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Theory and design of quantum cascade lasers in (111) n-type Si/SiGe

A. Valavanis,∗ L. Lever, C. A. Evans, Z. Ikonić, and R. W. Kelsall
Institute of Microwaves and Photonics, School of Electronic and Electrical Engineering,

University of Leeds, Leeds LS2 9JT, United Kingdom

(Dated: February 24, 2013)

Although most work towards the realization of group IV quantum cascade lasers (QCLs) has
focused on valence band transitions, there are many desirable properties associated with the con-
duction band. We show that the commonly cited shortcomings of n-type Si/SiGe heterostructures
can be overcome by moving to the (111) growth direction. Specifically, a large band offset and low
effective mass are achievable and subband degeneracy is preserved. We predict net gain up to lattice
temperatures of 90 K in a bound-to-continuum QCL with a double-metal waveguide, and show that
a Ge interdiffusion length of at least 8 Å across interfaces is tolerable.

PACS numbers: 73.43.Cd, 73.61.Cw, 78.45.+h, 78.67.Pt
Keywords: Silicon; germanium; SiGe; intersubband transitions; quantum cascade lasers; (111) orientation

I. INTRODUCTION

Quantum cascade lasers (QCLs) have been developed
in a variety of III-V materials systems, although as yet
there has been no successful demonstration in group
IV. A Si/SiGe QCL would potentially reduce fabrica-
tion costs and offer a route to photonic system-on-a-chip
applications.1

The most common approach towards a Si/SiGe
QCL uses (001) oriented p-type structures,1 and
electroluminescence2,3,4 has been demonstrated. There
are however significant challenges in designing p-type
QCLs. The coexistence of heavy and light holes leads
to fast nonradiative scattering, and strong valence band
mixing causes large variations in transition energies and
matrix elements with in-plane wave vector.5

The high longitudinal effective mass of SiGe ∆ val-
leys is commonly regarded as a major obstacle to n-type
QCLs,6 and recent theoretical investigations have used
transitions in the Γ and L valleys instead.7,8 We have
however shown previously that a (111) oriented Si/SiGe
QCL using ∆ valley transition is viable.9

In this paper, we compare the strain tensors for (001)
and (111) oriented layers. We show that (111) oriented ∆
valleys offer larger usable band offsets and lower quanti-
zation effective mass than the (001) case and that compli-
cations due to subband degeneracy splitting are avoided.
We summarize our calculations of the principal scatter-
ing mechanisms, current and gain, and present a bound-
to-continuum QCL design in n-type (111) Si/SiGe. We
calculate the waveguide losses and predict net gain in our
design. Finally, we investigate the effects of temperature
and nonabrupt interfaces.

II. STRAIN TENSORS

Lattice mismatch induces strain in thin Si1−xGex lay-
ers on a relaxed Si1−xs

Gexs
substrate, where x 6= xs.

Layers below their critical thickness deform elastically
to match the in-plane lattice constant of the substrate

and strain balancing of a multilayer structure is required
to achieve mechanical stability. This is achieved by se-
lecting a substrate alloy which minimizes elastic poten-
tial energy with respect to in-plane strain.10 It is conve-
nient to convert between both the interface coordinate
system R = (x, y, z), where the z axis is normal to the
layer interfaces, and the crystallographic coordinate sys-
tem R′ = (x′, y′, z′). For the (001) case, R′ = R, whereas
for (111) systems a transformation matrix U :R → R′ is
required.11

The in-plane strain in R is defined as

ε‖ =
as − a

a
, (1)

where a is the lattice constant of the unstrained layer
and as is that of the substrate. A good approximation
for lattice constant (in nm) is12

a(x) = 0.5431 + 0.01992x + 0.0002733x2. (2)

Assuming isotropy over the xy plane, the strain tensors
in R′ for (001) and (111) oriented layers are13

ε′(001) = ε‖





1 0 0
0 1 0

0 0 − 2c′
12

c′
11



 , (3)

ε′(111) =
ε‖

c′β





4c′44 c′α c′α
c′α 4c′44 c′α
c′α c′α 4c′44



 , (4)

where c′ij are the elastic constants, c′α = −(c′11 + 2c′12)
and c′β = c′11 + 2c′12 + 4c′44.

The minimum average strain energy corresponds to a
substrate lattice constant,10

as =

∑

k

Aklk/ak

∑

k

Aklk/a2
k

, (5)
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FIG. 1: Energy band schematic (not to scale) for a strained
alloy layer on a rigid substrate. To find the potentials of the ∆
valley minima in the strained layer, the difference in valence
band energy and bandgap are calculated before adding the
hydrostatic and uniaxial strain effects.

where l is the layer thickness, k is the layer index and the
elastic constants are grouped into a single term A. For
the (001) and (111) orientations, the elastic constants are

A
(001)
k = 2

(

c′11 + c′12 − 2
c′212
c′11

)

, (6)

A
(111)
k =

12c′44(4c′11c
′
44 + 8c′12c

′
44 + c′2α )

c′2β
. (7)

III. BAND STRUCTURE

As QCLs are intersubband devices, the indirect
Si1−xGex bandgap is not an obstacle. The effective mass
model for SiGe-based systems however, must account for
transitions occurring away from the Γ symmetry point.
The band structure is described as follows.

A. Unstrained ∆ valley potential

The unstrained conduction band minima in Si1−xGex

with x < 85% are located in six degenerate valleys in k
space. Each valley lies close to an X symmetry point,
and has a spheroidal equipotential surface with its major
axis along the associated ∆ direction.14

The relaxed ∆ valley potential relative to the substrate
is determined from the model solid approximation.15 The
difference in average valence band maximum (in eV) is

∆VVB = (0.74 − 0.06xs)(x − xs),
16 (8)

and the highest valence band maximum is one third of
the spin-orbit splitting above this, such that

∆VVB = ∆VVB +
∆VSO

3
, (9)

FIG. 2: Usable range of ∆-valley offsets for (111) and (001)
oriented Si wells with Si0.5Ge0.5 barriers as a function of Ge
fraction in the substrate. For the (111) orientation the entire
quantum well may be used whereas in (001) the ∆xy well
potential defines the upper limit.

where ∆VSO is the difference in spin orbit splitting be-
tween the two materials.15

The unstrained ∆ valley conduction band offset is
therefore

∆VCB = ∆VVB +
∆VSO

3
+ ∆Eg, (10)

where ∆Eg is the difference in indirect Γ → ∆ bandgap.
To a good approximation, this is given (in eV) by17

Eg = 1.155− 0.43x + 0.0206x2. (11)

B. Strained layers

In general, two strain dependent terms are added to
Eqn. 10. Firstly, hydrostatic strain, i.e. the overall vol-
ume change, shifts the potential by an amount ∆Vhyd =
ac tr(ε′), where ac is the hydrostatic conduction band
deformation potential. For (001) heterostructures, the
hydrostatic shift is

∆V
(001)
hyd = 2

(

1 − c′12
c′11

)

acε‖, (12)

whereas for (111) heterostructures, it is

∆V
(111)
hyd =

12c′44
c′β

acε‖. (13)

Secondly, uniaxial strain, i.e. the distortion from the
cubic lattice form, splits the in-plane ∆xy and the per-
pendicular ∆z valley potentials by an amount

∆Vuni =

(

1

6
± 1

2

)

Ξu(ε′33 − ε′11), (14)



3

TABLE I: Quantization and average two-dimensional density-
of-states effective masses, and degeneracy n of ∆ valleys in
(001) and (111) SiGe alloys with Ge fraction under 85%, us-
ing expressions derived from Ref. 18. Masses are expressed
relative to the rest mass of a free electron.

Valley mq md n

∆
(001)
xy mt=0.19

√
mlmt=0.42 4

∆
(001)
z ml=0.916 mt = 0.19 2

∆(111) 3mlmt

2ml+mt
=0.26

q

mt
2ml+mt

3
=0.36 6

where Ξu is the uniaxial deformation potential. The up-
per sign represents the ∆z valleys and the lower sign rep-
resents ∆xy. This effect is absent in (111) heterostruc-
tures as strain is identical along each of the principal
crystallographic axes.

The calculation is summarized in Fig. 1. The conduc-
tion band edge is generally shifted by hydrostatic strain,
and in the (001) orientation, uniaxial strain splits the ∆
valley degeneracy. Although intervalley optical transi-
tions are forbidden by the wave vector shift, degeneracy
splitting complicates (001) QCL design by introducing
nonradiative ∆z → ∆xy transitions. It is therefore desir-
able to restrict optical transitions to energies below the
∆xy valley minima.

For a strain balanced QCL with barriers narrower than
wells, xs < 25%. Fig. 2 shows that the usable energy
range in the (001) orientation decreases almost linearly
with xs from a maximum of 150meV at xs=25%. The
(111) orientation is therefore desirable for QCL designs
as the entire ∆ offset of 150meV may be used regardless
of the substrate composition.

C. Effective mass

The spheroidal ∆ valley approximation remains valid
in strained SiGe, as the effective mass only varies
slightly.16 However, two separate effective masses are re-
quired: the longitudinal effective mass ml=0.916 for wave
vectors along the major axis of a valley and the trans-
verse effective mass mt=0.19 for wave vectors along the
minor axes. The conduction band energy near a valley
minimum is

ECB =
h̄2

2

(

k2
x

mx

+
k2

y

my

+
k2

z

mz

)

, (15)

where mx,y,z are constant effective masses for momentum
in a given direction in R, and k = kxx̂+kyŷ +kzẑ is the
wave vector relative to the subband minimum.

In QCLs, the quantization effective mass mq describes
the variation of conduction band potential in the growth
direction, i.e. mq = mz. The density-of-states mass
md accounts for in-plane motion and is anisotropic with
respect to the in-plane wave vector. An isotropic approx-

imation, md =
√

mxmy is commonly used however.19,20

The effective mass values are summarized in Tbl. I.
In the (001) orientation, the major axes of all four

∆xy valleys lie in-plane, so mq = mt and md =
√

mtml.
Conversely, the major axis of each ∆z valley points in
the growth direction, so mq = ml, while md is isotropic
and equal to mt.

It is slightly inaccurate to treat the ∆z subbands as be-
ing twofold degenerate in a simple effective mass approx-
imation (EMA) as intervalley mixing splits the degener-
acy in quantum confined systems.21 We have accounted
for this in symmetric systems in a modified EMA and
shown that the effect may be large in narrow quantum
wells.22 However, asymmetric structures require a com-
putationally expensive atomistic calculation.23,24 As the
splitting is at most a few meV in weakly confined states,
the effect was neglected in the QCL simulations presented
in this work.

In (111) heterostructures, the situation is much sim-
pler. All six ∆ valleys have mq = 0.26 and identical
confining potentials. Intervalley mixing is absent as each
valley lies at a different value of kxy. The subbands are
therefore sixfold degenerate within the EMA.

In summary, the conduction band for (001) het-
erostructures is complicated by effective mass anisotropy.
The ∆z subbands may conceivably be used for QCL de-
sign, but the large mq value severely limits the oscillator
strength and hence the gain.14 The ∆xy subbands have
lower mq, but states are weakly confined by the small
band offsets and have low populations due to their high
energy.

The (111) orientation however, offers both low effective
mass and high band offset and shows more promise for
QCL designs. The low mass allows wider wells to be used
than for ∆z transitions in (001) systems. QCL designs
in the (111) orientation are therefore more tolerant to
deviations in layer thicknesses caused by growth errors.

IV. CARRIER TRANSPORT MODEL

Having established the differences in band structure
and effective mass between (001) and (111) oriented het-
erostructures, carrier transport may now be modeled
in QCL structures. Detailed quantum theoretical ap-
proaches have been used to simulate intersubband opti-
cal emissions in quantum wells25 and carrier transport in
limited numbers of subbands in QCLs.26 They are, how-
ever, too computationally demanding for use as design
tools for large multi-level QCLs.

Reasonably good agreement has been achieved be-
tween experimental results and Boltzmann or rate equa-
tion based models of bound-to-continuum THz QCLs in
III–V systems.27,28 In the present work, we have there-
fore determined subband populations using a computa-
tionally efficient rate equation approach.28 This has been
described in more detail previously,29 although a brief
summary follows.
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Several intravalley scattering mechanisms are impor-
tant in Si/SiGe systems. Interface roughness scat-
tering was calculated using the correlated Gaussian
roughness model,30 modified for arbitrary interface
geometries29 and alloy disorder scattering was calcu-
lated using a point perturbation model.31,32 Ionized im-
purity scattering was determined using a Coulombic in-
teraction model as described by Unuma33 with Thomas-
Fermi screening,14 while electron-electron scattering was
treated as a screened Coulombic interaction as described
by Smet.34 The intravalley deformation potential scat-
tering for electron-acoustic phonon interactions was also
included.

Intervalley electron-phonon scattering was determined
only for the Si-Si branch of the deformation potential in-
teraction, as the Ge fraction in quantum wells is small.
The f processes, which transfer electrons to the perpen-
dicular valleys, are faster than g processes which transfer
electrons to the opposite valley, due to the larger num-
ber of destination states.35 Of the f processes, the f -LA
(phonon energy h̄ω0 = 46.3meV36) and f -TO (h̄ω0 =
59.1meV36) interactions are rapid zero-order terms in
the scattering model.37 Scattering rates increase rapidly
with transition energy, and saturate above the phonon
energy.

The electron transfer rate from initial subband i to fi-
nal subband f is the product of the average intersubband
scattering rate W if (due to all scattering processes) and
the initial subband population Ni. Although a simple es-
timate of current density is proportional to the total elec-
tron transfer rate,38 an improved model takes account of
the spatial separation of electrons. The current density
is therefore

J =
qe

Lp

∑

i

Ni

∑

f

W if (〈z〉f − 〈z〉i) , (16)

where qe is the electronic charge, Lp is the length of a
structural period and 〈z〉 is the expectation value of the
position operator.

The active region gain or absorption for each transition
was calculated as28

Gif (ω) =
e2ωπ

cn0ǫ0Lp

Ni|zif |2 sgn(Eif )L(ω, Eif ), (17)

where n0 is the refractive index of Si, ǫ0 is the permittiv-
ity of free space, and c is the speed of light in vacuo. Eif

is the energy difference between the subband minima,
sgn(·) is the signum function, zif is the dipole matrix el-
ement, and L(ω, Eif ) is the lineshape for the transition.
The gain spectrum is found by summing Eqn. 17 over all
transitions.

Although linewidth may be obtained directly from our
scattering rate calculations,33 or from more sophisticated
models,25 several important implementation issues, such
as how to treat the extremely broad absorptions into
weakly bound higher energy subbands, are beyond the
scope of the present work. Normalized Lorentzian line-
shapes centered about Eif have been observed in THz
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FIG. 3: A seven-well bound-to-continuum QCL at a bias
of 7 kVcm−1 with layer widths of 3.2/3.7/0.8/6.4/1.6/5.7/
1.8/5.1/2.0/4.7/2.0/4.3/2.2/4.1, where boldface denotes
40% Ge barriers and lightface denotes pure Si wells. Dopants
are spread evenly through the structure with a concentration
of 5×1016 cm−3. The conduction band potential (solid line) is
shown, with spatially dependent probability densities super-
imposed at each subband minimum. The upper laser subband
is shown in bold, while other subbands are shown as dashed
lines.

III-V systems, with full-width at half-maximum around
2meV at low temperatures.27 We therefore calculated
gain spectra using linewidths in the range 1.5–2.5meV.
At higher lattice temperatures, the increased scattering
rates cause linewidth broadening,25,39 and consequently
we expect our higher linewidth results to be more realis-
tic at higher temperatures.

V. QCL PERFORMANCE

We have described the advantages of the (111) orienta-
tion for Si/SiGe QCLs in general terms and have previ-
ously predicted net gain in a novel phonon depopulation
QCL.9 In this section, we present a bound-to-continuum
active region design with a double-metal waveguide and
demonstrate that net gain is achievable up to 90K. We
also show that reasonable limitations in growth quality
due to interdiffusion do not present a significant obstacle.

A. Active region design

The band structure in a seven-well bound-to-
continuum QCL was calculated using a single band EMA
and is shown in Fig. 3 for a 7 kVcm−1 applied electric
field. Non-radiative depopulation of the upper laser sub-
band was reduced by limiting the higher energy scatter-
ing processes. Pure Si wells were used to minimize alloy
disorder scattering, and a relatively low Ge composition
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FIG. 4: Current density as a function of applied electric field
for the QCL design in Fig. 3. Results are shown for linearly
increasing lattice temperatures, in the direction of the arrow,
between 4 and 100 K.
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FIG. 5: Active region gain at 7 kVcm−1, and 4 K lattice
temperature as a function of THz frequency for the design in
Fig. 3. Arrows indicate linearly increasing diffusion lengths
from 0 to 8 Å. The resulting frequency shift of the largest
gain peak is shown inset.

of 40% was selected for the barriers to reduce interface
roughness scattering. The optical transition energy was
chosen to be significantly smaller than 46.3meV to re-
duce f -LA and f -TO phonon emission rates.

As modulation doping of donors in Si/SiGe het-
erostructures may be difficult,40 dopants were assumed
to be spread evenly throughout the structure. It was
also assumed that all donors were ionized at low temper-
atures. A donor concentration of 5 × 1016 cm−3 (sheet
doping density of 2.4×1011 cm−2) caused negligible inter-
nal electric fields, while still allowing rapid depopulation
of upper miniband states by Coulombic scattering.

Figure 5 shows gain at frequencies around 5THz,

0 50 100 150
Temperature (K)

20

30

40

50

G
ai

n 
(c

m-1
)

1.5 meV
2 meV
2.5 meV

10 µm

15 µm

FIG. 6: Peak gain near 5THz as a function of lattice tem-
perature for the QCL design in Fig. 3. Results are given for
linewidths of 1.5, 2.0 and 2.5 meV. The threshold gains for 10
and 15 µm active region thicknesses are shown as dotted and
dashed lines respectively.

due to transitions from the upper laser subband to up-
per miniband states, for 4K lattice temperature and
7 kVcm−1 applied electric field. Figure 4 shows that a
current density of 2 kAcm−1 corresponds to these con-
ditions, and doubles as lattice temperature increases to
100K. An energy balance approach28 was used to find
electron temperatures. Assuming an identical tempera-
ture in each subband, we found that electron tempera-
tures increased from 110 to 150K as lattice temperatures
increased from 4 to 100K.

Figure 6 shows the peak gain near 5 THz as a func-
tion of lattice temperature for 1.5, 2.0 and 2.5meV
transition linewidths. As discussed in section IV,
linewidth increases with temperature, and we expect
the low-temperature gain to be enhanced and the high-
temperature gain to be limited accordingly.

To provide a fair comparison with ∆z subbands in
the (001) orientation, an equivalent (001) design was
developed. Firstly, the ∆z conduction band offset was
matched to that of the (111) design by setting the bar-
rier Ge fraction to 26%. Noting that the subband ener-
gies are much smaller than the barrier energy, an infinite
quantum well approximation was used to transform the
layer widths and preserve subband separation,

l
(001)
k = l

(111)
k

√

√

√

√

m
(111)
q

m
(001)
q

= 0.533l
(111)
k . (18)

This scaling also preserves the barrier transparency, i.e.

the coupling between adjacent wells. Finally, the applied
electric field was increased to 13.1 kVcm−1 to account for
the reduced period length.

The ∆z subbands in the (001) system were at suffi-
ciently low energy compared with the ∆xy valleys, for
f -phonon interactions to be negligible. With the larger
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electric field, and with only slow g-phonon interactions
available to cool the electron distribution, the steady-
state electron temperature was greatly increased to 290K
for a lattice temperature of 4 K. Consequently, thermal
backscattering led to a much lower peak gain coefficient of
0.2 cm−1 at 6THz, corresponding to a current density of
1.1 kAcm−1. Growth of such a structure is also expected
to be challenging, as the minimum layer thickness was
reduced to 4 Å.

B. Waveguide design

A suitable waveguide was designed using a one-
dimensional simulation. The propagation constant was
obtained using a transfer matrix method41 and the com-
plex permittivities were found using the bulk Drude
model using Si/SiGe material parameters from Ref. 42.
The active region was modelled as bulk Si0.9Ge0.1 (to
match the virtual substrate), with a doping concentra-
tion of 5 × 1016 cm−3.

Surface-plasmon configurations27 were found to be un-
suitable, due to the low confinement factor Γ and large
waveguide losses αw. We therefore chose a metal-metal
configuration, which has proved successful in GaAs-based
THz QCLs.43 The active region was enclosed between a
pair of highly doped (n = 1019 cm−3), 20 nm thick Si
layers, followed by the metallic layers. The optical prop-
erties of the metallic layers are given in Ref. 44.

An initial design, using gold metallic layers and
a 10µm thick active region gave αw=50.7 cm−1 and
Γ=0.99. Assuming mirror losses of αm = 1 cm−1,45 the
threshold gain was determined as gTh = (αw + αm)/Γ =
51.7 cm−1, which was too high to achieve lasing.

The highest temperature operation of a GaAs-based
THz QCL was achieved recently by using copper instead
of gold layers.46 Incorporating this into our waveguide
reduces the threshold gain to 40.5 cm−1. As shown in
Fig. 6, this permits lasing up to T=58K for a 2meV
linewidth. By increasing the active region thickness
to 15µm, the threshold gain was reduced further to
36.9 cm−1, which permits lasing up to T=90K.

C. Growth variations

We restricted our (111) design to layer thicknesses
above 8 Å as Si/SiGe epitaxy is not as well established
as in III-V systems. The thinnest barrier would ideally
be thinner than this to increase the dipole matrix ele-
ment between the bound subband and the upper mini-
band states. The requirement for thin barriers is less
important in (111) heterostructures than in (001) how-

ever, as the quantization effective mass is smaller and the
matrix element is larger.

Ge surface segregation has been observed in (001)
heterostructures,40 and presumably this will also be the
case in (111) systems. The geometry of the thinnest lay-
ers in a QCL is expected to change considerably as a re-
sult. We have previously shown however, that a limited
amount of interdiffusion is tolerable, although changes in
transition energies are expected.29

Figure 5 shows that gain increases slightly as a func-
tion of interdiffusion length, Ld up to 8 Å for our QCL
design. This is due to the thinnest barrier being de-
graded, increasing the dipole matrix element for optical
transitions. The inset in the figure shows that the cen-
ter of the largest gain peak correspondingly shifts from
around 5 to 4.7THz, as the upper laser subband energy
decreases.29

VI. CONCLUSION

We have shown that intersubband lasing in the ∆ val-
leys of Si/SiGe heterostructures becomes viable in the
(111) orientation. Although the ∆z conduction band off-
set in the (001) orientation is large, the usable energy
range was shown to be superior in the (111) orientation
due to the sixfold valley degeneracy. The quantization
effective mass was also shown to be much smaller in
(111) heterostructures, and complications due to inter-
valley mixing and uniaxial strain splitting are avoided.

We have presented a bound-to-continuum design for
a (111) Si/SiGe QCL and investigated several options
for waveguides. A surface-plasmon waveguide was shown
to be inadequate, while good results were achieved
for a double-metal configuration using copper metal-
lic layers. We have shown using a self-consistent rate-
equation/energy balance calculation that net gain at
5THz is possible up to a lattice temperature of 90K,
with a low-temperature current density of 2 kAcm−1 for
a 15µm thick active region.

The (111) design was found to be vastly superior to
a (001) oriented equivalent, due to the phonon-mediated
electron cooling and the reduced effective mass. It was
also shown to be tolerant to, and indeed improve slightly,
with Ge interdiffusion lengths up to 8 Å.
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