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Abstract

In this paper we construct Yang-Baxter maps using Darboux-Lax representations,
which are invariant under the action of finite reduction groups. We present 4 and
6-dimensional YB maps corresponding to all sl2 automorphic Lie algebras with degen-
erated orbits. We also consider vector generalisations of these Yang-Baxter maps.

1 Introduction

The Yang-Baxter (YB) equation

Y 12 ◦ Y 13 ◦ Y 23 = Y 23 ◦ Y 13 ◦ Y 12, (1)

originates in the works of Yang [37] and Baxter [6]. Here Y ij denotes the action of a linear
operator Y : U ⊗U → U ⊗U on the ij factor of the triple tensor product U ⊗U ⊗U , where
U is a vector space. In this form, equation (1) is known in the literature as the quantum

YB equation.
Drinfel’d in 1992 [12] proposed to replace U by an arbitrary set A and, therefore, the

tensor product U ⊗ U by the Cartesian product A × A. In our paper A is an algebraic
variety KN , where K is any field of zero characteristic, such us C or Q.

In [35] Veselov proposed the term Yang Baxter map for the set-theoretical solutions of
the quantum YB equation. Specifically, we consider the map Y : A×A → A×A,

Y : (x, y) 7→ (u(x, y), v(x, y)). (2)

Furthermore, we define the functions Y i,j : A×A×A → A×A×A for i, j = 1, 2, 3, i 6= j,
which appear in equation (1), by the following relations

Y 12(x, y, z) = (u(x, y), v(x, y), z), (3)

Y 13(x, y, z) = (u(x, z), y, v(x, z)), (4)

Y 23(x, y, z) = (x, u(y, z), v(y, z)), (5)
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where x, y, z ∈ A. The variety A, in general, can be of any dimension. Thus, elements x ∈ A

are points in KN . The map Y ji, i < j, is defined as Y ij where we swap u(k, l) ↔ v(l, k),
k, l = x, y, z. For example, Y 21(x, y, z) = (v(y, x), u(y, x), z).

The map (2) is a YB map, if it satisfies the YB equation (1). Moreover, it is called
reversible if the composition of Y ij and Y ji is the identity map,

Y ij ◦ Y ji = Id. (6)

We use the term parametric YB map when u and v are attached with parameters
a, b ∈ Kn, K = R,C, namely u = u(x, y; a, b) and v = v(x, y; a, b), meaning that the
following map

Ya,b : (x, y; a, b) 7→ (u(x, y; a, b), v(x, y; a, b)), (7)

satisfies the parametric YB equation

Y 12
a,b ◦ Y

13
a,c ◦ Y

23
b,c = Y 23

b,c ◦ Y
13
a,c ◦ Y

12
a,b . (8)

Following Suris and Veselov in [33], we call a Lax matrix for a parametric YB map, a
matrix L = L(x; c;λ) depending on a variable x, a parameter c and a spectral parameter λ,
which

1. satisfies the Lax equation

L(u; a, λ)L(v; b, λ) = L(y; b, λ)L(x; a, λ), for any λ ∈ K and (9)

2. ∂
∂x

det(L) = 0.

In what follows, the Lax matrix L in (9) is a Darboux Matrix for a Lax operator.
It is obvious that the Lax-equation (9) does not always have a unique solution, which

motivated Kouloukas and Papageorgiou in [19] to propose the term strong Lax matrix for
a YB map. This is when the Lax-equation is equivalent to

(u, v) = Ya,b(x, y). (10)

They also proved a sufficient condition for the solutions of the Lax-equation to define YB
maps [17, 19].

Equations like the Lax-equation (9) are being met quite often in the area of integrable
systems as, for instance, in the case of the Darboux transformations, where it represents
the compatibility condition of the Darboux transformation around the square. In this case,
it can be interpreted as a system of discrete equations.

One of the most famous parametric YB maps is the Adler’s map [1]

(x1, x2) −→ (u, v) =

(
x2 +

a− b

x1 + x2
, x1 −

a− b

x1 + x2

)
, (11)

which occurs from the 3-D consistent discrete potential KDV equation [25, 29]. In terms of
Lax matrices, Adler’s map (11) is obtained from the following strong Lax matrix [33, 36]

L(x; a, λ) =

(
x 1

x2 + a− λ x

)
. (12)
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In [30, 31] a variety of YB maps is constructed using the symmetries of multi-filed equations
on quad graphs.

It follows from the structure of the Lax-equation (9) that we can extract invariants of
the YB map, which we denote as Ii(x1, x2). The invariants are useful if one is interested
in the dynamics of such maps. In terms of dynamics, the most interesting maps are those
which are not involutive. Although, involutive maps have also useful applications [14]. In
all the cases presented in the next sections the YB maps are not involutive. The dynamics
of YB maps is discussed in [36].

Now, following [13, 34] we define integrability for YB maps.

Definition 1.1. A N− dimensional YB map, Y , is said to be completely integrable or

Liouville integrable if

1. there is a Poisson matrix, J , of rank 2n, which is invariant under Y ,

2. map Y has r−functionally independent invariants, which are in involution with respect

to the corresponding Poisson bracket, i.e. {Ii, Ij} = 0, i, j = 1, . . . , r, i 6= j,

3. there are k = N − 2r in the number Casimir functions, Ci, i = 1, . . . , k, which are

invariant under Y , namely Ci ◦ Y = Ci.

In what follows, we explain what is a Darboux transformation for a given Lax operator,
introduce the Darboux matrices for the NLS equation, the Z2 reduction and the dihedral
reduction group and construct parametric YB maps.

2 Darboux Transformations

Darboux transformations and their relations to the theory of integrable systems have been
extensively studied [22, 32]. Such transformations can be derived from Lax pairs as, for
instance, in [32], or in a more systematic algebraic manner in [16, 11].

We are interested in Darboux transformations corresponding to Lax operators of the
following form

L = L(p(x);λ) = Dx + U(p(x);λ), (13)

where U belongs to an automorphic Lie algebra.
Darboux transformations can be viewed as gauge transformations which depend ra-

tionally on a spectral parameter, λ. They map fundamental solutions, Ψ, of the equation
L(p(x);λ)Ψ = 0 to other fundamental solutions, Ψ̃ = MΨ, of the equation L(p̃(x);λ)Ψ̃ = 0.

In this context, we say that a matrix M is a Darboux matrix for a given Lax operator
of the form (13) if

1. L(p̃;λ) = ML(p;λ)M−1,

2. ∂
∂x

detM = 0.

The first condition means that the resulting operator L̃ has exactly the same form
with L, but is evaluated on new potential, p̃(x). The second condition results from Abel’s
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theorem, namely that the Wronskian of a fundamental solution is x−independent, since U

is traceless.
The structure of Lax operators has a natural Lie algebraic interpretation in terms of Kac-

Moody algebras and automorphic Lie algebras [20, 21, 8, 9]. While a Kac-Moody algebra is
associated with an automorphism of finite order, automorphic Lie algebras correspond to a
finite group of automorphisms, which is called the reduction group [23].

In the case of 2 × 2 matrices, which we study in this paper, the essentially different
reduction groups are the trivial group (with no reduction), the cyclic group Z2 (leading to
the Kac-Moody algebra A1

1) and the Klein group Z2 × Z2 [24, 21].
We shall present 4 and 6−dimensional YB maps for all the following cases. The trivial

group associated with the nonlinear Schrödinger equation (NLS) equation [38]

pt = pxx + 4p2q, qt = −qxx − 4pq2. (14)

The Z2 group associated to the derivative nonlinear Schrödinger equation (DNLS) equation

pt = pxx − 4(p2q)x, qt = −qxx − 4(pq2)x. (15)

and the Z2 × Z2 group associated to the deformation of the DNLS equation

pt = pxx + 4(p2q)x + 4qx, qt = −qxx − 4(pq2)x − 4px. (16)

In [16] we used Darboux transformations to construct integrable sustems of discrete
equations, which have the multidimensional consistency property [3, 4, 7, 26, 27, 28]. The
compatibility condition of Darboux transformations around the square is exactly the same
with the Lax equation (9). Therefore, in this paper, we use Darboux transformations to
contruct YB maps.

We start with the well known example of the Darboux transformation for the nonlinear
Schrödinger equation and construct its associated YB map.

2.1 The Nonlinear Schrödinger equation

In this case, U(p, q;λ) = U(λ) is a matrix of the form

U(λ) = λU1 + U0, where U1 = σ3 = diag(1,−1), U0 =

(
0 2p
2q 0

)
. (17)

The Darboux Transformation, M , of L is given by [16, 32]

M = λ

(
1 0
0 0

)
+

(
a+ p̃q p̃

q 1

)
. (18)

Thus, we define the matrix

M(x; a, λ) = λ

(
1 0
0 0

)
+

(
a+ x1x2 x1

x2 1

)
. (19)
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and substitute it in the Lax equation (9),

M(u; a, λ)M(v; b, λ) = M(y; b, λ)M(x; a, λ). (20)

Equation (20) has a unique solution u = u(x,y), v = v(x,y) which define a map x →
u(x,y), y → v(x,y), given by

(x,y)
Ya,b
−→

(
y1 −

a− b

1 + x1y2
x1, y2, x1, x2 +

a− b

1 + x1y2
y2

)
. (21)

One can verify that the above map with parameters a, b satisfies the YB equation (8),
i.e. it is a parametric YB map with strong Darboux-Lax matrix (19). Moreover, according
to definition (6), this is a reversible map but not an involution.

It follows from (20) that the trace of M(y; b, λ)M(x; a, λ), is a polynomial in λ whise
coefficients are

Tr(M(y; b, λ)M(x; a, λ)) = λ2 + λI1(x,y) + I2(x,y),

where

I1(x,y) = x1x2 + y1y2 + a+ b, (22)

I2(x,y) = bx1x2 + ay1y2 + x1y2 + x2y1 + x1x2y1y2 + ab+ 1. (23)

The constant terms in I1, I2 can be omitted. It is easy to check that I1, I2 are in involution
with respect to invariant Poisson brackets defined as

{x1, x2} = {y1, y2} = 1, and all the rest {xi, yj} = 0, (24)

and the corresponding Poisson matrix is invariant under the YB map (21). Therefore the
map (21) is completely integrable.

The map (21) first appear in the work of Adler Yamilov [5]. Its interpretation as a YB
map was given in [18].

2.1.1 Nonlinear Schrödinger equation: A 6-dimensional YB map

We consider a more general matrix whose entries depend on three variables x1, x2 and X,
namely

M(x,X;λ) = λ

(
1 0
0 0

)
+

(
X x1
x2 1

)
. (25)

It follows from the Lax equation (9)

M(x,X;λ)M(y, Y ;λ) = M(v, V ;λ)M( u, U ;λ) (26)

that

v1 = x1, u2 = y2, U + V = X + Y, u2v1 = x1y2,

u1 + Uv1 = y1 + x1Y, u1v2 + UV = x2y1 +XY, v2 + u2V = x2 +Xy2.
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The corresponding algebraic variety is a union of two six-dimensional components. The
first one is obvious from the Lax equation (26), it corresponds to the permutation map

x 7→ u = y, y 7→ v = x, X 7→ U = Y, Y 7→ V = X,

which is a trivial YB map. The second one can be represented as a rational 6-dimensional
non-involutive YB map of K3 ×K3 → K3 ×K3

x1 7→ u1 =
y1+x2

1
x2−x1X+x1Y

1+x1y2
, y1 7→ v1 = x1,

x2 7→ u2 = y2, y2 7→ v2 =
x2+y1y

2

2
+y2X−y2Y

1+x1y2
,

X 7→ U = y1y2−x1x2+X+x1y2Y
1+x1y2

, Y 7→ V = x1x2−y1y2+x1y2X+Y
1+x1y2

.

(27)

From the trace of M(y; b, λ)M(x; a, λ) we obtain the following invariants of (27)

I1(x,y,X, Y ) = X + Y and I2(x,y,X, Y ) = x2y1 + x1y2 +XY. (28)

As stated in the definition of a Darboux matrix, the determinant of the matrix (25)
must be constant. Therefore, detM = c(λ), from which follows that

X − x1x2 = a = constant. (29)

A substitution X → a + x1x2 in the Darboux matrix (25) leads to (19). The Adler-
Yamilov map is a restriction of the YB map (27) on the invariant leaves

Aa = {(x1, x2,X) ∈ R3;X = a+ x1x2}, Bb = {(y1, y2, Y ) ∈ R3;Y = a+ y1y2}. (30)

2.2 Z2 reduction

In this case U is given by

U(p, q;λ) = λ2U2 + λU1, where U2 = σ3, U1 =

(
0 2p
2q 0

)
. (31)

The corresponding Lax operator (13) is invariant with respect to the following involution

L(λ) = σ3L(−λ)σ3, (32)

The involution (32) generates the so-called Reduction group [23, 21] and it is isomorphic
to Z2. The Lax operator in this case is known as the spatial part of the Lax pair for the
derivative-Schrödinger equation [10, 15].

The Darboux matrix in this case is given by [16]

M := λ2

(
f 0
0 0

)
+ λ

(
0 fp

f q̃ 0

)
+

(
c1 0
0 1

)
. (33)

From the constant determinant property of M follows that f satisfies the equation

f2pq̃ − f + c2 = 0, (34)
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where c2 a non-zero arbitrary constant.
Replacing (fp, f q̃; c1, c2) → (x1, x2; 1, k), the Darboux matrix becomes

M(x; k;λ) = λ2

(
k + x1x2 0

0 0

)
+ λ

(
0 x1
x2 0

)
+

(
1 0
0 1

)
. (35)

The Lax-equation for M is equivalent to the following

(x,y)
Ya,b
−→

(
y1 +

a− b

a− x1y2
x1,

a− x1y2

b− x1y2
y2,

b− x1y2

a− x1y2
x1, x2 +

b− a

b− x1y2
y2

)
. (36)

One can easily verify that the above map satisfies parametric YB equation (8) and it
is reversible. Therefore, it is a parametric YB map with strong Darboux-Lax matrix (35).
Moreover, map (36) is not involutive.

The invariants of map (36) are given by

I1(x,y) = bx1x2 + ay1y2 + x1x2y1y2 + ab, I2(x,y) = (x1 + y1)(x2 + y2) + a+ b. (37)

The constant terms in I1 and I2 can be omitted. Those are the invariants we retrieve from
the trace of M(y; b, λ)M(x; a, λ). However, the quantities x1 + y1 and x2 + y2 in I1 are
invariants themselves. The Poisson bracket in this case is given by

{x1, x2} = {y1, y2} = {x2, y1} = 1, and all the rest {xi, yj} = 0. (38)

The rank of the Poisson matrix is 2, I1 is one invariant and I2 = C1C2 + a + b, where
C1 = x1 + y1 and C2 = x2 + y2 are Casimir functions. The latter are preserved by (36),
namely Ci ◦ Ya,b = Ci, i = 1, 2. Therefore, map (36) is completely integrable.

Moreover, the map (36) can be expressed as a map of two variables on the symplectic
leaf

x1 + y1 = c1, x2 + y2 = c2. (39)

2.2.1 Z2 reduction: 6-dimensional YB map

We now consider a more general map than (35) with entries depending on the variables
x1, x2 and X, given by

M(x,X; k, λ) = λ2

(
X 0
0 0

)
+ λ

(
0 x1
x2 0

)
+

(
1 0
0 1

)
. (40)

In this case, from the Lax equation we obtain the following equations

u2v1 = x1y2, u2v3 = x3y2, u3v1 = x1y3, u3v3 = x3y3

u1 + v1 = x1 + y1, u3 + u1v2 + v3 = x3 + x2y1 + y3, u2 + v2 = x2 + y2.

As in the case of nonlinear Schrödinger equation, the algebraic variety consists of two
components. The first 6-dimensional component corresponds to the permutation map

x 7→ u = y, y 7→ v = x, X 7→ U = Y, Y 7→ V = X,
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and the second corresponds to the following 6-dimensional YB map

x1 7→ u1 = f1(x,y,X, Y ), y1 7→ v1 = f2(πy, πx, Y,X),
x2 7→ u2 = f2(x,y,X, Y ), y2 7→ v2 = f1(πy, πx, Y,X),
X 7→ U = f3(x,y,X, Y ), Y 7→ V = f3(πy, πx, Y,X),

(41)

where π is the permutation function, π(x1, x2) = (x2, x1), π
2 = 1 and f1, f2 and f3 are given

by

f1(x,y,X, Y ) =
(x1 + y1)X − x1Y − x1x2(x1 + y1)

X − x1(x2 + y2)
, (42)

f2(x,y,X, Y ) =
X − x1(x2 + y2)

Y − y2(x1 + y1)
y2, (43)

f3(x,y,X, Y ) =
X − x1(x2 + y2)

Y − y2(x1 + y1)
Y. (44)

This map has the following invariants

I1(x,y,X, Y ) = XY, I2(x,y,X, Y ) = x · πy+X + Y, (45)

I3(x,y,X, Y ) = x1 + y1, I4(x,y,X, Y ) = x2 + y2. (46)

By definition, the Darboux-Lax matrix (40) must have constant determinant, from which

X − x1x2 = a = constant. (47)

Changing X → a + x1x2 in (40) we obtain matrix (35). Furthermore, using the trans-
formation

X = a+ x1x2, Y = b+ y1y2, U = a+ u1u2 and V = b+ v1v2, (48)

we obtain from (41) and (42)-(44) the YB map (36).

2.2.2 Z2 reduction: Another 6-dimensional YB map

Now, lets go back to the Darboux matrix (33) and replace (p, q̃, f ; c1) → (x1, x2,X; 1),
namely

M(x,X;λ) = λ2

(
X 0
0 0

)
+ λ

(
0 x1X

x2X 0

)
+

(
1 0
0 1

)
, (49)

where, according to (34)), X obeys the following equation

x1x2X
2 −X + c2 = 0. (50)

The Lax equation implies the following equations

u1u3 + v1v3 = x1x3 + y1y3, u2u3 + v2v3 = x2x3 + y2y3,

u3v3 = x3y3, u3v1v3 = x1x3y3, u2u3v3 = x3y2y3, u2u3v1v3 = x1x3y2y3,

u3 + v3 + u1u3v2v3 = x3 + y3 + x2x3y1y3.

(51)
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Now, the first 6-dimensional component of the algebraic variety corresponds to the trivial
map (41) and the second component corresponds to a map of the form (41), with f1, f2 and
f3 now given by

f1(x,y,X, Y ) =
−1

f3(x,y)

x1X + (y1 − x1)Y − x1x2y1XY − x21x2X
2

x1x2X + x1y2Y − 1
, (52)

f2(x,y,X, Y ) = y2, (53)

f3(x,y,X, Y ) =
x1x2X + x1y2Y − 1

x1y2X + y1y2Y − 1
X. (54)

One can verify that the above map is a non-involutive YB map. The invariants of this
map are given by

I1(x · πy,X, Y ) = XY and I2(x,y,X, Y ) = (x · πy)XY +X + Y. (55)

2.3 Dihedral Group

In the case of dihedral group, U is given by

U(p, q;λ) = λ2U2 + λU1 + λ−1U
−1 − λ−2U

−2, where

U2 ≡ U
−2 = σ3, U1 =

(
0 2p
2q 0

)
and U

−1 = σ1U1σ1.
(56)

Here, the reduction group consists of the following set of transformations acting on (13),

L(λ) = σ3L(−λ)σ3 and L(λ) = σ1L(λ
−1)σ1, (57)

and it is isomorphic to Z2 × Z2
∼= D2, [21].

In this case, the Darboux matrix is given by [16]

M = λ2

(
f 0
0 0

)
+ λ

(
0 fp

f q̃ 0

)
+ λ−1

(
0 f q̃

fp 0

)
+ λ−2

(
0 0
0 f

)
+ gI, (58)

where the entries f and g obey the following equations

fg − f2pq̃ = c1 and f2 + g2 − f2q̃2 − f2p2 = c2. (59)

It follows from (59), that functions f and g can be expressed in terms of p and q̃, as
solutions of quadratic equations. Then, the Darboux matrix depends only on two variables
and then we construct a 4−dimensional parametric YB map. Althought, we have omitted
these expressions because of their length. However, we have seen in the previous sections
that the 6−dimensional YB maps can reduce to 4−dimensional maps using invariants.

In the next section we construct a 6−dimensional map from (58).
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2.3.1 Dihedral group: A 6-dimensional YB map

We now consider the matrix N := fM , whereM is given by (58), and we change (p, q̃, f2) →
(x1, x2,X). Then,

N(x,X; c1, λ) =

(
λ2X + x1x2X + c1 λx1X + λ−1x2X

λx2X + λ−1x1X λ−2X + x1x2X + c1

)
, (60)

where we have substituted the product fg by

fg = c1 + x1x2X, (61)

from the first equation of (59).
The Lax equation for the Darboux-Lax matrix (60) reads

N(u, U ; a, λ)N(v, V ; b, λ) = N(y, Y ; b, λ)N(x,X; a, λ), (62)

from where we obtain an algebraic system of equations, omitted because of its length.
The first 6-dimensional component of the corresponding algebraic variety corresponds

to the trivial YB map

x 7→ u = y, y 7→ v = x, X 7→ U =
a

b
Y, Y 7→ V =

b

a
X,

and the second component corresponds to the following map

x1 7→ u1 =
f(x,y,X, Y ; a, b)

g(x,y,X, Y ; a, b)
, y1 7→ v1 = x1

x2 7→ u2 = y2, y2 7→ v2 =
f(πy, πx, Y,X; b, a)

g(πy, πx, Y,X; b, a)
(63)

X 7→ U =
g(x,y,X, Y ; a, b)

h(x,y,X, Y ; a, b)
, Y 7→ V =

g(πy, πx, Y,X; b, a)

h(πy, πx, Y,X; b, a)
,

where f, g and h are given by

f(x,y,X, Y ; a, b) = a2b2x1X + a2b[x2 − y2 + 2x1x2y1 + x21(y2 − 3x2)]XY +
a2(y22 − 1)[y1(1 + x21)− x1(1 + y21)]XY 2 − ab2(x21 − 1)(y2 − x2)X

2−
ab(x21 − 1)[x22(3x1 − y1)− x1 − y1 + 2y2(y1y2 − x1x2)]X

2Y−
a(x21 − 1)(y22 − 1)[y2(y

2
1 − 1) + x2(y

2
1 − 2x1y1 + 1)]X2Y 2+

y1(x
2
1 − 1)2(x22 − 1)(y22 − 1)X3Y 2 + b(x21 − 1)2(x22 − 1)(y2 − x2)X

3Y+
a3b(y1 − x1)Y,

g(x,y,X, Y ; a, b) = a2b2X + 2a2by2(y1 − x1)XY + a2(y22 − 1)(x1 − y1)
2XY 2+

2ab(x21 − 1)(1 − x2y2)X
2Y + 2ax2(x

2
1 − 1)(y22 − 1)(x1 − y1)X

2Y 2+
(x21 − 1)2(x22 − 1)(y22 − 1)X3Y 2,

h(x,y,X, Y ; a, b) = a2b2 − 2ab2x1(y2 − x2)X − 2ab(x1y1 − 1)(y22 − 1)XY

b2(x21 − 1)(x2 − y2)
2X2 − 2by1(x2 − y2)(x

2
1 − 1)(y22 − 1)X2Y+

(x21 − 1)(y21 − 1)(y22 − 1)2X2Y 2.

(64)
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It can be verified that this is a parametric YB map. From Tr(N(x,X;λ)N(y, Y ;λ)) we
extract the following invariants for the above map

I1(x,y,X, Y ; a, b) = XY, (65)

I2(x,y,X, Y ; a, b) = bX + aY + (x1 + y1)(x2 + y2)XY, (66)

I3(x,y,X, Y ; a, b) = 2bx1x2X + 2ay1y2Y + 2(x · y+ x1x2y1y2)XY + 2ab. (67)

As stated earlier from the above 6−dimensional map we can construct a 4−dimensional
YB map. In particular, from equations (59) and (61) one can obtain

(1− x21 − x22 + x21x
2
2)X

2 + (2x1x2 − c2)X + 1 = 0, (68)

where we have rescaled c1 → 1.
Therefore the 4−dimensional map is given by

(u1, u2, v1, v2) =

(
f(x,y; a, b)

g(x,y; a, b)
, y2, x1,

f(πy, πx; b, a)

g(πy, πx; b, a)

)
, (69)

where f , g and h are given by the above relations and X and Y are given implicitly by

(1− x21 − x22 + x21x
2
2)X

2 + (2x1x2 − a)X + 1 = 0, (70)

(1− y21 − y22 + y21y
2
2)Y

2 + (2y1y2 − b)Y + 1 = 0. (71)

2.4 Dihedral group: A linearised YB map

We replace (f q̃, fp) → (x1, x2) and (c1, c2) → (1−k2

2 , 1+k2

2 ) in the Darboux matrix (58) to
become

M(x; k, λ) = λ2

(
f 0
0 0

)
+ λ

(
0 x1
x2 0

)
+ λ−1

(
0 x2
x1 0

)
+ λ−2

(
0 0
0 f

)
+ gI, (72)

where f and g are given by

f =
1

2

√
k2 + (x1 − x2)2 +

1

2

√
1 + (x1 + x2)2, (73)

g =
1

2

√
1 + (x1 + x2)2 −

1

2

√
k2 + (x1 − x2)2. (74)

The linear approximation to the YB map is given by




x1
x2
y1
y2




U0−→




u1
u2
v1
v2


 =




(a−1)(a−b)
(a+1)(a+b)

a−b
a+b

2a
a+b

(a+1)(b−a)
(b+1)(a+b)

0 0 0 a+1
b+1

b+1
a+1 0 0 0

(a−b)(b+1)
(a+1)(a+b)

2b
a+b

b−a
a+b

(b−1)(b−a)
(b+1)(a+b)







x1
x2
y1
y2


 (75)

which is a linear parametric YB map and it is not involutive.

11



3 2N × 2N−dimensional YB maps

We now replace the variables, x1 and x2, in the Lax matrices with N−vectors w1 and wT
2

to obtain 2N × 2N YB maps. In what follows we use the following notation for a n−vector
w = (w1, ..., wn)

w = (w1,w2), where w1 = (w1, ..., wN ), w2 = (wN+1, ..., w2N ) (76)

and also

< ui| := ui, |wi >:= wT
i and their dot product with < ui, wi > . (77)

3.1 NLS equation

Replacing the variables in (19) with N−vectors, namely

M(w; a, λ) =

(
λ+ a+ < w1, w2 > < w1|

|w2 > I

)
, (78)

we obtain a unique solution of the Lax-Equation given by the following 2N × 2N map

{
< u1| =< y1|+ f(z; a, b) < x1|,

< u2| =< y2|,
(79)

and {
< v1| =< x1|,

< v2| =< x2 + f(z; b, a) < y2|,
(80)

where f is given by

f(z; b, a) =
b− a

1 + z
, z :=< x1, y2 > . (81)

The above is a non-involutive parametric 2N×2N YB map with strong Lax matrix given by
(78). As a YB map it appears in [30], but it is originally introduced by Adler [2]. Moreover,
one can construct the above 2N × 2N map for the N × N Darboux-Lax matrix (78) by
taking the limit of the solution of the refactorisation problem in [19].

The invariants of this map are given by

I1(x,y; a, b) =< x1, x2 > + < y1, y2 >, (82)

I2(x,y; a, b) = b < x1, x2 > +a < y1, y2 > + < x1, y2 > + < x2, y1 > +

< x1, x2 >< y1, y2 > . (83)

3.2 Z2 reduction

In the case of Z2 we consider, instead of (35), the following matrix

M(w; a, λ) =

(
λ2(a+ < w1, w2 >) λ < w1|

λ|w2 > I

)
, (84)
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we obtain a unique solution for the Lax-Equation given by the following 2N × 2N map
{
< u1| =< y1|+ f(z; a, b) < x1|,

< u2| = g(z; a, b) < y2|,
(85)

and {
< v1| = g(z; b, a) < x1|,

< v2| =< x2|+ f(z; b, a) < y2|,
(86)

where f and g are given by

f(z; a, b) =
a− b

a− z
, g(z; a, b) =

a− z

b− z
, z :=< x1, y2 > . (87)

The above map is a non-involutive parametric 2N×2N YB map with strong Lax matrix
given by (84).

The invariants of the above map are given by

I1(x,y; a, b) = < x1 + y1, x2 + y2 >, (88)

I2(x,y; a, b) = b < x1, x2 > +a < y1, y2 > + < x1, x2 >< y1, y2 > . (89)

In fact, all the terms xi + yi in I1 are invariants.
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[11] Cieśliński J 1995 An algebraic method to construct the Darboux matrix J. Math.

Phys. 36 5670–5706.

[12] Drinfel’d V 1992 On some unsolved problems in quantum group theory Lecture Notes

in Math. 1510 1–8.

[13] Fordy A 2012 Integrable Poisson maps from cluster exchange relations SIDE confer-

ence, Ningbo.

[14] Kassotakis P and Nieszporski M 2011 On non-multiaffine consistent-around-the-
cube lattice equations arXiv:1106.0435v2.

[15] Kaup D and Newell A 1978 An exact solution for a derivative nonlinear Schrödinger
equation J. Mathematical Phys. 19 798–801.

[16] Konstantinou-Rizos S, Mikhailov A, and Xenitidis P 2012 The reduction group
and Darboux transformations To be submited.

[17] Kouloukas T 2010 Yang-Baxter maps, poisson structure and integrability Ph.D the-

sis, Un. of Patras, Greece.

[18] Kouloukas T and Papageorgiou V 2009 Yang-Baxter maps with first-degree-
polynomial 2× 2 Lax matrices J. Phys. A 42 404012, 12.

[19] Kouloukas T and Papageorgiou V 2011 Poisson yang-baxter maps with binomial
lax matrices J. Math. Phys. 52 404012, 12.

[20] Lombardo S 2004 Reductions of integrable equations and automorphic Lie algebras
Ph.D. thesis, Un. of Leeds.

[21] Lombardo S and Mikhailov A 2005 Reduction groups and automorphic Lie alge-
bras Comm. Math. Phys. 258 179–202.

[22] Matveev V and Salle M 1991 Darboux transformations and solitons Integrable

systems in statistical mechanics, Springer series in nonlinear dynamics.

14

http://arxiv.org/abs/1106.0435
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