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Using Spatio-Temporal Continuity Constraints to
Enhance Visual Tracking of Moving Objects

Brandon Bennett, and Derek R. Magee and Anthony G. Cohn and David C. Hogg!

Abstract. We present a framework for annotating dynamic scenes
involving occlusion and other uncertainties. Our system comprises
an object tracker, an object classifier and an algorithm for reason-
ing about spatio-temporal continuity. The principle behind the object
tracking and classifier modules is to reduce error by increasing ambi-
guity (by merging objects in close proximity and presenting multiple
hypotheses). The reasoning engine resolves error, ambiguity and oc-
clusion to produce a most likely hypothesis, which is consistent with
global spatio-temporal continuity constraints. The system results in
improved annotation over frame-by-frame methods. It has been im-
plemented and applied to the analysis of a team sports video.

1 INTRODUCTION

Figure 1. Example Output from Blob Tracker
No computer vision algorithm for tracking or object classification is
perfect under real-world conditions. Object trackers have difficultyy THE TRACKER MODULE
with complex occlusions (e.g. in crowded pedestrian scenes) ang
classifier algorithms rarely give 100% accuracy, even on restricte@ur tracker system is an extension of the car tracker of [8], which
data sets. We propose a framework for taking the imperfect output ah turn is based on [13]. The system tracks coherent ‘blobs’ using a
an object tracker and classification system and refining it based oleose model of object position, size, velocity and colour distribution
principles of logical consistency and the spatio-temporal continuitywhich is updated on the fly. In reality, a one-to-one mapping between
of physical objects, to produce a far more accurate scene annotatioblobs and objects cannot be assumed. Our spatio-temporal model ex-
The low-level tracking and classification modules of our systemplicitly takes account of the possibility of multiple occupancy, al-
model ambiguity and error by assigning probabilities for the presdowing us to increase tracker ambiguity in cases where an error may
ence of objects within bounding boxes in each video frame. Thioccur (e.g. when objects are close or occluding) by merging overlap-
output is passed to a reasoning engine which constructs a ranked seng blobs (blobs are also be split horizontally or vertically if they
of possible models, consistent with the requirements of object contievolve into easily separable components). This technique reduces to
nuity. The final output is then a globally consistent spatio-temporahear zero the occurrence of tracker errors such as lost/additional ob-
description of the scene which is maximally supported by the probajects in our chosen example domain. Other errors may be eliminated
bilistic classifier. by more traditional techniques such as ignoring transient objects (i.e.
A number of researchers have attempted to deal with object occlusbjects present only for a very short period of time). An example
sion (and the resultant tracking problems) by attempting to increasef the tracker output for a simple basketball scene is given in figure
reliability of tracking and classification in the presence of occlusionl. The boxes shown are a visualisation of our statistical foreground
[6, 5, 3] or to minimise occlusion by using multiple cameras [2]. Our model which includes the variance of blob pixel locations about the
approach has more similarity with the methods of [10, 12, 15, 7].mean blob location. The bounding box for each blob corresponds to
Rather than attempt to directly classify occluding objects, they ema threshold on these distributions. In the current implementation this
ploy some kind of semantic constraints to reason about the occlusios set to 3 standard deviations.
taking place. None of these systems performs more than frame-by-
frame reasoning or allows for error in the underlying low-level track-
ing and recognition algorithms. By contrast, our system pen‘orms3 OBJECT CLASSIFICATION
long-term reasoning about object-blob associations over extended sgur main priority is to have an object recognition/classification sys-
quences of frames. By maintaining spatio-temporal consistency oveem that has low computational cost and so can be incorporated into
sequences, many local imperfections and ambiguities in the low-levein on-line system. We accept that such a system may not have 100%
data are ellmlnat_ed. In fa_ct this approach is closely related to works iccuracy, however our higher level processing (see section 4) is de-
the area qualitative spatio-temporal reasoning, which model objectsigned to cope with imperfect and ambiguous input. Hence, we have
in terms of their spatio-temporal histories [11, 1, 4]. But as far as wemplemented a system that combines a number of simple binary clas-
are aware this approach has not previously been applied to computeffiers using a Bayesian combination mechanism [9].
vision. Currently, we only use binary classifiers based on colour. These
are extremely simple, but by combining several such classifiers us-
1 School of Computer Studies, University of Leeds, Leeds LS2 9JT, UK.able results can be obtained. Icebe the vector of classifier outputs
Email: {brandon |drm|agc |dch }@scs.leeds.ac.uk andC,, the output of classifien. From a set of image samples we




can learn for each object classand each classifier the probabilities
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A list of probabilities of objects detected with higher than a min- 07 *0>0+0—0+00
imum threshold probability (we currently uged1) is passed to the >
spatio-temporal consistency checker. The figures allow hypothesis Time

ranking in cases of ambiguity. A hypothesis rejected at this stage  Figure 2. Tracker output expressed as a ‘box continuity’ graph

may be still be asserted in the final globally optimised output of the ) o

consistency checker (i.e. if past or future information supports it). 0. Frame numbers are any continuous subset of non-negative inte-
gers. The initial frame will be denotefd. For convenience we intro-

duce functionsf (b), geom(b), pa(b), ch(b) andClass(b) to refer
4 SPATIO-TEMPORAL CONTINUITY to the corresponding information associated with boXhe set of

We seek a solution that both maximises statistical correlation withaII boxes in the tracker/classifier output will be denotedQyXES.

. - : X ) . The parent and child boxes of a given box function as ‘sources’
this output and is globally consistent with requirements of spatio- P 9

i | tinuity of obiects. E del to be phvsicall ibl and ‘sinks’ for that box. Occupants of a box must have come from
temporal continuity of ObJECLS. -or a model to be pnysically possil€ s harent hoxes and go to its the child boxes. If no objects enter
it must satisfy the following spatio-temporal constraints:

or leave a scene, each box is associated with at least one source in
C1) exclusivity— an object cannot be in more than one place atthe previous frame and one sink in the next frame. But where two or

the same time; more boxes become merged, the merged box will have more than one
C2) continuity— an object's movement must be continuous (i.e. source; and, when a box is split, it will have two or more sinks. Later
it cannot instantaneously ‘jump’ from one place to another). we extend this idea to handle objects entering/leaving the scene.

h Within the box continuity graph are chains of boxes linked by a
unique source-sink relationship. These are shown in figure 2 as sub-
raphs, shaded in a particular colour, corresponding to the ‘history’
8f a tracked box between splitting and merger events. If the tracker
ere perfectly accurate, the objects occupying any box would be con-
stant along any of these sub-graphs. Because of this, it is useful to

introduce an abstract data object which we cafipatio-temporal
oX (ST-boxfor short). ST-boxes will normally be denoted by sym-
ols.S;. In the tracker output, an ST-box corresponds to a temporally
ontinuous sequence of boxes which have the same tag. In terms of
thech function, this is a maximal sequenie, . . ., b,] such that for

With any statistical classifier, an object may be detected to a hig
degree of probability in two widely separated locations. This kind of
error is fairly easy to eliminate on a frame by frame basis. We cal
consider all possible assignments of different objects to the tracke
boxes in each frame and choose the combination that maximises t
summed probabilities of object to box corresponderices.

The continuity of an objects position over time is much more diffi-
cult to model; and considerable problems arise in relating continuit
constraints to tracker output. The main problem is that of occlusion;
if an object moves behind another it is no longer detectable by th
tracker; so, under a naive interpretation of the tracker and recogn s .
tion system outputs, objects will appear to be discontinuous. eachiin the rangel < < n — 1 we havech(b;) = {bi1}.

As well as enforcing spatio-temporal constraints, we want to find An_ST—box is an ordered sei of boxes indexed by frame num-

a hypothesis that is maximally supported by the probabilistic outpuP€'S in the range(s) ... e(S), wheres(S5) ande(S) are the start
of the object classifier for each tracked box. However, the classifie .nd end frames of the period over whistexists. The partial fupc-
was trained to identify single objects, whereas in tracking a dynami jon box-gt(ﬁ 5) denotes the bok € 5 whose frame number i
scene there will often be several objects in a box. This means there iny defined forf S't:S(S) < f < e(5)). Each boxb € BOXES
no completely principled way to interpret the output of the classifier.!S & member of a unique ST'b‘”? denotedsiyb). ST-BOXES =
Nevertheless, it is reasonable to assume that although there is a Iarég | (3b € BOXES)[st(b) = 5] } is the set of all ST-boxes.
amount of error and uncertainty in the low-level output, it does give

a significant indication of what objects may be present. ; ; ‘ )

Local continuity information is provided by the low-level tracker. 4.1 Grouping Boxes into ‘Envelopes
This assigns to each blob’s bounding box an identification tag (arhe box continuity graph is only indirectly related to the trajectories
number), which is maintained over successive frames. Newly splibf actual moving objects in the scene. Several issues complicate the
or merged boxes are assigned new tags, but the tag of their pareflationship. Firstly, there is the basic problem caused by proximal
box in the previous frame is also recorded. So each box is assocind/or occluding objects, which means that a box may be occupied
ated with sets of itparentandchild boxes. The parent/child relation py several objects. This is compounded by the possibility that (be-
determines a ‘box continuity graph’ (see figure 2). Our algorithm eX-cause of occlusion or limited resolution) objects sometimes transfer
ploits the structure of this directed graph. _ between tracker boxes without being independently tracked.

The reasoning algorithm involves a restructuring of the These problems suggest the idea that more reliable tracking might
tracker/classifier output. A tracked béxan be represented by a tu- pe achieved by modelling object locations at coarser level than in-
ple, (f, geom, pa, ch, Class), wheref is the frame numbegeom  dividual boxes. Hence, we introduce a data object that we call an
is the box geometnypa is the set of its parent boxes (in the frame envelope Intuitively, an envelope is simply a (maximal) cluster of
f—1), chis the set of its child boxes (in the franfer 1) andClass  overlapping ST-boxes. This is illustrated in figure 3. Solid lines in-
represents the statistical output of the object classifier applied to thigjcate the positions of box boundaries over a sequence of frames, so

the area swept out by a moving box represents an ST-box. Dashed

2 This assumes that the classifier is capable of identifying unique object: Niai ; ;
(such as particular people) rather than classes of similar objects. In situi—nes Sho"‘( t_h_e division of this structure into envelopt_as._
tions where there may be multiple objects of the same class, the exclusivity 1he definition of an envelope depends upon specifying an overlap

constraint must be weakened. relation between boxes, which we write@serlap (b1, b2). Since,




I:l ST-box N determining continuity. By definition, two different envelopes cannot
b spatially overlap (otherwise they would be parts of a larger envelope).

S __ So there is an very low probability that an object can transfer between

envelopes without being detected. Hence, our algorithm assumes that

< ‘ the occupancy of an envelope is constant throughout its existence.

{"'\-:-.. The relationOcc(l, E) means that objedtis present in envelope

! ‘ E. The exclusivity constrain€1, corresponds to the requirement

Space | ‘ that no object can occupy two distinct spatio-temporal envelopes that

- il ] overlap in time. Temporal overlapping of envelopes is defined by
TOE(El, EQ) =gef Hf[b(El) < f < e(E1)/\b(E2) < f < e(EQ)].
So theC1 constraint is equivalent to

> Cl) (TOE(El, Ez)/\OCC(l, El)/\OCC(l, Ez)) — (E1 :Eg)

) . ) Envelopes have a continuity graph structure similar to that of
Figure 3. Deriving Spatio-temporal Envelopes from Tracker Output boxes (see figure 3). In fact @nvelope continuity grapban be
formed directly from the box continuity graph by unifying all nodes
the boxes bound the positions of objects to a high statistical probaderived from boxes in the same envelope. FunctipagZ) and
bility, the simple geometric overlap relation between boxes is highlych(E) returning parent and child sets for envelopes can be derived
correlated to the possibility of object transfer between them. Becausttom the corresponding relations between their constituent boxes.
of the statistical nature of the bounding boxes, we may vary the scale Since we allow objects to enter or leave the scene we must keep
of the boxes in order to yield stricter or weaker overlap relations. Intrack of off-scene objects. We do this by introducing virteékscene
the current work we have not attempted to tweak the scaling to proenvelopego our model. For simplicity, in the current implementa-
duce the optimal output for our data. We have chosen a scale whetn we assume there is only one off scene location. Transfer to and
the box bounds the object with 97% probability. Limited experimen-from off-scene envelopes can only occur when a tracker box is either
tation indicates that this threshold is a good choice for our data.  created or disappears. Off-scene envelopes do not have any spatial
To formally define an envelope we need to describe the spatiadtructure; so we identify them simply with a frame péfs, f.) rep-
clustering of ST-Boxes. Aocal groupis a set of ST-boxes that are resenting the beginning and end frames of their existeficenust
related by the transitive closure of the geome®@icerlap relation.  be the beginning frame of an envelope or the frame immediately af-
The relationOverlap® (b1, b,,) holds just in case there is some se- ter the end frame of an envelopg. is either the end frame of an
quence of boxes:, ..., b,, such thatforl <i < n —1we have envelope or the frame before the beginning of an envelope. The set
Overlap(b;, bi+1). At each frame over which it exists, any given OS-ENVELOPES contains all beginning/end frame pairs with no
ST-box stands in th@verlap” relation to a set of other ST-boxes, other beginning or end frames occurring between them. Thus the off
which is its local group at that frame. Sin€&verlap™ is reflex-  scene envelopes form a partition of the frame sequence.
ive, symmetric and transitive, at each frame the local groups form The set including both on-scene and off-scene envelopes

_I'

Time

equivalence classes over the set of ST-boxes. Given an S¥-Bod  will be denoted by ENVELOPEST™ = ENVELOPES U
a frame f (with s(S) < f < e(S5)), we can define the function OS-ENVELOPES. The predicateDS(E) holds just in case is
local-g(f, S) = {S’ | Overlaps” (box-at(f, S), box-at(f, S"))}. an off-scene envelope.

A constant-local-group spatio-temporal b¢€LG-ST-box is a To define the continuity relation between envelopes, we first de-

tempora| sub-division of an ST‘bOX., over which it is a member Offine a successor re|atiosuc(E1’E2) = et ((e(E1) + 1) —

a constant local group. The beginning and end frames of CLG-STh(E,)), which holds when the end df; is at the frame immedi-

boxes are determined by changes in the overlap relation betweegtely before the beginning of,. We can now define the relation

boxes. The division of ST-boxes into CLG-ST-boxes is indicated |r\Source.SinKE‘l7 E2), meaning that enve|0p§1 is a source for the

figure 3. Divisions coincide with temporal boundaries of envelopes. gbjects in envelop&s. The following formula handles continuity for
Formally, a CLG-ST-box is a subset of an ST-box correspond+oth on and off-scene envelopes:

ing to a maximal temporally continuous sequence of frames over Source-SinKE1, Es) =wr (E1 # Es) A

whichlocal-g(f, S) takes a constant value. Each ST-box determines [ Tb1b2[b1 € pa(be) Aenv(b) = E1 A env(by) = Es]

a unique CLG-ST-boxlg-st(f, S) for each frame over which it ex- vV (OS(E1) A (pa(E2) = 0) A Suc(E1, E2))

ists. As with ST-boxes we use the functids&') ande(C) to refer V (OS(E2) A (ch(E1) = 0) A Suc(Ey, Es))

to the beginning and end frame of a CLG-ST-b6%,We also write V (OS(E1) A OS(E») A Suc(Ey, Es)) ]

st(C) to refer to the unique ST-box of whidfi is a sub-sequence.  |n terms of this relation, the continuity constra@®2, as applied at

Since CLG-ST-boxes participate in the same local group throughouhe envelope level, is represented by

their history, we can definecal-g(C') = local-g(b(C), st(C)). C2) Occ(l, E1) — IE>[Source-SinK E, E5) A Oce(l, Es)]
We now define an envelope as a maximal set of overlapping CLG- A Occ(l, E>) — 3E; [Source-Sink E1, E2) A Oce(l, E1)]

ST-boxes. Any CLG-ST-box is a member of a unique envelope, given A Source-SinK E1, Es) — 31[Occ(l, E1) A Oce(l, Es))

by env(C) = {clg-st(b(C),S) | S € local-g(C)}. For an en-
velope E, the functionsb(E) ande(E) denote the beginning and
end frames of its existence. By definition, all its constituent CLG-
ST-boxes have the same beginning and end frames. Each box in t
tracker input is related to a unique envelope givenelby (b) =
env(clg-st(f(b),st(b))). The set of envelopes derived from the ileali
tracker is given byENVELOPES — {7 | (3b ¢ BOXES)[E — 4.3 Likelihood of Box and Envelope Occupancy
env(b)]}. The set of envelopes that exist at frarfieis give by Applied to a box, the output of the classifier module takes the form
envs-af f) = {E € ENVELOPES | b(E) < f < e(E)}. Class(b) = {(li,p1),..., (1o, pn)} , Wherep; is the probability
of 1, being a correct label for the object(s) in bbxEach statistic

S is an independently computed probability based on the assumption
4.2 Continuity of Envelope Occupancy that there is only one object in the box. Thus, the figures are not nor-
Although envelopes give a coarser demarcation of object locationmalised and cannot be reliably applied to multiple-occupancy boxes.
than individual boxes, they provide a much more reliable basis foHowever, we assume that, even in multi-object cases, the figures give

Our algorithm will generate possible assignments of object labels
to envelopes that satisfy bo@il andC2. It will then choose the one
fat we consider ‘best supported’ by the classifier outputs.



an approximate indication of the likelihood of an object being inthe  {(E;, A;) | (E;, A;) € ass(P) Ab(E;) < 1cf(P) < e(E;)}.
box. Hence, we regard the numberdirectly as a ‘vote’ for the pres- | ; : : ; ;
SR . n order to formalise the notion of one partial model's being an

ence of object; in boxb. We denote this vote value byote(l, b). immediate) extension of another, we deflietends(P’, P) =

Our continuity constraints operate at the level of envelopes rathe P’ \ last-as§P’)) = P). So the set of all possible (spatio-
_than boxes. Thus, we net_ad to convert the votes for box occupang, mporally consistent) extensions of a partial mo@elis then
into votes for an object being in a given envelope. Dependencies be- . [t ’

X o ; . extensions(P) = {P’ | Extends(P’,P) }.

tween observations mean that a statistically valid function would be extensions(P) is a key function of our algorithm. To calculate
extremely difficult to define. Hence we define a plausibledsiboc it we first compute and store tt8ource-Sinkrelation for the tracker

voting functlo_n. Devising and evaluating more reallst|c_ voting func- input, using the definitions given above. All we need to do is generate
tions is a subject of ongoing work. Nevertheless, as will be seen be-

low, our crude voting metric is already good enough to significantl all assignments to the envelopesdh = envs-a(necf(lcf(P)))
S . g me v 9 9 g Ywhich are consistent with the assignment to the envelopés in
improve tracking reliability.

For an envelopeE and an objectl, we first compute envs-a{lcf(P)). It is then straightforward to compute ti$®urce-

Sink relation between envelopesdhandé’.
for each CLG-ST-boxC' € [ the sum of the box votes “'gi\oo 6 model construction proceeds in the direction of the
for | over all frames for whichC exists: vote(l, C)

- flow of time, we wish to know where the assigned occupants of
Eb(C)SfSe(C) vote(l, box-at(f, C)) To get the vote for the ob- envelopes in last assignment of the partial model go to after the
ject to be in an envelope we take the maximum of its votes for eaciiext ECF. The possible ‘sinks’ for these objects afeiks(E) =
CLG-ST-box in the envelope: { E' | Source-Sink E, E’)}. To satisfyC2 we only need to ensure

. . that for everyE € &, every label inass(P, E) is assigned to some
vote(l, E) = Max{ v | (3C € E) A vote(l,C) = v} . envelope insinks(F), and also at least one label &#3s(P, E) is

To normalise label support values we compfrac-vote(l, E), assigned to each’ € sinks(FE). Moreover, it is easy to see that if
which is the fractional vote fdrwith respect to the total votes for all  the last assignment ¢? satisfies the exclusivity conditio@1 then
labels in the classifier domaif,, ..., 1x}. any extension constructed in this way will also satisfy @e

In determining the support given by an envelope to a given set To choose the most likely (partial) model according to the object
of labels, we wish to impose a strong bias that favours the smallesecognition software, we compute a vote measure as follows:
ossible number of objects being assigned to the box. We use the . .
?ollowing vote function, where the numberof labels assigned to an vote(P) = > {v: [ (Ei, i) € ass(P) A vote(As, By) = vi} .
envelope directly reduces the overall vote. detr(E) = e(E) — We may have several different partial models that agree on their
b(E) + 1 be the duration of the envelope in frames. We then definelast assignment — i.dast-as¢P1) = last-as¢P:). These, rep-
vote({l 1.}, E) = resent different assignment paths leading up to the same end state.
b inds Typically, one will have a higher vote support than the other, which
(Zijlmn(frac-vote(E, L)+ N - ") -dur(E) gives an indication that one is the more likely of the two. In such a
case we say that the more likely partial mosebsumethe other:
L. . Subsumes(P1,P2) <
4.4 Finding the Best Global Labelling ((|ast_;gsip1)): last-as{P.)) A vote(P;) > vote(Ps))
. o . Given a seD)t of partial models, we can ‘prune’ it to retain only
In all but the simplest cases, it is infeasible to evaluate votes fofhe (nest models that lead up to any given final assignment.
all spatio-temporally consistent object labellings of an extended sce- , ,
nario. Whenever a box splits, there are several possible assignme&ine-subM) ={P € M | ~3(P’ € M)[Subsumes(P’, P)]}
of the original box occupants to the newly created boxes. Thus the We initialise the set of partial models by considering all possible
number of possible solutions grows exponentially with time. How- assignments of the domain objects to the initial envelopes, with the
ever, by taking alynamic programmingpproach, the optimal solu- additional requirement that each envelope must be assigned a number
tion can be found by an algorithm whose complexity is linear in time.of objects that is as least as many as the number of CLG-ST-boxes it
Thus, if the number of objects is small, solutions for arbitrarily long contains. This initial partial model set will be deno®th. We then
sequences can be computed effectively. run the following algorithm, which iterates through successive ECFs
Our algorithm first computes the set of envelopes andSthierce  to generate the set of all consistent models. We initiallyfset fo
relation from the tracker output. Aenvelope change fram@&CF) anddt := Myo; then run the following loop:
is a frame that is the start of some envelope, or is a frame immedi- hil d
ately after some envelope ceases to exist (e.g. when it moves off the W€ (f,?é end) {
scene). We build a model by starting at the initial frame and progress- m' =0
ing through each successive ECF. Since envelope occupancy remains foreach (P /e m) {, .
constant between ECFs, this model determines a complete assign- I = M’ U extensions(P) }
ment to all envelopes at all frames. For any ECFincluding the I = prune-subgM’)
initial frame f,) the next ECF aftef is denoted bynecf(f). When f:=necf(f) }

f is the last ECF in the frame sequence waletf(f) = end. After this procedure terminates, the optimal labelling is the mem-
A consistent assignment to all envelopes starting at or before aers of9t with the maximal vote. This model assigns labels to en-
given ECFf will be called apartial model(up to f) and will be de-  velopes rather than boxes. To get a box assignment we assign each
notedP; (i is an optional distinguishing index)cf (P; ) denotes the  label in each envelope to the CLG-ST-box for which gives it the high-

last change frame of envelopes assigne®hyA partial modefP is est vote summed over all its constituent boxes.

identified with a sef. .., (E;, A;), ...}, whereA; is a set of labels. The number of ways of putting: objects inton boxes is exponen-

The set of labels assigned Byto envelopeX is writtenass(P, E). tial in m. Hence the complexity of our algorithm is exponential in the
The requirement of spatio-temporal consistency of a partial modaumber of objects in the scenario. However, because of the pruning

els means that the exclusivity and continuity constra@tsand C2 operation, there is a fixed limit on the number of models that need

must be satisfied, where the occupancy rela@me determined by  to be stored, whatever the length of the frame sequence. This means

a modelP is given byOcc(l, F) iff | € ass(P, F). To compute that the complexity is linear in the sequence length.

a spatio-temporally consistent extension of a partial model, we need This algorithm has been implemented using the SICStus Prolog

only know its assignments to the latest envelopes. Hence we defind14], which allows easy creation and manipulation of the data struc-
last-as§P) = tures required and a natural coding of the continuity reasoning al-



gorithm. It currently runs in an ‘off-line’ mode — i.e. it processes Allboxes Raw + Heur | Raw + Occ | Reasoner

a whole frame sequence and then produces a globally consistent| Objects detected 44.0% 61.6% 82.5%

assignment for the complete sequence. In future we plan to imple- 'é%?(ecl)iggg;encéy correc gi"gofg gggoﬁ; Ségéﬁ

mented an ‘on-line’ mode, which would continually output the best | goy jabels all correct 39.5% 44.6% 68.6%

hypothesis for the current state of an ongoing video sequence. Since

our present implementation processes the whole sequence in a time[ Single occupancy boxes only

only slightly longer than its actual duration, on-line real-time pro- Ebtl)elcts dEteCtted gi-%gﬁ gi-%gf %-égﬁ)
i i i i apels correc .2/0 .2/ .07

cessing is certainly possible on present day hardware. Box labels all correct 84.9% 64 9% 737%
EVALUATION AND NCL ION Multiple occupancy boxes only

> u O CONCLUSIO Objects detected 29.6% 59.8% 81.4%

The system was evaluated on approximately two and a half minutes | Labels correct 66-01% 60-124 89-824

of basketball video (figure 1). This scene involves four objects (three |_BOx labels all correct 0% 13.2% 60.4%

players and a ball), variable numbers of which may be in the scene
at any one time. It contains much interaction and occlusion that o . .
conventional object tracker would find hard to track. The sequencd€ raw classifier output rarely gives a completely correct labelling.
was tracked and classified at 25fps and the results fed into the redYithout being given the occupancy our heuristic interpretation gave
soning engine. The system was applied to a sequence of 2200 framB8 COMPletely correct assignment for any multiply occupied box.

Our results show that the use of a mechanism for reasoning about

(88 seconds real time) which generated all possible spatlo-temporallgnd enforcing spatio-temporal consistency can significantly enhance

consistent labellingd The model with the highest overall score was S h . |
compared to a hand-annotated labelling which gives the ground trutﬁ‘e performance of a statistically-based object tracking and classifi-

Table 1. Accuracy statistics for box labellings.

at every 10th frame (plus some extra frames added at particularly d)F—
namic parts of the video). Over the length of the sequence a total d
612 tracked boxes were compared.

ation system. We believe that this kind of combination of statistical
nd logical approaches may be fruitful in other areas of Al.

Comparing our algorithm’s output with the raw classifier outputis ACKNOWLEDGEMENTS

problematic, because the raw output just gives ranked probabilities
individual objects being present but does not determine the numb
of objects. For purposes of comparison we must treat this data a
somehow identifying a definite set of labels. To do this we use a
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