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Abstract—We report the time-domain analysis of fast pulses 

emitted by a quantum cascade laser (QCL) operating at ~3.1 THz 
using superconducting THz detectors made from either NbN or 
YBa2Cu3O7- (YBCO) thin films. The ultra-fast response from 
these detectors allows resolution of emission features occurring 
on a nanosecond time-scale, which is not possible with 
commercially available Ge or InSb bolometers owing to their 
much larger time constants. We demonstrate that the time-
dependent emission can be strongly affected by relatively small 
variations in the driving pulse. The QCL output power–current 
relationship was determined, based on correlation of the time-
dependent emission of radiation with current flow in the QCL, 
under different QCL bias conditions. We show that this 
relationship differs from that obtained using bolometric detectors 
that respond only to the integrated pulse energy. The linearity of 
the detectors, and their agreement with measurements using a Ge 
bolometer, was also established by studying the QCL emission as 
a function of bias voltage and excitation pulse length. This 
measurement scheme could be readily applied to the study of 
ultra-fast modulation and mode-locking of THz-QCLs. 
 

Index Terms— Quantum cascade lasers, Superconducting THz 
detectors, Pulse measurements, Submillimeter wave 
measurements. 

I. INTRODUCTION 

ERAHERTZ frequency quantum cascade lasers (THz-
QCLs) are powerful, yet compact, solid-state sources of 

coherent THz radiation over the frequency range 1.2 to 5 THz 
[1]–[3]. The high output power (exceeding 250 mW in pulsed 
operation [4]), narrow linewidths (<30 kHz [5]) and broad 
range of achievable emission frequencies give rise to 
numerous potential applications [6], including imaging [7], [8] 
and spectroscopy [9], as well as their use as local oscillators in 
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heterodyne mixing schemes [10]. 
A wide range of techniques has been previously employed 

for the detection of THz-QCL radiation. A number of these are 
sensitive to the THz electric field, making coherent sampling 
possible. These include mixing in Schottky diodes [11], GaAs 
photomixers [12], and hot-electron bolometers [13], as well as 
ultra-fast electro-optic sampling [14]. Nevertheless, the most 
common THz direct detection technologies such as room-
temperature pyroelectric sensors, Golay cells and 
cryogenically-cooled semiconducting bolometers, rely on 
incoherent thermal detection of radiation. Owing to the slow 
time-constants of thermal processes (typically ~0.1−10 ms), 
such schemes are sensitive only to the total pulse energy for 
typical pulsed QCL operating conditions. The QCL 
characteristics measured in this manner do not, therefore, 
provide a true representation of the current−power relationship 
of the laser since driving pulses typically exhibit some 
dynamic variation in amplitude. The slow response also 
precludes the investigation of intra-pulse dynamics, which can 
occur on fast time-scales owing to the lifetime of the upper 
state of the lasing transition being limited to a few 
picoseconds by elastic and inelastic scattering mechanisms in 
THz-QCLs [15]. Whilst fast transient phenomena have been 
observed using ultra-fast electro-optic sampling techniques 
[14], this approach is complex and costly and data acquisition 
is relatively slow. Schottky diode detectors also exhibit a short 
response time (in the picosecond range). However, for these 
diode detectors a noise equivalent power (NEP) in the range of 
10-11−10-10 W/Hz has been reported [16], [17], which is more 
than one order of magnitude above the detection limit of 
superconducting detectors [18], [19]. Moreover, Schottky 
diodes show a nonlinear detector response [16]. 

In this paper, we report on the time-domain analysis of fast 
QCL pulses using superconducting direct detectors made from 
either NbN or YBa2Cu3O7- (YBCO) thin films. The ultra-fast 
detector response allows laser emission features to be resolved 
on a nanosecond time-scale. The QCL output power−current 
relationship is determined based on a correlation between the 
measured time-dependent emission of radiation with current 
flow, enabling the interpretation of the time-domain detector 
responses to QCL pulses of varying amplitude and duration. 
This work demonstrates the applicability of superconducting 
direct detectors to ultra-fast analysis of QCL emission. This 
scheme could also readily be applied to the study of ultra-fast 
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modulation of THz-QCLs [20] as well as the study of mode-
locking [14] of THz-QCLs, for which fast detection is 
required to resolve the mode-locked pulses that occur at the 
typically <100 ps round-trip time of the laser cavity. 

II. EXPERIMENTAL SETUP 

The QCL used for this work was based on a three-well 
resonant-phonon depopulation scheme emitting at 
~3.1 THz [21]. THz-QCLs based on this scheme typically 
suffer from the presence of strong parasitic current channels 
that artificially enhance the threshold current [22], [23]. In 
addition, owing to the requirement to drop >36 meV (the LO 
phonon energy in GaAs) across each individual module of this 
structure, large applied biases are required at threshold. Both 
of these factors lead to large electrical power dissipation in 
such QCLs, making continuous wave operation challenging. 
Consequently, such QCLs are invariably operated in pulsed 
mode, for which determination of the correct current−power 
relationship of the laser is challenging, as previously noted. 
The device was processed into a semi-insulating surface 
plasmon ridge waveguide with dimensions 
0.85 mm  140 µm  10 µm. Fig. 1 shows a schematic of the 
experimental apparatus. The QCL was operated in a 
continuous flow liquid-helium-cooled cryostat at a constant 
temperature of 15 K. The laser was driven by a pulse 
generator (Agilent 8114A) at a repetition rate of frep=10 kHz, 
with either the amplitude or length of the driving pulses being 
varied. The time-dependent current flow through the QCL was 
monitored using an inductive current probe with a minimum 
measurable pulse duration of 5 ns. The emitted THz radiation 
was focused by two off-axis parabolic mirrors onto the 
detector block, which was mounted in a separate optical 
cryostat. For the experiment the use of a separate cryostat 
allows the flexible adjustment of temperature to achieve 
optimum operating conditions of the detectors. Nevertheless, it 
is also possible to integrate both QCL and detector into a 
single cooling system as it has been demonstrated for 
heterodyne receiver applications [24]. The detector elements 
consisted of NbN or YBCO micro-bridges fabricated on a 
sapphire substrate (thickness=330 µm, r=10.06). The 
detectors were operated at a temperature Top below their 
critical temperature Tc and driven onto the superconducting 
transition by a constant bias voltage. The geometry and 
operating conditions for both detector types are listed in 
Table I. Further details about the detector fabrication can be 
found in [25] for the NbN and [26] for the YBCO 
technologies. Owing to the sub-wavelength geometry, the 
detector bridges were embedded into a planar log-spiral 
antenna, made from 200-nm-thick gold, to improve the input 
radiation coupling efficiency. The spiral antenna was designed 
to cover a broad frequency range from 0.5–4 THz. For the 
high-frequency readout, the antenna was connected to a 
coplanar waveguide, and the 33 mm2 detector chip was 
mounted on the rear side of a 12-mm-diameter silicon lens 
(r=11.7) to focus the incident THz radiation. Further 
information about the detector block with the integrated 

dielectric lens are presented in [27]. Typical intrinsic NbN 
detector response times are  ≈ 30 ps [28], [29]. For YBCO 
response times as short as single picoseconds were achieved 
[30], [31]. These detectors are much faster than commercial 
Ge or InSb bolometers that exhibit time constants in the 
microsecond or even millisecond range [32]. 

The ultra-fast response of superconducting detectors allows 
resolution of dynamic QCL emission features that occur on a 
nanosecond time-scale. The detector signal was amplified by a 
room temperature preamplifier with a bandwidth of 0.1–
400 MHz and a signal gain of 40 dB. The amplified signal was 
monitored using a 500 MHz real-time oscilloscope. According 
to [33], the effective readout bandwidth feff is calculated as 

MHz4.312
2/1

2 












i
ieff ff , (1) 

where fi is the bandwidth of the i-th component within the 
readout chain. The effective readout bandwidth corresponds to 
a time resolution 

ns1.1
35.0


efff

 . (2) 

III.  MEASUREMENT RESULTS AND ANALYSIS 

A. Measurement and analysis of QCL emission dependent 
on bias voltage 

Detector signals were analyzed for QCL bias voltages over the 
full operating range of the QCL. Fig. 2a shows the time-
dependent current flow for different values of the QCL bias 
voltage Ub, for a pulse length of 500 ns. It should be noted that 
Ub refers to the bias setting on the pulse generator, although 
the actual bias supplied to the QCL varies through the duration 
of the pulse. The approximately-rectangular voltage pulses 
give rise to similarly-shaped current pulses, although the 
impedance mismatch produces transient peaks on the rising 
and falling edges, and on the front part of the current plateau. 
In the later part of the pulse, the current is quite homogeneous, 
with a slight increase until the pulse is switched off. As the 
value of the bias voltage Ub is increased, the different curves 
show an increase in the QCL current but maintain the same 
general pulse shape. The detector signals depend linearly on 
the coupled radiation power due to the wide dynamic range of 
these detectors (see later and [26], [34]). In contrast to the 
QCL current, the measured detector signals show a strong 
variation in both the amplitude and shape of the pulses, as 
shown in Fig. 2b. 

A QCL emits radiation when its drive current exceeds the 
threshold level determined by the waveguide and mirror 
losses, the overlap of the waveguide mode with the active 
region, and the laser gain coefficient. For the analyzed laser, 
the threshold current (Ith=1.13 A) is indicated by the dashed 
horizontal line in Fig. 2a. For higher bias voltages Ub the drive 
current reaches the threshold earlier than for lower biases, and 
therefore the QCL starts emitting radiation earlier after the 
start of the current pulse. Using our fast superconducting 
detectors it is possible to resolve such features. This can be 
seen by comparing the Ub=14.1 V and the Ub=12.6 V traces in 
Fig. 2. The first peak of the detector signal appears about 
14 ns earlier for the 14.1 V trace (the corresponding peak 
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being labeled ‘I’ in Fig. 2b) than for the 12.6 V trace (Fig. 2b-
II) because the corresponding current traces reach the 
threshold level at different points in time (Fig. 2a-I and -II)  as 
a consequence of the specific transient features in these 
current pulses. 

However, a number of additional transient emission features 
are observed at times when the measured current appears to be 
below the threshold. For example, the measured detector 
signal for Ub=14.1 V shows an additional pre-pulse (Fig. 2b-
III)  that appears before the main peak, although the 
corresponding small spike in the measured current appears to 
be below the threshold level (Fig. 2a-III). This is attributed to 
the fact that the bandwidth of the current probe is insufficient 
to measure the magnitude of this fast transient current peak 
accurately. The absence of such a pre-pulse in the other 
detector responses shown in Fig. 2b indicates that the 
corresponding current peaks do not reach threshold in these 
cases. 

The transfer function relating detector voltage and QCL 
drive current was derived by direct mapping of the detector 
signals to the time-equivalent current values within each pulse. 
To avoid the underestimation of transient currents (as 
described above), we have restricted the temporal range of our 
analysis to include only the region of slowly varying current 
within each pulse (indicated by the dashed vertical lines in 
Fig. 2a). In this way, it was possible to analyze currents from 
1.05–1.52 A obtained from 26 different QCL bias settings Ub. 
For noise reduction, a robust smoothing filter algorithm was 
applied to the raw data [35]. The final results for both NbN 
and YBCO detector measurements are shown in Fig. 3, with 
each curve normalized to its respective maximum. Due to the 
good agreement between the results of two different detector 
types and the fact that both detectors show a linear response 
with coupled THz power (see later) we conclude that these 
transfer functions represent the true power−current 
relationship of the QCL. We can therefore deduce that the 
laser threshold current is Ith=1.13 A. Below this level, no 
radiation is detected. Similarly, above the cut-off level of 
Icut=1.36 A, no radiation is detected. Between these two 
extremes, there are two emission maxima at around I=1.20 A 
and I=1.28 A. It should be noted that the measured 
power−current relationship shown in Fig. 3 is an inherent 
characteristic of the QCL device and would in principle be 
equally applicable to alternative driving conditions, including 
continuous-wave (c.w.) operation. 

Fig. 3 also shows the approximate power−current 
relationship of the QCL obtained using a helium-cooled 
germanium (Ge) bolometer. As previously noted, this slow 
thermal detector measures the integrated pulse energy rather 
than the instantaneous power−current relationship; the current 
values measured at the end of the pulse plateau (see Fig. 2a) 
have been plotted as the abscissa for this curve in Fig. 3. There 
is a notable discrepancy observed between the ultra-fast traces 
and the Ge bolometer trace, which is a direct consequence of 
this slow integral response. It is notable that the Ge bolometer 
measurement is shifted towards higher current values and also 
indicates lasing over a larger range of currents than the NbN 
and YBCO measurements. However, this is an artifact arising 
from transients in the current pulses, which can cause the QCL 
to lase instantaneously even when the current at the end of the 

plateau is below threshold or above the cut-off level. In order 
to determine the threshold current accurately from such 
integral measurements, it is necessary to measure the intra-
pulse peak current value at the onset of lasing. This is shown 
in the inset of Fig. 3, which indicates a threshold current of 
1.13 A, in perfect agreement with that obtained from both 
NbN and YBCO measurements. Further validation of this 
agreement, with respect to threshold current, has been 
obtained by comparing the time-integrated response of the 
superconducting detectors with that of the Ge bolometer. 

Of particular noteworthiness is the presence of two local 
maxima observed in the power-current relationships obtained 
using the ultra-fast detectors, at currents of approximately 
I=1.20 A and I=1.28 A, corresponding to applied voltages of 
13.7 V and 14.1 V. These features are not resolved fully using 
the Ge bolometer. To gain insight into the origin of these 
features, the QCL active region gain was simulated over a 
range of applied electric fields, using a semiclassical rate-
equations approach. Our simulation method has been 
described in detail previously [36], and may be summarized as 
follows. Firstly, the potential profile in the direction of 
material growth was estimated by adding a one-dimensional 
solution of the Poisson equation to the conduction band 
profile. Initially, a uniform spatial distribution of free 
electrons was assumed. The corresponding quasibound 
eigenstates of the system were then found by solving the one-
dimensional Schrödinger equation, accounting for band 
nonparabolicity, as described in [37]. 

The population of each electronic subband was computed 
by solving a system of rate-equations, accounting for 
intersubband scattering due to ionized impurities [38], alloy 
disorder [39], interface roughness [40], LO-phonons and 
acoustic phonons [41]. The electron temperature was assumed 
to be 100 K greater than the lattice temperature at all biases. 
The spatial charge distribution, solutions to the Poisson and 
Schrödinger equations and scattering rates were then 
computed iteratively until a self-consistent result was found. 
Finally, the resulting eigenstates and subband populations 
were used to compute the intersubband optical gain of the 
device [42]. 

Fig. 4 shows the maximum simulated gain of the active 
region over a range of applied biases. It can be seen that two 
peaks in the simulated gain occur at biases of 12.6 and 
12.9 kV/cm, corresponding to voltage drops of 12.6 and 
12.9 V, respectively, across the 10 µm active region stack. 
These features arise from changes in the overlap between the 
wavefunctions for the upper and lower laser subbands. The 
simulated voltages agree well with the experimental values, 
with the shortfall being attributed to the effects of contact 
impedance. 

Having obtained the power−current relationship for the 
QCL, it is possible to predict the dynamic detector behavior 
for an arbitrary QCL current trace. We have applied the 
derived transfer-function to the measured current pulses in 
order to simulate the time-dependent detector signals, and 
compared the results with the measured traces. For 
simulations, the transfer function obtained from the NbN 
detector measurements was used. Fig. 5 shows the measured 
and simulated dynamic detector signals for two different bias 
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voltages. All signals are normalized to the global maximum of 
the modeled traces at all bias voltages. In this way, the 
amplitudes of measured and simulated pulses are directly 
comparable for different bias voltages. In general, a very good 
agreement between simulated and measured pulses has been 
observed with respect to amplitude, shape and transient 
features. Nevertheless, differences appear near the rising edge 
of the pulses: the first peak of the modeled curves is smaller 
than that of the measured curves for nearly all bias points (see 
Fig. 5a-I and Fig. 5b-I). Also, for some applied biases, an 
additional pulse appears before the main pulse in the 
experimental data, which is never replicated in the modeled 
response (see Fig. 5b-II).  This pre-pulse correlates directly to 
the transient peak in the center of the rising edge of the current 
curves (see Fig. 2a-III, for example). As previously 
mentioned, the reason for those two effects can be found in the 
limited bandwidth of the current probe. For fast current spikes, 
the probe is not able to follow the real signal and measures 
lower values. In comparison to the measured detector pulses, 
this leads to smaller signals in the simulation or even to no 
signal if the measured current is below the threshold level. 
Such issues could be resolved through use of a faster current 
probe. Another important parameter for characterization of 
laser performance is the emitted pulse energy Ep. The 
dependence of Ep on the QCL bias voltage setting Ub (i.e., the 
nominal output of the pulse generator) was studied by 
integration of the time-dependent detector signal over the 
duration of the excitation pulse for each value of Ub. This 
evaluation was carried out for both the NbN and the YBCO 
detectors, as well as for the simulated detector pulses based on 
the previously described NbN transfer function. For 
comparison the three different curves are shown in Fig. 6. All 
results are normalized to the maximum of the model curve. 
There is a good agreement between the curves. For low bias 
voltages (Ub<12.2 V) the entire QCL current pulse is below 
threshold, and therefore no radiation is detected. For voltages 
Ub>14.0 V a strong drop of the pulse energy can be observed 
because in this case the plateau of the current pulse exceeds 
the cut-off value, and lasing only occurs during the transient 
parts of the pulse. In contrast, high pulse energies are obtained 
for operating points where the current-pulse plateau reaches 
values that are correlated with high power emission according 
to the transfer function. For the analyzed QCL, this was the 
case for Ub=12.8−14.0 V with a maximum ranging from 
13.7−13.9 V. A slight discrepancy between the measured 
results and the modeled curve is observed in the range 
Ub=14.6–16.2 V (indicated by the dashed ellipse in Fig. 6). 
This can be explained by the appearance of the pre-pulse for 
high voltages, as described above. The pre-pulse becomes 
obvious for voltages Ub>14.0 V because at these bias points 
the spike which occurs at the center of the rising edge of the 
current traces exceeds the threshold level. The amplitude of 
the detected pre-pulse increases until a bias voltage of 
Ub=15.4 V. Simultaneously, the amplitude of the main pulse 
decreases because the plateau values of the corresponding 
current pulses reach the cut-off level. Therefore, the pre-pulse 
contributes a significant amount of the total pulse energy. 

Since this effect is not taken into account by the simulation 
due to the inaccurate acquisition of the amplitude of the 
current spike, the corresponding Ep(Ub) curve is below the 
measured curves in this range. For even higher bias voltages 
the mentioned current-spike also approaches the cut-off level 
and the total pulse energy converges to the zero-level for bias 
voltages Ub>16.4 V, comparable to the simulated curve. 

B. Measurement and analysis of QCL emission dependent 
on pulse length 

The dependence of the detector signal on the duration of the 
excitation pulse t was analyzed. The pulse length was tuned 
from 10–500 ns, whilst the bias voltage was set at a constant 
level of Ub=13.9 V to achieve maximum radiation pulse 
energy. The pulse repetition rate, operating temperature and 
detector parameters were set to the same values as described 
above. The results reveal that lasing was obtained only for 
pulse durations greater than 40 ns. For shorter pulses, the QCL 
current does not exceed the threshold level because of the 
finite rise-time of the current pulse. In Fig. 7, the measured 
QCL current pulses are depicted together with the NbN 
detector signals for different pulse durations. The simulated 
signals according to the previously acquired transfer function 
are also shown in Fig. 7b. All simulated curves are in good 
agreement with measurement. Based on these measurements, 
the emitted pulse energy was determined for each pulse 
duration by calculating the integral value of each detector 
trace recorded. These values are plotted in Fig. 8, for both the 
NbN and YBCO detectors, as a function of the pulse energy 
measured using the calibrated Ge bolometer. The graph clearly 
reveals a linear dependence, which confirms that the time-
dependent detector voltage directly represents the 
instantaneous power emission of the QCL. The vertical offset 
of the YBCO curve is due to a higher noise level in 
comparison to the NbN measurement. 

IV. CONCLUSIONS 

We have used ultra-fast superconducting NbN and YBCO 
detectors to measure the transient response, in the nanosecond 
range, of QCLs operating at a frequency of ~3.1 THz. Specific 
features have been identified in the measured detector signals 
that could be assigned to transient features in the QCL drive 
current. We have demonstrated that the time-dependent 
emission can be strongly affected by relatively small 
variations in the driving pulse. These measurements have 
enabled the QCL power−current relationship to be determined 
by correlating the time-dependent QCL current with the 
corresponding detector signals. Such measurements cannot be 
realized with standard detectors like Ge or InSb bolometers 
due to the much larger time constants. This has allowed us to 
identify the threshold and cut-off current values for the laser 
with a good agreement between each detector type, and we 
have shown that nanosecond-scale transient features can 
contribute significantly to the emitted energy in the laser 
pulse. 

We have also shown that the power transfer function can be 
used to predict accurately the dynamic response of the QCL to 
an arbitrary rapidly-changing drive-current. However, for very 
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short transient drive-current peaks, the resolution was limited 
by the bandwidth of the inductive current probe. Nevertheless, 
the corresponding QCL emission was observed in the detector 
output signal, indicating that the detector bandwidth exceeds 
that of the current probe. By analysis of the detected pulse 
energy for different driving pulse durations, we have 
established the linearity of both the NbN and YBCO detectors, 
and have demonstrated excellent correlation with the response 
of a calibrated helium-cooled Ge bolometer. The latter 
measurements contain contributions from the entire time-
varying current pulse. Nevertheless, the real dependence of 
QCL emission on drive current may be determined by taking 
instantaneous measurements with the superconducting 
detectors. In this context we have shown that the 
power−current relationship obtained shows significant 
differences from those obtained with a Ge bolometer that 
responds only to the integral pulse energy. 

The described measurement scheme could be readily 
applied to the study of ultra-fast modulation and mode-locking 
of THz-QCLs. 
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Fig. 1.  Schematic diagram showing the experimental apparatus. 

 
Fig. 4.  Simulated gain of the QCL as a function of the applied bias. 
Comparable to the measurements of the superconducting detectors, the 
simulated characteristic shows a double-peak which is caused by the overlap 
of the wavefunctions of the laser subbands. 

 
Fig. 3.  QCL power transfer function (detector signal vs. QCL current) 
derived from NbN (solid) and YBCO (dotted) detector measurements. For 
comparison, the transfer function obtained from time-averaged Ge-bolometer 
measurements (dashed) is shown. The inset shows the Ge bolometer signal 
near the threshold current. 

 
Fig. 2.  (a) Measured QCL current as a function of time for different bias 
voltages: Ub=12.6 V (solid), Ub=13.0 V (dots), Ub=13.7 V (dashes) and 
Ub=14.1 V (short dashes). The dashed horizontal line indicates the threshold 
current of the laser, the dashed vertical lines mark the temporal-range used to 
obtain the QCL power transfer-function. (b) Measured NbN detector signal 
over time for the corresponding bias voltages. Special transient features are 
indicated by (I)–(III) (see text for details). 

 
Fig. 5.  Measured (solid) and modeled (dashed) NbN detector signals as a 
function of time for (a) Ub=13.0 V and (b) Ub=14.1 V. (I)+(II) mark specific 
discrepancies between measurement and simulation (see text). 
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Fig. 6.  Radiation energy Ep dependence on QCL bias voltage setting Ub for 
the NbN transfer-function model (Ɣ), NbN () and YBCO (ż) detector 
measurements. Lines are a guide to the eye. The dashed ellipse marks the 
part where the measured traces differ from the simulated one due to the pre-
pulse (see text). 

 
Fig. 7.  (a) Measured QCL current over time for different pulse durations: 
t=100 ns, 200 ns, 300 ns and 400 ns. (b) Measured (solid) and modeled 
(dashed) NbN detector signals for the corresponding pulses. 

 
Fig. 8.  Integrated detector signal (symbols) as a function of pulse energy for 
the NbN (Ɣ) and YBCO (ż) detectors. The pulse energy values were 
obtained from Ge bolometer measurements. The lines are linear fits. 

TABLE I 
GEOMETRICAL AND ELECTRICAL DETECTOR PARAMETERS 

Type NbN YBCO 

Width (µm) 1.0 4.5 
 

Length (µm) 0.5 2.0 
 

Thickness (nm) 5 45 
 

Bias voltage (mV) 6 100 
 

Bias current (mA) 0.05 9.7 
 

Operation temperature Top (K) 11.0 70 
 

Critical temperature Tc (K) 12.2 85 
   

 


