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Simulation or cohort models? i

Abstract

The choice of model design for decision analytic models in cost-effectiveness analysis has been the
subject of discussion. The current work addresses this issue by noting that, when time is to be
explicitly modelled, we need to represent phenomena occurring in continuous time. Multistate models
evaluated in continuous time might be used but closed form solutions of expected time in each state
may not exist or may be difficult to obtain. Two approximations can then be used for cost-
effectiveness estimation: (1) simulation models, where continuous time estimates are obtained
through Monte Carlo simulation, and (2) discretized models. This work draws recommendations on
their use by showing that, when these alternative models can be applied, it is preferable to implement
a cohort discretized model than a simulation model. Whilst the bias from the first can be minimized by
reducing the cycle length, the second is inherently stochastic. Even though specialized literature
advocates this framework, the current practice in economic evaluation is to define clinically
meaningful cycle lengths for discretized models, disregarding potential biases.
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1. Introduction

Decisions to fund and use health care technologies are increasingly informed by cost-effectiveness
analysis (CEA). The goal of CEA is to identify the 'preferred' option from a choice of health
technologies to fund from available resources. This goal is achieved through measurement of the
expected marginal costs and effects associated with the displacement of a health technology by a
new one.

1
The outcomes of the analysis are the incremental cost-effectiveness ratio (ICER) — the

additional cost per extra unit of effect from the more effective option
2

— or the net benefit (NB)
statistic. To make a decision regarding which treatment option is cost effective, a decision rule is then
applied.

3
Given that there is uncertainty in the joint distribution of incremental costs and effects, the

decision itself is uncertain. An assessment of this uncertainty is a key requirement of economic
evaluation for decision making

4
and can be used to establish the value of further research.

5

Agencies such as the UK National Institute for Health and Clinical Excellence (NICE) require that all
relevant available evidence should be considered to inform decision making. In the presence of
multiple sources of information, this involves bringing together and synthesising evidence
appropriately in terms of input data, e.g. mortality, relative risks or utility weights.

6,7
Based on these

input parameters, the expected cost and effect is calculated for each alternative treatment option by
weighting the likelihood of disease consequences by their cost. The mathematical relations between
inputs from different sources and outputs are brought together by a decision analytic model (DAM).

The design and structure of DAMs should characterise the consequences of alternative treatment
options in a way that is appropriate to the decision problem. DAMs can be based on cohort
(aggregated) models. These are defined here as having a closed form solution, that is the expected
costs and effects based on the average patient experience are evaluated algebraically, although there
are other definitions. The majority of DAMs applied in the context of chronic or long-term diseases use
aggregated state transition models

8
, and assume independence of individuals within the model.

9

These models are defined by a set of mutually exclusive health states and the movement between
these states through time represents possible patient disease (or health) pathways to which costs and
effects can be assigned. When discrete time models, such as discrete time Markov models

10,11
, are

defined, the probability of occupying a given state is assessed over a series of discrete and constant
time periods, known as cycles. An important characteristic of Markov models is that future
development of the process is not dependent on the history of the process, just on the present
(Markov property). Although this property can simplify the use of such models, it is often unrealistic.
To circumvent dependency on time spent in a specific state a set of tunnel states can be implemented
in a Markov framework

10
or a semi-Markov framework

12,13
may be used.

However, it is important to note that time has a continuous nature. When the decision problem relates
to a chronic disease, the phenomena one wishes to evaluate can be described as a series of events
occurring through time; thus the theoretical model used to mimic such phenomena should ideally
represent time as a continuous measure. Whilst continuous time models can be employed, they rarely
are in practice since closed form solutions for the expected time spent in states may not exist when a
continuous time formulation of a state transition model is used, such as for semi-Markov models.

14

Furthermore, even when such closed form solutions do exist, these can be mathematically
demanding if, for example, the transition rates are not constant through time.

15,16
To overcome this

issue a discrete time approximation (discretized cohort models) is often applied to continuous time
phenomena. Whilst in continuous time models individuals can transit at any time to the absorbing
state, in discretized models individuals can only transit in discrete time periods. An important issue
when using discretization, or any numerical method, is that the shorter the discretization step (or cycle
length) the better the approximation to continuous time model outcomes.

17
Although discrete time

models are frequently applied in the evaluation of cost-effectiveness, the outcomes of such models
are seldom regarded as approximations (to continuous time). As a result determinants of bias such as
the cycle length are disregarded.

An alternative approach to the use of discretized cohort models to approximate continuous time
phenomena is to estimate the continuous time process using Monte Carlo sampling; that is, applying
a stochastic simulation model.

18
A stochastic algorithm is designed to simulate individual pathways,

patient by patient.
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Whichever DAM design is used, the parameters are uncertain since they are estimated directly from
sampled data or from evidence synthesis procedures. The decision to adopt the new intervention will
also be uncertain. It then matters to evaluate how confident we are that the intervention is cost-
effective.

19
The propagation of the joint uncertainty on model inputs to model outputs is called

probabilistic sensitivity analysis (PSA). This process is usually conducted by simulation: in a
frequentist framework a second order Monte Carlo method is used, while in the Bayesian framework
the uncertainty is represented directly by the posterior distribution of the ICER or NB.

20,21
PSA is

relatively straightforward in cohort models. However, for individual stochastic simulation models the
full assessment decision uncertainty using PSA may not viable as two levels of simulation are
required: for each realization of the set of uncertain parameters (as part of PSA), a Monte Carlo
simulation is required to evaluate the expected values of outcomes.

22
Some authors disregard the use

of these models when it compromises the evaluation of second order uncertainty.
23

While the distinction between discrete time and continuous time is mathematically clear-cut, it is
unclear from the existing literature how the use of a discrete time approximation to continuous time
phenomena can affect the evaluation of cost-effectiveness, and hence the decision recommendation
for the underlying policy problem. Alternatively, continuous time models evaluated by Monte Carlo
simulation can be used to estimate the same outcomes. These return imprecise estimates and may
place heavy demands upon computational resources, especially when a second simulation procedure
for PSA is required. Although simulation and discrete model outcomes were previously compared

24
,

the continuous nature of time was ignored and both models were built assuming discrete time.
Additionally, published guidance on model design

25
does not explicitly consider discrete time models

as approximations.

This work intends to draw recommendations on the use of discretized cohort model and simulation
approaches, when these constitute alternative model designs in cost-effectiveness analysis aiming at
evaluating a decision problem characterised by continuous time evolvement. To pursue this in an
intuitive way, a hypothetical decision problem will be defined where an exact solution for outcomes
exists. This obliges the choice of a simple example, maybe unrepresentative of many DAMs as
applied in current practice, but that demonstrates theoretical results obtainable with any other model.

The structure of the paper is as follows. In section 2, a hypothetical decision problem with known
solutions for expected values of life time, incremental costs, incremental effects and cost-
effectiveness will be set up. How to obtain approximations from discretized cohort Markov models and
estimates from simulation models based on a continuous time Markov model is briefly described in
section 2. Alongside, factors contributing to the precision and bias of the approximations will be
identified. The comparison of Markov models estimates from a discretized model and a model
evaluated by simulation is reported in section 3. Finally, the use of the referred alternative
approximations to evaluate cost effectiveness is discussed (section 4).
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2. Methods

In order to compare the cost-effectiveness estimates from stochastic simulation and cohort models, a
true process representing reality is defined with two health states: alive and dead (Figure 1).

Figure 1: Two state model including one absorbent state (dead state)

An individual initiates the chain alive and may remain alive or die over time; that is, transit to state 0
(dead). Death is represented by an absorbent state from which there is zero probability of exiting. The

transitions to death occur at a constant rate, . Consequently, time to event follows an exponential

distribution, Exp().

2.1. Life expectancy

The above process can be perfectly described by a continuous time homogeneous Markov chain,
where the probability of transiting between states is not dependent on time itself, but is dependent on
the length of the time interval, or cycle, considered. For a continuous time two state process, the

expected time until absorption, or life expectancy  E T , can be defined as the expected value of the

underlying distribution assumed for the time to transition. If the underlying distribution is exponential,

 E T is given by

  1
E T =



(1)

where  is the parameter of the exponential distribution.

Although approximations are unnecessary in the current example, the existence of the closed form
solution of life expectancy allows evaluating bias associated with the estimates obtained through a
discretized model and a continuous time simulation model.

Discretized Markov models

Numerical solutions, or quadrature methods, can be used to solve complex integrals and in the
current context this involves evaluating the model in discrete time. In the Appendix, the general case
for a discrete time homogeneous Markov model is detailed. The calculation of life expectancy is
based on the probability of transiting in one cycle, which is naturally defined by the probability of a
transition occurring in the same period of time in the corresponding continuous time process.

26
The

discretized transition probability of dying, 10P , for the two state model is
 1( ) ( )

1 T n T nH t H t
e   ,

where ( )T nH t represents the cumulative hazard function evaluated at time nt for the random variable

(r.v.) T representing time to death. When T assumes an exponential distribution the discretized one
step transition probability can be simplified to

10P 1
l

e
   (2)

where l is the cycle length. The unrestricted life expectancy, denoted here by  1E T , estimated by

a two state discretized process can be defined by

1 0
Exp(λ) 

alive dead
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 1
10

1
E T l

P
  , (3)

where the expected number of transitions until absorption is multiplied by the cycle length, l . The

accuracy of using a discretized process to evaluate continuous time outcomes depends on the

discretization of the continuous distribution into cycle lengths. As l tends to zero the discretized

Markov chain converges to the continuous one.

CEA are conducted often assuming a finite time horizon, K, for outcome evaluation. A restricted life

expectancy estimate,  2E T , for the model depicted in Figure 1 can be assessed through the

unconditional probabilities (see Appendix 1), as given by:

 2 10
0

E T =
K

n

n

P l


 ,
(4)

Continuous time Markov models evaluated through Monte Carlo simulation

Monte Carlo methods rely on stochastic simulation, that is, in the reproduction of values from a
probability distribution. A sample value of time until the occurrence of a discrete event (here death) is
drawn from a predefined distribution. Costs and utilities are assigned to the time spent in the health

state (here alive). The procedure is repeated N times and the sample average of the costs and

benefits returns the best estimate for the expected costs and benefits associated with the intervention

under evaluation. The estimates obtained with Monte Carlo simulation will be denoted by  3Ê T . A

detailed description of this procedure is shown in the Appendix. The validity of the Monte Carlo
estimates is dependent on the evaluation of convergence and on the precision associated with the
estimates. Precision relies on the size of the simulated sample.

2.2. Costs and QALYs

Quality-adjusted life weights and unit costs are assigned to the time spent in states other than death.
If unit costs and utility weights are assumed non-stochastic, i.e. have no uncertainty, it is possible to
obtain a closed form solution for expected total costs and expected quality-adjusted life years

(QALYs). The expected total costs,  E C , and expected total QALYs,  E U , are given by:

   E C =E T c and    E U =E T u (5)

where c is the cost of being alive per unit of time and u is the utility weight of being alive. For

simplicity, c and u are assumed constant over time and discounting procedures are not applied.
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3. Discretized versus simulation Markov models. An evaluation of cost-
effectiveness

The variable representing lifetime or time until absorption, T , is assumed to follow an exponential

distribution with a rate parameter of  . If 0.1  the expected time to absorption of a continuous

time Markov chain (Equation 1) is given by the expected value of the exponential distribution, i.e. 10
time units (defined as years in this example).

3.1. Estimates of life expectancy

To evaluate the influence of the discretization step, unrestricted expected lifetimes (Equation 3) were
obtained through the discretized homogeneous Markov model for different cycle lengths. In Table 1

and Figure 2 the life expectancy unrestricted estimates are reported for cycle lengths defined by 1
2

l

where l is an integer varying between 0 and 6. These estimates were obtained by evaluating a

discrete time Markov process where the one step transition probabilities were estimated (Equation 2)
as function of the theoretical continuous time rate and the cycle length. As an example, the transition
probability between the states alive and dead assumes the value of 0.0952 for a cycle length of one
year. The application of discretized models to assess continuous time phenomena will return
approximate estimates, and the difference between the estimate or approximate value and the true
value was assessed as an empirical measure of bias.

Table 1: Discretized Markov model evaluations of life expectancy, conditional on cycle length. Estimates
obtained from unrestricted and restricted solutions of the discretized process.

Discrete time
unrestricted

Discrete time
restricted (time horizon = 20 years)

Cycle
length

Estimate Bias Cycle
length

Estimate Bias

1 10.51 0.508 1 9.22 -0.78
0.5 10.25 0.252 0.5 8.93 -1.07

0.25 10.13 0.126 0.25 8.79 -1.21
0.125 10.06 0.063 0.125 8.72 -1.28

0.015625 10.01 0.008 0. 015625 8.65 -1.35

Unrestricted life expectancy (  1E T ) evaluated through the discretized model is always bigger than

or equal to the theoretical life expectancy (10 years) (unrestricted case in Table 1, and Figure 2).
Hence the associated bias is always positive. As one shortens the cycle length, the discretized
solution approaches the continuous time process solution. Note that using a 1 year cycle length
overestimates time until absorption by about 0.5 years.

Cycle length

L
if
e

e
x
p
e
c
ta

n
c
y

0.0 0.2 0.4 0.6 0.8 1.0

1
0
.0

0
1
0
.2

5
1
0
.5

0

discretized model

theoretical

Figure 2: Theoretical life expectancy calculated from discretized models assuming distinct cycle lengths.
The dotted line represents the expected time to absorption of the original continuous time process.
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When the discrete process is evaluated in a finite time horizon, a “restricted” estimate of the expected

outcomes is obtained (  2E T , (Equation 4). The restricted estimate of life expectancy is always less

than or equal to the unrestricted one. Figure 3 shows the life expectancy obtained through the
application of distinct restriction points, or time horizons, for cycle lengths of 1 and 0.125.

15 20 25 30 35 40 45 50

7
.5

8
.5

9
.5

1
0

.5

cycle length 1

Time Horizon

L
if
e

e
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n
c
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unrestricted
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e
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y

Figure 3: Theoretical life expectancy calculated from the discretized model with 1 year (plot on the left)
and 0.125 years of cycle length (plot on the right). The full line represents the expected time to

absorption of the unrestricted discretized time process and the dotted line the expected time to
absorption of the true, continuous time phenomena.

As the time frame of restriction gets larger, the life expectancy approaches the unrestricted one.
Hence there is decreasing bias when the time horizon of analysis tends to infinity and the cycle length
approaches zero.

Table 2 presents the results of the model when the life expectancy is estimated through Monte Carlo
simulation. With 100,000 Monte Carlo simulations, an estimate of 10 years of life expectancy is
obtained. The standard error associated with this estimate is 0.032 (Table 2), and the convergence
diagnostic plot is shown in Figure 4. Methods based on stochastic simulation are inheritably
approximate as the simulated sample will never be an exact reproduction of the true distribution.

Table 2: Life expectancy estimates of a continuous time Markov model evaluated through Monte Carlo
simulation.

Continuous time

N simulations  3Ê T SE(  3Ê T )

100 9.85 0.856
1000 9.95 0.318

10000 10.03 0.099
100000 10.00 0.032

Evaluating convergence of the estimates can help the analyst to validate the estimates obtained
through Monte Carlo simulation and justify the sample size used (Figure 4). The larger the sample
size for the Monte Carlo procedure, the closer is the simulation calculation to the right answer. From
the convergence plot, sample sizes less than 20 000 might not be large enough. In addition,
presenting the standard error of the expected outcome estimates is important in order to assess the
precision of these estimates.
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Figure 4: Convergence diagnostic plot: life expectancy estimates (black) and normal based confidence
intervals (grey), obtained through Monte Carlo simulation of a continuous time model considering

varying sample sizes (index).

The time to absorption or life expectancy estimates obtained with both the discretized (unrestricted
estimate) and simulation Markov models are represented in Figure 5. The black hollow points
represent the unrestricted life expectancy estimates from a discretized process, conditional on distinct
values of the cycle length, as seen in Figure 2. The life expectancy estimate obtained through Monte
Carlo simulation (for different sample sizes) and the associated 95% confidence interval (normal
approximation) is represented in grey.
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Figure 5: Life expectancy estimates obtained through the discretized and continuous time simulation
models. Discretized Markov chain results shown in black for distinct cycle lengths (in x axis). The point

estimate and confidence intervals for the simulation procedure are depicted in grey for Monte Carlo
sample sizes of 1 000, 10 000 and 100 000. The dashed horizontal line represents the theoretical life

expectancy.

The approximations obtained through the unrestricted evaluation of the discretized process are closed
form solutions, that is, non-stochastic. Additionally, if one reduces the discretization step (cycle
length), the estimates obtained through the discretized process tend to be unbiased. On the contrary,
the precision of the Monte Carlo procedure is dependent on the sample size.

3.2. Incremental cost, effects, and cost-effectiveness outcomes.

Given that cost-effectiveness estimates are based on an incremental analysis, i.e. additional costs
and effects of one intervention over an alternative intervention, a hypothetical alternative treatment
option was defined. The existence of a new treatment was assumed to reduce the risk of dying by
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20% relative to standard treatment. The use of the new treatment, when displacing the standard one,
is expected to bring gains of 2.5 years of life expectancy per patient. In addition, it was assumed that
patients undergoing treatment with the standard alternative incur £5 000 per year when alive and are
assigned a utility weight of 0.8 per year. The new treatment costs an additional £2 250 per year lived,
and does not improve patient health related quality of life.

Adopting the new technology over the comparator gives an exact incremental gain in life expectancy
of 2.5 years. This equates to 2 additional QALYs gained, but at an additional cost of £40 625 (exact
solution). The true expected ICER related to the adoption of the new health technology is therefore
£20 312.5 per QALY gained.

Using the discretized model to evaluate the incremental cost, effect and cost-effectiveness outcome
returns the results shown in Table 3.

Table 3: Incremental costs, effectiveness (LE, life expectancy, and QALYs) and cost-effectiveness
outcomes estimated through the discretized Markov model, for distinct cycle lengths. Unrestricted and

restricted estimates.

Unrestricted estimates Restricted estimates
(time horizon = 30 years)

Incremental outcomes
Cost-

effectiveness
Incremental outcomes Cost-effectiveness

Cycle
length

LE
(years)

QALYs
(years)

Costs
(£)

ICER
(£/QALY)

bias
LE

(years)
QALYs
(years)

Costs
(£)

ICER
(£/QALY)

bias

1.0000 2.4983 1.9987 39507 19767 -546 1.8825 1.5060 33977 22561 2248
0.5000 2.4996 1.9997 40064 20035 -277 1.8737 1.4989 34434 22972 2660
0.2500 2.4999 1.9999 40344 20173 -140 1.8689 1.4951 34663 23184 2872
0.1250 2.5000 2.0000 40484 20242 -70 1.8664 1.4931 34778 23292 2979
0.0156 2.5000 2.0000 40607 20304 -9 1.8642 1.4914 34879 23387 3074

Incremental outcomes evaluated through the unrestricted discretized model appear to be less prone
to bias than non-incremental estimates, naturally due to their relative nature. QALY gains estimated
by a discretized model considering a cycle length of one year are estimated to be 1.9987 when the
true expected gains are 2 QALYs, returning an absolute bias of 0.013 QALYs. For the current
example, although gains in effectiveness are overestimated when long cycle lengths are considered,
both the incremental costs and ICER are underestimated. When restricting the time horizon to 30
years, the ICER is overestimated and reducing the cycle length does not guarantee a better
approximation.

Monte Carlo estimates of incremental outcomes are theoretically unbiased when convergence is
achieved. With a sample size of only 100 simulations, the estimate of the ICER is as large as £85 179
per QALY with a bias of £64 866. Increasing the number of simulations to 100 000 (using distinct
seeds for the random number generator each time a sample size is set), results in a bias as low as
£168/QALY (Table 4).

Table 4: Incremental cost, effectiveness (LE, life expectancy, and QALYs) and cost-effectiveness
estimates, obtained from continuous time model through Monte Carlo simulation for varying Monte Carlo

sample sizes.

Incremental outcomes,
mean (se)

Cost-effectiveness,
mean (se)

N simulations
LE

(years)
QALYs

Costs
(£)

ICER
(£/QALY)

bias

100 0.45 (2.653) 0.36 (2.122) 30880 (16534) 85179 (12124) 64866
1000 2.07 (0.702) 1.65 (0.562) 37967 (4391) 22964 (3235) 2651

10000 2.30 (0.224) 1.84 (0.179) 39303 (1400) 21405 (1029) 1092
100000 2.46 (0.071) 1.97 (0.057) 40365 (442) 20481 (325) 168
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For 100 000 simulations, the standard error of the ICER estimate is £325/QALY returning a
confidence interval based on the normal distribution of £19 844 to £21 118. The Monte Carlo
simulation estimates of incremental outcomes, although theoretically unbiased, are surrounded by
uncertainty.
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4. Discussion

In published health technology assessment studies the choice of model design is rarely adequately
justified. The current work addresses this issue noting that ideally DAMs should represent
phenomena occurring in continuous time. Often, continuous time models do not return a closed form
solution (e.g. semi-Markov models) or these solutions are mathematically burdensome to derive (e.g.
Markov models with complex structures). In such cases, discretized models are often evaluated but
with little regard to the associated bias which is dependent on the cycle length (or discretization step).
Alternatively, continuous time models evaluated by Monte Carlo simulation can be used but these
simulation methods return imprecise estimates, where their precision is dependent on the dimension
of the simulated sample.

We have used an example for which exact solutions are available. The example, even simple, intends
to demonstrate how important it is to acknowledge and consider determinants of bias in the estimation.
We have shown that, when alternative models can be applied to represent a continuous time
phenomena, it is preferable to implement a cohort discretized model than a simulation model, as the
bias from the first can be assessed by reducing the cycle length, whilst the second is inherently
stochastic. And these recommendations are directly applicable to any other (more complex) situation.

Although discretized cohort models can produce valuable estimates of cost and effectiveness
outcomes, the evaluation of cycle length has received little attention when applied in cost-
effectiveness assessment. The cycle length is the basis of use of numerical approximations and its
importance is recognised in specialized literature.

17
As these cohort models constitute approximate

solutions, the definition of cycle length cannot be solely based on data availability or clinical
feasibility

25
, but should be varied to examine small changes in outcomes.

In the current work, the use of continuity corrections such as the half-cycle correction was not
evaluated. Neither was the use of methods to accelerate convergence in numerical analysis (e.g.
Richardson’s extrapolation, see

27
) where the necessary accuracy is achieved without needing very

short cycle lengths. Although the implementation of these measures is intended to reduce the bias of
discretizing the process, the assessment of their effectiveness will always be dependent on reducing
the cycle length until no significant changes in the decision are produced.

When designing an economic evaluation study, we argue that the analyst cannot ignore the use of
discretized cohort models unless all the conventionally defined models are deemed inappropriate to
represent the decision problem context. In this case, simulation modelling should be considered as its
use will be translated into gains in accuracy.

28

Simulation models benefit from the lack of structural restrictions. This characteristic accounts for the
flexibility of such models, but it is the main reason for the lack of transparency attributed to simulation
models.

29
While cohort models represent a well defined relation between parameters and listing the

input estimates can be enough to replicate the analysis, simulation models can often only be
reproduced when the programmed code is made available. Frequently in the health technology
assessment literature simulation models are reported incompletely, their use is not adequately
justified, and these are often set up with structural features trivial to the appraisal. The use, design
and reporting of simulation models could be greatly improved if more guidance is made available. To
overcome the difficulty of conducting PSA alongside simulation models, efficient programming

30
and

emulators
31,32

must be further explored. Also, it is important to evaluate convergence and precision of
the model estimates, and these could be used to define the Monte Carlo sample size and increase
efficiency.

The evaluation conducted showed that the incremental outcomes, which are the focus of economic
evaluation of health technologies, are less prone to bias due to their relative nature. Nevertheless, the
absolute bias will be dependent on the design and structure of the model and ‘real life’ examples may
return less accurate results, e.g. models designed to represent the movement through a sequence of
states, or models considering time-depend transitions.
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Appendix

Specification of a homogeneous discrete time Markov model

Consider a discrete time Markov chain, where    1,2,nt n
X

 
represents the sequence of states the

process occupies. By evaluating time in a discrete way, the parameter space is finite or countably

infinite. The state space E is identical to the one defined in the continuous time process and
comprehends a finite set of mutually exclusive disease states.

Discrete time Markov processes are completely defined by the transition function and by the

probability distribution at the start of the first cycle 0 0t  ,
(0)π . The vector

 (0)(0)
:i i E π describes the probability of the process starting in each of the set of states

defined.

The one step transition function, nt
ijP , can be formally defined as

1

n

n n

t
t tijP P X j X i


     , (6)

and represents the probability of the process being in state j E at time 1nt  , knowing that at nt

the process is in state i E . As transition probabilities are stationary and assuming a constant cycle

length, 1n nt tl   , for all n , a single transition matrix (one-step) can be established and its notation

simplified to  : ,ijP i j E P . In a homogeneous process, the unconditional probability of being in

each of the different states,
( )nπ , after the n th transition, is defined as

 ( )( ) (0)
[ ],

n

nn n
ti P X i i E     π P π . (7)

In discrete time homogeneous Markov models,  E T can be calculated through the following system

of equations:

1i ij j
j

w P w  , (8)

where iw is the expected number of steps before entering an absorbing state given that the process

starts in the i th state.

Monte Carlo simulation procedures

In the general case, if one represents the relationship between input parameters, X , and outputs, Y ,

as a function  g X , then the simulation of occurrences of X can be used to express Y ,

 Y g X . The estimation of the quantity of interest  YE Y can be achieved through the empirical

mean of    : 1, ,ig i Nx  ,  
1

1 N

i
i

g
N 
 x , where ix represent each of the N independent

realizations of X .
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For the example depicted in Figure 1, the outcome time to death, T, is itself sampled and each of the

realizations it contributes to the estimate through an identity function:

 3
1

1ˆ
N

i
i

E T t
N 

  .
(9)

For the general case, the precision of this approximation can be evaluated through the standard error
(estimated) of the Monte Carlo procedure:

 
   

1
2 2

1 1

1 1
.

1

N N

i i
i i

g g
NN N  

     
    

 x x

(10)


