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Abstract 

Whereas transportation planners commonly predict the negative impacts of mass transportation, 

there is increasing empirical evidence of the existence of positive mass effects, whereby increased 

use of a mode by the ‘mass’ will generally increase its attractiveness for future travellers. In this 

paper we consider the dynamic impact of such an effect on the problem of travel demand 

forecasting, with particular regards to social network effects. Our proposed modelling approach is 

inspired by literature from social physics, evolutionary game theory and marketing. For simplicity 

of exposition, our model is specified for a scenario in which (a) there is a binary choice between 

two mobility lifestyles, referred to as car-oriented and transit-oriented, and (b) there are two 

population groups, where one is the “leading” or “innovative” population group and the other the 

“following” or “imitating” population group. This latter distinction follows the rather well-known 

Bass model from the marketing literature (1969). We develop the transition probabilities and 

transition dynamics. We illustrate with a numerical case study that despite lower intrinsic utility 

for the transit lifestyle, significant changes towards this lifestyle can be achieved by considering 

congestion, service improvements and mass effects. We further illustrate that mass effects can be 

positive or negative. In all cases we explore the sensitivity of our conclusions to the assumed 

parameter values.  

 

Key words: Mass effects, travel demand, long range forecasting, Bass model, social networks, 

stochastic process model  
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1. Introduction 

Over the past decades, town and transportation planners have utilised a large range of policy 

measures in order to influence the travel decisions of individuals towards more sustainable modes. 

Foremost among these have been the so-called “hard” measures, such as pricing of the less 

sustainable modes as well as investments in the infrastructure of the more sustainable modes (e.g. 

Stopher, 1994; Hensher and Chung, 2011). In order to justify and appropriately target such policies 

in advance, a range of sophisticated, price-sensitive travel demand models have been developed 

in order to forecast the likely economic and societal benefits. However, there has been a growing 

awareness among policy-makers that hard measures are not on their own sufficient; for example, 

the pricing measures may be politically sensitive, and (especially in periods of economic austerity) 

the scope of the infrastructure investments may be too limited given the scarce availability of 

funding.  

Such considerations have led to the increasing importance of so-called “soft” measures: 

communicative, persuasive measures to convince individuals or groups about the need for the 

modal shift (e.g. Bamberg et al, 2011; Richter et al, 2011; Thørgersen, 2007). Evidence for the 

increasing policy importance of such soft measures can be seen in the growing interest in “Travel 

Feedback Programmes” or more generally “Mobility Management” such as TravelSmart in 

Australia (Zhang et al, 2012) or SmarterChoices in the U.K. (Cairns et al, 2008). Again, travel 

demand forecasting has a key role, for example in deciding how to target the measures to achieve 

the desired policy consequences, or how to optimally design and time any complementary hard 

measures in an integrated package. However, while the modelling of hard measures is now a 

relatively mature and well-understood subject (Boyce and Williams, 2003), the tools for modelling 

soft measures are much less advanced, given the much shorter time that they have featured on 

the policy agenda and given the problem in capturing difficult-to-quantify effects. A particular 

challenge for modelling the impact of soft measures is that their effectiveness depends on 

changing travellers’ attitudes. Soft measures may be seen as having their origin in environmental 

psychology, and as such they do not appeal directly to the existence of a “perceived (and easy to 

model) utility function”, but to changes in various psychological determinants that form 

behavioural intention. Following such a line of reasoning, Anable et al (2012), for example, predict 
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future energy and mobility scenarios based on changes in attitudes, avoiding the need to translate 

attitudes into “static utilities” (that determine decisions) by developing a reasonable "storyline". 

The present paper will seek to explore a feature that we consider to be common to many such soft 

measures, namely that they implicitly aim for some kind of positive, social mass effect, reflecting 

the emerging role of social networks as a stimulus for travel behaviour decisions (Axhausen, 2008; 

Carrasco et al, 2008). That is, from the policy-maker’s perspective, one persuades a few to change 

their behaviour initially in order to encourage a larger number of people to follow later. This has 

two clear implications: (a) the problem we consider is inherently dynamic, the relevant forecasting 

question is: ‘how does demand change with time?’, not ‘what is the demand?’ and (b) the decision 

of an individual at any point in time is dependent on the prior decisions of other individuals. This is 

not to suggest that travel demand forecasting has never considered dynamic problems. Indeed 

some thirty years ago, anticipating well the future growth in research interest in dynamic demand 

forecasting, Clarke et al (1982) suggested a three-way classification of micro-dynamics (detailed 

scheduling within the day), macro-dynamic modifiers (incorporating habit and lags) and macro-

dynamic processes (life processes, from birth to death). This classification reflects the general 

focus of subsequent travel demand modelling developments, whereby demand is seen essentially 

as the sum of individualistic processes (aside from perhaps at the household level). The problem of 

forecasting demand dynamics under social mass effects, however, does not fit into such a 

classification, as it does not decompose into individualistic dynamic processes. 

The main aims of the present paper are, firstly, to propose a potential approach for representing 

such mass effects among travellers through an extension of existing travel demand forecasting 

methods. Our second objective is then to use this mathematical description to explore the 

dynamics of such mass effects in some hypothetical scenarios. While we believe that considering 

social mass effects is particularly important to encourage sustainable transport developments, we 

recognise at the same time that they have the potential to lead to unsustainable feedbacks, and 

the study of this issue forms part of our second objective.  

Although the case study explored in this paper is based on some hypothetical scenarios, we 

believe it provides insights into policy issues for encouraging the shift toward sustainable travel 

modes. We believe our proposed approach is useful to analyse externalities between policy 
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measures, i.e., political externalities, in which one policy measure has positive or negative impacts 

on the effects of other measures. As will be shown in this paper, an introduction of a 

communicative measure might have the potential to subvert the effects of other measures, such 

as road pricing or service improvements, by strengthening conformity effects excessively. In 

addition, it is shown that a policy measure targeting one group might have “spill-over” effects on 

the other group. 

The structure of the paper is as follows. The review of Section 2 has two elements: firstly, we 

review evidence for the existence of positive mass effects, and as a result of this discussion seek to 

pinpoint the particular phenomena that we aim to capture in the present paper. Secondly, we 

analyse previous modelling approaches for similar phenomena, both in the transportation 

literature and elsewhere. This review is used to inform our model formulation in Section 3, where 

we specify a dynamic forecasting model for users choosing between two ‘mobility lifestyles’. 

Section 4 analyses the proposed approach in more detail, through numerical examples and by 

establishing limiting cases, which provide a ‘positioning’ of the work relative to the seminal work 

of Bass from the marketing literature. We further explore, through a fairly extensive case study, 

the sensitivity of the dynamic effects of the model to assumed values of the input parameters. In 

the absence of data to calibrate our model, our objective is to illustrate the potential importance 

of considering trend effects for transport policy, and so our focus is on exploring qualitative 

features of the model. In Section 5, we discuss the potential policy impacts and issues for 

calibration that arise from adopting such a modelling approach. Finally, Section 6 concludes the 

paper by discussing its contribution as well as shortcomings, and identifies paths for further 

research. 

2. Mass effects: Evidence and Potential Modelling Approaches 

 

2.1. The evidence for positive mass effects within real-life transportation systems 

Although the present paper is concerned with modelling approaches, we begin our review not 

with models but with real-life transportation systems, and ask the questions: do mass effects 

really exist, and if so what kinds of mass effect are there?  
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Certainly transportation planners are familiar with the negative effects of mass transportation, 

and these are routinely evaluated. That is to say, the well-understood, aggregate effects of 

individual mode, departure time and route decisions are routinely modelled through impact 

models to represent on-street congestion, public transport crowding, pollution, etc. These effects 

are negative in the sense that increased use of a mode by the ‘mass’ will tend to decrease its 

attractiveness. Our interest, on the other hand, is for the potential for significant positive mass 

effects to exist, whereby increased use of a mode by the ‘mass’ will generally increase its 

attractiveness for future travellers.  

We imagine a situation such as the following: A transport planner might set up a scheme, such as 

car-sharing, and encourage its usage through communicative measures. This might then persuade 

some to initially join. Through the experience of these few, others might be persuaded to join. For 

minor services, such as car-sharing, this might then allow the service to be improved by, for 

example, providing further vehicles at additional locations. The service might hence become more 

attractive to additional users, eventually creating a positive cyclic effect. In summary, initial 

investments and possibly communicative measures to a selected group will be the trigger for a 

desirable trend effect as envisaged by mobility management. 

This small example is in line with the main argument of a simulation study by Sunitiyoso et al 

(2011a), who also argue that a minority can significantly influence a majority to change their 

behaviour. It shows that there are several kinds of positive mass effect that may exist, and here we 

shall identify these different types in order to ‘position’ the present paper in the existing literature 

and to clearly distinguish which kinds of mass effect are the particular focus of this contribution. 

Broadly, a classification of positive mass effects may be made as follows: 

Real mass effects: Evidence for such effects exists across a variety of modes. An increase in car use 

may increase congestion and thereby reduce speeds, thereby leading to negative travel time 

impacts but positive safety impacts for the car-mode, since lower speeds are associated with 

lower accident frequency and severity (McCarthy, 2001). In cities where bicycles are little-used the 

vehicular traffic dominates, but as cycling use increases so there may be a real effect of ‘safety in 

numbers’, in terms of a reduced accident risk per cyclist (Jacobsen, 2003). This effect has been 
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seen to extend to pedestrians (Leden, 2002), implying that there is also a real positive effect of 

increased use of modes involving a walk stage.  

Perceived mass effects: Walking in a relatively empty or low density part of a city can give a feeling 

of insecurity beyond the actual safety risks (Cho et al, 2009). Increasing use of walk-related modes 

can therefore have a significant positive effect on perceptions of safety. This ‘perceptual’ effect is 

potentially in addition to any real mass effects; it may be highlighted by linking it to improvements 

in the aesthetic environment (a kind of link to the ‘consequential’ effects mentioned below). 

Consequential mass effects: Travellers are not the only actors making decisions in a transportation 

system, though often models and modellers assume this to be the case. If the decisions of other 

actors are included, then a variety of positive mass effects may exist as a consequence of the 

decisions of other actors. Increased use of public transport may lead to economies of scale that 

may be passed on to travellers by public transport operators in terms of reduced bus fares or 

increased frequencies (Mohring, 1972). In planning a staged implementation of a mode-specific 

scheme over time, the actual implementation of future stages may be contingent on the public 

support gained from the success of earlier stages in encouraging increased use of that mode 

(Ngoduy et al, 2013), thus giving rise to what is in effect another form of positive mass effect. 

Information mass effects: Conventional demand modelling assumes that individuals have both 

perfect and complete knowledge of the options available. While random disturbance terms are 

often used to capture traveller heterogeneity and/or the inability of the modeller to observe all 

the factors that motivate traveller decisions, a quite different dimension is the level of 

incompleteness and misinformation that travellers may possess. This is particularly the case for 

alternatives that have been never or rarely used by some individuals, i.e. previously non-chosen 

modes. The greater use of a mode will in turn mean a greater penetration in the travelling 

population of those with experience in using a mode, and thereby a great chance of a non-user to 

have a social connection with a user of that mode (Blickstein & Hanson, 2001; Páez & Scott, 2007; 

Arentze & Timmermans, 2008). In automated information gathering (e.g. intelligent transport 

systems), then vehicles may be used as probes, and a greater use of the mode gives potential for a 

greater sample rate, wider coverage and therefore improved information (Shladover et al, 2007; 

Herrera et al, 2010). 
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The above grouping might be said to classify mass effects according to their “mode of action”. 

Through this proposed classification of mass effects, we wish to emphasise that mass effects are 

possibly significant in transport or mobility decisions of individuals not just through social 

interaction. However, this latter kind of mass effect, which in the above classification is an 

example of an information mass effect, has possibly received most attention in recent literature 

and is reviewed in more detail in the following section.  Sunitiyoso et al (2011a) summarise some 

of the empirical findings and classify types of social interactions into further subcategories based 

on their directness of interaction (interdependent situation, observation and communication.) 

It seems likely that much of the information travellers derive about their transport options, 

especially for non-chosen modes, will be from word-of-mouth, and may follow (and reinforce) the 

general negative or positive perceptions of a mode within an individual’s social group (Bartle, 

2011; Sutinyoso et al, 2011b). While interactions between household members are considered in 

activity-based approaches, we are in this paper more interested in the wider influences across 

social groups and households which we believe are not yet well represented in existing modelling 

approaches, despite various studies confirming their importance for travel decisions. For example 

the U.K.’s Department for Transport recently published their “behavioural insights toolkit” in 

which they also stress that transport choices by individuals are influenced directly by various 

norms, which, in our categorisation, might be seen as one important aspect of the “information 

mass effect” (Department for Transport, 2011). The report further provides a summary of the 

main underlying theories that can explain how behaviour is influenced by norms. One important 

social psychological model with several transport applications is the Theory of Planned Behaviour 

(Ajzen, 1991), which proposes that subjective norms are an important determinant of behavioural 

intentations. As well as describing theories of behavioural changes, this has also inspired the 

above-mentioned travel feedback programmes. This report, as well as that of Abou-Zeid et al (in 

press), describes the role of norms on mobility decisions in more detail. 

There are furthermore a number of recent examples with real data that appear noteworthy: 

Goetzke and Rave (2011) explain differences in bicycle usage in German cities with social network 

effects that could be due to any of the above modes of action. They use the aggregate bicycle 

modal split as an instrumental variable to estimate an individual’s probability of choosing to use 
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the bicycle mode. Taking aggregate bicycle modal split as a proxy for the social network effect, 

they find that this is indeed a significant factor for mode choice for shopping and recreational trips. 

Walker et al (2011) discuss the problem of endogeneity in the estimation of social network effects 

(or field effects) in more detail, and suggest a different correction method. With mode choice data 

from the Netherlands they also find significant field effects for the mode choice for work trips. 

Weinberger and Goetzke (2011) aim to control for the above mentioned endogeneity by 

accounting for average behaviour in peer groups. They then show that the percentage of 

households without cars in a neighbourhood can explain ownership decisions. Their results 

suggest that social network effects or “peer pressure” reduce the effect of income, education and 

household size. In fact, they find a negative sign for income when taking into account peer 

pressure, and suggest that a likely explanation is that cars play a more significant role as a status 

symbol in poorer families. 

These examples illustrate the importance of positive mass effects. As argued by the authors they 

suggest these are based on social networks, i.e. information mass effects. However, as the 

discussion on endogeneity effects shows, such effects are difficult to distinguish from other mass 

effects that are also possibly at work at the same time, in particular consequential mass effects. 

Furthermore, the approaches in the above study are used to explain and quantify the importance 

of mass effects, but do not treat the dynamic process explicitly and are therefore probably less 

suitable as a basis to forecast the development of future demand.  

2.2. Modelling mass effects 

In some fields of transportation, there is already a growing body of work on modelling the 

dynamics of mass transportation. One such field is dynamic traffic network modelling, which 

focuses on day-to-day dynamic models to represent the effects of congestion and user learning of 

the choice attributes (Cascetta and Cantarella, 1995). Although the focus of such approaches has 

been exclusively on negative mass effects, it is not inconceivable that such approaches might be 

adapted to represent positive mass effects in the future, perhaps building on some of the ideas we 

discuss later (Section 5). The key question we must answer, though, is: how might we represent 

positive mass effects in a model?  
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If we turn attention to the marketing literature, then we see that (in constrast) trend and word-of-

mouth effects are well-known. In a rather widely-known paper from this field, Bass (1969) 

observed that the uptake of new products such as washing machines and dish washers can be 

explained through a model with two population groups, referred to as “innovators” and 

“imitators”. The innovators are typically imagined to be a small population group who are willing 

to invest in the new product. After time, “imitators” follow by also purchasing these products, 

creating significant sales until market satisfaction is reached. Bass’s model suggests that the 

number of persons owning a product at any one time is a significant factor in the decision of 

imitators to purchase the product at that time. 

The model has been highly influential in the field of modelling sales trends and has been widely 

used in practice. Bass states that first-time product sales follow an S-shaped curve described by 

the following relationship:      

f()/ (1-F()) = p + qF()                      (1) 

where f() is the likelihood for any randomly selected individual to purchase at time , and F() is 

the market saturation at time . p is the “innovation coefficient” and q is the “imitation 

coefficient”. The latter two parameters are, in later literature, also referred to as the coefficients 

of external and internal influence (Mahajan et al, 1990). A large p reflects a market with a large 

number of “innovators” who are not influenced by others, whereas “imitators” buy the product 

partly because of the social pressure to adapt. Analysing (1), it can be found that the introduction 

of imitators creates a characteristic curve with a slow start of sales, followed by a rapid increase in 

sales leading to a peak, before sales drop due to market penetration. The pressure on imitators to 

buy at any time   increases with F(), the proportion of the population already owning the new 

product at time . 

Though Bass does not discuss in detail the mechanism of how imitators will be attracted, his 

model implicitly suggests that communication in social networks plays an important role. Such 

communication might promote the usefulness or “utility” of products, as well as trigger the 

perception that new or expensive products are seen as “positional goods” (Frank, 2005). 
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These communication effects within social networks might at first seem to be uncontrollable, but 

they are formally exploited by marketing through various forms, in particular the internet. For 

example, Sparks and Browning (2011) discuss the importance of online reviews for hotel bookings, 

while Jalilvand et al (2011) discuss the extent to which electronic communication has overcome 

some limitations of conventional word-of-mouth effects, the latter being constrained to occur 

typically between persons who know each other. 

From this literature, we can conclude that there is agreement that social network or trend effects 

are important to be considered for decision-making in general, and for consumer purchases in 

particular. A great deal of work in economics and evolutionary game theory has hence studied 

various sorts of dynamic models incorporating network effects. The dynamic models describe the 

long-run process of social interactions through which agents revise their behaviour over time. 

They can be distinguished depending on the specifications of agents’ revision procedures, termed 

their revision protocol by Sandholm (2011). Some of the most commonly-studied dynamics are 

replicator, (perturbed) best response, Brown - von Neumann - Nash imitation and mutator 

dynamics, which correspond to different behavioural assumptions about agents’ decision 

procedures (see Hofbauer and Sigmund, 2003; Sandholm, 2011). Although the main focus of the 

literature seems to be on an evolutionary justification of equilibria in games, such as Nash 

equilibrium, the modelling approaches have been applied to the study of social network effects in 

various fields, so as to capture diffusion processes of certain types of behaviours or technologies in 

population. This has included applications to considerate smoking behaviour (Nyborg and Rege, 

2003), common-pool resource uses (Sethi and Somanathan, 1996), market share of products 

(Cantner et al, 2010), and innovation and technological change (Safarzynska, van den Bergh, 2011). 

However, there are few applications within the transportation research field, Yang and Zhang 

(2009) being one of the exceptions in introducing evolutionary dynamic games to the modelling of 

traffic flow patterns. 

The dynamics to be studied later in the present paper correspond to a version of logit dynamics in 

the evolutionary game theory literature. The logit dynamics approach, which was introduced by 

Fudenberg and Levine (1998) and Hofbauer and Sandholm (2002; 2007), is formulated by 

assuming the logit model as each individual’s behavioural principal. Although the logit model has 
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been theoretically justified and also extensively used in empirical work, this form of dynamics has 

been rarely applied to model diffusion of behaviour, and not (to our knowledge) travel behaviour. 

Although our approach therefore has links to evolutionary game theory, we shall focus more on its 

emergence from a body of literature related to system analysis in physics. Here, we see an overlap 

between the above, evolutionary game literature, and the physics literature utilising the so-called 

quasi-mean value equations of the master equation approach.  Nakayama and Nakayama (2004) 

note that ’statistical physics can provide powerful methods for studying social phenomena with 

interaction’. Similar to the work we shall present, Nakayama and Nakayama utilise the logit model 

for describing transition probabilities based on perceived utilities of choice, with these utilities 

including both attraction and repulsion elements towards a choice, depending on how many 

people have already adopted this option. They investigate time evolution as well as system 

bifurcation points for different parameter settings. In contrast to the work we shall present, they 

do not distinguish different population groups nor do they distinguish congestion and mass effects. 

Our model development is in parts influenced by ideas described in the book “Sociodynamics” by 

Weidlich (2000). In his book he describes approaches for quantitative analysis of stochastic 

phenomena originally developed to describe natural phenomena. In particular, our analysis is 

inspired by the migration problem described in Chapter 4.3 of Weidlich (2000), but with some 

important differences in the model specification, as we shall describe in the following section.  

 

3. Problem description 

 

3.1. General notation 

It is first useful to clarify the kind of transportation situation we are envisaging with our model. 

Specifically we are considering a long term decision such as, for example, whether to join a car 

sharing scheme, whether to buy an eco-friendly car, or whether to start using a bicycle. This may 

be distinguished from the emphasis of mode choice models, for example, where the question is 

whether individuals in a specific transport situation will choose a particular mode for that situation. 
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Rather than mode choice, then, our focus will be on mode uptake (as in Watling, 2010), or in even 

more general terms the choice of mobility lifestyle.  

Although we believe our approach can be readily applied to the choice between any number of 

mobility lifestyles, for any number of ‘population groups’ (as defined below), in order to 

communicate the key ideas we shall in this paper restrict attention to the simplest case, of the 

choice between two mobility lifestyles, for two population groups. We shall denote the two 

mobility lifestyles by c and t and the two population groups by λ and φ. Broadly, since we are in 

fact imagining a policy situation in which the objective is to promote more sustainable transport 

modes, then we may think that c stands for car and t for transit, but one might more generally 

consider c as the prevailing unsustainable mode and t as the new sustainable mode. Similarly, λ 

stands for the “leading” population group and φ for the “following”, but one might more generally 

interpret λ as innovators as in the Bass model; that is to say, those who are more willing or find it 

easier to experiment with new forms of mobility, and are possibly convinced by persuasive policy 

measures. Followers are more likely to be influenced by the decisions of others and often make up 

the mass of the population. Alternatively, one might interpret   and   simply as two different 

population groups with different utility functions, with the members within the two groups 

influenced to different degrees by persons from their own group and the other group.  Our 

question will be primarily to understand at what stage a large amount of the population will be 

likely to consider switching to the mode promoted by the policy-makers, i.e. mode t.  

Though we discuss the meaning of further variables throughout our paper, we provide the reader 

here with an overview of all the notation used for easier reference: 

A:{ λ, φ}: Set of population groups, λ: leading, trendsetting  group, φ: following group 

Λ, Φ: Size of population groups λ and φ respectively  

L: {t,c}:  Set of possible mobility lifestyles, t: transit oriented, c: car oriented 

  
 ( ):  Expected number of persons in group α with mobility life style i in time interval  

  
 ( ) Utility of mobility lifestyle i for group  in time interval  
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 Intrinsic utility of mobility lifestyle i for subgroup   

   
  General possibility to move from mobility lifestyle i to j for population subgroup  

   
 ( ) Proportion of population type  that moves from mobility lifestyle i to j in time 

interval   

   
 ( ) Expected number of people from population type  that move from mobility 

lifestyle i to j in time interval   

We note that    
 ( ) and    

 ( ) could alternatively have been defined as individual and aggregate 

transition probabilities respectively, leading to a stochastic process model formulation, in which 

we would model the time-evolution of the probabilistic distribution of the states in the dynamic 

process. In our work, however, we interpret     
  and    

  as proportions rather than probabilities, 

leading to a deterministic process model; effectively, it can be interpreted that we assume that the 

dynamics may be captured approximately by the time-evolution of the expected values, assuming 

a uni-modal probability distribution of the stochastic process and invoking a ‘law of large numbers’ 

argument.  Weidlich (2000) describes this as the assumption that “taking the weighted mean over 

the hopping processes of a bundle of stochastic trajectories from a given point (   
     

 
) … leads 

to the equations for the preferential mean direction and mean velocity by which the trajectory-

bundle proceeds” (p. 62).   

From the notation it follows that the state of the population is described by 

{  
 ( )   

 ( )   
 ( )   

 ( )} . Since  

   
 ( )      

 ( )   (2) 

   
 ( )      

 ( )   (3) 

then these four state variables could in principle be fully described with only two unknown 

variables   
 ( ) and   

 ( ); however, we have retained reference to all four variables in our model 

definition below, as this seems a clearer way of explaining the model. We are interested in the 

evolution of these variables over time.  
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3.2. Utilities for mobility lifestyle decisions 

We assume that each mobility lifestyle has its intrinsic, possibly population-specific, utility   
 . 

Further, in line with our motivation, we consider that the utility of a mode,   
 , will be directly a 

function of   
( ), in two particular ways. Firstly, there are congestion effects meaning that the 

utility of lifestyle i decreases with the total number of people adopting this lifestyle.  To reflect the 

negative external effects of cars one might expect that the utility of lifestyle c decreases faster 

with more users taking up this lifestyle compared to the decrease in utility of lifestyle t when more 

people take it up. For lifestyle t, on the contrary, one might even consider positive long term 

“congestion” effects, considering that the service attractiveness of minor (uncongested) modes 

might increase if more users take it up due to, e.g. more demand-responsive buses or more car-

sharing stations spreading throughout a city (what we termed ‘consequential mass effects’ in 

section 2.1). Though these congestion and service improvement effects will be similar for both 

population groups, we consider these as possibly group-specific to reflect a possible differing 

evaluation in the effects, for example group λ might be more sensitive to congestion effects than 

group φ.  

Finally, we consider the trend or conformity effects to measure the influence an individual 

perceives by adapting the same mobility lifestyle as others. In general one would expect the effect 

to be larger if the characteristics or circumstances of the influencing person are in some way 

similar to the one being influenced as found in the psychological literature on provincial 

descriptive social norms (Goldstein et al, 2008).  Further, given our definition of one group as 

“leading” and the other as “following”, we define the effect of group  on group   to be larger 

than vice versa.  

In summary, considering all these effects leads to our general assumption on   
  as in Eq. (4), 

where the specific functional forms are to be specified. We note that in Eq. (4) and in the following 

we omit time dependency whenever the function itself is not time dependent but only evaluated 

at a time .   
  specifies the congestion or service improvement effects due to the sum of people 

taking up lifestyle i. As these might be perceived differently by our two population groups, we 

define these two functions as -specific.   
  and   

  specify the trend effects, due to following 
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people in group  and  respectively. With this notation it follows also that   
  specifies the trend 

effects due to following people in “my group” when  = 𝛽 and “the other group” when   𝛽 

respectively. We emphasise that this trend effect is not mode-specific, it simply tends to reinforce 

the decision of the majority. Function    then combines the group-specific and mode-specific 

effects while considering the intrinsic utility   
 . Note that the migration problem as set out in 

Weidlich also includes an intrinsic utility and trend effect, but does not include anything analogous 

to our mode-specific effect (which in his migration model would have been a location-specific 

effect, i.e.   
  in our terms is omitted from Weidlich’s model). Weidlich further assumes linear-in-

parameter functions for   ,   
 ,   

 and   
 .  For transport applications this linearity assumption 

might seldom be appropriate, as we discuss later, and so provide a more general notation which 

also permits non-linear forms.  

    
 (  

    
 
)    (  

    
 (  

    
 
)   

 (  
  )   

 (  
 
))      for  = {,}; i = {c,t}  (4) 

 

3.3. Transitions during one time interval  

To reflect the general likelihood of changing the mobility status (within a certain time period) we 

further introduce parameters    
 . We might expect such parameters to be, for example, 

dependent on income, as we might assume that a higher income will tend to allow people to more 

easily adopt and adapt to a different lifestyle. With these definitions, the one-step transition 

proportions between mobility lifestyles can be defined.  Weidlich assumes an exponential form of 

transition proportions from i to j as 

     
 (  

   

   

   

)     

    (  
 (  

      
 
)    

 (  
   

 
))   

                                                                                                 for , = {,}; i,j = {c,t} with ij (5) 

While this form ensures positiveness of transition proportions, it does not guarantee that they are 

less than or equal to 1, though this can be avoided by assuming relatively small values for the 

parameters    
 . The form chosen by Weidlich further assumes “intelligent” individuals in that they 
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consider the utility of mode j after they have moved into this state i.e.   
 (  

      
 
), but 

otherwise the formulation does not seem to be behaviourally justified. In the current contribution, 

however, we shall instead use transition proportions based on the logit model, as there is a 

stronger theoretical justification (see e.g. Ben-Akiva and Lerman, 1985). Furthermore, we assume 

that individuals only consider the present conditions of both lifestyles in their choice, i.e. decision 

makers are myopic in that they do not foresee the impact of their decision. This leads to the 

following functional form for our transition proportions: 

   
 (  

   

   

   

)  

   
    (  

 (  
   


))

   (  
 (  

   

))    (  

 (  
   


))
 

   


     (  
 (  

   

)   

 (  
   


))

      

                                                                                                            for  = {,}; i,j = {c,t} with ij (6) 

We note that (6) is a form of the dogit model. Bordley (1990) describes the dogit model as a way 

of modelling customer choice in which customers are to some extent loyal to the previous product 

they bought. For travel behavioural decisions loyality might rather be explained with habitual 

behaviour and the difficulties associated with fitting changes into daily schedules with various 

constraints. Therefore, it is reasonable to assume that a fraction (     
) of travellers are “loyal” 

to their previous lifestyle, and a fraction    
 consider a change in lifestyle. That this functional form 

is a reasonable assumption is given some support by Whelan (2007). Whelan modelled car 

ownership developments in the U.K. and found that the dogit model in general provides good 

model fits.  

We emphasise that in (6) changes from lifestyle c to t and vice versa are both possible, i.e. both  

   
 ( ) and    

 ( ) can be nonzero. In contrast to the original approach by Bass (1969), this might 

hence be described as “two Bass models in tandem”. Setting    
  or    

  to zero reduces our 

approach to one similar to the original Bass model. 

The group proportions can now be used to define the aggregate transition rates or expected 

number of transitions within each group,    
 , by considering that there are   

  ( ) persons within 

each population group that could make a transition from i to j: 
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 ( )     

 ( )      
 (  

( )   
( )   

( )   
( ))  for  = {,}; i,j = {c,t} with ij (7) 

In our case there are hence the |A|*|L|= 4 possible state transitions 

{   
 ( )    

 ( )    
 ( )    

 ( )}. For example a transition from an initial state (  
  

 

 
    

 
) to 

(  
  

 

 
      

 
) has an aggregate transition probability of    

 =    
  

 
 and the inverse transition 

back to the initial state can be executed by an additional individual so that     
 =    

 (
 

 
  ). 

3.4. Transition Dynamics 

Equation (8) follows from (7) and our model set up as a deterministic one. It describes the 

expected change in the mobility lifestyles by subtracting the aggregated outflow from each 

mobility lifestyle from the aggregated inflow.  

   
( )

  
    

( )     
( )   for  = {,}; i,j = {c,t} with ij (8) 

Assuming the special case of symmetric transition proportions in (6) i.e.       
     

  the 

expected change in persons from population group  with mobility lifestyle t can also also be 

written as Eq. (9). This formulation is equivalent to the perturbed best response dynamics used in 

evolutionary game theory, and since it is derived by assuming Eq. 6 it also illustrates a connection 

to the logit model commonly used in transport demand modelling.  
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   [

 

     (  
 (  

( )   

( ))   

 (  
( )   


( )) )

   
 ( )]  

                    [
    (  

 (  
( )   


( )))

   (  
 (  

( )   

( )))    (  

 (  
( )   


( )))

   
 ( )]   for  = {,} (9) 

If we make a discretisation in time of the above model, then, in line with (8), we obtain the 

following difference equation for the change in the population state over time.   

  
 (   )    

 ( )     
 ( )     

 ( )    for  = {,}; i,j = {c,t} with ij (10) 
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4. Illustrative Example 

  

4.1. Limiting cases  

As shown in our literature review, dynamic evolutionary processes have been prominent in various 

disciplines, but especially the deterministic Bass model is a seminal work that has been applied to 

model user uptake of new products. To clarify the scope of our model in this section we illustrate 

similarities to and differences from the deterministic Bass model. We take parameter settings 

from those typically reported in Bass (1969) noting that these might not be realistic for travel 

behavioural decisions. In this section our focus is limited to a comparison of the general shape of 

the functional form obtained and possible interpretation of the variables. 

The models cannot be mathematically derived from each other, even assuming limiting cases, 

which can be seen by comparing Eq. (1) with Eqs (6) and (8). Whereas the Bass model is based on a 

linear relationship between probability of purchase (change in mobility lifestyle) and number of 

previous buyers, our model is based on the assumption that each traveller changes his/her 

lifestyle according to a logit function based on the choice utilities. 

In order to draw this comparison we translate product sales from the Bass model into 

transit uptake in our transportation system. To ignore the “tandem model” of returning to the 

previous car-dependent mobility lifestyle we set     
     

 
  . The Bass model further has only 

three variables. The first such variable is m, which relates to market size and total sales. We set 

      . Secondly, p, the innovative factor, or probability of an initial purchase at  = 0. We 

set p = 0.02 in line with common values reported in Bass (1969) reflecting the innovation potential 

in the population, i.e. the population who purchases new products without influence of any 

internal pressure. Translated into our model we set   
 ( )    and     meaning that all 

“leaders” change their lifestyle immediately. This illustrates one property of our model in that it 

can assume that leaders can also change their behaviour over time. The final parameter in the 

Bass model is the imitation factor q. In our model this factor should be reflected with the function 

  
 (  

    
 
) not with the mass effect functions   

 (  
 ) and    

 (  
 
) . This is because the    

functions encourage trends towards both the car and transit similar to social norms, i.e. significant 
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    functions in a system with few transit- but many car-users will prevent a move towards transit. 

This again illustrates a difference between the two models. In our model the    functions enforce 

social norms whereas in the Bass model the parameter q describes imitation (to purchase), 

regardless of the attraction to the current situation (of being in a state of not having the product). 

Following again studies reported in Bass (1969) we set q =0.3 and “equivalently” assume a linear 

  
 -function as in (20) with   

 
     and   

 
   

    
   .  

With   
    

      0 for  = {,} and   ( )  ( )  our utility function (4) reduces to 

  
 (  

    
 
)    

   

  
 
(  
    

 
)    

 (  
    

 
) for  = {,} (11)  

Finally, we note that our dogit parameter    
 has no equivalence in the Bass model. By 

setting it to 0.1 we obtain the graphs below, which illustrate that there are differences in the 

models but that also with our models we can obtain the characteristic S-shaped curves observed 

by Bass for many product sales. The Bass model achieves this with far less parameters, though. 

While a low-parameter model would generally be favoured for prediction, the additional 

parameters in our model allow the potential to link to important policy factors, by describing the 

interaction between leaders and followers, by distinguishing imitation from normative effects, and 

by controlling the speed of the purchase/ mode change. 
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Parameter settings: 

 

     ;  

      ; 

    3 

 

Figure 1 Illustration of deterministic Bass model 

 

Parameter settings: 

  2;     ; 

  
 ( )   ;   

 ( )   ; 

   
     

 
  ; 

   
     

 
      

  
 
    (   

 
   

 ) 

  
    

 
   

     

 

Figure 2 Application of model with parameters similar to Bass model 

 

4.2. Scenarios 

While our example is artificial, we aim to create it so as to illustrate some plausible features that 

might be observed in reality. With this in mind, our first task is to consider the relative size of the 

trend-setting and following groups. In our example, we suppose that     , which we believe to 

be a reasonable assumptions for our interest of promoting a new mobility lifestyle or an initially 

less-used mode through “a few leaders”. Leaders might, for example, denote those in the 
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population that are directly influenced by soft transport policy measures such as “mobility 

management”. We assume in the following a ratio of 4 followers per leader though it might often 

be larger unless mass media are utilised for the promotion of the sustainable mode  For brevity we 

do not report case studies with other population compositions but remark that the ratio of the 

two groups does have an impact on the final population state, if negative and/or positive feedback 

is considered.  

In line with our objective to describe the potential impact of trends for long-range transport 

planning, let us assume a time interval duration of one year. We further assume    
       for 

both population groups and transition in both directions, in other words this means, given 

  
    

 , we expect 0.5% of the population to change their mobility status within one time 

interval. Though this percentage might appear low, we would argue that a larger value is 

unrealistic. In a metropolitan city of a developed country where arguably the benefits of having a 

car for many are similar to not having a car, this would mean that 50 out of 1000 households per 

year change their status from having a car to having none or vice versa. Obviously a lower bound 

for this parameter is    
   , corresponding to a fixed, unchangeable mobility status of the 

population.  

We now consider various hypothetical scenarios in order to further illustrate our modelling 

approach, these scenarios successively building on one another. Let us assume a neighbourhood 

with 1000 peak time daily commuters to the CBD who are required to travel during the peak hour, 

and who if choosing the car mode would each use their own car. We assume there is one road 

connection available from this neighbourhood to the CBD with a bottleneck capacity z = 800 veh/h. 

The free flow travel time by car is y = 30 min, but delay due to congestion (real mass effects) might 

occur according to the standard BPR function, so that our car-usage related part of the utility 

function takes the following form: 

  
 (  

    
 
)     (       

  
    

 

 
)
 

   for  = {,} (12)  

We now consider that a new mode is introduced such as a BRT service to the CBD. The BRT travel 

time is assumed to be identical to the uncongested car travel time, and the travel time is demand-
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independent. Using BRT requires, however, some additional time x for access, boarding and egress 

which we set to 10min. In line with our discussion on “consequential mass effects” we assume 

though that the service might improve over time through more frequent services and more stops 

if more users can be gained. We therefore assume that for the transit mode usage related part of 

the utility function: 

  
 (  

   
 
)   

 

(    (  
    

 
))
        for  = {,} (13)  

The parameter   
  describes the sensitivity of the function to the demand. In case of   

  > 0 the 

additional time required for the new mode is a decreasing function of    
 , with large demand 

meaning that eventually the travel time reduces to the undelayed travel time of the car. We 

further assume that the intrinsic utility of the new mode is higher for leaders to express that they 

are more likely to use the new mode and set   
        

 
     The intrinsic utility for car is set to 

10 units for both population groups. We assume a simple addition of intrinsic utility, travel times 

and mass effect so that the car has a small perceived advantage of the equivalent of 2min and 

4min for leaders and followers respectively if all mass effects are ignored. Regarding the 

informational mass effect we make the assumption that  

 
 (  


)      


  for , = {,}        (14) 

where    is a trend parameter describing the tendency to assimilate/follow the commuting 

decisions of persons from subgroup  for people from subgroup . 

In the following tests, we report the findings from using the parameter settings shown in Table 1, 

abbreviated as Scenarios 1 to 7. We illustrate our scenarios with Figures 3 to 9. On the x-axis we 

illustrate the dynamics for   
 () and on the y-axis that for   

 
(). In the figures we show the 

results of Eq. (10) solved for mode uptake t for different initial states of the population: each trend 

line is a plot of the evolution of the (  
 ()   

 
())  pair over time steps             from 

different starting points (  
 ( )   

 
( )), the trajectory illustrated as a continuous line.  We plot 

1000 time steps for each trend line, at which point all had converged to a fixed point (but not 

necessarily all trend lines to the same fixed point). If each time step were to represent 1 year, then 



23 
 

obviously the stable points might not be reached within the typical planning horizons considered 

for transport policies, meaning that the trajectories are possibly as important as the convergent 

points. As that trajectory which emerges from an initial state with no/few transit users is most 

interesting for our case, this trendline is highlighted. If the other trendlines converge all to the 

same point, this would provide numerical evidence indicative of global stability of the solution, 

whereby the same solution is reached independent of the initial population state. 

Table 1 Parameter Settings in the scenarios 

 

Fixed 

   
     

     
 
    

 
      

   
          

 
   

          

 S1 S2 S3  S4 S5 S6 S7 

  
    

 
 10 8 

   0 0.1 

    0 0.05 

    0 0.005 0.01 0.02 

 

In the base scenario S1 (Figure 3) we assume that the car has a higher intrinsic utility of  

  
    

 
    , and that there are no consequential or informational mass effects. Congestion 

reduces the utility for the car but we find that not many commuters are likely to change mode as 

we find a stable situation at (  
          

 
     ). At this point the BRT travel time is 40 

minutes compared to 39.7 minutes for the car. Considering intrinsic utilities   
  this means that the 

car utility is 2.3 units higher for leaders and 4.3 units higher for followers at the stable point. We 

remark that our stable dynamic solution does not have to be a Wardrop equilibrium solution. 

Rather a dynamic stable solution means that (8) equals zero.)  

In a second scenario illustrated in Figure 4 we consider that consequential mass effects occur in 

the form of a reduction in the additional time required for using BRT per unit of demand, and set 

   = 0.1 in Eq. (22). This leads to a stable point at (  
   128,   

 
  155). Interestingly, following 

the highlighted trajectory from (  
 ( )   0 ;   

 
( )   0), we see first an increase in usage from 
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both leaders and followers, but after time a slight reduction in usage by the followers as a majority 

of the leaders start using the BRT.  

In a third scenario we add an ‘information mass effect’ in the form of     = 0.05 (Figure 5). This 

means that for every 20 leaders taking a mode, the followers perceive this as equivalent to an 

increase in utility of 1 minute. Compared to Figure 4 this leads to some change in the final stable 

point obtained (  
   108,   

 
  204), with now more followers using the BRT; this is due to the 

fact that the majority of leaders choose BRT, which in turn attracts followers to also swap mode. 

However, possibly more importantly, the trajectory until this solution is obtained is very different 

from the previous scenario. In the current case we find that at first only leaders take up transit, 

but once a “critical mass” starts using BRT, then also followers are likely to consider using the new 

mode.  

In S4, illustrated in Figure 6, we modify the scenario above to consider the case with     = 0.005. 

We set this parameter lower in the present scenario to reflect the fact that there are more 

followers, and therefore a single follower might not have as much an impact as a leader.  The 

stable point moves to (  
   125,   

 
  161) and the negative effect on the followers can be 

explained with the mass of followers taking car. We further observe that followers take up BRT 

even later: until the point at which around 100 leaders take BRT, almost no follower can be 

convinced. 

In Figure 7 we consider the introduction of a TDM measure, such as road pricing or a petrol tax 

increase, aimed at reducing the utility of the car. We model this with a deduction in the intrinsic 

car utility for both population groups from 10 to 8 units (equivalent to 2 minutes). This has a 

significant effect on the followers as our stable point now moves to (  
   115,   

 
  426). We 

note that the system takes a much longer time to settle down. Furthermore, we find that in this 

system state – where the utility between the two modes is very similar – the system becomes very 

sensitive to information mass effects. Removal of information mass effects leads to a significantly 

lower proportion of followers using the new mode (not illustrated due to space limitations). 

Doubling     to 0.01 leads to all followers using the new mode (Figure 8). A further increase leads 

to unstable solutions as illustrated in Figure 9 with     = 0.02. Depending on the starting point 
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different stable points are reached. Starting from a no user situation, the point (  
   196,   

 
  

13) is most likely to be reached. For a new mode it means that it might be very difficult to obtain 

significant market shares, as it is virtually only innovators that will change to BRT.  

 

 

Figure 3 Base Scenario (S1)  
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Figure 4 S1+ service improvements effects (S2)  

 

 

Figure 5 S2 + Leader Trend effect (S3)  
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Figure 6 S3 + Mass Trend effect (S4)  

 

Figure 7 S4 + TDM measure (S5)  
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Figure 8 S5 + Mass Trend Effect increased to     = 0.01 (S6) 

 

 

Figure 9 S6 + Mass Trend Effect increased to     = 0.02  (S7) 
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5. Policy Implications and Calibration Issues 

5.1 Policy Implications 

The findings that were obtained from the numerical examples reported in Section 4 cannot be 

directly applied to practical situations and policy making, since the parameter values, functional 

forms and scenarios assumed were entirely fictitious. However, we believe that these results do 

provide some important indicative implications that could be taken into consideration when 

developing future policy measures to promote the shift toward a new travel mode. Firstly, our 

examples show that policy measures have an impact on the trajectory of population dynamics as 

well as the final state to which the trajectory converges. Trajectories are especially important to 

consider for transport planning with long term effects, since convergent states might never be 

obtained. Secondly, the case study with a series of scenarios highlights the influence of political 

externalities, where the effects of different measures are mutually interrelated. In particular, as 

indicated in the result of scenario S6, the introduction of a communicative measure encouraging 

interdependence among followers was seen to lead to an unexpected result, subverting the 

effects of other measures such as road pricing and service improvements. Thirdly, the current 

examples illustrate that the effects of a policy measure targeting one group may not be limited to 

that group, and can spill over to affect other groups. In our experiments we found that 

strengthening follower mass trends (S4, S6, S7) or leader mass trends (S3) could have a positive or 

negative impact on the other group. The overall results suggest that in order to use ‘mass effects’ 

as a tool to achieve a significant modal shift, a good combination and coordination of different 

policy measures is needed, with a better understanding of policy effects on the dynamics of the 

process, especially policy externalities and spillover effects to non-targeted groups. From our 

experiments we have shown that such a combination of measures might include a communicative 

measure with pricing and service improvements. 

 

5.2 Calibration Issues 

The purpose of the present paper has been to set out a possible approach by which the dynamics 

of mass effects may be represented in transportation systems, and to explore the implications of 
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following such an approach. The assumptions, functional forms and examples we have considered 

have been hypothetical; our aim has been to set out one candidate approach, which could in the 

future be tested against alternative specifications, given the availability of suitable ‘tools’ for 

empirical analysis (by which we include survey methods, data sources and calibration techniques). 

The question then arises as to whether such tools already exist, or at least whether there is cause 

to believe they could be developed in the future.  In aiming to answer such a question, we will 

consider the wider (as yet undefined) class of models that might be defined in the future to 

represent mass effects, and will draw on parallels in other fields. 

As explained in section 2.1, our use of the term ‘mass effects’ covers a wide range of possible 

phenomena, and it seems that quite different approaches to modelling (and hence model 

calibration) may be appropriate in the different contexts.  In a situation in which we only have 

what we have termed ‘real mass effects’, then it seems that an ‘engineering solution’ may be 

possible. In this case the conformity effects (as described in section 3.2) would not be so important, 

and so such terms may be neglected, and our interest may be solely on the extent to which the 

utility   
  depends directly on    

 . This function itself may be time-independent, and so standard 

transferable relationships might be developed for different phenomena; the dynamics then arise 

from the feedback of the collective effects of the individual travel decisions.  

This is strongly analogous to the way in which time independent relationships representing traffic 

network congestion have been embedded within dynamic process models of decision-making (e.g. 

Cantarella & Cascetta, 1995), whereby travellers ‘learn’ of the collective impacts through direct 

experience, and the impacts motivate their subsequent choices. . The main difference is that here 

we are looking for positive rather than negative “network effects”. Thus the function   
 (.) in the  

utility expression (4) might, for example, reflect the observed relationships between increased 

motor vehicle use and decreased accident risk per person (Smeed 1949; Adams, 1987, McCarthy, 

2001) or the analogous relationships seen for walking and cycling (Jacobsen, 2003; Robinson, 

2005).  

Turning attention to the category that we termed ‘perceived mass effects’ in section 2.1, it would 

seem that in some cases these could be treated by an extension of the approach described above 

for ‘real mass effects’. For example, if we could assume that perception meant a subjective or mis-
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perception of a real effect, then we might extend the interpretation of the function   
 (.) given 

above to suggest that it is a composite function reflecting not only the real effect, but also the 

valuation of that effect by an individual from the group in question. Such a valuation could be 

estimated by conventional means (e.g. revealed or stated preference) since it only reflects the 

individual’s valuation, all the mass effect is wrapped up in the engineering function which 

represents the real effect. However, our argument that individual valuation might be separated 

from mass effects will only hold in some cases. On the contrary, for long range planning one might 

consider that valuations should be social context specific. In this spirit, Manrai and Manrai (1995) 

show that values of time differ between cultures and that migrants can adapt. Similarly, people 

who experience significant improvements in their transport system might start valuing transport 

system aspects such as congestion differently over time. In such cases we cannot consider 

individual valuation as distinct from the mass effect, and more likely for calibration we will have to 

turn to the kinds of theories discussed below under ‘information mass effects’. 

There are other cases which seem even less simple than this. For example, the aesthetics of some 

street environment may well both affect and be affected by the number of individuals choosing a 

mode to travel through that environment, yet there is probably no equivalent notion of a ‘real 

effect’ that can be quantitatively estimated through engineering functions. On the other hand, if it 

is possible to suggest relationships between broad levels of mode use and qualitative descriptors 

of the aesthetics, then again it may be possible to compose this with the valuation of the aesthetic 

qualities. While this is not such a common use of the survey methods used in transport, there is 

still certainly a significant amount of potentially relevant literature on the valuation of aesthetics 

(e.g. Ewing, 2001; Garrod et al, 2002; Ewing et al, 2005; Cao et al, 2009; Broach et al, 2012; 

Wahlgren and Schantz, 2012), several of which also relate modal volumes to such valuations. 

Turning to the third category identified in section 2.1, namely consequential mass effects, we may 

again think of   
 (.) as a composite function with individual valuation of the factors (as above), but 

in this case combined with a function representing the actions of some other agent. Such an agent 

may, for example, be a public transport operator which is able to adjust frequencies and fares in 

response to patronage (e.g. Cantarella et al, 2012). There is considerable evidence of suitable 

functions to represent economies of scale in public transport provision (Berechman and Giuliano, 
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1985; Farsi et al, 2007; Di Giacomo and Ottoz, 2010), which if provided by a public, welfare-

maximising operator (or strongly-regulated private company) might be passed on as benefits to 

travellers, and this chain of causes might be reflected in the function   
 (.). 

Finally, turning attention to the class of ‘information mass effects’, this class is distinctive in being 

highly dependent on the conformity or social effects in (4), rather than on the mass effects as 

reflected only through   
 (.). This is the area in which our model is perhaps most tentative, as 

quantitative approaches to such effects are still in their infancy. Nevertheless several theoretical 

approaches which admit statistical estimation have been proposed in the literature, and a number 

of these have been applied and functional forms estimated (though not in the present 

transportation context). Brock and Durlauf (2001) proposed an extension to the conventional 

random utility model by including an additional, additive function to the usual individual utility and 

random component, which they called the ‘social utility’. They proposed several parametric forms 

for the social utility function, and explored the theoretical implications for equilibrium and stability. 

Fukuda and Morichi (2007) subsequently applied this approach in an econometric analysis of 

illegal bicycle parking in Tokyo.  

Topa (2001), on the other hand, proposed a discrete-time markov process model for representing 

the exchange of information across social networks. An estimation procedure was proposed and a 

model estimated based on data concerned with the spread of information about job openings in a 

social network. Nakajima (2007), in a study which our approach perhaps most closely resembles, 

also followed a markov process approach, developed from a definition of utility which included an 

additive conformity effect. Statistical estimation procedures were proposed, and the resulting 

dynamic model estimated in application to data on peer effects in the decision to take up smoking. 

In addition to these reported applications, strong theoretical frameworks for analysing social 

interactions are emerging, and in this respect we would especially point to the works of Manski 

(2004) and Maccheroni et al (2012), both of which would seem to have considerable potential for 

future exploitation within the context considered in the present paper, and each of which provide 

formal frameworks in which we may specify and estimate models, given the availability of suitable 

data. 
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6. Conclusions 

In this paper we discussed the potential importance of mass effects for travel demand forecasting. 

Based on previous literature, we have assumed that various mass effects might lead to positive or 

negative trends that could significantly influence travel demand over time (such as the uptake of 

sustainable modes). We describe the mobility decisions of individuals in this paper hence as a 

dynamic process, considering positive and negative feedback from other travellers as well as the 

transport system itself. We have proposed that such mass effects may be particularly relevant to 

demand forecasting applications over longer time-scales, and in the context of promoting 

presently little-used or new travel modes.  

In order to illustrate and examine this approach, we have presented a hypothetical model in which 

individuals belonging to one of two population groups, termed “leader” and “follower”, have the 

choice between two lifestyle options, referred to as car-oriented and transit-oriented. Though our 

model is clearly too simple for direct applications, we believe that already with such a simple 

model our case study illustrates and raises the profile of some important aspects that are known 

and have been discussed in the literature, but, to our knowledge, have not been included in travel 

demand modelling approaches.  

We illustrate with our case study that despite lower intrinsic utility for transit, significant changes 

towards transit can be achieved by considering congestion, service improvements and trend 

effects. We further illustrate that mass effects do not always have to be positive. Unsustainable 

mass effects, such as the perception of the car as a status symbol might be difficult to be 

overcome and can make it difficult for new (attractive) modes to obtain significant market shares. 

This result is also in line with findings by Sunitiyoso et al (2011b) who show with a simulation study 

that social learning can lead to positive or negative effects. Our study considers not only 

information mass effects but also consequential mass effects, in the form of transit service 

improvements. This illustrates that the combination of mass effects together with service 

improvements might be the formula to achieve the best results.  

There are several functional forms and parameters in our model that would need calibration in 

order to apply this method to real-life case studies, and in Section 5.2 we have reviewed and 
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discussed the potential for calibrating such approaches. Several parameters might further be 

described as policy variables. In particular   
 might be interpreted as being related to TDM 

measures; in such an interpretation,   
  might be related to usage-based charging of non-

sustainable modes, such as petrol taxes, and   
  might be related to the service improvement of a 

sustainable mode in line with an  increasing demand for that mode. 

Our work clearly could be extended in various directions. A number of model simplifications in our 

case study are apparent and might need to be addressed depending on the application. An 

obvious extension would be to consider more than two choices and, possibly more importantly, 

more than two population groups. We also did not consider any geographical considerations or 

discuss particular forms of social networks. Furthermore, mass effect functions are not necessarily 

constant over time as we noted in our discussion on calibration of perceived mass effects.  

Even with this simplified model some modifications could be tested though and theoretical 

advances made. The current analysis does not include a theoretical stability analysis; such an 

analysis in the future might explore the sensitivity of the stability to the parameter settings as well 

as the probability distribution of different (stable or unstable) population states. Achieving the 

latter is the aim of the “master equation approach”. Initial tests suggests that in our analysis most 

solutions are stable though a mathematical proof appears difficult to achieve with our logit 

formulation of transition probabilities. Connected to this, and possibly even more important to 

know for transport planners, are possible system bifurcation points as presented in the “fashion 

model” by Nakayama and Nakayama (2004) for a simplified utility function where the population 

is not divided into groups.  We leave this also open for further work. 

Finally, regarding our presumed choice behaviour, we assume a logit model for transition 

probabilities and showed this is equivalent to the perturbed best response used in the 

evolutionary game theory literature. Alternative assumptions on agent behaviour are possible, and 

we believe that in particular replicator dynamics might be an alternative worthy of further 

exploration. Replicator dynamics assume that an agent either sticks to the current choice or 

changes (with some probability) to the choice of an agent (s)he meets. Therefore replicator 

dynamics do not assume knowledge of non-chosen alternatives, which might be particularly 
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appropriate for modelling the uptake of new transport schemes with which the modelled 

population has not yet had much experience. 
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