for a review), we are not aware of any 

work that has investigated both increments and 

decrements in isolation. Part of the reason for 

this may be that experiments with increments 

are typically performed on a dark background, 

measuring the smallest detectable luminance. 

This requires that observers dark adapt for an 

extended period (>30 minutes) before reaching 

a stable detection threshold (e.g. Thorn & 

Boynton, 1974). Dark adaptation shifts the 

adaptive state of the retina into a very different 

dynamic range, making comparison with 

decrements problematic. 

 

These issues can be sidestepped by performing 

summation experiments on a pedestal.  As we 

have demonstrated previously (Meese et al., 

2006), binocular summation can be measured 

by comparing discrimination thresholds for one 

or both eyes, with a pedestal present in both 

eyes in all conditions. This avoids confounding 

the number of eyes tested with the number of 

eyes seeing the pedestal (e.g. Legge, 1984a), 

allowing the summation process to be 

measured without the potentially interfering 

effects of counter-suppression between the eyes 

(Meese et al, 2006; Meese & Baker, 2011).  

 

To test the prediction that there is greater 

summation for luminance increments, we 

performed a binocular summation experiment 

for both polarities of luminance target using the 

equipment and stimuli described above. 

Increments were on a black background 

(<0.01cd/m
2
) with a pedestal of 8cd/m

2
. 

Decrements were relative to a bright 

background (20cd/m
2
) with a (decrement) 

pedestal of -8cd/m
2
. An illustration of the 

conditions is shown in Figure 9a. Both 

observers (DHB and SAW) completed four 

repetitions of a 2IFC luminance discrimination 

task in which the increments and decrements 

were presented either monocularly or 

binocularly against a binocular pedestal. We 

pooled the data across all four repetitions for 

each condition and estimated thresholds (75% 

correct) using Probit analysis. Binocular 

summation was calculated as the ratio of the 

mean monocular threshold to the binocular 

threshold. 

 

The results of this experiment are shown in 

Figure 9b and are very clear. Summation was 

strong for increments, around 6dB (a ratio of 2; 

white filled symbols) for each observer. For 

decrements, we found much weaker 

summation, around 3dB (a ratio of √2; black 

filled symbols). The data are plotted at the 

appropriate points on the curve to permit 

estimation of the total effective monocular 

exponent implied by each summation value 

(e.g. the net nonlinearity before binocular 

summation, assumed to be a power function). 

For increments, the exponent is essentially 

linear, whereas for decrements it is around 2. 

This is qualitatively consistent with the results 

from our matching experiments showing that 

decrements are governed by a stronger 

nonlinearity than increments. Also plotted for 

comparison are summation ratios for 1c/deg 

gratings from Meese et al. (2006, values given 

on pages 1227 and 1235), both at and above 

detection threshold. These sit between the 

points for increments and decrements, implying 

an intermediate nonlinearity (~1.3). 
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Figure 9. Details and results of a binocular summation experiment. (a) The conditions for a final experiment 

measuring binocular summation for increments and decrements. Large rectangles represent the pedestal 

luminances, and small ones the target increment or decrement. Each pair of bars indicates the stimulus to the left 

and right eyes. (b) Results from the luminance summation experiment, along with those from Meese et al. (2006) 

using sinusoidal grating stimuli. The curve is the level of summation expected for a range of monocular 

exponents, defined as BSR = 2
1/m

, where m is the combination of all exponents prior to binocular combination 

(assumed to approximate a power function). Note that the curve is not a fit to the data. Rather, the data are 

superimposed onto the curve at x-values that permit estimation of the implied exponent from the empirical 

summation ratios. 

 

5 Discussion 

 
The purpose of this study was to investigate 

how target and background luminance affect 

the nonlinearity underlying binocular 

brightness perception. Our principal finding is 

that although this nonlinearity appears much 

stronger for decrements (Anstis & Ho, 1998) 

than for increments (Levelt, 1965; Engel, 1970; 

Anstis & Ho, 1998), a logarithmic transform of 

the ratio of target and background luminances 

removes this difference. We also demonstrate 

that a measure of binocular performance—the 

binocular summation ratio for luminance 

excursions—is similarly affected by the 

nonlinearities that we have observed. 

 

5.1 Alternative models 

 

Equation 1 is a simple construct and provides a 

useful description of our data. It must be noted, 

however, that many alternative models have 

been proposed to account for luminance 

matching results (e.g. Engel, 1969; deWeert & 

Levelt, 1974; Lehky, 1983; Anderson & 

Movshon, 1989; Grossberg & Kelly, 1999). 

Our aim was not to compare all of these models 

exhaustively, since this has been attempted 

elsewhere (Grossberg & Kelly, 1999). 

However, we note that many such models are 

elaborations of equation 1, often incorporating 

alternative weights or additional parameters 

into the same basic form. The influential model 

of Ding & Sperling (2006, 2007) is essentially 

identical to equation 1 for matching tasks at 

high contrast (see equation 15.27 of Ding & 

Sperling, 2007). 

 

5.2 The two-stage contrast gain control model 

 

One alternative model is the first stage of the 

two-stage binocular contrast gain control model 

of Meese, Georgeson & Baker (2006). (The 

second stage is an output nonlinearity, which is 

irrelevant to the matching paradigm.)  That 

model was designed to explain data from 

contrast detection and discrimination 

experiments containing various ocular 

arrangements of pedestal and target (see also, 

Baker, Meese & Georgeson, 2007). The 

equivalent expression is, 

 

  B =
L
m
+ R

m

S + L + R
,         (2) 

 

which has obvious parallels with equation 1. 

For contrast tasks, the numerator exponent, m, 

takes on a value of around 1.3, and the 

denominator exponent is implicitly set to unity. 

However, it is plausible that one or both of 

these exponent values might differ for light and 

dark disks in the manner described above (see 

Figure 8). As might be expected from these 

formal similarities, the two-stage model 

successfully describes some of the contrast 

matching results from Legge & Rubin (1981) 

(see Figure 6D of Meese et al., 2006). With the 

addition of the second stage, the model also 
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provides a good account of detection and 

discrimination results, including dichoptic 

masking, and is readily extended to incorporate 

cross-channel suppressive effects (e.g. Baker, 

Meese & Summers, 2007) as well as spatial 

summation (Meese & Baker, 2011). 

 

The main departure from equation 1 is the 

inclusion of an extra parameter, termed S. This 

is typically small (S≈1 for contrasts scaled to 

the range 0:100), and performs a similar 

function to the semisaturation constant in the 

Naka-Rushton equation (Naka & Rushton, 

1966), influencing the sensitivity of the model 

at low inputs. For high input levels, S has a 

negligible impact, and matching curves are 

similar to those shown in Figure 7a (see black 

and red curves in Figure 10). At lower input 

levels (where L≈R≈S), the equibrightness 

contours do not fold back as much when 

approaching either axis. This produces a 

summation effect at low input levels (e.g. bin > 

mon, see orange and green curves in Figure 

10), which has been reported for previous 

contrast matching experiments (Legge & 

Rubin, 1981; Baker et al., 2007a) and is evident 

in some of the results here (Figures 3-5, 

particularly for smaller standard increments 

and decrements).  

 

 
Figure 10: Example equibrightness contours for the 

two-stage model. Different colours represent 

different standard levels, relative to the model 

parameter S. When the magnitude of the standard is 

similar to S, there is a summation effect close to 

each axis. At higher input levels, the curves fold 

back toward the points [0, 100] and [100, 0].  

 

5.3 Luminance matching without contours 

 

If the difference between target and 

background luminance is important, how does 

binocular combination behave in situations 

where there is no obvious background region? 

Using Ganzfeld (i.e. full field luminance) 

stimuli, Engel (1970) found that matching 

behaviour was very noisy and did not produce 

a reliable curve. This could be due to the lack 

of an ‘anchor point’ (a region of fixed 

luminance) to which the target luminances 

could be compared (Gilchrist et al. 1999). 

However, Bolanowski (1989) reported linear 

summation of Ganzfeld brightness using a 

rating scale method, so obtaining successful 

binocular brightness judgements from 

Ganzfelds may be task dependent. Legge & 

Rubin (1981) performed matching experiments 

using full-field stimuli but not Ganzfelds, so 

other regions of the image (e.g. the edge of the 

monitor, or other objects in the room) might 

have been used to anchor luminance 

judgements in their study.  

 

5.4 Separate processes for light and dark bars 

 

In matching experiments with gratings and 

bipartite fields, we found that the overall 

nonlinearity (γ) appears to depend on the dark 

region of the target more than the light region 

(Figure 8a and inset). Based on experiments in 

which target gratings were deconstructed into 

their light and dark bars, McIlhagga & Peterson 

(2006) concluded that observers behave as 

though the light and dark parts of gratings are 

subject to their own luminance nonlinearities – 

the decrement nonlinearity being the more 

severe – before optimal combination. If that 

were the case here, then the more expansive 

decrement nonlinearity would be expected to 

dominate at high contrasts, where its 

contribution outweighs that from the 

increment. This should result in a greater 

overall nonlinearity for contrast stimuli relative 

to increment-only stimuli, just as we found. 

Overall then, dark bars dominate over light 

bars for the experimental situations studied 

here. 

 

5.6 Interpreting luminance nonlinearities 

 

The benefit of the log luminance ratio is that it 

removes the effect of (background and target) 

luminance on the value of the monocular 

nonlinearity for the stimulus conditions here. 

However, as McIlhagga & Peterson (2006) 

point out, a realistic contrast metric should be 

local rather than global (though see Gilchrist et 

al., 1999). Considered from a biological 

perspective, the luminance ratio might 

represent a cell with a centre-surround 

arrangement, such as a retinal ganglion cell. 

The logarithmic transform could represent local 

light adaptation or saturation in the retina, 

which can also be approximated by the Naka-

Rushton function (Shapley & Enroth-Cugell, 
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1984). Indeed, a logarithmic transform may not 

be the only possibility - in principle, any 

function that is more expansive for decrements 

(see Figure 14 of Kingdom & Whittle, 1996) 

than for increments might serve our present 

purposes equally well. It is important to note 

that any nonlinearities revealed by our study 

must occur at a pre-binocular locus, placing 

them at or before primary visual cortex. 

 

6 Conclusions 

 
We have demonstrated that the difference 

between target and background luminance 

determines the effective nonlinearity governing 

binocular brightness perception. This allows 

experimental results for increments and 

decrements, which appear very different, to be 

understood within a single framework. We also 

find that the perception of binocular luminance 

contrast is controlled primarily by the 

decrement region of the stimulus. It remains to 

be seen whether this result is limited to 

binocular combination, or if it might extend to 

contrast perception in general. 
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