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Using Spatio-Temporal Continuity Constraints to
Enhance Visual Tracking of Moving Objects

Brandon Bennett, and Derek R. Magee and Anthony G. Cohn and David C. Hogg1

Abstract. We present a framework for annotating dynamic scenes
involving occlusion and other uncertainties. Our system comprises
an object tracker, an object classifier and an algorithm for reason-
ing about spatio-temporal continuity. The principle behind the object
tracking and classifier modules is to reduce error by increasing ambi-
guity (by merging objects in close proximity and presenting multiple
hypotheses). The reasoning engine resolves error, ambiguity and oc-
clusion to produce a most likely hypothesis, which is consistent with
global spatio-temporal continuity constraints. The system results in
improved annotation over frame-by-frame methods. It has been im-
plemented and applied to the analysis of a team sports video.

1 INTRODUCTION

No computer vision algorithm for tracking or object classification is
perfect under real-world conditions. Object trackers have difficulty
with complex occlusions (e.g. in crowded pedestrian scenes) and
classifier algorithms rarely give 100% accuracy, even on restricted
data sets. We propose a framework for taking the imperfect output of
an object tracker and classification system and refining it based on
principles of logical consistency and the spatio-temporal continuity
of physical objects, to produce a far more accurate scene annotation.

The low-level tracking and classification modules of our system
model ambiguity and error by assigning probabilities for the pres-
ence of objects within bounding boxes in each video frame. This
output is passed to a reasoning engine which constructs a ranked set
of possible models, consistent with the requirements of object conti-
nuity. The final output is then a globally consistent spatio-temporal
description of the scene which is maximally supported by the proba-
bilistic classifier.

A number of researchers have attempted to deal with object occlu-
sion (and the resultant tracking problems) by attempting to increase
reliability of tracking and classification in the presence of occlusion
[6, 5, 3] or to minimise occlusion by using multiple cameras [2]. Our
approach has more similarity with the methods of [10, 12, 15, 7].
Rather than attempt to directly classify occluding objects, they em-
ploy some kind of semantic constraints to reason about the occlusion
taking place. None of these systems performs more than frame-by-
frame reasoning or allows for error in the underlying low-level track-
ing and recognition algorithms. By contrast, our system performs
long-term reasoning about object-blob associations over extended se-
quences of frames. By maintaining spatio-temporal consistency over
sequences, many local imperfections and ambiguities in the low-level
data are eliminated. In fact this approach is closely related to works in
the area qualitative spatio-temporal reasoning, which model objects
in terms of their spatio-temporal histories [11, 1, 4]. But as far as we
are aware this approach has not previously been applied to computer
vision.
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Figure 1. Example Output from Blob Tracker

2 THE TRACKER MODULE
Our tracker system is an extension of the car tracker of [8], which
in turn is based on [13]. The system tracks coherent ‘blobs’ using a
loose model of object position, size, velocity and colour distribution
which is updated on the fly. In reality, a one-to-one mapping between
blobs and objects cannot be assumed. Our spatio-temporal model ex-
plicitly takes account of the possibility of multiple occupancy, al-
lowing us to increase tracker ambiguity in cases where an error may
occur (e.g. when objects are close or occluding) by merging overlap-
ping blobs (blobs are also be split horizontally or vertically if they
evolve into easily separable components). This technique reduces to
near zero the occurrence of tracker errors such as lost/additional ob-
jects in our chosen example domain. Other errors may be eliminated
by more traditional techniques such as ignoring transient objects (i.e.
objects present only for a very short period of time). An example
of the tracker output for a simple basketball scene is given in figure
1. The boxes shown are a visualisation of our statistical foreground
model which includes the variance of blob pixel locations about the
mean blob location. The bounding box for each blob corresponds to
a threshold on these distributions. In the current implementation this
is set to 3 standard deviations.

3 OBJECT CLASSIFICATION
Our main priority is to have an object recognition/classification sys-
tem that has low computational cost and so can be incorporated into
an on-line system. We accept that such a system may not have 100%
accuracy, however our higher level processing (see section 4) is de-
signed to cope with imperfect and ambiguous input. Hence, we have
implemented a system that combines a number of simple binary clas-
sifiers using a Bayesian combination mechanism [9].

Currently, we only use binary classifiers based on colour. These
are extremely simple, but by combining several such classifiers us-
able results can be obtained. LetC be the vector of classifier outputs
andCn, the output of classifiern. From a set of image samples we



can learn for each object classκ and each classifier the probabilities
P (Cn = t | κ), P (Cn = f | κ), P (Cn = t | ¬κ), P (Cn = f | ¬κ).

For a classifier outputC, let P (Cn| κ) be the probability of ob-
taining the valueCn given the presence of objectκ; and letK =
P (¬κ)/P (κ), calculated over the sample set. Then using Bayes law
we have:

P (κ|C) = P (C|κ)P (κ)
P (C)

= P (C|κ)
P (C|κ)+KP (C|¬κ)

=
∏N

n=1 P (Cn|κ)∏N
n=1 P (Cn|κ)+K

∏N
n=1 P (Cn|¬κ)

A list of probabilities of objects detected with higher than a min-
imum threshold probability (we currently use0.01) is passed to the
spatio-temporal consistency checker. The figures allow hypothesis
ranking in cases of ambiguity. A hypothesis rejected at this stage
may be still be asserted in the final globally optimised output of the
consistency checker (i.e. if past or future information supports it).

4 SPATIO-TEMPORAL CONTINUITY

We seek a solution that both maximises statistical correlation with
this output and is globally consistent with requirements of spatio-
temporal continuity of objects. For a model to be physically possible,
it must satisfy the following spatio-temporal constraints:

C1) exclusivity— an object cannot be in more than one place at
the same time;
C2) continuity— an object’s movement must be continuous (i.e.
it cannot instantaneously ‘jump’ from one place to another).

With any statistical classifier, an object may be detected to a high
degree of probability in two widely separated locations. This kind of
error is fairly easy to eliminate on a frame by frame basis. We can
consider all possible assignments of different objects to the tracked
boxes in each frame and choose the combination that maximises the
summed probabilities of object to box correspondences.2

The continuity of an objects position over time is much more diffi-
cult to model; and considerable problems arise in relating continuity
constraints to tracker output. The main problem is that of occlusion:
if an object moves behind another it is no longer detectable by the
tracker; so, under a naive interpretation of the tracker and recogni-
tion system outputs, objects will appear to be discontinuous.

As well as enforcing spatio-temporal constraints, we want to find
a hypothesis that is maximally supported by the probabilistic output
of the object classifier for each tracked box. However, the classifier
was trained to identify single objects, whereas in tracking a dynamic
scene there will often be several objects in a box. This means there is
no completely principled way to interpret the output of the classifier.
Nevertheless, it is reasonable to assume that although there is a large
amount of error and uncertainty in the low-level output, it does give
a significant indication of what objects may be present.

Local continuity information is provided by the low-level tracker.
This assigns to each blob’s bounding box an identification tag (a
number), which is maintained over successive frames. Newly split
or merged boxes are assigned new tags, but the tag of their parent
box in the previous frame is also recorded. So each box is associ-
ated with sets of itsparentandchild boxes. The parent/child relation
determines a ‘box continuity graph’ (see figure 2). Our algorithm ex-
ploits the structure of this directed graph.

The reasoning algorithm involves a restructuring of the
tracker/classifier output. A tracked boxb can be represented by a tu-
ple,〈f,geom,pa, ch,Class〉, wheref is the frame number,geom
is the box geometry,pa is the set of its parent boxes (in the frame
f −1), ch is the set of its child boxes (in the framef +1) andClass
represents the statistical output of the object classifier applied to this

2 This assumes that the classifier is capable of identifying unique objects
(such as particular people) rather than classes of similar objects. In situa-
tions where there may be multiple objects of the same class, the exclusivity
constraint must be weakened.

Figure 2. Tracker output expressed as a ‘box continuity’ graph

box. Frame numbers are any continuous subset of non-negative inte-
gers. The initial frame will be denotedf0. For convenience we intro-
duce functionsf(b), geom(b), pa(b), ch(b) andClass(b) to refer
to the corresponding information associated with boxb. The set of
all boxes in the tracker/classifier output will be denoted byBOXES.

The parent and child boxes of a given box function as ‘sources’
and ‘sinks’ for that box. Occupants of a box must have come from
its parent boxes and go to its the child boxes. If no objects enter
or leave a scene, each box is associated with at least one source in
the previous frame and one sink in the next frame. But where two or
more boxes become merged, the merged box will have more than one
source; and, when a box is split, it will have two or more sinks. Later
we extend this idea to handle objects entering/leaving the scene.

Within the box continuity graph are chains of boxes linked by a
unique source-sink relationship. These are shown in figure 2 as sub-
graphs, shaded in a particular colour, corresponding to the ‘history’
of a tracked box between splitting and merger events. If the tracker
were perfectly accurate, the objects occupying any box would be con-
stant along any of these sub-graphs. Because of this, it is useful to
introduce an abstract data object which we call aspatio-temporal
box (ST-boxfor short). ST-boxes will normally be denoted by sym-
bolsSi. In the tracker output, an ST-box corresponds to a temporally
continuous sequence of boxes which have the same tag. In terms of
thech function, this is a maximal sequence[b1, . . . , bn] such that for
eachi in the range1 ≤ i ≤ n− 1 we havech(bi) = {bi+1}.

An ST-box is an ordered setS of boxes indexed by frame num-
bers in the ranges(S) . . . e(S), wheres(S) ande(S) are the start
and end frames of the period over whichS exists. The partial func-
tion box-at(f, S) denotes the boxb ∈ S whose frame number isf
(only defined forf s.t.s(S) ≤ f ≤ e(S)). Each boxb ∈ BOXES
is a member of a unique ST-box denoted byst(b). ST-BOXES =
{S | (∃b ∈ BOXES)[st(b) = S] } is the set of all ST-boxes.

4.1 Grouping Boxes into ‘Envelopes’

The box continuity graph is only indirectly related to the trajectories
of actual moving objects in the scene. Several issues complicate the
relationship. Firstly, there is the basic problem caused by proximal
and/or occluding objects, which means that a box may be occupied
by several objects. This is compounded by the possibility that (be-
cause of occlusion or limited resolution) objects sometimes transfer
between tracker boxes without being independently tracked.

These problems suggest the idea that more reliable tracking might
be achieved by modelling object locations at coarser level than in-
dividual boxes. Hence, we introduce a data object that we call an
envelope. Intuitively, an envelope is simply a (maximal) cluster of
overlapping ST-boxes. This is illustrated in figure 3. Solid lines in-
dicate the positions of box boundaries over a sequence of frames, so
the area swept out by a moving box represents an ST-box. Dashed
lines show the division of this structure into envelopes.

The definition of an envelope depends upon specifying an overlap
relation between boxes, which we write asOverlap(b1, b2). Since,



Figure 3. Deriving Spatio-temporal Envelopes from Tracker Output

the boxes bound the positions of objects to a high statistical proba-
bility, the simple geometric overlap relation between boxes is highly
correlated to the possibility of object transfer between them. Because
of the statistical nature of the bounding boxes, we may vary the scale
of the boxes in order to yield stricter or weaker overlap relations. In
the current work we have not attempted to tweak the scaling to pro-
duce the optimal output for our data. We have chosen a scale where
the box bounds the object with 97% probability. Limited experimen-
tation indicates that this threshold is a good choice for our data.

To formally define an envelope we need to describe the spatial
clustering of ST-Boxes. Alocal group is a set of ST-boxes that are
related by the transitive closure of the geometricOverlap relation.
The relationOverlap∗(b1, bn) holds just in case there is some se-
quence of boxesb1, . . . , bn, such that for1 ≤ i ≤ n − 1 we have
Overlap(bi, bi+1). At each frame over which it exists, any given
ST-box stands in theOverlap∗ relation to a set of other ST-boxes,
which is its local group at that frame. SinceOverlap∗ is reflex-
ive, symmetric and transitive, at each frame the local groups form
equivalence classes over the set of ST-boxes. Given an ST-boxS and
a framef (with s(S) ≤ f ≤ e(S)), we can define the function
local-g(f, S) = {S′ |Overlaps∗(box-at(f, S), box-at(f, S′))}.

A constant-local-group spatio-temporal box(CLG-ST-box) is a
temporal sub-division of an ST-box, over which it is a member of
a constant local group. The beginning and end frames of CLG-ST-
boxes are determined by changes in the overlap relation between
boxes. The division of ST-boxes into CLG-ST-boxes is indicated in
figure 3. Divisions coincide with temporal boundaries of envelopes.

Formally, a CLG-ST-box is a subset of an ST-box correspond-
ing to a maximal temporally continuous sequence of frames over
which local-g(f, S) takes a constant value. Each ST-box determines
a unique CLG-ST-boxclg-st(f, S) for each frame over which it ex-
ists. As with ST-boxes we use the functionsb(C) ande(C) to refer
to the beginning and end frame of a CLG-ST-box,C. We also write
st(C) to refer to the unique ST-box of whichC is a sub-sequence.
Since CLG-ST-boxes participate in the same local group throughout
their history, we can definelocal-g(C) = local-g(b(C), st(C)).

We now define an envelope as a maximal set of overlapping CLG-
ST-boxes. Any CLG-ST-box is a member of a unique envelope, given
by env(C) = {clg-st(b(C), S) | S ∈ local-g(C)}. For an en-
velopeE, the functionsb(E) ande(E) denote the beginning and
end frames of its existence. By definition, all its constituent CLG-
ST-boxes have the same beginning and end frames. Each box in the
tracker input is related to a unique envelope given byenv(b) =
env(clg-st(f(b), st(b))). The set of envelopes derived from the
tracker is given byENVELOPES = {E | (∃b ∈ BOXES)[E =
env(b)]}. The set of envelopes that exist at framef is give by
envs-at(f) = {E ∈ ENVELOPES | b(E) ≤ f ≤ e(E)}.

4.2 Continuity of Envelope Occupancy
Although envelopes give a coarser demarcation of object locations
than individual boxes, they provide a much more reliable basis for

determining continuity. By definition, two different envelopes cannot
spatially overlap (otherwise they would be parts of a larger envelope).
So there is an very low probability that an object can transfer between
envelopes without being detected. Hence, our algorithm assumes that
the occupancy of an envelope is constant throughout its existence.

The relationOcc(l, E) means that objectl is present in envelope
E. The exclusivity constraintC1, corresponds to the requirement
that no object can occupy two distinct spatio-temporal envelopes that
overlap in time. Temporal overlapping of envelopes is defined by
TOE(E1, E2) ≡def ∃f [b(E1)≤f≤e(E1)∧b(E2)≤f≤e(E2)].
So theC1 constraint is equivalent to

C1) (TOE(E1, E2)∧Occ(l, E1)∧Occ(l, E2)) → (E1 =E2)

Envelopes have a continuity graph structure similar to that of
boxes (see figure 3). In fact anenvelope continuity graphcan be
formed directly from the box continuity graph by unifying all nodes
derived from boxes in the same envelope. Functionspa(E) and
ch(E) returning parent and child sets for envelopes can be derived
from the corresponding relations between their constituent boxes.

Since we allow objects to enter or leave the scene we must keep
track of off-scene objects. We do this by introducing virtual,off-scene
envelopesto our model. For simplicity, in the current implementa-
tion we assume there is only one off scene location. Transfer to and
from off-scene envelopes can only occur when a tracker box is either
created or disappears. Off-scene envelopes do not have any spatial
structure; so we identify them simply with a frame pair〈fb, fe〉 rep-
resenting the beginning and end frames of their existence.fb must
be the beginning frame of an envelope or the frame immediately af-
ter the end frame of an envelope.fe is either the end frame of an
envelope or the frame before the beginning of an envelope. The set
OS-ENVELOPES contains all beginning/end frame pairs with no
other beginning or end frames occurring between them. Thus the off
scene envelopes form a partition of the frame sequence.

The set including both on-scene and off-scene envelopes
will be denoted by ENVELOPES+ = ENVELOPES ∪
OS-ENVELOPES. The predicateOS(E) holds just in caseE is
an off-scene envelope.

To define the continuity relation between envelopes, we first de-
fine a successor relationSuc(E1, E2) ≡def ((e(E1) + 1) =
b(E2)), which holds when the end ofE1 is at the frame immedi-
ately before the beginning ofE2. We can now define the relation
Source-Sink(E1, E2), meaning that envelopeE1 is a source for the
objects in envelopeE2. The following formula handles continuity for
both on and off-scene envelopes:

Source-Sink(E1, E2) ≡def (E1 6= E2) ∧
[ ∃b1b2[b1 ∈ pa(b2) ∧ env(b1) = E1 ∧ env(b2) = E2]

∨ (OS(E1) ∧ (pa(E2) = ∅) ∧ Suc(E1, E2))
∨ (OS(E2) ∧ (ch(E1) = ∅) ∧ Suc(E1, E2))
∨ (OS(E1) ∧OS(E2) ∧ Suc(E1, E2)) ]

In terms of this relation, the continuity constraintC2, as applied at
the envelope level, is represented by

C2) Occ(l, E1) → ∃E2[Source-Sink(E1, E2) ∧Occ(l, E2)]
∧Occ(l, E2) → ∃E1[Source-Sink(E1, E2) ∧Occ(l, E1)]
∧ Source-Sink(E1, E2) → ∃l[Occ(l, E1) ∧Occ(l, E2)]

Our algorithm will generate possible assignments of object labels
to envelopes that satisfy bothC1 andC2. It will then choose the one
that we consider ‘best supported’ by the classifier outputs.

4.3 Likelihood of Box and Envelope Occupancy

Applied to a boxb, the output of the classifier module takes the form
Class(b) = {〈l1, p1〉, . . . , 〈ln, pn〉} , wherepi is the probability
of li being a correct label for the object(s) in boxb. Each statistic
is an independently computed probability based on the assumption
that there is only one object in the box. Thus, the figures are not nor-
malised and cannot be reliably applied to multiple-occupancy boxes.
However, we assume that, even in multi-object cases, the figures give



an approximate indication of the likelihood of an object being in the
box. Hence, we regard the numberpi directly as a ‘vote’ for the pres-
ence of objectli in box b. We denote this vote value byvote(l, b).

Our continuity constraints operate at the level of envelopes rather
than boxes. Thus, we need to convert the votes for box occupancy
into votes for an object being in a given envelope. Dependencies be-
tween observations mean that a statistically valid function would be
extremely difficult to define. Hence we define a plausible butad hoc
voting function. Devising and evaluating more realistic voting func-
tions is a subject of ongoing work. Nevertheless, as will be seen be-
low, our crude voting metric is already good enough to significantly
improve tracking reliability.

For an envelopeE and an object l, we first compute
for each CLG-ST-boxC ∈ E the sum of the box votes
for l over all frames for whichC exists: vote(l, C) =∑

b(C)≤f≤e(C) vote(l, box-at(f, C)) To get the vote for the ob-

ject to be in an envelope we take the maximum of its votes for each
CLG-ST-box in the envelope:

vote(l, E) = Max{ v | (∃C ∈ E) ∧ vote(l, C) = v} .

To normalise label support values we computefrac-vote(l, E),
which is the fractional vote forl with respect to the total votes for all
labels in the classifier domain{l1, . . . , lN}.

In determining the support given by an envelope to a given set
of labels, we wish to impose a strong bias that favours the smallest
possible number of objects being assigned to the box. We use the
following vote function, where the numbern of labels assigned to an
envelope directly reduces the overall vote. Letdur(E) = e(E) −
b(E) + 1 be the duration of the envelope in frames. We then define

vote({l1, . . . , ln}, E) =(∑
i=1...n(frac-vote(E, li) + N − n

)
· dur(E)

4.4 Finding the Best Global Labelling

In all but the simplest cases, it is infeasible to evaluate votes for
all spatio-temporally consistent object labellings of an extended sce-
nario. Whenever a box splits, there are several possible assignments
of the original box occupants to the newly created boxes. Thus the
number of possible solutions grows exponentially with time. How-
ever, by taking adynamic programmingapproach, the optimal solu-
tion can be found by an algorithm whose complexity is linear in time.
Thus, if the number of objects is small, solutions for arbitrarily long
sequences can be computed effectively.

Our algorithm first computes the set of envelopes and theSource
relation from the tracker output. Anenvelope change frame(ECF)
is a frame that is the start of some envelope, or is a frame immedi-
ately after some envelope ceases to exist (e.g. when it moves off the
scene). We build a model by starting at the initial frame and progress-
ing through each successive ECF. Since envelope occupancy remains
constant between ECFs, this model determines a complete assign-
ment to all envelopes at all frames. For any ECFf (including the
initial framef0) the next ECF afterf is denoted bynecf(f). When
f is the last ECF in the frame sequence we letnecf(f) = end.

A consistent assignment to all envelopes starting at or before a
given ECFf will be called apartial model(up tof ) and will be de-
notedPi (i is an optional distinguishing index).lcf(Pi) denotes the
last change frame of envelopes assigned byPi. A partial modelP is
identified with a set{. . . , 〈Ei, Ai〉, . . .}, whereAi is a set of labels.
The set of labels assigned byP to envelopeE is writtenass(P, E).

The requirement of spatio-temporal consistency of a partial mod-
els means that the exclusivity and continuity constraintsC1 andC2
must be satisfied, where the occupancy relationOcc determined by
a modelP is given byOcc(l, E) iff l ∈ ass(P, E). To compute
a spatio-temporally consistent extension of a partial model, we need
only know its assignments to the latest envelopes. Hence we define

last-ass(P) =

{〈Ei, Ai〉 | 〈Ei, Ai〉 ∈ ass(P) ∧ b(Ei) ≤ lcf(P) ≤ e(Ei)} .

In order to formalise the notion of one partial model’s being an
(immediate) extension of another, we defineExtends(P ′,P) ≡def

((P ′ \ last-ass(P ′)) = P). So the set of all possible (spatio-
temporally consistent) extensions of a partial modelP is then
extensions(P) = {P ′ | Extends(P ′,P) }.

extensions(P) is a key function of our algorithm. To calculate
it we first compute and store theSource-Sinkrelation for the tracker
input, using the definitions given above. All we need to do is generate
all assignments to the envelopes inE ′ = envs-at(necf(lcf(P)))
which are consistent with the assignment to the envelopes inE =
envs-at(lcf(P)). It is then straightforward to compute theSource-
Sink relation between envelopes inE andE ′.

Since our model construction proceeds in the direction of the
flow of time, we wish to know where the assigned occupants of
envelopes in last assignment of the partial model go to after the
next ECF. The possible ‘sinks’ for these objects are:sinks(E) =
{ E′ | Source-Sink(E, E′)}. To satisfyC2 we only need to ensure
that for everyE ∈ E , every label inass(P, E) is assigned to some
envelope insinks(E), and also at least one label inass(P, E) is
assigned to eachE′ ∈ sinks(E). Moreover, it is easy to see that if
the last assignment ofP satisfies the exclusivity conditionC1 then
any extension constructed in this way will also satisfy theC1.

To choose the most likely (partial) model according to the object
recognition software, we compute a vote measure as follows:

vote(P) =
∑
{vi | 〈Ei, Ai〉 ∈ ass(P) ∧ vote(Ai, Ei) = vi} .

We may have several different partial models that agree on their
last assignment — i.e.last-ass(P1) = last-ass(P2). These, rep-
resent different assignment paths leading up to the same end state.
Typically, one will have a higher vote support than the other, which
gives an indication that one is the more likely of the two. In such a
case we say that the more likely partial modelsubsumesthe other:

Subsumes(P1,P2) ↔
((last-ass(P1) = last-ass(P2)) ∧ vote(P1) > vote(P2))

Given a setM of partial models, we can ‘prune’ it to retain only
the ‘best’ models that lead up to any given final assignment.

prune-subs(M)={P ∈ M | ¬∃(P ′∈M)[Subsumes(P ′,P)]}
We initialise the set of partial models by considering all possible

assignments of the domain objects to the initial envelopes, with the
additional requirement that each envelope must be assigned a number
of objects that is as least as many as the number of CLG-ST-boxes it
contains. This initial partial model set will be denotedM0. We then
run the following algorithm, which iterates through successive ECFs
to generate the set of all consistent models. We initially setf := f0

andM := M0; then run the following loop:

while (f 6= end) {
M′ := ∅
foreach (Pi ∈ M) {

M′ := M′ ∪ extensions(P) }
M := prune-subs(M′)
f := necf(f) }

After this procedure terminates, the optimal labelling is the mem-
bers ofM with the maximal vote. This model assigns labels to en-
velopes rather than boxes. To get a box assignment we assign each
label in each envelope to the CLG-ST-box for which gives it the high-
est vote summed over all its constituent boxes.

The number of ways of puttingm objects inton boxes is exponen-
tial in m. Hence the complexity of our algorithm is exponential in the
number of objects in the scenario. However, because of the pruning
operation, there is a fixed limit on the number of models that need
to be stored, whatever the length of the frame sequence. This means
that the complexity is linear in the sequence length.

This algorithm has been implemented using the SICStus Prolog
[14], which allows easy creation and manipulation of the data struc-
tures required and a natural coding of the continuity reasoning al-



gorithm. It currently runs in an ‘off-line’ mode — i.e. it processes
a whole frame sequence and then produces a globally consistent
assignment for the complete sequence. In future we plan to imple-
mented an ‘on-line’ mode, which would continually output the best
hypothesis for the current state of an ongoing video sequence. Since
our present implementation processes the whole sequence in a time
only slightly longer than its actual duration, on-line real-time pro-
cessing is certainly possible on present day hardware.

5 EVALUATION AND CONCLUSION
The system was evaluated on approximately two and a half minutes
of basketball video (figure 1). This scene involves four objects (three
players and a ball), variable numbers of which may be in the scene
at any one time. It contains much interaction and occlusion that a
conventional object tracker would find hard to track. The sequence
was tracked and classified at 25fps and the results fed into the rea-
soning engine. The system was applied to a sequence of 2200 frames
(88 seconds real time) which generated all possible spatio-temporally
consistent labellings.3 The model with the highest overall score was
compared to a hand-annotated labelling which gives the ground truth
at every 10th frame (plus some extra frames added at particularly dy-
namic parts of the video). Over the length of the sequence a total of
612 tracked boxes were compared.

Comparing our algorithm’s output with the raw classifier output is
problematic, because the raw output just gives ranked probabilities of
individual objects being present but does not determine the number
of objects. For purposes of comparison we must treat this data as
somehow identifying a definite set of labels. To do this we use a
rough heuristic: we say that the assignment includes any label which
has the highest (or joint highest) probability of all those listed in the
output, and also any other label identified with probability higher
than 0.5. Figures computed from the resulting box-label assignments
are given in the “Raw + Heur” column of our tables of statistics.

Another way of interpreting the raw output is to assume that the
occupancy of each tracked box is known by an independent oracle.
The “Raw + OCC” column shows these figures. Here, when eval-
uating a box which we know (from ground-truth data) containsn
objects, we take then labels that are assigned the highest probabil-
ities in the raw tracker/classifier output.4 Although this occupancy
information cannot easily be obtained in practise, the statistics de-
rived under this assumption are useful for comparison. They show
that the improvement gained by the reasoner goes well beyond that
obtained by simply being able to determine occupancy.

Table 1 compares the accuracy of assignments obtained from the
two interpretations of the classifier output with labellings given by
the model generation algorithm. Figures are given for the object de-
tection rate, the percentage of assigned labels that are correct and
the assigned occupancy. The figure giving the percentage of boxes
which were given a completely correct labelling is perhaps the most
intuitive and best overall performance metric.

These figures show that the spatio-temporal consistency algorithm
results in a significant improvement in identification accuracy. This
is most significant in the case of multiply occupied boxes. Hence we
divide the statistics into single and multiple box cases. Of the 612
boxes compared, 377 contained a single object and 235 contained
multiple objects. The single occupancy figures are somewhat degen-
erate because both raw data interpretations almost invariably assign
a single label to single occupancy boxes. But the reasoner sometimes
assigns more than one label to a single occupancy box. The multi-
ple box statistics give a more informative comparison. It will be seen
that the exact match score for the spatio-temporal consistency algo-
rithm is over 60%; whereas, even when given the ground occupancy,

3 This took approximately 5 minutes on a 500 MHz Pentium III; so real time
performance is certainly possible on currently existing hardware.

4 The raw output may occasionally give fewer labels than there are objects in
the box (because it discards labels below a minimal threshold of probabil-
ity). In this case we just take all labels in the raw output.

All boxes Raw + Heur Raw + Occ Reasoner
Objects detected 44.0% 61.6% 82.5%
Labels correct 64.9% 62.3% 82.6%
Box occupancy correct 61.6% 98.5% 83.5%
Box labels all correct 39.5% 44.6% 68.6%

Single occupancy boxes only
Objects detected 64.2% 64.2% 84.1%
Labels correct 64.2% 64.2% 74.6%
Box labels all correct 64.2% 64.2% 73.7%

Multiple occupancy boxes only
Objects detected 29.6% 59.8% 81.4%
Labels correct 66.1% 60.1% 89.8%
Box labels all correct 0% 13.2% 60.4%

Table 1. Accuracy statistics for box labellings.

the raw classifier output rarely gives a completely correct labelling.
Without being given the occupancy our heuristic interpretation gave
no completely correct assignment for any multiply occupied box.

Our results show that the use of a mechanism for reasoning about
and enforcing spatio-temporal consistency can significantly enhance
the performance of a statistically-based object tracking and classifi-
cation system. We believe that this kind of combination of statistical
and logical approaches may be fruitful in other areas of AI.
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