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Abstract

In many areas of science, near-periodic phenomena reprisspartant information within
time-series data. This thesis takes the example of thetawteuf non-transitory frequency com-
ponents in passive sonar data, a problem which finds manicapphs. This problem is typically
transformed into the pattern recognition domain by reprisg the time-series data as a spectro-
gram, in which slowly varying periodic signals appear avitimear tracks.

The research is initiated with a survey of the literatureichlis focused upon research into the
detection of tracks within spectrograms. An investigaiimio low-level feature detection reveals
that none of the evaluated methods perform adequatelyrvtiilow signal-to-noise ratios of real-
life spectrograms and, therefore, two novel feature detecre proposed. An investigation into
the various sources of information available to the detecgirocess shows that the most simple
of these, the individual pixel intensity values, used by negsting algorithms, is not sufficient
for the problem. To overcome these limitations, a novel level feature detector is integrated
into a novel active contour track detection algorithm, amid serves to greatly increase detection
rates at low signal-to-noise ratios. Furthermore, therélgo integratesa priori knowledge of
the harmonic process, which describes the relative pasitad tracks, to augment the available
information in difficult conditions.

Empirical evaluation of the algorithm demonstrates thasg iffective at detecting tracks at
signal-to-noise ratios as low a8:5 dB with vertical; 3 dB with oblique; and dB with sinusoidal
variation of harmonic features. It is also concluded thatphoposed potential energy increases
the active contour’s effectiveness in detecting all thekrstructures by a factor of eight (as de-
termined by the line location accuracy measure), even atively high signal-to-noise ratios,
and that incorporating priori knowledge of the harmonic process increases the deteciten r
by a factor of two.
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Chapter 1

Introduction

“If you cause your ship to stop, and place the head of a longitutie water
and place the outer extremity to your ear,
you will hear ships at a great distance from ybu.

— Leonardo da Vinci, 1452—-1519.

In many endeavours of science, pattern recognition inqaati, there exists the problem of
detecting near-periodic non-stationary phenomena withie series data. The continuous signal
in which a phenomenon is embedded is measured, segmentaakeinaind frequency decompo-
sition is performed on each section. The purpose of the sisaly to determine whether there
exists a frequency component, or pattern of frequency coets, within each of the segmented
sections of the continuous signal. This bounds the assamfitiat the frequency component is
stationary within each segmented section. A typical repregion for such data is a spectrogram
(also known as a LOFARgram, periodogram, sonogram, or specaterfall), in which time and
frequency are variables along orthogonal axes, and intyeissiepresentative of the power obser-
ved at a particular time and frequency. This forms a visuatagentation of the frequency-time
variation of the original time-series data using the SAertm Fourier Transform (STFT) [7, 6].
If a slowly varying frequency component exists within thmei-series, it will appear over several
consecutive time segments, and the resulting spectrogridinoontain a track; a discrete set of
points that exist in consecutive time frames of the specamgeach point related to the frequency
component(s) of the time-series data. Consequently, titegebe tracks within a spectrogram de-
termines the presence and state of a periodic or near-pepghdnomena in the original time-series
data.

The problem of detecting tracks in spectrograms has beestigated since the spectrogram’s
introduction in the mid 940s by Koenig et al. [101]. Research into the use of automatiection
methods increased with the advent of reliable computatiaigarithms during the 980s, 1990s
and early21st century. The research area has attracted contributiomsd variety of backgrounds,
ranging from statistical modelling [137], image procegdi8, 57] and expert systems [117]. The
problem can be compounded, not only by a low Signal-to-N8&iadgo (SNR) in a spectrogram,

23



24 CHAPTER 1. INTRODUCTION

which is the result of weak periodic phenomena embeddedmilhisy time-series data, but also

by the variability of a track’s structure with time. This caary greatly depending upon the na-
ture of the observed phenomenon, but typically the strectmising from signals of interest, can

vary from vertical straight tracks (no variation with time)d oblique straight tracks (uniform fre-

guency variation), to undulating and irregular tracks. Adaletection strategy should be able to
cope with all of these.

In the broad sense this “problem arises in any area of sci@hege periodic phenomena are
evident and in particular signal processing” [148]. In picad terms, the problem forms a critical
stage in the detection and classification of sources iny@sshnar systems, the analysis of speech
data and the analysis of vibration data—the outputs of whalld be the detection of a hostile
torpedo or of an aeroplane engine which is malfunctioningpl&ations within these areas are
wide and include identifying and tracking marine mammadsttieir calls [130, 125], identifying
ships, torpedoes or submarines via the noise radiated yntleehanical movements such as pro-
peller blades and machinery [196, 38], distinguishing uwdéer events such as ice cracking [68]
and earth quakes [86] from different types of source, medetection, speech formant tracking
[163], and so on. The research presented in this thesis icalple to any area of science in which
it is necessary to detect frequency components within Sarées data.

There exist two distinct approaches to this problem: thetitomain and the frequency do-
main. A discussion of the differences between the two has pessented by Wold [185] and re-
views of methods which are applied in the time domain have Ipeesented by Kootsookos [105]
and Quinn and Hannan [149]. In summary, the transformatfom tome domain signal into the
frequency domain often allows more efficient analysis to &éqomed [32]. The transformation
also has the effect of quantising a series’ broadband naisetie spectrum of frequency bins, and
therefore, the SNR of a narrowband feature in the time serieshanced in the frequency domain
[72]. Nevertheless, when constructing a ‘conventionaécdppgram image the phase information
is lost and, therefore, frequency domain methods shoulgppkea to areas in which the time of
measurement commencement is not important. The transtbedignal from the time domain
into the frequency domain allows for the application of aitons from a wide variety of research
disciplines, as highlighted in the literature review oftliesis (see Chapter 2), whereas generally
time domain analysis is restricted to the fields of signatpssing and statistical analysis.

The passive sonar process sufficiently encapsulates fiiteutds of this problem and the re-
mainder of this introduction, and thesis, will concentratethe passive sonar problem and its
related literature. Having said that, it is not necessailyawe any prior knowledge of the passive
sonar process or the propagation of sound within the underneavironment—the problem will
be tackled from a pattern recognition viewpoint and anyrimiation from outside this sphere that
is necessary in understanding the problem is presentee ilatter half of this introduction. Fur-
thermore, existing algorithms that have been applied tptblelem of spectrogram track detection
will be reviewed in Chapter 2.
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Figure 1.1: Flow diagram of the passive sonar process.

1.1 The Passive Sonar Problem

Passive sonais a form of sonar in which no energy is emitted from the déecapparatus [178].
Instead, the acoustic pressure surrounding a hydrophbedrénsducer) is converted into an elec-
trical signal and analysed to reveal the presence of a setiem the environment. Passive sonar
is typically used by navies for the identification of submas, torpedoes and ships and within
science and ecology for the monitoring of marine mammalsfishd Currently, trained operators
analyse the passive sonar data in spectrogram images t deteclassify any acoustic sources in
the surrounding environment [120]. This is a complex taskh) wany spectrograms being analy-
sed from an increasing number of look-directions, in whiendetection of each track is critical to
subsequent information processing. Recent advances ihanieal technology, leading to noise
reduction, has fuelled the need for more robust, reliabté sensitive algorithms to detect ever
quieter engines in real time and in short time frames. Alsognt awareness and care for endange-
red marine wildlife [125, 172] has resulted in increaseddatlection, which requires automated
algorithms to detect calls and determine local specie @oionl and numbers. Consequently, it is
of interest to develop computational algorithms to achieaek detection automatically.

The acoustic data observed via passive sonar systems isrtamally transformed from the
time domain into the frequency domain using the short-tegurier transform [179]. This al-
lows for the construction of a spectrogram image which mtesia visual representation of the
distribution of acoustic energy across frequencies andtowe [174]. The vertical axis of a spec-
trogram typically represents time, the horizontal axigespnts the discrete frequency steps, and
the amount of power observed by the hydrophone is repraseste¢he intensity at each time-
frequency point. It follows from this that if a source whicinigs narrowband energy is present
during some consecutive time frames a track, or line, wilptesent within the spectrogram.

The process by which passive sonar exploits narrowbanddsmadgiated in an underwater
environment is outlined in Fig. 1.1. Passive sonar systemsad emit any sound and therefore
only sound radiated from the target can be detected by tleéverqbox 1). The short-term Fourier
transform of the observed signal is calculated (box 2) t@meine the power present at each
frequency band in a particular time sample. These Fou@aistorms are then collected together
and a spectrogram image is formed (box 3) which represeatenbrgy at each time-frequency
point (these points will be discussed further, and illustlain the next section).

Sound sources such as ships and other machines radiate &time& energy as narrowband
sound that is dependent upon engine speed [174]. The soofdbss radiated sound can be
grouped under the classes of internal machinery noise atednek propeller noise and produce
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tracks in a spectrogram that vary in frequency accordindcstate which the machine is in. For
example, when a source is running at a constant speed araithan absence of the Doppler
effect [49], the frequencies emitted are stationary anchtreowband energy that is radiated re-
sults in time-invariant tracks. Moreover, a source in whtsh machinery speed increases, i.e.,
the source is accelerating, results in tracks that increaf®quency over time. Other sources
of radiated narrowband sound that are not dependent onesgieed, the hydrodynamic flow
noise and the remainder of the machinery noise, result istaah frequencies regardless of the
machine’s state. As each type of source emits a particidguéncy pattern, it may provide suf-
ficient information for its identification using a spectragr (Fig. 1.1, box 5). Urick presents a
full discussion on the radiation of acoustic energy frommsalged machinery in “Principles of
Underwater Sound” [174]. Due to the Doppler effect and thineaof the source’s machinery
the track is often time-variant and therefore, general latection algorithms, as will be shown
in this thesis, are not suitable. It still holds, howeveatta particular, relative, frequency pattern
will be emitted by each source.

The principle source of complexity in the analysis of passienar is that all noise from each
concomitant event in the underwater environment is obslerkis results in the presence of large
amounts of non-uniform background broadband noise in tleetspgram. This noise distorts
the tracks, causing them to be broken, particularly at l@qdilency ranges, and also introduces
points of high energy at spurious frequencies. Discrinmgathese from the signals of interest is
particularly hard in low signal-to-noise ratio condition&nother cause for broken tracks in the
spectrogram is the Lloyd mirror, or image-interferencéeaf[174]. This occurs when the sea is
calm; an interference pattern is created by constructivedastructive interference between the
direct and surface-reflected sound.

1.2 Data

Following the discussion of the problem, a detailed desioripof the type of signals that are under
consideration will be presented. Consequently, this plewia basis by which synthetic data can
be generated for evaluating algorithms designed to detiett signals.

1.2.1 Signal Generation

A continuous signak(t), observed by a sensor, is the superposition of a longitudmand wave
emitted by a source(t), after propagation through, in this case, the ocean envieorts’ (¢) [174],
and background noise(t) [72], such that

z(t) = §'(t) + n(t). (1.2)

The detection of the periodic or near-periodic narrowbarddency components ef(¢) through
spectrogram analysis is the concern of this thesis. Peitgdé defined such that

s(t) = s(t + jP), Vi eN, (1.2)
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whereP is the period of the signal, and near-periodicity such that
|s(t) —s(t+P)| <e (1.3)

wheree is a marginal error resulting from a variation in periodicifThe effects of propagation
will be discussed in more detail in Section 1.2.2. Throughbis thesis the noise(t) is assumed
to be Gaussian [72, 11].

The signalz(t) is sampled at a period @f, seconds (a sampling rate ff = 1/T, Hz) using
the Dirac comb [47] defined by

Ar,(t) = i d(t +mTy)

m=—0Q

whered is the Dirac delta, to form a discrete signalt), such that
5(t) = x(t) Az, (¢). (1.4)

The periodl’s (or sampling ratef;) is chosen according to the Nyquist sampling theorem suath th
the highest meaningful frequency in the application isespntable.

This thesis concentrates on the detection of narrowbantamézal sources such as torpedoes,
ships and submarines within the ocean. Being mechanicatetevpowered by an engine and
propelled by a propeller blades, the sound waves emittegeaaredic [174]. As sucl(t), which
is the superposition of a set of harmonically related sissa@omprises fundamentafrequency,
wf, being the lowest frequency sinusoidal in the sum, fahdrmonics of this [11], such that

h

s(t)=p+ > Apsin(kwht + ¢) (1.5)
k=1

wherew} is the fundamental frequency at timand, ¢, its phasep is the number of harmonics
observedy is the mean value, and;, is the amplitude of théth harmonic. These harmonics are
directly related to the rotational speed of the drive shaft.

Several other components of a mechanical device cause fhsiemof frequency components
which are related to this fundamental frequency but whi@ reot harmonics, i.e. they are not
integer multiples of the fundamental frequency, and theseederred to as inter-harmonics [115].
Reduction gear ratios connecting the propeller bladespthpeller blades themselves and the
power plant emit additional low frequency inter-harmoreenponents [174]. Auxiliary units such
as pumps, generators, servos, and relays also emit noibe inlttasonic region [139]. These,
the fundamental, harmonic and inter-harmonic, frequemeygponents comprise the signature of
a particular mechanical device [174]. The signature, dutheodifferences in the mechanical
construction and components, is unique for each type ofcdeand will be referred to as the
pattern setP, such that

PS:{ml,...,mh}



28 CHAPTER 1. INTRODUCTION

wherem; = 1 and the termh > 1 is the number of relative frequency components (the first
component of the set corresponds to the fundamental freguenthe signals(¢).

The signals(t) can now be defined to be the superposition of sinusoids hdangonically
related frequency components defined?g, such that

s(t)=p+ Z Ay sin(mywit + ¢) (1.6)

mkEPs

wheremy, € P, is thekth relative frequency component #f, and 4;, is its amplitude.

1.2.2 Signal Propagation

Physical phenomena may influence the signal so that thewaassignal has different properties
from that which is emitted by the source. The passive sonzetemn [173]

SL — TL = NL — DI + DT (1.7)

describes the effects of the oceanic environment upon thesity of the signal and the conditions
upon which it is detectable against background noise. lthi@se fundamental parts, which are
all expressed in decibels (dB): the observed signal intigrtkie noise levelV L, and the system’s
detection thresholdT. The observed signal intensity is the difference betweenr#diated
signal levelSL, in decibels, and the transmission 185, due to the signal’s propagation through
the ocean. This occurs due to a combination of the followimgsjral effects: spreading, ray path
bending, absorption, reflection, and scattering. Theeefibre intensity level of the signal arriving
at the sensor is described by the left side of Eq. (1.7), th&Li— TL. In addition to receiving
the source signal the passive SONAR sensor also receivasrambiseNL. To some extent this
can be counterbalanced by the gain of the receiver abiajl74], resulting in an overall noise
level of NL — DI. When the equality in Eg. (1.7) holds the target is on theesys detection
threshold i.e. “a binary choice detector will dither betwetarget present’ and ‘target absent’
indications” [171].

The difference between the intensity of the observed sosigreal s'(¢) and that emitted by
the sources(t), EqQ. (1.1), can be expressed as a scaling of the emitted §i@®j, such that

s'(t) = as(t) (1.8)

whereq is the scaling factor, that is o« SL — TL, and represents propagation loss.

In addition to this, when a source is performing a circlingnmeuvre offset from the receiver,
is approaching the sensor, or is receding from the sensoRabpler effect [49] causes the emitted
sound wave to compress or expand and therefore the perdedepencyf, may differ from that
at the sourcev), [66], such that

c t

Jwo (1.9)

~t
wo_(c:lzvs

wherec is the speed of sound through the medium, ani the source to receiver velocity radial
component (in the case that both source and receiver aretionhoThis equation is dependent
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upon the speed of sound in seawater and in 1981 a simplified;taim equation for calculating
this speed¢ (ms™1), was developed by Mackenzie [119], such that

c = 1448.96 + 4.591T — 5.304x 107272 + 2.374x 107473 +
1.340(S — 35) + 1.630x 102D + 1.675x 107" D? —
1.025x1072T(S — 35) — 7.139x 10~ 3T D3 (1.10)

whereT is the temperature in degrees Celsigss the salinity in parts per thousand, ahdis
the depth in meters. Its ranges of validity are: temperat2¢o 30°C, salinity 30 to 40%., and
depthO0 to 8,000 m. Nevertheless, if these conditions are unknown, or anoxppate value is
sufficient, ¢ can be assumed to de500 ms~! [139]. Other, more complicated, equations exist
and are accurate over a wider range of conditions [53, 62]Judling the international standard
(UNESCO) algorithm [39, 186].

Taking the effect of amplitude scaling, by a factongfand the changes in perceived frequency
&} described by the Doppler effect into account, Eq. 1.6, whigviously described the observed
signals’(t), can be re-written such that

sSt)=p+a Z Ay sin(mp@bt + ¢). (1.112)
mkeps

Using these properties, synthetic acoustic signals camrbergted which mimic the behaviour of
a mechanical device operating in various states.

1.2.3 Spectrogram Formation

A spectrograns is formed by splitting a discrete time-domain signa{t) into sectiong seconds
in length [101], such that

2(t) 2 z4(t + mR), t=0,1,...,T—1

S

wherezx?" is themth frame of the signall’ = |7 f, | is the frame lengthf; is the sample rate used
when sampling the continuous signal in Eq. 1.4) @hdt 1, andR is the time advance from one
frame to the next (in number of samples). Throughout thisitheis taken to be one second and
R is taken to beR = T'/2, so that there is a half second overlap between each frame.

The power spectrum of a frame can be calculated using thet-$bon Fourier Transform
(STFT) [160], such that

Fu(w) = 3 sl (Ou(t)e 2, 0 <w< % (1.12)

wherew € R* represents ordinary frequency (Hz) am¢t) is a window such as the Hamming
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Figure 1.2: Magnitude Squared of the Fourier transform ch@wustic signal at one time frame.

The x-axis represents frequency (Hz) and the y-axis powéyHi¥). The signal has frequency

components ofi20, 240, 360, 480 and 600 Hz plus noise derived from a Gaussian distribution
(with mean SNR of3 dB).

window function [76], such that

ot
w(t) = 0.53836 — 0.46164 cos (T—”J . (1.13)

The use of windows such as the Hamming window reduces thetefé ‘spectral-leakage’ [76],
which occurs when processing finite-duration signals, bighteng the signal at the frame boun-
daries close to zero.

The STFT results in the magnitude and phase over frequendyeo$ignal. By taking its
squared magnitude and multiplying by a normalisation fadtte periodogram estimate of the
power spectrum is derived which satisfies Parseval’s the¢td6], according to

__
Yo [w(®)?

An example of the power spectrum of one time frame of a signpiésented in Fig. 1.2. It can be
observed that, at low SNRs, the components of the frequsecindicated are indistinguishable
from the noise. As such, the detection of low SNR frequenegmanents is difficult in single time
frame STFTs. Nevertheless, over time, noise is uncoritlate therefore has a relatively large
variance, however, a signal that contains a frequency caemids correlated and therefore has
less variance; under these assumptions the detection fsétheency components should be easier
within a number of successive power spectra.

P, (w) | By (w)? (1.14)

Treating the power spectrum of a framé&,, (wo) P (w1) ... Pyn(wn-1)], s a row vector,
successive vectors can be stacked up and interpreted asscgle images, a spectrogram, which
hasM rows andN columns, such that

Po(wo) Po(w1) Po(wn-1)
Py (wo) Py(wr) P(wn-1)
S = [sijluxn = | P2(wo) Py(wi) ... Py(wn-1) (1.15)

| Pv-1(wo) Pu-i(wi) ... Pyo1(wn-1)
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Figure 1.3: A spectrogram image where intensity represgigtsal power (voltage-squared per

unit bandwidth, that is ¥/Hz). In this example the tracks have an SNR of (from left tditig
three3 dB, three6 dB, and three dB.

wherei = 0,1,...,M — 1is the time framej = 0,1,..., N — 1 is the frequency binV € N

is the number of frequency bins calculated using the STFI Mdne N is the number of previous
frames to be retained. Therefore, the grey scale intensigdyspectrogram represents the amount
of energy present in each frequency component at a partitol@ frame. An example of a
spectrogram image, the composition &f (= 40) power spectra can be seen in Fig. 1.3. As each
new power spectrum becomes available it is prepended oetfirgh row of the spectrogram and
the oldest spectrum is removed, forming a “rolling windoatso known as a “waterfall display”.

A frequency component af(t), which is constant or varying slowly over time, and is theref
present in more than one consecutive rowShfis referred to as #&ack. A track appears in
a spectrogram as a (perceptually) connected non-lineactgte that can vary in its frequency
position in each time frame according to the state of the tiyidg mechanism. Several states
have been mentioned with regards to the domain signals:tamnsncreasing, sinusoidal and
random. For example, a mechanical source that is const@apgisoaching then receding from the
receiver will emit a frequency component that undulatesiadoa central frequency due to the
Doppler effect. Within a spectrogram this is representegltaack that is sinusoidal in appearance.
Three examples of synthetic spectrogram images whichseptex number of track appearances
are presented in Fig. 1.4.

As discussed previously, each of the component® pfvill form a track in the spectrogram
at a position relative to the fundamental frequency. Formgia an acoustic signal may contain
fundamental frequencies and their harmonics and intentiaics at relative positions to them,
in spectroscopy analysis molecules with particular spéctraracteristics could form the pattern
or electromagnetic signatures that correspond to an objestigh relative frequencies against
background radiation.
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Figure 1.4: Three examples of synthetic spectrogram imagesh exhibit a variety of track
appearances at an mean SNRIGTIB. Intensity is proportional to power in voltage-squared p
unit bandwidth, that is ¥/Hz.

Within this thesis the mean, frequency domain, signaldizaratio of a spectrogram is calcu-
lated such that [72]

P,
SNR= 10log;, <—t> (1.16)
P,
o, B=—1 ¥ (117)
= Sij, = Sij .
"TIR[ &Y "TR] 2= Y
(i.d)EP: (i-)EP,

whereP; = {(i, j)|si; belongs to a trackis the set of points related to the frequency components
of §'(t) such thatP, # () andP, = {(i,7)|(i,j) ¢ P.} is the set of points which represent noise
such thatP, # (.

There are two specific approaches to measuring the SNR ipriblidem and it is necessary to
make the distinction: in the time domain (also known as tlwatiband SNR) or in the frequency
domain. As this thesis is concerned with the detection afkgawithin a spectrogram image
the time domain SNR is not a true representation of the pnoldemplexity, and therefore, all
SNRs presented in this thesis are taken within the frequdnayain according to Eqg. 1.16. As
an example of the difference between the two measuremetitapalomain SNR of-27.01 dB
equates to a frequency domain SNRaf9 dB when a sample rate @fkHz is used and assuming
alHz bin size STFT.
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1.3 Thesis Contributions

Thesis proposition: to demonstrate that a multiple active contour framework is ef-
fective at detecting patterns of tracks in spectrograms.

The work is initiated with a full review of the algorithms thave been applied to the problem;
this forms the first key contribution of this thesis. The esvireveals that two areas have drawn
the majority of interest, statistical models, such as tligiésn Markov model [150], and image
processing/pattern recognition. Itis also concluded @ddtough there has been a great expansion
of the areas of pattern recognition and image processingcient years, there has been relatively
little research on applying these advances to the passivar stomain. Additionally, many of
the machine learning technigues that are commonly knowneratea of pattern recognition, and
that may offer improvements over techniques already agpliehe problem of spectrogram track
detection have not been evaluated. The active contouritiigors found to encompass many of
the features that have been proposed for use in the detedspectrogram tracks and to overcome
some of the limitations of existing algorithms.

This motivates the next stage of research, and consequéetlthesis’ second contribution:
an investigation into, and evaluation of, low-level patteecognition and image processing tech-
niques applied to the spectrogram track detection problems investigation involves the defini-
tion and evaluation of an exhaustive detection method basedulti-scale template correlation
to demonstrate an ‘optimal’ detector's performance. Thithe thesis’ third contribution as it
establishes a benchmark result, which is obtainable ugirtbeainformation available to detect
low-level features. This feature detector is empiricallynpared with other ‘optimal’ detectors
that utilise less information, and also to feature detactanich utilise dimensionality reduction
to simplify the detection process. One of which employs anvedent data model to the ‘opti-
mal’ detector and this comparison demonstrates that diimeaifty reduction degrades detection
performance. All of these low-level feature detectors amduated by calculating their Receiver
Operating Characteristic (ROC) curves on a set of spe@nogrwhich contain a variety of SNRs
and track appearances. It is shown that none of the standararé detection methods reach the
performance of the exhaustive detector. Nevertheless, ogiéémal’ performance can be gained
by using machine learning techniques to extract filters ftraming data and fitting a statistical
model to classify unseen examples—simplifying the deté&csearch space.

The findings and conclusions of this research motivate threldement of a high-level track
detection framework using an active contour model. Thigfporates an interchangeable low-
level feature detector into a single and multiple track clide algorithm—the thesis’ fourth contri-
bution. The framework provides a flexible detection mecsanihat allows for the detection of
tracks that have unknown appearances. Furthermore, @msefvork enables the enhancement of
detection probabilities by integrating information takesm either harmonically related positions
in the spectrogram or from positions defined by the signadfie specific source. This is a fur-
ther contribution of this thesis. The framework is evaldatpon a set of synthetic spectrogram
images, the properties of which have been outlined in Sedtid. Testing upon synthetic spectro-
grams also allows the automatic calculation of ground td#tta, which would be hard to obtain
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for real-world data, allowing for accurate evaluations ¢odonducted. The measure used to eva-
luate the track detection framework is the line locatioruaacy score [145], which has previously
been used by Di Martino and Tabbone [57] for evaluating dtlgors applied to this problem. It
is shown through a number of empirical comparisons thatdhdiens presented in this thesis are
necessary for the application of the active contour algorito this problem. Moreover, the propo-
sed active contour algorithm encompasses aspects ofgxaiproaches, whilst overcoming some
of their limitations, such as: high computational compigxéensitivity to noise, and assumptions
of track structure, to name but a few. Ultimately, the altjori is demonstrated to be an effective
method for the detection of tracks that display a varietycitires.

1.4 Thesis Structure

The remainder of this thesis is organised as follows. In @hap a taxonomy, evaluation and
review of the spectrogram track detection algorithms foimthe literature are presented. The
evaluation criteria are defined and example applicatioapasented along with the criteria which
should be met to allow for the successful application of godthm. Due to the complexity of
guantitatively evaluating each algorithm upon a commor dat, the methods are qualitatively
evaluated based upon results and algorithm descripti@septed in the respective papers. Chap-
ter 3 presents an investigation into existing and novel llovel feature detection algorithms from
the areas of pattern recognition and image analysis. Alsdngestigation into the detection of
features in harmonically related positions is presenteti thie aim of enhancing feature detec-
tion in low SNR conditions. Chapter 4 proposes a high-lesgit detection framework for single
and multiple tracks which integrates the findings of the jmmev chapters into the active contour
model. The chapter also contains an analysis of the conmpughtcomplexity of the model. In
Chapter 5 the proposed track detection framework is evaduand a discussion of its effective-
ness is presented. Finally, in Chapter 6 the conclusiondtirgg from the research presented in
this thesis are drawn and future research directions arfopuard.



Chapter 2

The Field as it Stands

This chapter presents a review of the spectrogram traclctitatealgorithms present in the li-
terature. Constructing such a review reveals the apprsaitta have been taken to solve this
problem whilst ascertaining their limitations, strengdml weaknesses—Iaying the foundations
for future innovations within the field. The research suegyere is taken from a variety of
computer science disciplines and is concerned with theifsp@coblem of track detection wi-
thin spectrogram images applied to passive sonar. Whigsetis a huge amount of literature on
acoustic analysis and pattern recognition the interseafahese fields is relatively small—this
chapter provides a review of this intersection. The albari are grouped within a taxonomy and
evaluated according to the following factors, some or allvbich are essential for a successful
application: their ability to cope with noise variation ovane; high variability in track shape;
closely separated tracks; multiple tracks; the birthiledtracks; low signal-to-noise ratios; their
ability to perform track association; that they haveanpriori assumption of track shape; and, for
real time implementations, that they are computationalgxpensive. This evaluation is based on
what is presented in the literature.

The chapter starts by defining the evaluation criteria. Amaxny of the reviewed algorithms
is presented and these algorithms are surveyed and revieles leads to a discussion of their
principal shortfalls with respect to the criteria definedddo the identification of issues to be
addressed in future research. Finally, the chapter's sugnimarawn.

2.1 Definition of Evaluation Criteria

The criteria by which the algorithms will be evaluated, soonall of which are essential for a
successful application, are defined below (in no particoider):

C1l Low SNR — Is reliable detection achieved in a frequency @on$sNR below3 dB, defined
as Eq. (1.16)?

C2 Temporal Noise Variability — Does the method allow forragivariant noise model?
C3 Birth/Death of Tracks — Does the algorithm cope with thédtion and/or termination of

tracks at some point within the spectrogram?
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Application

Typical Track Characteristics Criteria Requi red

Whale vocalisation

Short duration, high variability,
predictable appearance, initiation
and termination observed.

Cioral Noise Variability,
C3 Birth/Death Tracks
C4 Multiple Tracks,

C7 High Track Variability.

Passive Sonar

-Submarine

-Torpedo

Long duration, low SNR, initiation
and termination observed.
Low variability.

C1 Low SNR,
C2 Temporal Noise Variability,
C3 Birth/Death Tracks,
C4 Multiple Tracks,
C5 Closely Spaced Tracks,
C6 Crossing Tracks,
C7 High Track Variability,

High variability. C8 N@\ Priori Shape Assumption.

Directly instrumented
vibration analysis

Long duration, high SNR. C4 Multigleacks,

C5 Closely Spaced Tracks,
C6 Crossing Tracks,

C7 High Track Variability,

C8 Noa priori Shape Assumption.

Table 2.1: Track characteristics and criteria specific pcyl applications of spectrogram track

detection algorithms.

C4 Multiple Tracks — Can the algorithm detect two or more satgatracks that exist concur-
rently (in the same time frame)?

C5 Closely Spaced Tracks — Can the algorithm distinguishdmwmore tracks that are separa-
ted by one frequency bin?

C6 Crossing Tracks — Will the algorithm detect and distispubetween multiple tracks that
occupy the same point in a spectrogram for one or more cotigetime frames?

C7 High Track Variability — Does the algorithm detect timmeriant tracks that have high

variability?

C8 NOA Priori Shape Assumption — Is the method free from the assumptiorstifca track
shape model and therefore can generalise to unknown cases?

C9 Track Association — Does the method output a series oftpdirat it deems as belonging

to the same track?

C10 Computationally Inexpensive — Does the algorithm haveraline computational burden
with less than polynomial complexity (not including anyimiag requirements)?

The importance of each criterion depends upon the algosthpplication, as each applica-
tion is concerned with the detection of signals with différeharacteristics. The dominant signal
characteristics of some example applications, along \ittctiteria that should be met to demons-
trate an algorithm’s suitability, are identified in Tablé& 2ln addition to these, the need to fulfil the
C9 (Track Assaciation) criterion is dependent upon the pfpgubsequent processing that will be
performed and when on-line detection is needed the C10 (Qtatipnally Inexpensive) criterion

should be met.
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2.2 Algorithm Taxonomy

Algorithms presented in the literature are identified antégarised in Table 2.2 (in chronological
order within subheadings). It should be noted that the ntgjof research has been conducted in
the areas of statistical modelling, image processing andah@etworks, with additional contri-
butions from relaxation techniques. Hidden Markov modesehattracted, by far, the largest
proportion of research interest. Considering the relaize, breadth of techniques and the recent
speed of progress in the areas of image processing andypagtegnition they have received very
little attention in the literature.

It should be noted for completeness that additional metleads, particularly those that are
presented in the literature as Master’s theses [197, 4Ghwihwas not possible to survey (al-
though they have been included in the taxonomy presentex). idevertheless, it is believed that
similar techniques from different authors have been reeteand therefore that the key algorithms
are still presented in this review.

2.3 Literature Survey

This section presents a review of the methods found in theatiire under the categories presented
in Table 2.2. The techniques presented here are specifibahe found in the literature that have
been applied to the problem of spectrogram track deteatigrmssive sonar systems. As such this
is not intended to form a full catalogue of general purpodeal®n or tracking methods as this
falls outside the problem domain specified by this thesis.

It was noted in Section 1.2.3 that there are two distinct aggiies to measuring the SNR in
spectrogram images. In order to convert between the twbjnfidrmation regarding the short-
term Fourier transform process is needed and this is noinaliie for all of the papers reviewed
in this survey. Therefore, where time domain signal-tcsagatios are presented the distinction is
noted.

2.3.1 Maximum Likelihood Estimators

Maximum likelihood estimators (MLE) are based upon stiadtassumptions regarding the data
in question. A statistical test is defined that decides wdrethfrequency bin contains noise or
a track (signal). Maximum likelihood methods make detextion single spectrogram points
and lend themselves to the detection of temporally invatietks as no assumptions are made
regarding the temporal evolution of a track. Nevertheldss simplicity of the detection methods
limit their application to high SNR cases. This limitatiamdvercome with MLE methods based
on convolution, which make assumptions regarding the teat@wolution of a track to augment
low SNR detection. The large search space needed to perfmahworld detections, however,
makes them unfeasible.

Rife and Boorstyn [152] state that after the short-term eosuransform output has been ob-
tained, the frequency bin that has the maximum value is themman likelihood estimate of the
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Approach Representative Works
Maximum Likelihood
MLE Maximum value [152]
Correlation [8]
Multi harmonic [20]

Image Processing Techniques

Likelihood Ratio Test Morphological operators [3]

Hough Transform Graph theoretic tracking & heuristic skdtough transforrfi [30]
Multi-stage Decision Multi-stage decision cost functigstimisation [55]

Steerable Filter Gap bridging, region locating & multiggtadecision process [56, 57]
Two-Pass Split-Window Broadband subtraction via estiomef88]

Edge Detector Gaussian filtered spectrogram [69]

Neural Networks

Supervised Learning Autoassociative memory & multi-lagerceptron [99]
Multi-layer perceptron [114]
Multi-layer perceptron constrained using Ockham’s neksd98]

MNET1 [4]

MNET?2 [4]

RNET [4]
Unsupervised Learning Kohonen self-organising map [54]
Statistical Models
Dynamic Programming Logarithmic likelihood function [162
Hidden Markov Model Viterbi & max amplitude [169]

Viterbi, “mixed” track & threshold [190]

Viterbi & “mixed” track [191]

Viterbi & double threshold [165]

Viterbi & probabilistic data association [88]

Parallel, multi model detection [175]

Forward-backward linking, SNR estimate & track gradier87[L
Forward-backward linking & SNR estimate [138]

Viterbi & SNR estimate [138]

Forward-backward linking & spectrum interpolation [74]

Tracking Algorithms

Particle Filter Formant detection [163]
Relaxation Methods

Relaxation Relaxatioh[197]
Simulated Annealing Simulated annealin@0]

Simulated annealing [112]

Expert Systems
Double detection Double threshold & priority ranking [117]

¢ Master’s theses which are not surveyed in Section 2.3.

Table 2.2: Categorisation of spectrogram track detectchriques in chronological order within
subheadings.
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frequency position in the observatiaby, that is,
W; = arg max|s;i|, j=0,1,...,M —1. (2.1)
%

This is repeated for each observation. Thus, a single frexyuis detected within each and every
time framej, and the estimated track is a series of these frequencyigrssitFerguson [66] has
applied this method to the analysis of aircraft acousticeived by an underwater hydrophone.

According to Barrett and McMahon [20], the single frequenage described above, Eqg. (2.1),
can be extended to the detection of a single frequency théiexharmonics, such that

m
@j =argmax Y |s;ul>,  j=0,1,...,M—1 (2.2)
! I=1

These early MLE techniques disregard information degsagilihe distribution of the inten-
sity values attributed to each class, opting to use the maxirmstead. This would lead to the
method mistaking spurious high power noise for instancestodck. Nevertheless, an important
introduction in the multi-harmonic case is the concept ¢édiéng a fundamental frequency by in-
tegrating information from its harmonics. This integratiaf information should greatly increase
the detectability of tracks at low SNRs.

Altes [8] presents a likelihood ratio test based upon theetation of a spectrogram with an
expected, noise free, reference spectrogaym= [z;;(py)], such that

MZ‘INZ* zZilpr) | sjizi(on)
<51\ Pk j11~51\ Pk
j=0 i=

whereo is the standard deviation of the time domain noise, whichsgumed to be knowa
priori. This process is repeated féf reference signal hypotheses (each with a hypothesised
signal parameter gf;) and the maximum response is taken to be the detected ssyichl that

k = arg max[In p(S|Zy)].
1<k<K

The use of the correlation function allows for the detectibrery weak SNR tracks. Never-
theless, for the method’s use in remote sensing applicatiohere the state and behaviour of the
phenomenon under observation are unknown, a very largeenefe set is needed. For example,
performing a full search for instances of the sinusoidatkrenodel outlined in Section 3.3.1,
which has five free parameters (the additional parametershar frequency position and phase
of the sinusoidal track), would result in a search compjeaftO(n®) and this complexity grows
exponentially with each additional parameter.

2.3.2 Image Processing

Image analysis techniques [71] applied to this area treatsgfectrogram as an image contai-
ning features to be extracted, applying statistical andygm@ocessing algorithms to achieve this.
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Image analysis is a vast research area, and provides a wide @ techniques that could be
beneficial to this problem. These are often inspired by humisumal perception models, which

suggests they might be applicable to this problem, as itdsraplished by human operators. The
complexity of more advanced methods, however, often matasime implementation difficult.

2.3.2.1 Two-Pass Split-Window

Chen et al. [38] propose the use of the two-pass split-win@iFEW) to estimate the background
broadband noise within a spectrogram. Once an estimatésdfdl been calculated, subtracting it
from the image should result in a cleaned spectrogram aongaharrowband tracks. The TPSW
algorithm consists of two steps: first a local mean is catedlaver a neighbourhood surrounding
each bin in the STFT, such that

1 i+W
gji:m Z sjy,  i=W,...,N—-1-W (2.4)
l=i—W
wherej =0,1,..., M —1and2W +1 is the number of bins used to calculate the local mean. The

result,s;;, is clipped and a second, local, mean is calculated upoe @ssdefined by Eq. (2.4)).

Although this is a filtering technique, a threshold critarican be defined upon the TPSW
output and a detection made using this. As with any filteriachhique, there is a balance to
be made between the amount of smoothing and the detegtattilbw SNRs. In this case, this is
controlled with the window siz#&/. As the TPSW is calculated independently for each time step i
the spectrogram it has no assumption of track structures dltaws the detection of time-invariant
tracks that may be highly irregular in appearance.

2.3.2.2 Edge Detection

Gillespie [69], proposes an edge detection method thaaligismoothes the spectrogram using a
Gaussian filteiz, such that

S =8xG (2.5)
121

G=1|2 4 2 (2.6)
121

The benefit of smoothing is that it prevents edges from brgalip into many parts; the detrimental
effect is a reduction of the spectrogram’s resolution ifsheothing kernel is too large.

Each point(i, j) in the smoothed spectrogra8f is thresholded by comparison to the back-
ground measurement;. This background measurement is continuously updatedidas dbr
time-invariant noise conditions and computed indepenygént each frequency bin, such that

S,'- — b'i*

(%
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and the spectrogram is thresholded according to

s,

L > H (2.8)

bji-1
where H is the threshold value. Furthermore, detections in sulegdime frames are linked if
they are within adjacent or overlapping frequency posgion

This method is applied by Gillespie to whale call detectiand of the2,077 calls detected by

humans the method successfully detedt&d7 (90%). Nevertheless, as with all methods that rely
on smoothing of the spectrogram, the detection of low SNBkta&an be compromised as they
may be eliminated in the transformed image.

2.3.2.3 Likelihood Ratio Test

Abel et al. [3] propose a statistical likelihood test to bedisor track detection. The probability
distribution of a signal (assumed to be Gaussian) is deteminglong with the distribution of noise
probabilities. A likelihood test is defined such that

rii S
le'—i-l bjz‘

N
> Ty (2.9)
Hp
wherer;; is the SNR at pointi, j) andb;; is the broadband power at poifit j), and Hy and
Hp are the hypotheses of a pixel containing narrowband anddbesal signal, respectively. The
result of applying this test is fragmented tracks and isoldihlse positive detections. These incon-
sistencies are repaired using the morphological operditation and erosion, which expand and
contract a track respectively. In set theory, erosion imeefasd © B = {z € E|B, C A} where
E is a Euclidean space or an integer gutl= {(4, j)|s;; belongs to a trackin E, B is a struc-
turing element and3, is the translation o8 by vectorz. Informally, erosion means to translate
the structuring elemers to all points inA and take only the points where the structuring element
overlaps completely with points id. Dilation is defined ast & B = {z € E|(B). N A # 0}
whereB is the symmetric of3. Informally, this means to translate the structuring elete every
point in A and take all the points that are covered by the structuriegneht. Combined and orde-
red in this way produces ‘closing4 - B = (A @ B) © B, [71] which has the effect of smoothing,
eliminating thin protrusions and filling narrow gaps in thacks. After this process, the region
grow algorithm is employed to group pixels into a single keathis algorithm recursively groups
connected pixels based upon a similarity measure, whidhjsrcase, is that the pixels are part of
a track.

The likelihood ratio test is described as being optimal as,af given probability of a false
alarm, the probability of detection is maximised. The baokgd noise is not assumed to be
stationary and therefore broadband equalisation is usestimater;; on a frame-by-frame basis
by taking the trimmed mean over a sliding frequency windojv @ver-smoothing, however, may
reduce its applicability to the detection of low SNR tracK#is method also requires the use of
a threshold that must be determinagbriori, further limiting its generalisation. In the noisy test
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image presented in the paper [3] the method appears to catage amount of the background
noise whilst preserving the track. No quantitative resales presented however. Additionally,
the use of the erosion operator limits this method to appnaiély stationary tracks because of
its assumptions about track shape. Sections of tracks vauatot fit the operatoB exactly, i.e.

tracks that rapidly increase/decrease in frequency, wiklbminated from the resulting detection.

2.3.2.4 Multi-Stage Decision Process

Di Martino et al. [55] present an alternative approach basedeature grouping theory. In the
paper it is stated that several studies in feature groupiagry [102, 80] suggest that it is possible
to find perceptual features of patterns that allow efficiegtirie-ground discrimination. In the

case of spectrogram tracks, Di Martino et al. define theswurfes, which distinguish a set of
points belonging to a track from those belonging to noisdeofrequential curvature regularity;

temporal continuity; high average intensity; and high paiensity. A new cost function, which

incorporates these perceptual features, is defined ovaclaltrsuch that

a.G(¢) + 6.C(C)
A(C) ’

whereA(() is the track’s amplitude, such tha((¢) = >_; ;. sji» and the terms7(¢) andC'(¢)

are its continuity and curvature respectively. The costfiom will decrease if a spectral track is
detected and increase otherwise and, therefore, the pnabtkeansformed into optimising the cost
function along all paths of lengtly, starting from a given image point. Each time an optimal path

B(() = (2.10)

is found to traverse a point in the image, the point’s couist@rcremented.

It is claimed by Di Martino et al. [55] that the computationtbke optimal path according to
the cost function®(() is linear in N and the algorithm is amenable to parallel processing. The
gualitative result presented by Di Martino et al., obtainsthg one spectrogram, reports that the
method reduces the noise and that the spectral track “bexcoraee perceptible” [55]. It is stated
that the method has been tested on a set of spectrogramsifféting SNRs, the results of which
show that this method increases track detection and dexdalse positive detections (although
these results are not presented).

A point to be made regarding the continuity measurement umsgd. (2.10); the measurement
is defined to be proportional to the number of track pointstihge zero amplitude and this is rarely
the case in spectrograms that contain background noisé+asuhose from sea environments. In
this case it may be more intuitive to define the measuremen¢ foroportional to the number of
track points that are below a defined threshold. Moreoveruge of the track’s amplitude in the
denominator gives the output a large dependency upon tttisrfalhus restricting the detection
to relatively high SNR tracks; if the weights are chosen tedehigh curvature, high continuity
tracks that have high amplitude, tracks that have low cureahigh continuity and low amplitude
are likely to be missed. Also, if there are spurious pointfigh amplitude noise present in the
spectrogram, which would have high curvature and low caitiinthere is a high probability that
these would cause a false positive detection.
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2.3.2.5 Steerable Filter

Di Martino and Tabbone [57] propose an approach using dikefdters. Three steps are de-
fined: the detection process, region locating and trackntgacThe detection process starts by
smoothing the spectrogram using a Gaussian filter and ag\efienction is defined, such that
E(0) = G(0)> + H(h)? (where( is the second derivative of the Gaussian d@hds its Hil-
bert transform in the directiof), to detect edges using steerable filters. Continuing thecten

process, the local dominant directiép such that; = arg max[E(0)], for each point in the spec-
0

trogram is found, the second derivative of the image is d¢aled to enhance tracks and the local
maxima in the direction perpendicular dg is found. False contours that result from this process
are suppressed using an hysteresis threshold [33] and ghgnlgr is utilised to provide conti-
nuity. The regions surrounding the detected edges areslbdst computing the zero-crossings of
the second derivative on either side of the detections antenove the effects of noise on the
zero-crossings, the mean distance along the curve to iisczessings. This determines the region
R; = {(i,7)|l; <7 <r;}, wherel; andr; are the region’s left and right boundaries arsithe row
index, that encompasses them. A multi-stage decision gsoees described in Section 2.3.2.4) is
used to trace the track in the original spectrogram withérdgions detected during the processing
to extract the spectrogram tracks. This maximises the costibn®(C) defined as

N-1 N-1
®(C) =Y AP)—a Y [I(Pi-1,P) = (P, Piy))| (2.11)
=0 i=2

whereP; € R;, A(P;) is the amplitude of;, andl(P;, P;) is the slope of segmef#’;, P;]. This
extracts contours present within the regidis The initial stages of this process (region location)
are used to refine the search space within which the mutiestiecision process optimises, thus
reducing the computational burden.

It is noted that locating the regions in the proposed way dmdésguarantee that two tracks
have not been merged during smoothing and therefore thaeaihgle track is present within the
track tracing search region. Also, the proposed methodtigraly unsupervised as a threshold
parameter value needs to be manually determined withimabk tetection stage. The method was
tested using spectrograms of varying SRIRs50-7.45) and varying spatial frequencies [56]. It
achieves abov&7% detection performance over all SNRs and spatial frequerarié can perform
the detection within a28 x 128 pixel spectrogram i36.74 seconds. It is not possible to perform
a direct comparison between the SNRs used in this experiarahtothers as a different SNR
measurement is uséd

The use of the cost functio®(C), Eqg. (2.11), provides a balance between the detection of
temporally invariant tracks and high SNR tracks. The loature with which the curvature is
calculated prevents the method from linking spurious higpl#ude noise responses that are some
distance away from the current track, whilst allowing glbpb#8uctuating tracks to be detected.

4t is assumed that the paper’s authors use the same SNRatadouds is presented in their other paper [57] and
therefore that these figures are calculated as SNRO log, ([P — P»]/0w) whereo, is the standard deviation of the
noise.
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Nevertheless, in situations in which high amplitude noisms exist within the identified region
R;, there is a high probability that they will cause the detatto deviate from the true location.

2.3.3 Neural Networks

Neural networks are a widely applied classification architee and a wide variety of neural net-
works exist, many of which are described in “Neural NetworksComprehensive Foundation”
by S. Haykin [77] and “Neural Networks for Pattern Recogmitiby C. Bishop [28]. Multi-layer
non-linear neural networks can be effective as patterrsifiass [180] and have a proven ability to
extract salient features of high-dimensional input spaad®wving the identification of patterns in
complex problems [77]. These properties make them a strandidate for applications such as
this. The atomic unit of a neural network is a neuron and aoreisra simple mathematical model
of the neurons that exist in biological nervous systems]jitich that [28]

n
Z=9 <Z wﬂ'i)
i=0

wherez is the neuron’s outpuy its activation functiony; is the weight applied to thih inputax;
andn is the number of input synapses. They have been studied gnRlast [153] who referred
to them as perceptrons and Widrow and Hoff [183] who callesrtiadalines.

It is the aim of a well designed neural network to learn a stigidl model of the process that
generates some data. This is achieved by iteratively aagutie weights of neural connections
with the aim of minimising an error function defined upon sotreening examples [28]. In a
supervised learning setting these examples have claslks latiebuted them and the error is a
function of mistaken classifications. Unsupervised lgagrdoes not make use of class labels and
instead the neural network may determine statistical anitigs of the data. A key drawback in
the use of an improperly designed neural network, and anyeirtbdt learns by example, is the
possible reduction in the model’s ability to generalise ianown cases. In applications such as
this, frequency tracks can vary greatly and it is quite pbébahat a training set will not fully
represent the range of variations that the model may neatttify.

2.3.3.1 Supervised Learning

Di Martino and Tabbone remark that such methods “need a gigpdrlearning set that reduces
their utility in real cases” [57]. Kendall et al. investigathis by testing several methods for im-
proving the generalisation of neural networks [98]. In terofi the application this improves the
networks’ ability to detect track structures that were notuded in the training data. Several tech-
nigues to improve a network’s generalisation ability asted: heuristically changing the number
of hidden nodes, weight decay, soft weight sharing and Qukhaetworks.

A hidden node is a neuron within a neural network that is meidmn input or output unit.
These are described as being hidden because their activatio not directly seen by the outside
world. The hidden layer (the layer of the neural network thahade up of hidden units) learns to
represent the input data in a way that captures salientnr#ton. The number of nodes, or even
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the number of hidden layers, determine the network’s ghibttrepresent complex, non-linear,
patterns [28]. Having too many hidden nodes, however, asge the network’s complexity, and
can have the side affect of allowing the network to quicklgmfit training data (a problem also
referred to as the bias-variance trade-off)—reducinghibtya to generalise [28]. Unfortunately,
there is no definitive method to determine the number of hidutades that are needed to solve a
classification problem [60] and so trial and error is ofterptayed.

Weights are applied to the values passed between nodesrdtilierk and control how much
effect the value has on the receiving node’s activationlidiig weight decay [28] helps to avoid
over-fitting training data by forcing the weights to remainadl and can lead to significant im-
provements in generalisation performance [84]. This ifiged through a simple regularisation
function utilised during training, which shrinks the weighvalue after they have been updated.
This function is defined as

C=>">(0j—dij)* + > _w} (2.12)
i g %

whered;; is the desired value of outpuat in the network’s output layeny; is the network’sith
weight and\ can be thought of as a normalising parameter.

Weight sharing [111] is a technique in which a single weighthared among several connec-
tions in a network, reducing the number of adjustable pararseThis requires good knowledge
of the problem background so that it is possible to specifictvisonnections will share weights
[111]. Soft Weight Sharing [134] utilises Gaussian mixtaredels during training to determine
the weight's values and which weights should be linked dyinally. This removes the depen-
dence on the user to fix the weighting linkspriori.

Ockham'’s razor states that more simple models should berpeefto more complex models
and that this preference should be balanced with the exdemhich the model fits the data [28].
This philosophy is utilised in Ockham’s networks to imprdhe generalisation performance of
neural networks in the absence of large amounts of trainitg [97]. The minimum description
length principle [21] is utilised to attribute a coding lehdo a network and the classification errors
it produces. A cost function is defined such that

C = I(z]0) + 1(O) (2.13)

whereI(z|O) is the description length of the data misfit given the chosen modé (the in-
put/output values of all the training pairs not correcthpsdified) and/(©) is the description
length of the model itself (the neural network’s weights)heTcost function is optimised by a
genetic algorithm [128] and the network that equates to timénmum is optimal—according to
Ockam’s razor—as it has the least combined classificatimrseand complexity.

Weight decay and Ockham’s networks were found to be the nalvstirdlageous methods eva-
luated by Kendall et al.. Weight decay, constrained by trst inction outlined in Eq. (2.12),
was found to significantly reduce the classification vagaon a generalisation set when using a
network with one hidden node. For a complex network (eigdtén nodes), correct values of
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A not only reduce variance but also provide improvements éngigneralisation performance by
reducing the network complexity. Ockham’s networks, hosvewere found to be the most suc-
cessful method for improving generalisation. Neverttglésvas shown that, in this problem, the
method has limited effect and reduces the generalisatian eate by no more tha@% upon a
test set containing21 instances of) x 9 pixel spectrogram windows (which were independently
labelled from the training set). Furthermore, the methogkry computationally expensive, requi-
ring 24 hr of computation time for one run. Because of this, no avagagver many trials was
performed. It is stated, however, that “given that the geragorithm is finding a near global
minimum forC it is likely that the variance will be small” [98]. Aside frofimited improvements
in generalisation error, the Ockham’s network method dsdilitén the lowest complexity network
based on the minimum description length principle.

Khotanzad et al. [99] implement a track detection mechanisgti the following steps. Ini-
tially the spectrogram is thresholded to obtain a binarygeaAn auto-associative memory (ASM)
[85] is employed to eliminate the noise and to reconstruetréteived signal. The ASM is trained
using a learning algorithm based on Hebb’s rule [79] upon raber of clean reference signals
that contain a target or no target, of which the closest tanthisy input signal is recalled during
evaluation. The output of the ASM is then passed to a mufegerceptron (MLP) [28] trained
using the back-propagation algorithm [155] to classify ¢leman data from the ASM as containing
a target or not.

Itis stated in the paper that in an initial study a classiiocaaiccuracy of)7% was achieved for
spectrograms that contain a track, a86% for noise only spectrograms. These results, however,
were obtained using a very small test set that was derivediding Gaussian noise to the training
spectrograms and that consiste@éfspectrograms containing a track arttinoise only spectro-
grams. Moreover, the shape of the tracks present in testeset niegular and do not vary greatly
in appearance. Under these conditions, it is possible kiahetworks are over-fitting the data,
explaining the very high classification rates, and that ¢abnique would not generalise well.

Leeming [114] also investigates the applicability of the Rjbowever, in this study its ability
to determine the number of tracks present in an example isrusatutiny. The MLP network
was trained in two ways; the first, to classify a window as aiming 0, 1, 2 or greater thar2
tracks, and, the second, whether the MLP can recall a cleanrgiwith no noise from the input
data (a similar problem to that investigated by Khotanzaal.eising the ASM). The evaluation
is performed upon a collection of spectrogram windows dairtg strong time-invariant tracks
10—20 dB above noise, weak time-invariant tracksl0 dB above noise and time varying tracks
7-10 dB above noise (having a random frequency variatioft bfrequency bin per time frame).

The results conclude that MLPs with one hidden layer do net llae capacity to model data
that contains two or more tracks, however, data containaigenor one track could be recognised
by a such an MLP. An additional finding is that it is possiblegmove noise from windows using
a network topology consisting of one hidden layer and irgirepthe number of nodes improves
clarity, especially in the case that the window contain®tirarying tracks. It is found in the paper
that when applying the networks to the task of counting saakcreasing the size of the second
hidden layer produces no increase in effectiveness anctdrisluded that this suggests that the
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second layer is counting tracks and the first is removingen@dthough it is noted that these
networks require far fewer nodes in the first hidden layen thase tested for removing noise and
therefore this distinction is not clear).

The experimental results presented in the paper demamsirat this method detect®% of
tracks that are time-invariant within an SNR range4ef(0 dB and79% of time varying tracks
with SNRs ranging between-10 dB (when trained to detect the respective track types). 3b te
the generalisation performance, a network trained to tigtee-invariant tracks is tested using the
time varying test set andgce versa In this case the performance drops&% (trained on time-
invariant tracks and tested on time varying tracks) 48 (trained on time varying tracks and
tested on time-invariant tracks). These results highlilgatdifficulty of applying neural networks
to this problem, however, it is not clear whether this is adamental limitation of the neural
network architectures or the effects of over-fitting.

An alternative architectural approach is taken by Adamskwahs who implement MNET—
a multi-layer feed-forward NN architecture for track deiec inspired by the Hidden Markov
Model (HMM) [4] (see Section 2.3.4.2 for a full discussiontf1M techniques). In the context
of HMMs, the probability of a particular observation segcengiven a HMM, is calculated using
the forward-backward algorithm [150]. A method analogauthits algorithm is used to calculate
the output of each node at each time step in the MNET architectThe estimated sequence
of track locations are then obtained by finding the node (emcte represents a frequency state)
with the largest output at each observation time. In the pap® networks are derived from
this architecture: MNET1, which is trained using a sup@dikarning algorithm; and MNET?2, in
which parameters are derived analytically from knowledge@problem structure (a method used
by Streit and Barrett [169] and Xie and Evans [190] to detamtiMM parameters). Additionally,
the architecture is extended to form RNET, in which the nagesesenting the HMM states are
replaced by an MLP network, and this is trained using a sugedvlearning algorithm. The
addition of the hidden layers, and the use of the sigmoidiain function within them, creates a
non-linear mapping between network’s input and output.[28]

The tracking problem presented in the paper was simplifiegulayntising the STFT frequency
range into eight possible states and, therefore, the HMMENWIN MNET2 and RNET archi-
tectures had eight states corresponding to each of theseasgbs. These architectures were
compared against a MLP NN and a HMM using the Viterbi algonitio track the frequency. The
Viterbi algorithm [150] is used to determine the most likeslgquence of hidden states defined
by the HMM (called the Viterbi path) that results in the olvser sequence. It is concluded that
the HMM outperforms the other methods in tests where SNRbeiweend and —5.6 dB and
RNET achieves the closest performance to the HMM; followgdNET1, NN then MNET2.
Nevertheless, the operational computational compleXitgET and both the MNET architec-
tures,O(N M), is lower than that of the HMMQ (M2 N). An advantage of MNET’s architecture
over the NN is that its number of nodes is tied to the problermtdation and is therefore prede-
fined, whereas the size of a NN needs to be determined by triakeror. Also, compared with
the NN, MNET has a smaller network size. This is also true wt@mpared to RNET (which
is also smaller than the neural network), however, the madiaf RNET's hidden layer creates a
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non-linear mapping from input to output, allowing it to mbdeore complex data and achieve a
higher detection rate. A limitation of the experimentatisrihe coarse frequency resolution into
which the spectrograms are subdivided; this limits the odthability to detect tracks that have

small frequency variations, however, it results in netvgaitkat have fewer states and, therefore,
simplifies the detection problem.

2.3.3.2 Unsupervised Learning

Methods using unsupervised learning may show more religybdication to real world cases as
they are not trained to detect a specific track structuredautlthe statistical similarities between
the data [28].

Di Martino et al. [54] propose the use of a two layer adaptethidcen self-organising map
[104] that is constrained according to the same perceptuelibvant track features as those outli-
ned in their previous paper [55] (and outlined in section24y. The map, with an input layer of
147 nodes (three nodes for each input pixel that represent imelitude and frequency) and an
output layer of49 nodes (V), is applied directly to the spectrogram in an attempt toaetttracks.

In using three input nodes for each pixel, each being at&thto a different aspect of the pixel,
the defined perceptual track features can be evaluated hpaohverged map. Once this conver-
gence occurs within a spectrogram, a cost functibfi}’) that incorporates the defined features,
is evaluated on the weights of each type of input node (tinmplizude and frequency). This cost
function tests the convergence for the presence of a track, that
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whereW ¥ and W4 represent the weights attributed to the connection of teguency and am-
plitude input nodes to the output layer respectively.

The method was applied by the authors to a spectrogram wiSN& of 2dB° and the net-
work’s detection resolution was taken to b& a 7 pixel window in a70 x 70 pixel spectrogram.
The resulting spectrogram has the majority of the noise vesh@nd contains a large response
where the track is present in the ground truth data. The tirathe original spectrogram is not
continuous as noise obscures parts of it, however, theutsmolof the self-organising map causes
many of these gaps to be bridged. A property that could aksaltran localisation problems and
extend terminated tracks. With regard to the cost funcli¢i/), its formulation allows for the
detection of high amplitude, low curvature tracks as its atator takes a high value and the di-
visor a low value, equating to a high response. When a higHitmue high curvature track is
encountered, however, the function will take on a low valyiging a high probability of false
negative detections. This would also be the case for low i@malel low curvature tracks, which is
a limitation when low SNR track detection is needed.

bcalculated as SNR= 10 log, ([P — Py]/o)
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2.3.4 Statistical Models

Statistical models determine the optimal path through alrarof detections, which include false
and true positives, by calculating the path with the maxinlikelihood depending upon the data
and a model of the data’s generative process.

2.3.4.1 Dynamic Programming

Scharf and Elliot [162] model a frequency track as a randortkwa = z,_1 + €, and derive
a dynamic programming [25, 108] approach for track exteacti Dynamic programming is a
method of solving complex tasks by solving the simpler, $engdroblems that they comprise.
In this case, the state of the frequency track is determigethlrulating its state at each row of
the spectrogram recursively. The method is described &g lzgiplicable to frequency or phase
tracking, stating that “the distinction between the two isrenimagined than real”. A logarithmic
likelihood function,/, is defined such that

N-1 N-1
1 .
[ ~ 507 Z Re{e 7" P (0n)} + } :lnp(@n@n,l) (2.15)

wherew,, is the estimated discrete frequency statéy, |w,,—1) is the transition probability, which
is chosen to model a notion of physical realityjs the standard deviation of the time domain
noise anc:(—n+) is the phase shift of the STFT, whepe,, is the total accumulated phase after
nk steps k is the number of samples in which the phase is assumed tabei a fixed linear
rate). Heres is fixed and therefore the standard deviation of the noisesaraed to be stationary
and knowna priori. The most likely track is one that maximiseand dynamic programming is
used to determine this by calculating the best path throbhglobserved peaks (a more complete
discussion of a related non-linear tracking algorithm &sspnted by Scharf et al. [161]).

The algorithm was tested on two spectrograms with a cawi@eise ratio (SNR of a modu-
lated signal) of-3dB (time domain) using0 time steps of data to calculate the optimal path.
They note that even when STFT peaks are unreliable the méthcks the true frequency. Ne-
vertheless, it can be observed in the qualitative data ptedehat, at several points, the tracking
diverges from the true frequency.

2.3.4.2 Hidden Markov Model

Shin and Kil [165] argue that to effectively track a signayanpriori knowledge of the signal’s
behaviour should be used and that Hidden Markov Models dthothis. Hidden Markov Models
(HMM) [150] are well known for their application to this typsf problem as they allow for the
modelling of an unobservable stochastic process that isrebd through an additional stochastic
process, producing a sequence of observations (in thistltas®TFT output).

A general limitation of the HMM is the automatic discretisat of an estimated continuous
variable [105], in this case the signal’s frequency. Thissinot, however, affect its application to
this problem as the continuous frequency is discretisethguhe STFT and the HMM estimates
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the state within these frequency bins. Another limitatiesaziated with HMMs is the automa-
tic determination of the model’'s parameters given somaitigidata. An approximation to the
solution can be achieved using iterative methods such a@atm-Welch algorithm [22], the Ex-
tended Baum-Welch algorithm [94], which are generalisegddetation-Maximisation algorithms,
or gradient techniques [151]. Employing such methods cdunae the generalisation ability of
the resulting HMM to track variations that are similar to gegresent in the training data—a ty-
pical supervised learning problem called over-fitting. Arsbn et al. [11] further discuss issues
associated with HMM models.

2.3.4.2.1 Single Track Streit and Barrett [169] demonstrate the use of a HMM spgcar
frequency tracker. In this formulation only the most poweéffequency bin is used in each obser-
vation, limiting the method to the detection of single tre.cKhe inclusion of a zero state allows the
tracker to model disappearing and re-appearing track&dbigrrence of which is detected using a
threshold value. Frequency cells composed of a subsett@raetred on the previously detected
frequency cell (therefore representing the allowed wanddrequency positions) are identified
with the states of the hidden Markov chain. Analytic expiwss for the basic parameters of the
HMM are obtained in terms of physically meaningful quaetti It is shown that the computatio-
nal complexity of the Viterbi algorithm if{n + 1) + ¢1]2T, wherec; is the complexity (in units
equivalent to addition) of computing the measurement goitibadensity function (PDF) (in the
case where it is computed for each symbol in the measureneetdrg), and the computational
complexity of the forward-backward linking algorithm[ig: + 1) + ¢2]T', wherec; is the PDF
calculation complexity in units equivalent to multiplican.

The performance of the HMM tracker was qualitatively eviddafor two sets of simulated
data and demonstrates good detection results in time do&idiRs of —20 dB and—23 dB with
the disappearance and initiation of tracks. The HMM trackas compared with the dynamic
programming method presented by Scharf and Elliot [162] iamehs found that their method
is equivalent to an HMM using real valued continuous meanarg vectors. Scharf and Elliot,
however, do not include a zero state to account for the abseha signal. It is noted that the
dynamic programming algorithm presented for maximising ltkelihood functionl, Eq. (2.15),
is equivalent to the Viterbi algorithm.

Paris and Jauffret [138] and Shin and Kil [165] both investiigthe use of HMMs applied
to this problem. Both compare forms of the Viterbi line dédeca global optimisation scheme)
while Paris and Jauffret also test the forward-backwar@)Fecal optimisation algorithm.

Shin and Kil use the smoothed amplitude of the short-terragiator as a feature for the
algorithm. Subsequently, a double threshold Viterbi lie¢edtor is employed; two thresholds are
used to identify which STFT bins are to be linked, reducing algorithm’s computational load.
A likelihood function based upon each cell's amplitude aimiihg distance is used which, as
this is based upon amplitude information, allows the athamito cope with time varying signal
and noise characteristics. Below an SNR-afdB (time domain) the performance of the Viterbi
algorithm is shown to be weak as false detections becomeaeampalo compensate for this the
authors propose to extract features from projection spaites than the spectrogram image and
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employ feature fusion, optimisation and classificatiomntggues (discussion of this is beyond the
scope of this chapter). Qualitative results (of the Vitetbiector alone) were presented from one
spectrogram image showing that tracks with slow spatiahtian are recovered accurately.

Paris and Jauffret propose to integrate SNR estimateshiatblMM algorithm to improve tra-
cking performance when the spectrogram SNR is not knariori. Two methods for estimating
the SNR of a spectrogram are proposed: a parametric maxirketinbod estimation (MLE),
which gives the scaled likelihood, defined as

b%(sj;) ~ exp [ sti ] (2.16)

and a non-parametric probabilistic integration of the spépower (PISP) approach by taking the
normalised spectrogram, such that
§ji = —i—. (2.17)
Zz 0 Sjl
Implementing an SNR estimate in this way slightly reducesdbmputation time associated with
the MLE method. Calculating the likelihood of the currensetyation in terms of its mean allows
for detection even if the noise level varies with time.

It was shown that both the Viterbi and the F-B algorithms @ernf equally well in the ex-
periments, and that estimating the SNR results in no lossedbpnance (it is also noted that
both SNR estimates perform equally well). It is stated, hawethat the Viterbi algorithm per-
forms many more comparisons (but fewer multiplicationgntthe forward-backward algorithm
(reflecting that found by Streit and Barrett [169]) and thEgPis less computationally intensive
than MLE. One shortfall of these methods is that they do na tato account the appearance or
disappearance of a frequency track or the existence ofptauttiacks.

Jauffret and Bouchet [88] outline a probabilistic data asgimn (PDA) method coupled with
the Viterbi line extractor. The spectrogram is thresholdeglilting in a set of false alarms and a
set of true detections. The likelihood of a spectrogramktiacalculated to be proportional to

L(S;.ly;) = Pd+—z - ET =01, M—1 (2.18)
=0

whereS ;. denotes rowj of the spectrogran®, o is the standard deviation of the Gaussian dis-
tribution modelling the correct detectiong; represents the state of the system at timé; is
the probability of detection ang is the probability of false alarm (per frequency cell). Save
assumptions regarding the nature of the data are made icelliglation, which are outlined in the
paper. The Viterbi line detector is then used to extract tbstriikely track from the spectrogram.

This method was shown to reliably detect slowly varyingksawhen the SNR is abovedB,
in both simulated and real world examples. Van Cappel andaflcomment that “probabilistic
data association with severely limited branching factafgess from various difficulties due to the
low SNR and to the variability of track frequencies and atoplés” [175]. The proposed method
also does not account for the birth and death of tracks.
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Gunes and Erdol [74] argue that if concentrated noise xisspecific frequency ranges, de-
riving the observation estimates with respect to the fudlctpum, as has been presented thus far,
will typically lead to unbalanced observation likelihoodghey outline a HMM for the detection
of vortex frequency tracks in low SNR conditions that ovenes this limitation by defining an ob-
servation likelihood measure based upon the interpoldt@ween local maxima of the spectrum.
The spectral estimate’s local maxima are determined wéhirh time frame and form the centres
of windows within which interpolation across subsequemietiframes is performed. This results
in a set of smoothed local maxima, which are used to mask igaal spectral estimate during
the observation likelihood calculation—thus the caldolais determined with respect to a subset
of the spectrum.

Gunes and Erdol implemented the forward-backward linkilggprithm to perform track asso-
ciation. The method was shown to reliably detect tracksiwitivo spectrogram images, one of
which exhibits time variant noise irregularly distributéttoughout the frequency spectrum and
the other Gaussian noise.

2.3.4.2.2 Multiple Tracks Paris and Jauffret demonstrate a HMM scheme that is abld¢otde
multiple simultaneous tracks [137]—an event that occursmmultiple acoustic sources exist in
a number of consecutive time frames or when a single sourits praltiple frequencies that could
be harmonically related, as described in Section 1.2.1. diditianal constraint is imposed upon
the F-B algorithm, that is, that two tracks cannot inhabé same place in state space by adding
the track’s rate of frequency changg,to the representation of the state such that
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wheref is the state’s frequency position aid is the frequency resolution used in the STFT.

These modifications also allow two tracks to cross the sarimt imca spectrogram. The appea-
rance and disappearance of the tracks, which was left uesskeli previously [138], is determined
by a sequential test using the mechanism of the F-B algoritfime tracks are extracted from the
spectrogram and their start and end points are calculated past and future detections.

This technique is not a true general multi-track detectaragpper bound on the number of
tracks to be found is a parameter of the algorithm. Testgyukis algorithm show that it performs
well both with known and unknown SNR, with a slight rise in thean square error in the latter
case. In atest on a synthetic spectrogram with multipleuieeqy tracks that were highly corrupted
the algorithm recovers them all accurately. When the algaris applied to a real spectrogram it
again accurately detects the frequency tracks. Nevesghetserestimating the number of tracks
increases computational workload, which would not be dbirin a real time application.

Xie and Evans [190] propose a multi-track approach usingvitexbi algorithm, which ope-
rates on the thresholded output of the STFT. They define a€dfiitrack and use the Viterbi
algorithm to produce the maximumposteriori“mixed” track estimates. The estimation of the
threshold requires good knowledge of the SNR of the signdeuscrutiny. They later present
further results [191] that remove the need of thresholdind show superior performance over
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the previous method (although this is at the expense ofaseid storage space). To separate the
“mixed” tracks into individual tracks it is proposed to usagitude and transition probability in-
formation. If two tracks do not cross then transition infation alone is enough; if they do cross
then they are assumed to have different constant amplituatb¢his, together with state transition
information, is used for separation—it is unclear whatetffe/o tracks having the same amplitude
will have.

Simulation results are presented that show good trackingnpeance when the track’s fre-
quency varies by Hz over approximateiM1 hours of data. In these over-restricted conditions,
which are unrealistic in this problem, the tracker is abl@létect a track at an SNR of23 dB
(time domain).

Van Cappel and Alinat propose an alternative HMM approacmtdtiple track detection;
multiple HMMs are utilised to implement several frequencgck variation models in parallel
[175]. It is noted that the solution to track detection mustdesigned “firstly in taking into
account as long as possible observed data blocks (batckssing), secondly in delaying the
decisions (knowledge of future) and thirdly in using sel/érequency line variation models in
parallel” [175]. A HMM is described to extract tracks fronréisholded STFT outputs where the
threshold is related to the noise level. A generalisedilikeld ratio test is performed using two
models in parallel as two standard deviation estimates s&d;wne accounting for stable tracks
and the other for unstable. Three track models are takeragtount: the first, a stable track with
zero order; the second, an unstable track with zero ordel;lastly, a stable track with an order
of one. The change from one model to another is triggered bgpye8an test using the track
variation of the recent observations.

Qualitative results are presented for a spectrogram aontpiracks that exhibit a large amount
of variability. It can be seen that each model has the alidityetect tracks with different charac-
teristics separately and, when combined, the mechanisondaates the detection attributes of all
the models contained.

2.3.5 Tracking Algorithms

Tracking algorithms such as the Kalman filter [93] form aei0f estimates, or predictions, of
a system state (in this case the track position). Based upaxiating estimate, the state of the
system in the next time frame is predicted; once a measutelesomes available (in this case
the STFT output) the estimate is updated according to thereation and the process is repeated.
An issue associated with this type of detection method,@albewhen applied to areas that need
quick, accurate detections, is the latency of detectian,the number of observations that are
required to update the priori estimate to accurately locate and track a feature.

2.3.5.1 Patrticle Filter

The particle filter is a sequential Monte Carlo method [58]wihich the posterior probability
density function (PDF) is represented as a set of particdelsagsociated normalised weights in
state space, which generalises the Kalman filter [13]. Aheimce step particles are drawn from
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the previously calculated set with probabilities propmrél to their weights. The weights of these

particles are then updated according to the current obsemvand used to calculate the Bayesian
estimate of the state for the current time step. This is tegeat each time step and has the effect
of tracking a state estimate of a non-linear non-Gaussiaoegs, in this case the frequency of a
spectrogram track, through time.

Shi and Chang investigate the use of particle filters to ektiree formants (peak frequencies
of speech signals and therefore tracks) from a spectrogi#&3).[ Pre-processing converts the
spectrogram from log energy to the grey-scale rarig@5s). Particle filtering is employed to
estimate the state (the frequency) of #ik formant at time, Ft(k), based upon the state estimate
in the previous time steﬁ?t(f)l, which represents all the previous observations, such that

E® = plFM|R® | E®) (2.20)
whereng) is the formant spectrum region (the observation).

The prediction stage updates the current state to predictréguency location for the next
observation, and, as the next observation becomes awithid prediction is updated. The prior
p(F®) and conditional priop(F; k) ]F (%) 1) PDFs are assumed to be Gaussian or products of Gaus-
sians,

p(FEE) ~ N(FE®): i, 000 (2.21)
(FPIRE) ~ NS RS o ) (2.22)
wherep ) ando k) are the PDF’'s mean and standard deviation and are learntrfranually
labelled formant tracks. The particle filter algorithm chng detect the track on a frame-by-frame
basis.

In this form, the particle filter is applicable to detectingiagle track in a spectrogram. Never-
theless, the paper outlines a method to split the spectrogr® k& non-overlapping region® %)
and to perform tracking in each region, therefore allowimgrhultiple tracks to be followed.

The results of the experiments presented by Shi and Chargj gtbw a mean frequency
error of 71, 115 and 113 Hz for the first three formants (it should be noted that thekisain
this application cover a larger range of frequencies coetpavith the very narrow band tracks
discussed in other papers). This is a relatively large eespecially for applications that require
accurate frequency estimation to perform subsequent salassification.

2.3.6 Relaxation Methods

Relaxation algorithms search for a global sub-optimal tsmhuto a problem by progressively re-
laxing constraints, analogous to annealing in metalluf§0], which involves the heating and
controlled cooling of a material to increase the order oitans and reduce defects.

2.3.6.1 Simulated Annealing

Lee [112] applies Simulated Annealing (SA) [100, 177] tolgllly optimise a cost function defi-
ned upon the SNR over time. The assumption is made that tired inequency location is known
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and that the track is constrained to a frequency varian®e bbr —1 frequency bins in each time
step. This assumption limits the method’s application teesawhere it is knowm priori that
the spectrogram contains a track. If this is not the case lamdniethod is applied, a false track
throughout the spectrogram will be detected. The cost inimé$ defined as

K
C(j) = (opk = sja,) (2.23)
k=1
where(ay,), 77 is monotonically increasing sequence such that= i if s;; belongs to a track
anday # as, k # t. The terms;,, represents the power of the track at pajaf, j), « is a
threshold that controls the detection sensitivity ands the estimate of noise from the previous
track, or the spectrogram border, to the current track, theth
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The global cost function is defined &% = Zj]‘igl C(4), the minimum of which, determined by

the SA algorithm, guides the solution towards tracks in frecgogram.

An initial track configuration is generated at random, whiglthen incrementally improved
using the SA algorithm. This method was tested using a tesbsgaining—18 to 3 dB SNR (time
domain) spectrograms that have a single tradklaiz. In these experiments the initial frequency
location of the track is known and the detection initiatezhirthis frequency bin. The CPU time
required to detect a single frequency track withitea x 128 pixel spectrogram varied fro380
to 572 seconds. Qualitative results are presented, which denadmstliable detection of time-
invariant tracks in most SNRs, with the detection in somesagrying from the true location.
Additional experimental results are presented that teshéed for accurata priori knowledge of
the track’s frequency location. The initial state was s&titbiz and the experiments repeated with
the method successfully recovering the track. This exparmmhowever, was conducted upon a
single spectrogram with a very high SNR3dB (time domain).

2.3.7 Expert Systems

Luetal. [117] employ the use of an expert system and prioaitking to improve the performance
of weak track detection and tracking by allowing for a certdegree of learning. The following
stages are followed: the broadband component of the STHIubig removed from the signal,
a double threshold is taken where the spectrogram is thidesthavith a low threshold value and
then a second is applied “to make further judgement accgngirihe characteristics of the shape
of the frequency line and timing continuity”. The detecteghfuencies are then stored in an expert
database and their initial priority ranks are set to zeroe fftieshold of each entry in the expert
database is adjusted and the narrow region encompassimgjttaledetection is tested according
to the characteristics of a typical track. The priority rigagkis reduced or increased depending
on the outcome of these tests. A track is eliminated wherritsify falls below zero, thus false
detections are eliminated.
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Qualitative results are presented from the applicatiorhefrhethod to one synthetic spectro-
gram containing 4 tracks, the weakest having an SNR®76 dB (time domain), which demons-
trate good detection performance. Another qualitativect&n within a real world spectrogram
is also presented, but these detections are not quardliatinalysed.

2.4 Discussion

To recapitulate, this chapter has aimed to survey and reglgarithms representative of the in-
tersection between the areas of acoustic analysis andrpagtEognition for the problem of spec-
trogram track detection. The intention of such a survey leenlio ascertain which approaches
have been taken to solve this problem and, in the processydalrtheir limitations, strengths and
weaknesses and thus laying the foundations for the restattill be presented in the following
chapters of this thesis. To accomplish this, a problem retate, set of evaluation criteria, taxo-
nomy of algorithms and a review of each algorithm from witthia taxonomy has been presented.
This section presents an evaluation of the algorithms vapect to the defined criteria and a
discussion of the algorithms’ strengths and limitations.

2.4.1 Algorithm Evaluation

The reviewed algorithms have been evaluated with respeggcific criteria that are prerequisites
for a reliable and successful spectrogram track detectigorithm. These criteria have been
defined in Section 2.1 and the results are summarised in 2akle

2.4.2 Technique Limitations

In addition to the benefits of each technique, and the insigbtthe nature of the data that the
study of these methods gives us, several fundamental tiorigof the techniques that have been
presented are identifiable.

» Smoothing of the spectrogram using spatial filtering témpines cannot guarantee that two close
tracks have not been merged. It can also cause instances ahetected track has been shifted
from the true location through the use of such a filter. Thasblpms carry over to methods
employing some form of resolution reduction as a pre-prsiogsstage.

» Di Martino et al. describe problems that follow from usingltiple hypothesis testing methods
[55], the first being that the number of possible solutioréases dramatically with search
depth and, therefore, “thresholding during the search égessary in order to avoid the combi-
natory explosion”. Also that “the decision process is laa so very sensitive to initialisation”.

» Thresholding and likelihood estimates are statisticatiwerful and simple methods. Neverthe-
less, when the SNR of a spectrogram is low the probabilitysitigfiunctions overlap conside-
rably. Consequently, a low threshold value will result inighhtrue positive rate but will also
detect many false positives. Conversely, if the threshalderis set to a low value the resulting
detection will contain few false positives but false negadistart to be the drawback. Another
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Algorithm 0o O O O o O o O O o
Maximum Likelihood
Single frequency [152] N Y Y N N N Y Y Y Y
Multi harmonic [20] N Y Y N N N Y Y Y Y
Correlation [8] N Y Y Y Y N N N
Image Processing Techniques
Likelihood ratio & morphological operators [3] - Y Y Y Y Y N Y Y -
Multistage decision process [55] - Y Y Y Y Y Y Y N Y
Steerable filter & multistage decision [56, 57] N Y Y Y N N Y Y N Y
Two-pass split-window [38] N Y Y Y N N Y Y N Y
Edge detector [69] N Y Y Y N Y Y Y N Y
Neural Networks
ASM and MLP [99] N - N N N N N N Y -
Multi-layer perceptron [114] N - Y Y Y - N N N -
MLP using Ockham’s networks [98] N - Y Y N Y Y N N Y
Kohonen self-organising map [54] N Y Y Y N N N Y N -
MNET1 [4] N - N N N N N N Y Y
MNET?2 [4] N - N N N N N Y Y Y
RNET [4] Y - N N N N N N Y Y
Statistical Models
Dynamic programming [162] - N N N N N N Y Y -
Viterbi & max amplitude [169] - N Y N N N Y Y Y -
Viterbi, “mixed” track & threshold [190] - N Y Y Y Y N Y Y -
Viterbi & “mixed” track [191] - N Y Y Y Y N Y Y -
Viterbi & double threshold [165] Y Y Y Y N N Y Y -
Viterbi & PDA [88] N Y N N N N N Y Y -
Parallel, multi model detection [175] - N Y Y - - Y Y Y -
F-B linking, SNR estimate & track gradient [137] Y Y Y Y - Y Y Y Y N
F-B linking & SNR estimate [138] Y Y N N N N Y Y Y N
Viterbi & SNR estimate [138] Y Y N N N N N Y Y N
F-B linking & spectrum interpolation [74] - Y N N N N Y Y Y -
Tracking Algorithms
Particle filter [163] - Y Y Y N N Y Y Y N
Relaxation Methods
Simulated annealing [112] - Y N Y Y N N Y Y N
Expert Systems
Double threshold & priority ranking [117] - - Y Y Y Y Y Y N Y

Table 2.3: Analysis of spectrogram track detection alpani (-’ denotes the inability to make a
judgement regarding the criteria for a specific method duadk of information).
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drawback of these techniques is the constant variationeohttise distribution present in real-
world noise environments. This problem then lends itsetihechine learning techniques that
are adaptive to the environment.

Although the reviewed RNET and MNET neural network arattitees do not account for mul-
tiple tracks, track crossing and track birth/death, theitMl counterparts are able to. Due to
their close similarity to HMM formulations, these propegishould be easily transferred to their
implementations.

The representative work of probabilistic data assoamfmupled with the Viterbi line detec-
tor) and dynamic programming assume that one track is preseamy one time frame of the
spectrogram. This limitation has been overcome with methiogplementing hidden Markov
models, some of which incorporate information regardirgydhrrent FFT observation into the
likelihood measurement, which enables them to model tinm@ng signal-to-noise ratio levels.
Nevertheless, many of the implementations that are showrotk in low SNR conditions are
tested upon tracks that are relatively stationary (typweadations are 1 Hz over minutes/hours
of data). Anderson et al. note that “the transition and measant probabilities are derived ef-
fectively on the assumption that the actual tracks are pisgeconstant, which is not at all the
case” [11]. If the track varies too greatly the probabiitigill not be able to represent the beha-
viour accurately and therefore the track will not be exeddb the accuracy needed for source
classification. The representation of a probability disttion function as a set of particles, as in
particle filtering, allows the modelling of non-parametsigstem state distributions that can be
dynamic due to particle population re-sampling at eaclatii@n. Nevertheless, this introduces
added computational burden as many particles are neededdoge a good approximation and
each of these needs to be updated at each iteration (alohdheit associated weights). With
regard to the proposed HMM solutions, each perform specéipeets of the desired proper-
ties however, not one algorithm combines all of the desérdbatures to fully realise a viable
solution.

The representative work based upon simulated annealswgrees that the initial track position
is known. Although experiments have shown that it need n&nlogvn accurately to result in the
correct detection of a track, it is unclear how much errofleaed for the method to work effec-
tively. This limits the method’s application to spectrogiin which a track is known to exist.

The fundamental SNR limit of current techniques seems tmlibe region of2—4 dB in the
frequency domain for tracks that exhibit low shape varrafidis is derived by converting time
domain SNR levels using assumptions of common spectrogeivation parameters). This is
not sensitive enough for some applications.

There appears to be a theoretical division in the litempnesent in this field. A number of
methods concentrate on determining the presence of a tiifitk & window of data, and there-
fore conduct classification, whereas the remainder coratentn determining the presence of
a track at a specific pixel location, and therefore condwuatktdetection. The practical effect
of this divide is that classification mechanisms are appl&saand most often used, to ‘clean’
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spectrograms, that is, to present the operator with a redoomplexity task where noise is
suppressed and “difficult to see” features are highlight®d. the other hand, a reliable track
detection mechanism replaces the need for such an opetatogether, allowing the output

to be directly passed to higher level decision mechanismst(@&n operator or computational
system) for further processing.

2.5 Research Directions

The research presented in this thesis will investigate ateljiate several beneficial aspects of
the work found in the literature and, it will be shown in Crexpb, will overcome some of their
limitations.

The active contour algorithm relies upon internal enertpaguide its convergence [96]. In the
original algorithm, these energies are defined to be theragtyt and curvature of the contour [96]
and, as such, are parallels of two of the features used ttifilenacks derived by Di Martino et al.
[54] from feature grouping theory: temporal continuity gnefjuential curvature. The additional
features that Di Martino et al. propose, high average enargy higher point density, will be
further discussed and investigated in Chapter 3 by meansfaf avestigation into low-level
feature detection in this problem.

It is evident from this literature review that there existaide range of techniques that have
been applied to this problem, all of which rely upon low-lefeature detection methods. A vast
majority of techniques that have been reviewed utiliserinfation derived from single pixel va-
lues for their low-level feature detection, more specificathose reviewed under the sections
Maximum Likelihood Estimates; Statistical Models; TrauiAlgorithms; Relaxation Methods;
Expert Systems; and a number from the Image Processing [385Di Martino and Tabbone
[57], Gillespie [69], and the contributions from the Neuxedtwork background (excluding Adams
and Evans [4]) build upon this to perform low-level featusgattion within windows of the spec-
trogram, thus incorporating spatial information. Suripiddy, however, no study exists into the
effects of low-level feature detection, and so this topitt e addressed in Chapter 3.

An early contribution to the field, proposed by Barrett andWiafon [20], is a simple maxi-
mum likelihood detector that integrates information atnhainic locations in the spectrogram to
enhance the detection of tracks. In the paper, however, periexental evidence or investigation is
presented to suggest that this improves the detectionaidiia the presence of a harmonic series.
Subsequent work on HMM algorithms has attempted to tackdeptbblem of detecting multiple
tracks in spectrograms, however, these are assumed toaiddrom independent sources and, as
such, no information is fused to increase their rate of dietec In Section 3.4 an investigation
into the integration of harmonic information is conducted & mpirical evidence supporting this
claim is presented.
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2.6 Conclusions

It is hard to present a direct performance comparison of tiithed techniques as there is a
large variation in the type of results presented in thediigme. Several papers lack quantitative
results, favouring qualitative analysis of one or two spmEgams instead. Furthermore, where
guantitative results exist, there is a lack of consistemcthé type of data that each technique is
tested upon. These inconsistencies include: testing uptthetic data; real-world data or both;
the type of structure variation that tracks exhibit and thNRRS (even the measure of SNR); and
noise environment present in the data set. This greathbiitshthe ability to form any direct
comparison of results between papers describing diffeestiniques.

The representative work from hidden Markov models and in@geessing techniques de-
monstrate applicability to this problem (albeit from diff@t directions), as each of the reviewed
solutions demonstrate the ability to achieve one or mordefdefined criteria. Nevertheless, it
seems that there has been no effort to combine all of thegegires into one viable solution and
therefore there is still room for improvement in order to inéne challenges posed by present
applications.

This survey has been concerned with surveying track detentethods applied to spectrogram
images. Techniques exist that include phase informatioivetefrom the FFT but these are not
reviewed here. For further reading the following is recomdes [19, 11, 122, 123].



Chapter 3

Low-Level Feature Detection

“Do not go where the path may lead,
go instead where there is no path and leave a ttail.

— Ralph Waldo Emerson, 1803-1882.

The first stage in the detection of any object within an imag iextract low-level features.
For a spectrogram, this stage results in the identificatfimoonnected points that are likely to
belong to a track, which are output in the form of another ipti]. In Chapter 2 it was found
that the approaches to the low-level feature detectionextspgram tracks present in the literature
can be grouped into two categories. Abel et al. [3], Di Martat al. [55], Scharf and Elliot [162]
and Paris and Jauffret [137], to name but a few, take the approf detecting single pixel ins-
tances of the tracks, therefore only intensity informatian be exploited in the decision process,
and Gillespie [69], Kendall et al. [98] and Leeming [114]¢athe approach of detecting track
sections within windows of the spectrogram, and therefor@ddition to intensity information,
information regarding the track structure is exploitedhia tlecision process. Nevertheless, an em-
pirical study of the differences and detection benefits betwthe two approaches is still lacking.
It would be expected that when intensity information deggaduch as in low signal-to-noise ratio
spectrograms, the structural information will augmenrd téficit and thus improve detection rates.

This chapter presents such a study. Firstly three low-limatlire detectors are defined, each
of which acts upon an increasing amount of information. €ha® termed ‘optimal’ detectors as
they perform an exhaustive search of the feature space #aid edl of the information provided
to them by the feature model. The exhaustive search pertbhypéhese methods, however, means
that they are computationally expensive and, as such, aewuoftsub-optimal’ detectors are exa-
mined. All of these ‘sub-optimal’ feature detectors derfigature vectors from within a window
and they therefore act upon intensity and structural inédiom, however, they utilise machine lear-
ning techniques for dimensionality reduction and classetliod) and therefore simplify the search
space. The ‘sub-optimal’ detectors are split into two catieg—data-based and model-based—to
reflect the source of the training samples utilised by thgiesvised learning process. Finally, the
performance of the model-based ‘optimal’ feature deteit@ompared against the model-based
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‘sub-optimal’ feature detector to ascertain the degreesdiopmance divergence between the two
approaches.

In addition to this, the final section of this chapter presennovel transformation that inte-
grates information from harmonic locations within the gpggram. This is possible due to the
harmonic nature of acoustic signals and is defined with theddirevealing the presence of an
acoustic source at low signal-to-noise ratios by utilisitigof the information available. The be-
nefits of performing low-level feature detection whilst daining information from harmonic lo-
cations are shown at the end of this chapter through a cogsguawith the detection performance
achieved by the low-level feature detectors when applidddmriginal spectrogram.

3.1 ‘Optimal’ Feature Detectors

Detection methods that utilise dimensionality reductiechniques such as principal component
analysis [92] to reduce the model or data complexity, lof@rmation regarding the feature model
in the process [28]. This information loss detracts fronirthkility to detect features and therefore
they produce sub-optimal detection results. A method whicldels the data correctly and does
not lose any information in the detection process will hdagerhost discrimination power as a fea-
ture detector, under the condition that it correctly modieésfeatures to be detected. These types
of detectors are more generally referred to as correlatiethaals in the image analysis domain.
In order for such methods to detect features that vary gremtinodel has to be defined with pa-
rameters corresponding to each variation type that can seredd. An exhaustive search for the
parameter combination that best describes the data is ctatthy matching the model to the data
by varying its parameters. In this section are defined thedection methods with the properties
of an ‘optimal’ feature detector, i.e. no model reductiorapproximation is performed during the
search for the feature and therefore they can be termed toplienal’ detectors. Three modes of
detection have been identified, each of which increasestioeiiat of information available to the
detection process from the previous mode: individual gixdelcal intensity distribution; and local
structural intensity distribution. Individual pixel ckification performs detection based upon the
intensity value of single pixels. By definition this methodikes no assumption as to the track
shape and consequently is the most general of the methodsniis bf detecting variable struc-
ture. A track, however, “is a spectral representation oftémeporal evolution of the signal” [54]
and, therefore, “can be expressed as a function of the tiBW#; [.e. it is composed of a collec-
tion of pixels in close proximity to each other. Performig tetection process using individual
pixels ignores this fact. An extension to this detectiorcpss is therefore to model the pixel value
distribution in a local neighbourhood, forming a detectmattincorporates this information. Ne-
vertheless, such a detector still ignores the informati@ tan be derived from the arrangement
of pixels in the neighbourhood. Such information will ereatile detector to distinguish between
a number of random high intensity pixels resulting from rasd an arranged collection of pixels
that belong to a track.
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3.1.1 Bayesian Inference

A common method used to model the distribution of individpixkel values makes use of proba-
bility density functions. A classification can then be magddsting the pixel's class-conditional
membership to distributions describing each class, fagmiaximum likelihood classification, or,
by extending this to act upon a Bayesian decision usingatpesteriori probability. Assuming
that the modelling is accurate, maximunposterioriclassification acts upon the optimal decision
boundary [60]. In the former case, the class-conditionstrithution to which the pixel value has
the highest membership determines its classification. énldtter, the decision is made accor-
ding to the Bayes decision rule and this has been shown to tread60], i.e. it minimises the
probability of error (subject to correct design choices).

In this case, Bayesian classification infers a pixel's ctassbership based upon the probabi-
lity that it originates from a distribution model of the c$asntensity values. The distribution of
the intensity values of each class is determined prior tesdfiaation as a training stage; the model
which best describes the data is chosen and this is fittee tdetta by determining applicable para-
meter values. A similar approach was used by Rife and Baof{482] and Barrett and McMahon
[20] who applied maximum likelihood classification to pixellues, however, a very simple class
model was used in that work; the maximum value in each spgretno row was classified as a
track position.

3.1.1.1 Intensity Distribution Models

There are three approaches to density estimation [28]:ngtric, non-parametric, and semi-
parametric. The first of these, the parametric approachyass a specific functional form for the
density model, which is fitted to a data set by an appropriatéce of the model's parameters. A
drawback of this approach is that the functional form of thedei may not accurately represent
the data. This limitation is alleviated in non-parametmimsity estimation, in which no functional
form of the density is assumed. Instead, the density is nhited by the data and, as a conse-
guence, has the drawback that the number of parameters giitwthe cardinality of the data set.
This forms a complex model, which can be slow to evaluate &v data points [28]. The third
approach balances the previous two and is typically ap@&diixture models. These models
allow a general class of functional forms in which the numiseparameters increases with the
complexity of the data and is independent of the size of tlte [@8]. In this problem, using syn-
thetic data, it is possible to accurately estimate the glatahsity using the parametric approach,
which usually allows the density function to be rapidly exéd for new data points [28]. In other
cases, however, it may be necessary to employ the non-pti@mesemi-parametric approach.
Nevertheless, the classification technique is equallydwatien using different forms of density
estimation.

To estimate the parameters of the class-conditional biigtan for each class, histograms des-
cribing the frequency of intensity values were generated,for each class, and parametric func-
tions fitted to them. The number of pixel intensity valuesdusetrain the models wa266,643
samples of each of the noise and track classes (the data alad $6 have a maximum value of
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Figure 3.1: Class-conditional probability density fuoctifittings for the single-pixel noise, mo-
delled using an exponential PDF (a), and track, modellegusigamma PDF (b), intensity value
distributions. 266,643 randomly chosen pixel values for each class, taken fromtisggams ha-
ving an SNR range di to 8 dB were histogrammed intb000 bins linearly spaced betweé&rand
255. The fittings for the signal and noise histograms have a re@msquared error 600048
and0.00084 respectively.

255 in the training set). These were then histogrammed1iti00 equally space bins spanning the
range0-255 to form a histogram. As there was a large amount of training deailable, the pa-
rameter values of each distribution function were deteeahiny maximum likelihood estimation
[60] as this has been shown to reach the Bayesian estimatiger such conditions [28] and are
simpler to evaluate [60] (under the case that there is fitiming data it may be more appropriate
to use Bayesian estimation). The Gamma and Exponentiabpiidlp density functions (PDF)
were found to model the signal and noise distributions defiity well as they have a root mean
squared error 06.00048 and0.00084 (mean error per histogram bin) respectively; histograms of
intensity values and the resultant fittings for each classpagsented in Fig. 3.1. As such, the
class-conditional probabilities of a pixel value, giveer thypotheses of noigg and of signal.,
are determined such that

P(hi|syz) = Aexp{—Az}

P(hg |5yx) _ xoc—l 6a exp{—ﬁx}

o) (3.1)

wherez > 0, the termI" represents the gamma distribution and the distributioarpaters were

found to bea = 1.1439, 8 = 20.3073 and A = 7.2764 (with standard errors d3.0029, 0.0576
and0.0144 respectively).



3.1. ‘OPTIMAL FEATURE DETECTORS 65

The histograms presented in Fig. 3.1 highlight the funddaldimitation of these methods;
there is a large overlap between the distributions of vaitea each class. This overlap is exag-
gerated as the SNR is reduced and it can be expected to impedtassification performance of
this type of detector.

3.1.1.2 Decision Rules

The simplest form of Bayesian inference, referred to as Maxn Likelihood (ML) [129], is to
calculate the class for which the pixel intensity value tesrhaximum membership. By defining
a set of candidate hypothes&s= {hq, h2}, whereh; andh, are the hypotheses that an obser-
vation is a member of the noise or signal class respectiaaly,the probability density functions
corresponding to these hypotheses, given the gatavz € N Ay € M (from Section 1.2.3), the
likelihood that the data is a result of each hypothesis isrd@hed, such that

harr, = arg max P(syz|h). (3.2)
heH
When all the hypotheses i have equal likelihood of being true any convenient tie birggakule
can be taken [60], in this case a random classification is made
A drawback of maximum likelihood classification is that itedonot take into account ttee
priori probability of observing a member of each cld¥s:). For example, in the case of taking a
random observation with each hypothesis having an equaitisod of being true, the observation
should in fact be classified as belonging to the class thabit likely to be observed [60]. Tte
posterioriprobability P(h|s,, ), which combines the class-conditional and prior, can bepuded

with Bayes formula,
P(syz|h)P(h)

P(Sym)
The form of Bayesian decision that incorporates this infation, the hypotheses prior probabili-
ties, to form a decision is referred to as Maximiénfosteriori(MAP), such that

P(hlsye) = (33)

P(syz|h)P(h
hyrap = arg max M

heH P(Sy:v) (3.4)

Note that the ML estimate can be thought of as a specialisatithe MAP decision in which the
prior probabilities are equal. The terR(s,, ) is a normalisation term, which is independent.of
and therefore, does not influence the decision. It can thwerdle dropped [60] and Eq. 3.4 reduces
to

harap = argmax P(sy.|h)P(h). (3.5)
heH

In the case that the prior probabilities are unknown, whichdmmon, they can be estimated as
the frequency of observing each hypothesis within a trgisiet [28], irrespective of its value. In
this case the prior probabilities were determined by catou the frequency of pixels belonging
to each class in the training set.

An example of a spectrogram’s membership of the noise ankl ¢ttass is presented in Fig. 3.2,
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Figure 3.2: Likelihood of class membership, intensity esgnts likelihood of class membership
(scaled to be withifd) and255). The tracks in this spectrogram have SNRs of, from left gt
first three:3 dB, middle three dB and the last thre€d dB. The intensity of the each response is
scale independently.

Figure 3.2a presents the noise membership values of eaeh fixan be seen that the majority
of noise pixels have a large likelihood of belonging to thésacclass. Nevertheless, the high
noise values are found to have a lower likelihood and soménefldw SNR tracks are found
to have a high likelihood of belonging to this class. Figur2b3presents the likelihood of the
pixels belonging to the track class and these emphasisevéiap between the two classes. The
noise pixels are given a high likelihood of belonging to trexck class and track pixels have a
low likelihood of belonging to the track class. Taking theximaum membership of each pixel, as
defined by Eq. 3.2, a classification of the spectrogram ismdda Fig. 3.3. Most of the pixels that
form a track are correctly classified, although gaps aregpteéa low SNR tracks. The amount of
noise in the spectrogram is reduced but there is still a langeunt present and this is reflected in
the classification percentages for the spectrogram pixgl3]% of noise and’'1.51% of track is
classified correctly.

3.1.2 Bayesian Inference using Spatial Information

Classification based upon single pixel values is limitedbtonfing a decision using only intensity
information. The definition of a track, as described in Chagt is that a narrowband component
of energy is present in a number of consecutive time framesomsequence of this is that track
pixels will be in close proximity to each other—a propertgttis not exploited using the classi-
fication methods defined above. An alternative method fasifi@ation is to determine a pixel's
class membership based upon the distribution of pixel gainea local neighbourhood centred
upon the pixel, thus exploiting both sources of informatidhis form of classification, applied to
spectrogram track detection, has been investigated bgradtal. [144] and Di Martino et al. [54]
who demonstrate that it can produce high classificatiorsradewindow function is now defined
to enable the previously defined classifiers to perform thisifof classification.
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Figure 3.3: An example of maximum likelihood spectrogramepiclassification, in this image
likelihood has been encoded as the inverse of intensity ealdd to have a maximum value of
255. The tracks in this spectrogram have SNRs of, from left tbtriirst three3 dB, middle three
6 dB and the last thregdB.

3.1.2.1 Window Function

The spectrogran$ (as defined in Section 1.2.3), can be broken down Int@erlapping windows
W of predefined size, such that

Sy—p,xz—y -+ Sy—pz—1 Sy—pax Sy—paz+l ... Sy—pazty
Sy—1l,z—~y -+ Sy—-lz—1 Sy—-l,e Sy—laz+l ... Sy—latxy
Way = | Sya—r .- Sy,z—1 Sy Syz+l .- Sy,z+y (3.6)
Sy+le—y .-+ Sy+la—1  Sy+lz  Syt+ladl ... Sytlady
| Sy+px—y .-+ Sytpa—1 Sytpz  Sytpat+l .- Sytpadnd

SIEt]

wherem € N andn € N are odd numbers defining the size of the window (height andhwid
respectively) such that < x < fiee —yandp < y < M — p. A row vector, V* of size

d = mn, can be constructed from the values contained within win@®w, in a column-wise
fashion whereC'¥ contains values from theth column of W, such that

CTY = [Sy—pa—ytr Sy—pt1ia—y+r - Sy+pa—y+r] (3.7)
wherer =0,...,n — 1, and thus

VW= [CHCY ... C™] (3.8)

n—1
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3.1.2.2 Decision Rules

Using the window function, the ML hypothesis can be testadttie derived feature vector of
pixel values. When the dependency relationships betwespikels are unknown, i.e. under no
assumption of the track’s shape, the pixels are assumed tormitionally independent given
each hypothesis [60], such that

d
heorrr, = argmax | [ P(V3Y|h). (3.9)
heH P

Similarly, the MAP classification is modified to take advaygaf this information—forming the
naive Bayes rule,

d

heowap = argmax [[ P(h|VY) (3.10)
hed .5
d

— argmax [[ P(VZ|h)P(h) (3.11)
heH

whered = |V*¥| £ mn is the cardinality of the feature vect®f*V.
Nota beneo avoid the problem of underflows during the calculatiorhgfysr, andheoprap,
the sum of the log likelihoods is taken instead of the proddithe likelihoods [60].

3.1.3 Bar Detector

The two previous detectors have been defined to exploit sittemformation and also the fre-
guency of intensity values within a window. A final piece ofdrmation that can be exploited in
the classification process is the arrangement of intensityeg within the local window of spec-
trogram pixels. The independence assumption made in tBages methods, defined previously,
means that they only take into account the presence of neuttgck pixels within the window and
not the arrangement of these pixels. Thus two disjoint pikela window that have high mem-
bership to the track distribution will be classified just a® fpixels of the same value arranged in
consecutive locations. The latter of the two is most likeloé the result of a track being present
in the window and the former the result of random noise. Téitisn describes a feature detector
that exploits all the information that has been so far oatinA simple exhaustive line detection
method is described that is able to detect linear featuresvatriety of orientations and scales
(width and lengths) within a spectrogram. In accordancé Wit detectors in this section, this
detector can also be viewed as ‘optimal’ because it detdatarations of the parameters defining
the arrangement of pixels belonging to a track within a wimdoan exhaustive fashion.

First, consider the detection of an arbitrary fixed-lengtkar track segment and the estimation
of its orientation (subsequently this will be extended tdude the estimation of its length). The
process of detection and inference proceeds as followstatimg bar is defined that is pivoted at
one end to a pixe§ = [z4,y,], In @ spectrograns, such thay € S wheres = [z,,y;], and
extends in the direction of tHeprevious observations, see Fig. 3.4. The values of thegikat are
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Figure 3.4: The bar operator, having the properties; widttength/ and angle).

encompassed by the bar template are defined by the sefs € S : P(s,0,0) A Py(s,0,w)},
where

Pi(s,0,1) <= 0 < [cos(d),sin(0)][s —g]’ <1

Py(s,0,w) < |[=sin(8),cos(9)][s — g]"| < %, (3.12)

and wheré is the angle of the bar with respect to thexis (varied between-5 and 3 radians),
w is the width of the bar andis its length. The pixels i’ are summed, such that

B(6,l,w) = ’F’ > f (3.13)

fer

To reduce the computational load of determinig(s, 6,1) and P,(s, 6,1) for every point in the
spectrograms can be restricted to, = 24— (I+1),..., 24+ (I—1)andy, = yq,...,ys+((—1)
(assuming the origin is in the bottom left of the spectrogramd a set of templates can be derived
prior to runtime to be convolved with the spectrogram. Theibaotated through 80 degrees,

0 = [-5, 5], calculating the underlying summation at eaké.

Normalising the output of3(6,1,w) forms a brightness invariant responB¢d, [, w) [131],
which is also normalised with respect to the backgroundenaisch that

_ 1
whereo is the standard deviation of the response aiid mean.

Once the rotation has been completed, statistics regatdegariation ofB(6,1,w) can be
calculated to enable the detection of the angle of any uyidgrlines that pass through the pivoted
pixel g. For example, the maximum response, such that

0, = argmax B(0,1,w). (3.15)
0
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Figure 3.5: The mean response of the rotated bar operatvedarpon a vertical lin€1 pixels in
length (of varying SNRs). The bar is varied in length betwaamd31 pixels.

Assuming that the noise present in a local neighbourhoodspéatrogram is random, the resulting
responses will be low. Conversely, if there is a line presietresponses will exhibit a peak in one
configuration, as shown in Fig. 3.5. Thresholding the respat the angl#(6;, 1, w) allows these
cases to be detected. This threshold will be chosen suclit fiegiresents the response obtained
when the bar is not fully aligned with a track segment.

Repeating this process, pivoting on each pixet the first row of a spectrogram and threshol-
ding, allows for the detection of any lines that appear dutime updates.

This process will now be extended to facilitate the detectibthe length. For simplicity, and
without loss of generality, the line’s width is set to unitg. w = 1. To estimate the line’s length
Eq. (3.15) is replaced with

0, = argmax Y _B(0,1,w), (3.16)
0 leL
wherelL is a set of detection lengths, to facilitate the estimatibtine angle over differing lengths.
Once the line’s anglé; has been estimateli(¢;, 1, w) is analysed asincreases to estimate the
line’s length.

The response aB is dependent on the bar’s length, as this increases, antdsqpast the line,
it follows that the peak in the response will decrease, astitated in Fig. 3.5. The length of a line
can therefore be estimated by determining the maximum hgthén which the response remains
above a threshold valué: = max(L,), whereL, is defined such that

L,={leL:B,lLuw) > Zmax(B(Ql,l,w))}. (3.17)

An arbitrary threshold a$/4 of the maximum response found (6, I, w) is taken (the threshold
value could alternatively be learnt in a training stage).
3.1.3.1 Length Search

The estimation of a line’s length using the linear searchirmd above is particularly inefficient
and has a high run-time cost. To reduce this, the unifornchestrategy is replaced with the more
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Algorithm 3.1 Bar length binary search

Input:  liow, the minimum length to search faliign, the maximum length to search fdf, a
threshold ¢;, the line’s orientationS, a spectrogram image

Output: [;, the length of an underlying line.

L If B(ela l|OW) ?,U) > T then
2 Plow < llow + 1

3 Phigh < lhigh + 1

4: while piow 7 liow A Phigh 7 Ihigh do
S Dlow < liow

6: Plow < lhigh

7: [ 4 | loupion |

8: if B(6;,1,w) > T then

9: liow < 1

10: else{the line’s length has been exceedled
11: lhigh <1

12: end if

13: end while

14. l; < liow

15: else{a line does not exi$t

16: ]+ 0

17: end if

18: return

efficient binary search algorithm outlined in Algorithm 3linplementing the search in this way
reduces the associated search costs frgm) @ O(log ), allowing searches to be performed for
a large number of line lengths. The same algorithm can be wsedarch for the line’s width,
further reducing the cost.

3.2 ‘Sub-Optimal’ Feature Detectors

A limitation of the ‘optimal’, correlation detection mettis is that they are computationally fea-
sible only for models with few parameters. As the number ohpeeters increase, the size of
the search space increases exponentially—forming arctatske solution. For example, a simple
deterministic sinusoidal model contains five free paramsetéundamental frequency position;
scaling; track amplitude; phase and frequency; which regua solution of @:°) complexity.

Dimensionality reduction techniques remove potentiatipeeded information and therefore
reduce the search space by simplifying the model or, altieata the data. This is an important
step in the classification process as the act helps to aveidtubse of dimensionality [60]; a
problem that states that for each additional dimensionpreptially more samples are needed
to span the space. Moreover, data that has some underlyirdifoensional structure may be
embedded in high-dimensional space and the additionalrdiibes are likely to represent noise
[28]. If these additional dimensions can be removed, lentlie low-dimensional structure intact,
the problem is simplified.

As outlined earlier, these methods should not achieve thferpeance of the ‘optimal’ de-
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tectors due to information loss. Nevertheless, the ineré¢lasomputing performance, and the
non-specificity that occurs as a result of the problem sificplion (‘optimal’ detectors are speci-
fic to detecting structures that are dictated by their mQdweésits their use.

A low dimension subspace is typically learnt by supervisaiiing methods and as such can
be derived in two ways: data-based and model-based. Datdlmacthods determine the subspace
using real examples of the data to be classified by constguetitraining set. This training set
could contain noise and random variations of the featuredbeur in the real world, however, it
is often difficult to construct a training set that fully regents these complex variations. On the
other hand, model-based methods generate the data useaitiorg from a model and, therefore,
are limited to the model’s ability to represent the compierf the problem. This section presents
feature detection methods that are examples of both methods

3.2.1 Data-Based Subspace Learning

It is common in the area of machine learning that a classificator decision, is based upon
experience [128]. The experience can take the form of a ddataadraining set, which contains
examples of the data to be classified and labels describengldiss to which the examples belong.
This is what is referred to as data-based learning. This sittahould encompass the primary
variations that are possible in the data so that the claswfable to learn the underlying process
that generates the data [60]. In the problem of remote sgndita is scarce and it may not
be possible to construct such a training set. Consequeediiniques that utilise such machine-
learning methods may be limited in their ability to genesalio unseen complex track structures.

The window function outlined in Section 3.1.2.1 splits tpectrogram into overlapping win-
dows and constructs high-dimensional feature vectors ff@rintensity values contained within
these windows. Feature vectors from multiple windows cterated together form a set of data
that can be used to train and test the classification algasithresented in this section.

3.2.1.1 Explicit Dimension Reduction

Dimensionality reduction techniques have been invegtdy&troughout the history of pattern re-
cognition. They offer the ability to visualise high-diménsal data and to simplify the classifica-
tion process, for reasons previously outlined.

There has recently been a renewed interest in the develdpohelimensionality reduction
techniques, with particular application to high-dimemnsibdata visualisation. Recent algorithm
contributions include: ISOMAP [170], Locally Linear Emlaidg (LLE) [154], Stochastic Neigh-
bourhood Embedding (SNE) [82], Laplacian Eigenmaps (LE),[Kernel Matrix [181], local
tangent space aligning (LTSA) [198], Essential Loops [1MN8jural Networks [83], t-SNE [176],
and general graph based frameworks to unify different dgioerality reduction techniques [195].
Nevertheless, implemented as batch technigues, theseasetbquire all training and testing
samples to be given in advance. Embedding a novel data pinthie space requires a complete
recalculation of the subspace—a computationally expengiocess. In recent years there has
been a move to address this issue and researchers are aiigpéhcremental learning algorithms
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Figure 3.6: Windowed spectrogram PCA eigenvalues. Thene#dees were determined using a
data set ofl,000 samples data samples of each class taken from spectrogeaimg la mean SNR
of 8dB.

such as: incremental versions of MDS, ISOMAP, LLE and LE {2&]E [106]; ISOMAP [109];
LTSA [116]; and incremental Laplacian Eigenmaps [90]. Ibé&yond the scope of this thesis to
evaluate these methods with application to this data andfthre this section concentrates on eva-
luating the well established techniques of principal cong analysis (PCA) [140, 67], linear
discriminant analysis (LDA) [23] and neural networks. Té@sethods are suitable for classifica-
tion problems as they calculate basis vectors that allovelnd&ta points to be projected into the
low-dimensional space with no added computational burden.

Statistical methods such as PCA and LDA attempt to determiggbspace in which a mea-
sure of the data’s variance is maximised. The key differdmete/een the two methods is that they
measure the variance in different manners: PCA takes tlaésdagobal variance, and LDA the wi-
thin and between class variances. Consequently, both netleiermine subspaces that represent
different features of the data, PCA globally extracts thesins@ynificant features from the data set
whereas LDA attempts to extract the most significant feattinat separate the classes. Neural
networks incrementally determine a subspace in which theausquares error of a training or
validation set is at a minimum [28]. If the correct networldactivation functions are applied to
the data, this translates into a projection in which the ertigs of the data that are most relevant
to learning the target function are captured [129].

The eigenvalues obtained by applying principal componaeatyais to a training set compri-
sing 1,000 data samples3(x 21 pixel window instances) of each class randomly selecteh fro
a spectrogram having a SNR ®tB are presented in Fig. 3.6. A majority of the data’s varanc
is contained within the first three principal components @iedremaining components have little
variance. Figure 3.7 presents the distribution of windowrgt@ining vertical tracks and noise (se-
lected randomly from spectrograms having SNR38 dB and6 dB) after projection onto the first
two principal components. In this form the classes are peatktered. A high proportion of the
noise is clustered in a dense region and three protrusionstfiis cluster contain the data samples
from the track class—each of the protrusions correspondadh of the three possible positions of
a straight vertical track in a window three pixels wide. As 8NR of the track contained within
a window increases, its projected distance from the no@ssdncreases proportionally. There
is some overlap between low SNR track data points and the mhister, which emphasises the
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Figure 3.7: Windowed spectrogram projected onto the firstgvincipal components.
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Figure 3.8: Windowed spectrogram LDA eigenvalues. Thergigleies were determined using a
data set ofl ,000 samples data samples of each class taken from spectrogeaimg a mean SNR
of 8dB.

problems of separation between these two classes fouridréarthe investigation. The windows
containing high SNR tracks (greater thadB) are well separated from the noise in this projection.

Figure 3.8 presents the eigenvalues derived through LDA.éigenvalues of LDA when ap-
plied to the same data set as used previously for PCA inditatieall of the variance can be
represented with one component. The result of projectiegidta onto the first two components
is presented in Fig. 3.9. The samples from different locatiof the window are not as cleanly
separated as was found with PCA. The most likely explandtiothis is that LDA maximises the
between-class variation and not the data’s global variaNegertheless, the separate class clusters
are preserved in the projection. As with PCA, LDA cannot safgathe overlap between the low
SNR track samples and the noise cluster, but high SNR sarapestill well separated from the
noise.

3.2.1.2 Implicit Dimension Reduction

Neural networks perform dimensionality reduction whengadfic topologies [95]—a three-layer
Multi-Layer Perceptron (MLP) that has a hidden layer witlvée nodes than the input and output
layers compresses the data—thus implicitly reducing the'sl@imensionality [28]. The same
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Figure 3.9: Windowed spectrogram projected onto the firstlt®A principal components.

is true for the Radial Basis Function (RBF) network, in whiadial basis functions are used
as the activation functions. The self-organising map (SQIB, 104] performs dimensionality
reduction in a very different manner. The SOM reduces thesdsionality in a manner similar to
the explicit dimensionality reduction techniques disedss the previous section. It often takes
the form of a two-dimensional array of nodes that use a neigtitbod function to model the
low-dimensional structure in high-dimensional data.

3.2.1.3 Classification Methods

To quantitatively evaluate the effectiveness of dimeraibnreduction and to determine the ap-
plicability of classifiers to this problem, the performarafea range of classifiers is evaluated in
this section. Each of the classifiers will be evaluated u#fiegoriginal, high-dimensional, data in
addition to the low dimension data.

The following classifiers are evaluated in this section: Reial Basis Function (RBF);
Self Organising Map (SOM)k-Nearest Neighbour (KNN); and WeightédNearest Neighbour
(WKNN). In addition to these, simpler distance based cfa@sgion schemes are also evaluated.
The class: that minimises the distane& for each feature vectd ", is taken to be the classifi-
cation of the feature vector, such that

& =argmin d(V%, ). (3.18)
ceC

The distance measutdecan be taken to be the Euclidean distadgceor the Mahalanobis distance
ds, such that

dl(vmyv /J/c) = \/(ny - I'I’C)T(me - /J/c) (3.19)

dQ(nyv u’c) = \/(me - “C)Tzc—l(vzy - u’c) (320)

whereV®¥ andp, and3_ ! are the mean vector and the inverse of the covariance mditeiaah
classc in the training set respectively. When the Mahanalobisadist is in use and the covariance
matrix is diagonal, the normalised Euclidean distance iiméal, which will be evaluated as the
third distance measurs.

Furthermore, the structure observed in the low-dimensicgresentations obtained using
PCA and LDA suggest that the noise class can be modelled asimgltivariate distribution. An
additional classifier is therefore formed by modelling tioése class with a multivariate Gaussian
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distribution,
GV = — L expd —2 (Ve — )T (Vo — ) (3.21)
21/2| 3| 1/2 2 ’

where|X| andX ! are the determinant and inverse of the noise classes’ emarimatrix respec-
tively. The output of which can be thresholded to determimeeféature’s membership to the noise
class, such that

h:{ hy if G(V™) > e, (3.22)

ho otherwise.

The data used during this experiment was as follows; thaitmgiset consisted of,732
samples of3 x 21 pixel windows taken from spectrograms that contain velrticcks having
SNRs of0dB. This window size was chosen as during preliminary expenis it was found to
provide acceptable results (see Appendix A, Figure A.2e Hst set, containing the same num-
ber of samples and window configuration, contained examgflésacks having an SNR df, 3
and6 dB. It was found during preliminary experimentation thag thultilayer perceptron neural
network does not perform well compared with the RBF and SOMokks and therefore results
obtained using this classifier are not included in this abrapt

Each of the classifier's parameters were chosen to maxineiserglisation performance and
were determined through preliminary experimentationsdtare as follows. The KNN and WKNN
classifier used ten nearest neighbours to determine theafifise novel data point. In the event of
a tie, a random classification was made. An RBF classifier fiviéhGaussian activation functions
and two training iterations has been implemented as thidovasl to perform well in preliminary
experimentation. The RBF basis centres were determinédrbgans clustering [28]; the variance
of the basis functions were taken as the largest squareghdestetween the centres. The RBF
weights were determined using the pseudo inverse of the batvation levels with the training
data [28]. A rectangular lattice of SOM nodes was used—ithe @i which was determined auto-
matically by setting their ratio to be equal to the ratio o tivo biggest eigenvalues of the data
set [104]. The Gaussian model defined in Eqg. (3.21) was fitt¢ke noise class by calculating its
mean and standard deviation.

The classification performance of each classifier appliethéooriginal data and the same
data projected into a low-dimensional subspace deterntimedigh PCA and LDA is presented
in Table 3.1 (and the standard deviations attributed toethlesults are presented in Table 3.2).
These results demonstrate that classification performasiog these features can reaao with
a standard deviation d@Pb6 when applied to the test dataset (using the RBF classifithinee di-
mensional subspace derived through PCA). The classificpgoformance using the training data
set is lower than that observed using the test data set adabsfiers were trained using more
complex data than that with which they were tested. Theitrgidata comprised of instances of
windows containing noise and track having an SNRdB and, upon this data, the majority of
classifiers obtain a classification percentage betwideand 78% with standard deviations bet-
ween2% and5%. These results demonstrate that the dimensionality tiedutechniques extract
meaningful information from the data even at low SNRs. Byitgsthe classifiers upon a dataset
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Classifier Window PCA 2D PCA 3D PCA 4D PCA 5D LDA 2D LDA 3D LDA 4D LDA 5D
KNN —tr 77.8 75.9 79.5 78.5 79.0 78.4 78.0 78.4 78.0
KNN —te 81.5 78.5 83.3 82.7 83.1 80.1 80.6 80.8 79.6
WKNN —tr 77.5 76.1 79.7 79.5 79.5 79.1 78.0 77.1 78.0
WKNN —te 80.8 77.0 83.4 83.1 82.2 81.0 80.6 80.3 80.5
RBF —tr 75.6 73.0 77.3 76.6 76.0 76.5 75.6 76.6 75.6
RBF —te 81.8 81.9 84.4 83.8 83.3 81.8 82.1 81.8 80.8
SOM —tr 80.4 78.8 81.3 81.5 80.5 80.3 80.2 79.2 80.2
SOM —te 79.6 74.3 80.8 79.9 80.5 77.5 78.3 77.0 76.1
Euclid. (dq1) —tr 76.4 63.1 74.0 74.5 75.6 76.7 75.4 76.6 76.3
Euclid. (d1) —te 81.1 66.4 81.2 81.5 81.0 82.3 81.4 80.5 80.9
Mahalanobis ¢2) — tr 54.9 60.2 71.2 69.4 67.3 75.8 71.6 71.1 69.4
Mahalanobis ¢2) — te 54.6 65.3 81.2 77.5 77.0 81.8 79.7 79.1 75.8
N. Euclid. d3) —tr 52.4 59.8 68.9 66.0 62.6 75.7 73.2 71.2 68.8
N. Euclid. d3) —te 54.0 63.3 78.6 74.4 69.9 82.0 81.0 78.6 77.1
GaussianG(V*Y)) —tr 50.1 66.1 71.8 73.5 74.8 61.0 65.6 67.4 69.5
GaussianG(V*Y)) —te 50.3 76.1 81.5 82.0 82.2 68.1 72.3 74.4 74.8

Table 3.1: Classification percentage on training (tr) ast(te) data using the proposed features.
The highest classification percentage for each classifibigislighted in bold and the highest
percentage for each feature is underlined. The standaidtibas of these results are presented
separately in Table 3.2.

Classifier Window PCA 2D PCA 3D PCA 4D PCA 5D LDA 2D LDA 3D LDA 4D LDA 5D
KNN —tr 2.50 4.77 2.72 4.24 2.73 3.15 2.95 2.61 3.83
KNN —te 3.44 8.78 2.72 3.29 2.84 2.92 3.52 3.61 3.79
WKKN —tr 3.87 5.07 2.79 4.17 3.69 2.69 2.66 3.21 4.13
WKNN — te 4.44 7.44 1.97 3.58 2.51 4.53 2.37 4.48 3.67
RBF —tr 4.40 5.16 4.19 4.02 4.47 2.45 2.91 2.40 2.68
RBF —te 2.92 5.31 2.77 2.97 2.83 3.73 3.11 2.64 4.54
SOM —tr 1.74 3.06 2.41 2.67 1.97 3.22 3.08 2.73 3.52
SOM —te 4.63 7.00 3.80 3.55 5.29 6.84 5.35 3.78 4.55
Euclid. (dq) —tr 2.08 11.03 2.77 3.13 3.02 2.59 3.57 3.17 3.90
Euclid. (d1) —te 2.56 13.11 3.50 2.29 3.29 1.42 3.66 2.99 3.01
Mahalanobis ¢2) — tr 2.47 14.06 2.90 3.35 3.80 3.27 2.94 4.38 3.45
Mahalanobis ¢2) — te 3.12 19.96 2.92 2.00 4.52 2.21 3.06 4.14 5.50
N. Euclid. [d3) —tr 1.57 10.14 4.17 5.68 4.66 3.37 3.49 4.75 3.43
N. Euclid. (d3) —te 3.05 14.09 4.54 7.64 10.69 2.10 3.77 4.83 3.19
GaussianG(V*Y)) —tr 0.32 6.74 2.82 4.09 3.30 5.92 5.80 4.75 5.00
GaussianG(V*Y)) —te 0.50 10.69 2.59 4.80 2.07 2.84 5.77 5.47 3.07

Table 3.2: Standard deviation of the classification peréoroe presented in Table 3.1.

comprising windowed instances of noise and tracks that bav8NR greater than or equal to
0dB (in this casd), 3 and6 dB) it is possible to demonstrate that the dimensionaliuotion
techniques allow the classifiers to generalise to higheseemm, SNRs while trained upon track
instances that have very low SNRs.

Several of the classifiers perform badly when applied to tigeral windowed data; the nor-
malised Euclidean, Mahalanobis, and Gaussian classifiehsnge a classification performance
between50% and55% upon the original test data. Nevertheless, when the dtajected into
a lower dimension subspace derived through PCA or LDA thifopmance increases to between
63% and76%. This indicates that the dimension reduction techniqa®e lhemoved noise present
in the original feature vectors and have allowed the, nadftisimple, classifiers to correctly mo-
del the data’s structure. Furthermore, this has reducepdtfermance gap between these and the
more complicated classifiers.

It was shown by Kendall et al. [98] that the generalisatiorfggenance of a neural network
classifier, when applied to this problem, can be further ompd through Ockham’s networks
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Figure 3.10: Spectrogram detectios18 dB SNR in the frequency domain) using the proposed
bar method and the parametric manifold detection method.

[97]. These experiments, however, were conducted, andrstmperform best, on a low number
of training samplesi@1 examples) and therefore this technique was not testeddrs#uition.

3.2.2 Model-Based Subspace Learning

The previously evaluated techniques determine a low difroersibspace using examples of the
data to be classified and in which the classification perfoeaaof this data is optimised. An
alternative approach to calculating the subspace is higiatila model describing the data and not
the data itself—a feature detector in this vein is descriibeNayar et al. [131]. In such techniques
the data used to train the detection mechanism is genenatedaf model that is constructed such
that it describes each observable variation that can exigta problem. Training the detection
mechanism in this way allows the exact underlying naturehefgroblem to be captured by the
learning technique.

The feature detector proposed by Nayar et al. [131], likehtliedetector proposed in Sec-
tion 3.1.3, is a model-based feature detection method. Tiheapy difference between the two is
that Nayar et al. propose to construct a sampled manifoldeéatare space derived through PCA.
Detection is achieved by calculating the closest point enntfanifold to a sample taken from an
image (nearest neighbour classification) and thresholtlieglistance if necessary. The bar detec-
tor performs the detection without the construction of thenifold, instead, the image sample’s
responses as the model is varied are analysed and the bestofilnd from the match between
sample response and model. This avoids the loss of infoom#tiat is an effect of dimensiona-
lity reduction. This equivalence justifies a direct comgpani between the two methods and, more
importantly, a comparison between an ‘optimal’ and a ‘spbiroal’ detector that model the data
equivalently and differ only in the presence and absencedaghansion reduction step.

The execution times of the proposed method and that outbyedayar et al. were measured
within one 398 x 800 pixel (N x M) spectrogram using Matlab 2008a and a dual-@&sHz
Intel PC. As the method proposed by Nayar et al. is not malilesthe length of the bar is fixed
L = 13 to facilitate a fair comparison, additionally, the pararizatanifold was constructed using
the same parameter range and resolution as used in the bal.fibd bar detector performed the
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detection in5.5 min whereas the comparison performed the detectidimin and the resulting
detections can be seen in Fig. 3.10. Although this is far fasnexhaustive test it does highlight
a benefit of dimension reduction—the duration of the dedectirocess is reduced with the com-
plexity of the model. In the detection results presentedhheshold for each method was chosen
such that a true positive rate @f7 was achieved. This allows equivalent false positive raidset
compared and it becomes apparent that the speed offereé tsuthoptimal’ method is achieved
at the price of detection performance—the detector uiighe dimension reduction technique
results in a false positive rate 0f163 and the bar detector a false positive rat®.025.

A more exhaustive comparison between all the feature aetedescribed in this chapter is
presented in the next section.

3.3 Evaluation of Feature Detectors

The feature detectors that are outlined in this chapter beee evaluated along with several com-
mon line detection methods found in the literature; the Hotrgnsform [59] applied to the ori-
ginal grey-scale spectrogram; the Hough transform apptiedSobel edge detected spectrogram;
convolution of line detection masks [71]; Laplacian linged#ion [71]; and pixel value threshol-
ding [71]. Due to its simplicity and comparable performatzenore complex methods, the clas-
sification scheme that combines PCA and the Gaussian otagsifilined in Section 3.2.1.3 will
be evaluated here.

During preliminary experimentation it was found that fongia six dimensional subspace
using—0.5dB (mean SNR) samples provides the best detection perfaen@o improve reada-
bility these results are presented in Appendix A, Figure) &rid, as discussed in Section 3.2.1.3,
that using a window size & x 21 provided acceptable results (Appendix A, Figure A.2).

The performance of each feature detector can be charactdnis determining its Receiver
Operating Characteristic (ROC) [63]. A two-dimensional ®RGraph is constructed in which the
True Positive Rate (TPR) is plotted in the x-axis and Falsgithe Rate (FPR) is plotted in the
y-axis. The TPR (also known as sensitivity, hit rate andlfeoba detector is calculated such that

TP

TPR= ——
R= TP FN

(3.23)

whereT P is the number of True Positive detections aldV is the number of false negative
detections. The FPR (also known as the false alarm rate)daslated such that

FP

FPR= ————
R FP+TN

(3.24)

where F'P is the number of False Positive detections &M is the number of True Negative
detections. For a full introduction to ROC analysis the ezad referred to Fawcett [65], which
appears in a special issue of Pattern Recognition Lettadicated to ROC analysis in pattern
recognition.
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Track Type  Parameter Values
Vertical Signal Duration (seconds) 100
SNR (dB) —1-7
Oblique Track Gradient (Hz/s) 1,2,4,8& 16
Signal Duration (seconds) 100
SNR (dB) —1-7
Sinusoidal Period (seconds) 10,15 & 20
Centre Frequency Variation (%) 1,2,3,4& 5
Signal Duration (seconds) 200
SNR (dB) —2-6

Table 3.3: Parameter values spanning the synthetic data set

3.3.1 Experimental Data

Using the signal model outlined in Section 1.2.1, a set otgpgram images is generated for
use in the evaluation of the proposed low-level featureatets. The spectrograms are formed
by generating synthetic acoustic signals and transforrtiiege to form spectrograms using the
process described. Time-series signals are created atalrcarfundamental frequency of, =
120 Hz (at constant speed), a harmonic patternBgt = {1,2,3,4,5}, and have a sampling
rate of f; = 4,000 Hz (to ensure high fidelity in the representation of freqyenmdulations).
The fundamental and harmonic series are chosen to be rafatige of values true to small boat
observations. Spectrograms are generated from theseaiimg resolution of one second with a
half second overlap, and a frequency resolutiohldf per STFT bin. The three variations of track
appearance that are commonly seen in this problem are:agilalisrepresenting a Doppler shifted
signal; vertical, representing a constant engine speediphlique, representing an accelerating
engine. A number of noise-only spectrograms were also declun the data set. A description
of the parameter variations used for these three signaktigeutlined in Table 3.3. For each
parameter combination, one spectrograms is generatedrtoddest set, and another to form
a training set to facilitate the application of the machie&mning techniques. The parameters
described in Table 3.3 determine the appearance of eaclotymck and are defined as:

Period — The time in seconds between two peaks of a sinusintd;

Centre Frequency Variation — The amplitude of a sinusoigalkt relative to its frequency
location, expressed as a percentage of the track’s freguenc

SNR — The frequency domain SNR, described by Eq. 1.16;

Track Gradient — The amount of change in the track’s frequealative to time.

The values of these parameters are chosen to cover medniagftworld observations. The
effects of these upon the appearance of the sinusoidal tfask are illustrated in Fig. 3.11. To
ensure an accurate representation of the SNR, the final i&lcgculated within the resulting
spectrogram and therefore may deviate from the value spé¢dil SNRs quoted within this thesis
are calculated in this manner).

Ground truth spectrograms were created by generating &regeaim for each parameter com-
bination that have high SNRs (approximatdlyp00 dB), and then thresholding these to obtain
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Figure 3.11: The effects of the parameter values upon thesaippce of sinusoidal tracks. The top
row represents sinusoidal tracks that havé® aecond period, the middle rowla second period
and the bottom row &0 second period. The tracks in the left column have a centoénecy
variation of 1%, the middle3% and the rights%. All of the tracks have a mean SNR ©f dB
(rounded to the neare8t5 dB), which has been simulated for illustration purposese ifitensity

is proportional to power in voltage-squared per unit bawihwi that is \#/Hz, and is linearly
scaled to have intensity values betw@esnd255.

binary bitmaps. These have the value one in pixel locatidmsreva track is present in the related
spectrogram, and zero otherwise. The data set is scaleg¢@aaximum value df55 using the
maximum value found within the training set, except whenlgpg the PCA detector, when the
original spectrogram values are used.

3.3.2 Results

In this section are presented the results obtained duripgrgrentation upon the data set described
above. The parameters used for each method are describadla3l4 and the Gaussian classifier
using PCA was trained using examples of straight-line sasid noise.

The ROC curves were determined by varying a threshold paeartieat operates on the output
of each method—pixel values above the threshold were filedss signal and otherwise noise.
The ROC curves for the Hough transforms were calculated byingthe parameter space peak
detection threshold. The TPR and FPR for each of the metheds galculated using the number
of correctly and incorrectly detected track and noise gixel
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Detection Method Parameter Value
Laplacian Filter size (pixels) 3x3
Convolution Threshold value range 0255 (step0.2)

Bar (fixed-scale)

widthw (pixels)
lengthl (pixels)
angled (radians)
Threshold value range

1

21

—5—5 (step0.05)
0255 (step0.5)

Bar (muti-scale)

widthw (pixels)
lengthl (pixels)
angled (radians)
Threshold value range

1

6,7,8,9,10,12,14, 16,18 & 20
—Z -5 (step0.05)

0255 (step0.5)

Pixel Thresholding

Threshold value range

0-255 (step0.2)

PCA Window size (pixels) 3 x21
Threshold value range 0-1 (step0.001)
Data dimensionality 6
Nayar widthw (pixels) 1
lengthl (pixels) 21
angled (degrees) —5—7% (step0.05)
Threshold value range (distance to manifold)  0-10 (step0.1)
Data dimensionality 8
MLE & MAP A 7.2764
o 1.1439
B8 20.3073
co-MLE & co-MAP  Window size (pixels) 3x3
A 7.2764
o 1.1439
B8 20.3073

Hough Threshold value range (peak detection threshold).5—1 (step0.001)

Table 3.4: The parameter values of each detection methoavdra used during the experimenta-
tion.

3.3.2.1 Comparison of ‘Optimal’ Detection Methods

One of the hypotheses proposed by this chapter is as follagvthe amount of information made
available to the detection process is increased, the degeperformance will also increase. Evi-
dence for the validity of this hypothesis is presented inftim of performance measurements for
each detector described in this chapter, each of which @us a different amount and type of
information, which is presented in Fig. 3.12.

The MAP and ML detectors, operating on single pixel valuebieve a TPR 00.051 and
0.643, and a FPR 0f).002 and0.202 respectively (as no thresholding is performed ROC curves
for these methods are not presented). These results Higlitig high class distribution overlap
and variability in this problem. The ML detector performgtbethan the MAP detector (although
it also results in a higher FPR) due to the very lawpriori probability of observing the track
class—the detector requires a very high conditional pritibalfior the decision to be made that
the pixel belongs to the track class. These rates increas& RR 0f0.283 and0.489, and FPR of
0.016 and0.074 when the MAP and ML detectors are evaluated within3 pixel neighbourhoods
(respectively). Again, the lowa priori probability of the track class hinders the MAP detector’s
ability to detect tracks within the spectrograms as it dagts@ach the TPR level of ML detector
on single pixels. Nevertheless, the MAP detector's TPR dseiased when integrating spatial
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Figure 3.12: Receiver operating characteristic curveb@ftvaluated detection methods.

information (at the expense of a slight increase in FPR).ddeer, spatial integration has reduced
the FPR of the ML detector quite dramatically, however, tbiat the expense of a vast reduction
of the TPR. Therefore, spatial integration does increasal#tector’s performance, however, due
to the simplicity of the detection strategies, this inceessmanifested in either a large reduction
in the FPR or a large increase in the TPR, but not both. Fintdey bar detector was defined to
exploit all of the information available to a detector: tiensity, local frequency, and structure
of the pixel values. Preliminary tests were performed usirfixed length implementation. The
maximum of the rotated bar’s respong&y);, [, w), wherel = 21 andd;, defined by Eq. (3.15) was
taken as the output pixel’s value to produce a response ébrgigel. This was then thresholded to
perform the detection and forms a feature detection meshmttiat outperforms all other detection
methods. The multi-scale abilities of the proposed metHimavat to better fit piecewise linear
features and approximate curvilinear features. Thesegptiep translate to a ROC curve that has
greater separation from existing line detection methoda the fixed length implementation, and
thus it achieves much higher TPRs and lower FPRs. Taking amgbe TPR 0f0.7 the best
detectors are, in order of increasing performance: Cotieol{FPR:0.246), PCA (FPR:0.213),
Bar Fixed-Scale (FPR).181) and Bar Multi-Scale (FPR0.133). These results show that the
combination of intensity information and structural infaation, rather than relying on intensity
information alone, increases detector reliability.
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Figure 3.13: An example of the harmonic transform applied spectrogram. Intensity is propor-
tional to power in voltage-squared per unit bandwidth, ihaf® /Hz.

3.3.2.2 Comparison of ‘Sub-Optimal’ Detection Methods

The second hypothesis proposed in this chapter was thataptetection methods will outper-
form ‘sub-optimal’ detection methods. It was found that thature detector proposed by Nayar
et al. and the fixed-scale bar detector would allow this caispa to be made, as they both utilise
equivalent data models. It can be seen in Fig. 3.12 that ttextiten performance of the fixed-
scale bar detector outperforms that proposed by Nayar @tex the full range of TPRs and FPRs,
confirming the validity of this hypothesis. It was found el that the ‘sub-optimal’ detection
method that achieves the closest performance to the bdmech@tas the Gaussian classifier using
PCA. This indicates that the learning method is capturirggdbrrect type of information in the
data set and results in a form in which it is faithfully regmeted and modelled using the Gaussian
distribution.

Of the other evaluated methods, the threshold and congalutiethods achieve almost identi-
cal performance over the test set. With the Laplacian andgHam Sobel line detection strategies
achieving considerably less and the Hough on grey scaldregeam performing the worst. It is
possible that the Hough on edge transform outperformed theyhlon grey scale due to the reduc-
tion in noise occurring from the application of an edge diétacoperator. Nevertheless, both of
these achieved detection rates that are considerablyhiasgshe other methods. None of the exis-
ting methods that were evaluated had comparable perfonanthe ‘optimal’ or ‘sub-optimal’
methods outlined in this chapter.

3.4 Harmonic Integration

An additional source of information that the detection gsscan exploit, other than local infor-
mation as previously explored, arises from the harmoniareapf acoustic energy. Enhancing
the detection robustness using this information was firgtoe®d by Barrett and McMahon [20],
however, subsequent research has ignored this and insasafddussed on detecting individual
tracks.

As described in Section 1.2.1 the acoustic signal emittealsryurce comprises of a fundamen-
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tal frequency and its harmonic series at frequencies tleainggger multiples of the fundamental.
Within a spectrogram these harmonic frequencies resultuhipte tracks at specific positions.

Recall that noise is an uncorrelated phenomenon and iéhengot harmonic in nature. A trans-

formation can be defined upon the spectrogram, or output efectbr, that integrates the energy
or detection from harmonically related positions, such tha

1 n
S;x = E Z Sy,[kx] (325)
k=1
fory = 1,2,...,M andz = 1,11, 155 ... N and wherefkz] < N, the transformed spec-

trogram isS” = [s,.|mxnn, the notationz] denotes the nearest integer function and the term
n controls the number of harmonics that will be integratedhia transformation. The x-axis of
the transformation output is related to fractional frequies in the original spectrogram, this ac-
counts for the frequency quantisation that occurs durimgRRT process. Quantisation rounds
fractional frequencies into the nearest quantisation hih therefore the position of tracks har-
monically related to a fundamental frequency may not regidens that are integer multiples of
the fundamental frequency. An example of the output of ttaadformation when applied to a
spectrogram is presented in Fig. 3.13. It results in a maseprent fundamental frequency, ho-
wever, the transformation has actually decreased thersgeain’s SNR fron6.56 dB to 6.23 dB.
The reason for this is concealed in the distribution siatistf the intensity values. The mean
values of the two classes are transformed closer togetheirgd1.48 and 7.50 in the original
spectrogram and9.82 and7.66 after the transformation (signal and noise respectiveba-the
ratio between these forms the SNR estimate (Eq. 1.16). Hmless, the SNR estimate does not
take into account the variance of the two classes and thsftramation has a large effect on this.
The standard deviations of the classes’ intensity valudisdroriginal spectrogram ag$.50 and
7.55 and in the transformed spectrogram these values are rohghtgd t012.00 and3.85—the
transformation has reduced the overlap between the tweadaaiding in their separability.

3.4.1 Results

To demonstrate the effectiveness of this simple transfbomathe previous experiment is re-
peated using the top performing detector, the multi-scatedetector, and this is applied to the
transformed spectrograms;, as defined by Eq. 3.25 instead of the original spectrogrémshe
harmonic set is integrated, the detector’s performancedbiated on the detection of the track
corresponding to the fundamental frequency and not allrrgpuency tracks as in the previous ex-
periment. The results of this experiment, in comparisoheadietector’s previous performance, are
presented in Fig. 3.14 and they demonstrate the vast imprenein the detector’s performance
that is afforded by this relatively simple transformation.
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Figure 3.14: Receiver operating characteristic curvelsebar detector with and without harmonic
integration

3.5 Summary

This chapter has presented a performance comparison vaithioup of novel and existing low-
level feature detection methods applied to spectrograck tlatection. Initially, a group of ‘opti-
mal’ feature detectors were defined so that each utiliseg@sing amounts of information from
the spectrogram when performing the detection and these e@npared with each other. The
information sources utilised by each of these were: thasgitg of an individual pixel, the inten-
sity distribution within a window, and the structural arg@ment of pixels within a window. It
was found that the ‘bar’ feature detector, which utilises $ltructural and intensity information
from within a window (and therefore incorporates all of thaikable information), performed
most favourably. Nevertheless, because of its exhaustigecs, in combination with a complex
model, it was found to be computationally expensive. A cqusece of these findings is that
the methods that are defined to operate on single pixel vaoleexample the solutions utilising
the HMM, multi-stage decision process and simulated ammgahat were seen in the literature
review cannot reach the performance of methods that utiieee information in the low-level
detection process.

Subsequently, a group of ‘sub-optimal’ feature detectoesewdefined that utilise machine-
learning principles to simplify the detection process. Sthevere also defined to utilise the maxi-
mum amount of information available to facilitate their quamison to the ‘bar’ detector and were
grouped into the categories of model-based and data-baaadd detectors; reflecting the source
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of the training samples used by their supervised learninggss. Due to the loss of information
that is incurred by dimension reduction techniques thesteife detectors were not able to perform
comparably to the ‘optimal’ ‘bar’ detector. Nevertheleas)ovel data-based feature detector that
utilises principal component analysis was found to be tst performing ‘sub-optimal’ detector,
in addition to reducing the computational complexity irdrrin the ‘bar’ detector. This detector
tackled the detection problem by specifically modellingrnb&se class, thus bypassing some of the
generalisation limitations that are inherent when apglyimachine-learning techniques to limited
training data (although the principal components aredgiiendent upon the track structure repre-
sented by the training set). Furthermore, a comparisondstvan ‘optimal’ and a ‘sub-optimal’
model-based feature detector, which have equivalent datiels, found that the dimension re-
duction technique used in the ‘sub-optimal’ detector, sthieducing computational complexity,
vastly reduces detection abilities.

The final section of this chapter presented a harmonic wamsition for spectrograms. This
allowed for an empirical comparison between low-leveldeadetection with and without integra-
ting information from harmonic locations. It was shown ttie transformation does not increase
the separation between the means of the track and noise€lbssinstead reduces the standard
deviations of the classes—reducing the overlap betweedidrébutions. This effect was shown
to offer a vast performance improvement when detectingléwe! features.






Chapter 4

A Track Detection Algorithm

“The field of computer vision has its sights set on
nothing less than enabling computers to %ee.

— Blake and Isard [29].

It was shown in Chapter 3 that the detection of low-leveldesd can be improved by exploi-
ting structural information, in addition to intensity imfoation, during the detection process. It has
also been shown that, assuming a harmonic series is prasguating information from harmonic
positions can further improve detection rates. This chiagateends the active contour algorithm
to create a model that incorporates these findings, formimgtalevel track detection algorithm.
The active contour model is a well known image analysis @lgor that achieves non-parametric
feature detection within an image through energy mininosatSeveral of its features, however,
prevent its application to this problem and these are ifledtand overcome with novel solutions.
Integrating a low-level feature detector, derived from hiae learning and classification tech-
niques, into a flexible track detection algorithm, that casdei any structure (dependent upon its
internal energy constraints), allows for generalisatmuriseen track structure. Furthermore, this
generalisation is enhanced by formulating the potentiakggnto be dependent upon noise class
membership alone. The model extends the notion of a harnsenies to allow for the detection of
defined patterns of narrow-band spectra—further enhargtggction at low SNRs. The proposed
algorithm is subjected to an analysis of its computationahglexity to ensure its suitability to the
real-time applications that are the concern of this thesis.

The first section of this chapter introduces and presentddfirition of the active contour algo-
rithm and a review of the literature relevant to it, with respto this problem. General limitations
of the algorithm are identified and solutions present in itegdture are discussed. The second
section of this chapter discusses the limitations of theritlyn that prevent its application to this
problem. Novel solutions are then proposed to overcometla#ations. These are presented in
the context of the active contour framework for spectrogteank detection. A complexity ana-
lysis is then presented to demonstrate the framework’alslity to real-time implementation and
finally the chapter's summary is drawn.

89
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4.1 The Active Contour Algorithm

The Active Contour algorithm (also known as a snake) is aiapem of deformable energy mo-
del proposed by Kass et al. [96] and allows for non-paramétature detection within an image
—ideal in problems, such as remote sensing, whgrgori shape information is not strictly defi-
ned. The active contour is driven by an energy minimisatimtgss and is constrained by internal
energy forces, which ensure that its shape follows certdtieria; these criteria are typically de-
fined as curvature and connectivity. It is guided by potérdizergy, which attracts the active
contour towards features by following local changes in gpegradient. As these gradients are
calculated on a local basis the contour needs to be inglitose to the desired feature to ensure
correct convergence. The active contour converges on arminiof the weighted combination
of its internal and potential energies within the spatiahdi of the image. The potential energy
constraints translate this convergence to be a local gradiexima in the image. In the original
formulation the energy minimisation is performed usingational calculus. This model has been
successfully applied to object detection and segmentatioblems in a wide range of image ana-
lysis applications such as brain segmentation; arterypitlycell and cortex detection; and road
detection in space-borne SAR images.

The original active contour model, as proposed by Kass §8l, is as follows. A collection
of k contour vertices defined on a finite grid(t) = [z(¢),y(¢)], t € {0,1,...,k — 1}, forms
a deformable contour where(t) andy(t) are the contour vertex’s position in the ima§e=
[sijlmxn such thate(t) € {0,1,..., N — 1} andy(t) € {0,1,..., M — 1}. The contour has the

energy
k—2

E@) =" (alo O + B (1) + P(v(t))) (4.1)

t=1

where the termsy and 5 control the first-order continuity and second-order cumatof the
contour respectively, and the terf is the potential induced by the image (also known as the
external, or ‘image’ energy). The continuity is defined as distance between two adjacent ver-
tices, therefore ensuring that they remain close togetrat,the curvature as the second order
distance, ensuring that the contour has low curvature téooconwith the features of interest.
Setting their weightsy and 3, to have large values increases the influence of these esergi

The potential is defined to attract the contour to salientufes in the image. The simplest
features for this are the image intensity, such as

P(v(t)) = =7Sy1)a(t) 4.2)

or gradient
P(t) = —v|Vsywam|- (4.3)

whereV is the gradient operator andis the potential’'s weight.

The active contour model is often applied to image analysilpms, which are inherently
discrete. In such cases the first and second derivativeshwbnstitute the first and second terms
in Equation (4.1), being the continuity and curvature in&energies, are discretely approximated
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by finite differences [184]. The approximation of the firstidative is taken to be
v'(t) & [o(t) —v(t — 1) (4.4)
and the second derivative is discretely approximated as
V' (t) = |u(t — 1) — 20(t) + vt + 1) (4.5)

This poses a problem when implementing an open ended adivwew as it is not possible to
calculate these approximations at each end of the cont¢dr,andv (k) (asv(—1) andv(k + 1)

do not exist!). A simple solution is to ‘mirror’ the contouestex on the opposite side of each of
these vertices, such thatk + 1) = v(k — 1) andv(—1) = v(1). This allows an approximation
to their derivatives to be calculated in accordance withdgiqus (4.4) and (4.5).

4.1.1 Algorithm Background

The original formulation for the active contour algorithas described previously, was introdu-
ced by Kass et al. in 1988. Since its introduction the alporireceived a lot of attention from
the image processing community as it allowed for flexible elliay of object boundaries, which
forms a key step in object detection, recognition and seg¢gtien problems, some of which have
been mentioned above. Nevertheless, as the algorithm westigated it became apparent that
there were several limitations that needed to be overcorabaw successful application to these
problems. The most prominent and relevant aspects of thariton will be discussed in this
section, which will be organised according to the constitymarts of the algorithm and develop-
ments relevant to each of these will be discussed. Thesetasge: contour initialisation, internal
energy representation, potential energy representatmrour energy minimisation, and multiple
contour models.

4.1.1.1 Contour Initialisation

One of the major limitations of the original algorithm is tt@ntour’s sensitivity to the initialisation
location. For the contour to converge accurately it was s&a® to initialise it close to the desired
solution, which was often achieved through user intereentiA relaxation to this criteria was
introduced by Neuenschwander et al. [133] in the form ofyreetion snakes, a form of snake that
only requires the two end-points of the object to be speclfiethe user. Alternative approaches
were proposed with the aim of removing user interventioagather; the first from Cohen [43].
This was termed the ‘balloon’ force and applied to closedmanformulations. It was noted that
if the initial contour is placed in a constant gradient areapart of the image with no potential
force—the curve shrinks on itself until it becomes a singplaint. To counteract this the balloon
force acts as though filling the contour with air, expandirfgom an initial state. If the contour is
initialised somewhere within the object to be detectedhhitoon force expands the contour until
it encounters the object’s boundary. This relaxes thealttion criteria from specific points
on (or very near) the object boundary to any point within tigect’s boundary, and combats
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the additional problem of the contour not being able to entsrcave boundary sections. An
incidental benefit of this force is that it introduces sonsilience to noise in the image as the force
pushes the contour over weak detections. Similar solutiotise balloon force exist: gravitation
external force field [164], constant normal force [194].0lwh’ force [187] and the ‘wrapping’
force [27]. Nevertheless, although some of these methode mowards a solution, they all suffer
from the problem of striking a balancing between the stiemftthe additional force and that of
the gradient induced by the potential energy. An imbalamte®en these can result in the contour
over-running the object boundary. To combat this an autiptiee dynamic force is needed that
will guide the contour towards the object [89]. An additibdeawback of these methods is the
need to determine in which direction the pressure shouldTdmis is dependent upon whether the
contour is initialised within or without the object boungaand this point is addressed with the
dual contour. Dual contours [75] consist of one contouiafited inside and a second outside
the boundary and their energies are minimised in absenceball@on force. Once each of the
contours has converged, a force is added to the contour hétihighest energy, which attracts
it towards the other. More recent developments, that ainvéwsaame the initialisation problem,
have been proposed by Xu and Prince [192; 193], referred Bradient Vector Flow (GVF),
and subsequently, Normal Gradient Vector Flow (NGVF) pegebby Jifeng et al. [91]. The
initialisation problem, as discussed, can be thought of lamitation resulting from the potential
energy force. The extent to which this force can influencectivgour is limited to a local region
surrounding the object boundary. Gradient vector flow oweres this limitation by calculating a
diffusion field of the gradient vectors derived from the ireaghe field then extends far away from
the boundary of the image and is independent of whether thi®gois initialised within or outside
the object boundary. The GVF also has the effect of overcgritie boundary concavity [50]
problem. Nevertheless, the method does have its limitgtithe calculation cannot be formulated
using the standard energy minimisation framework, instéad specified directly from a force
balance equation.

4.1.1.2 Potential Energy

Other than the local influence of the potential energy, ltioins still exist with applications in
which features are not defined, or reliably defined, by gradibange or intensity [37]. If the
image is too noisy then a large amount of smoothing is reduinnich will smooth the boun-
dary edges. Complex backgrounds are likely to produce gtaslges, which can be mistaken
as object boundaries [164]. Alternative potential energiiave been proposed to overcome these
limitations; Davis et al. [52] combine the output of sevesdbe detectors, including: the Sobel
detector; the Canny detector; maximum likelihood detectibe Mero-Vassey detector [126]; and
a bi-directional morphological edge operator. The sotutinproves edge detection and is applied
to computerised tomography and magnetic resonance méuiages, however, the increase in the
number of parameters complicates the active contour modkeita parameter selection. Wu et al.
[188] use a single potential energy and propose using tleeaessings of wavelet-frames to offer
noise resistance. Itis concluded in the paper that theisolig effective down to an SNR af dB,
and below this the performance deteriorates. DavatzikdsPaimce [51] propose an energy based
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upon the probability distribution within a region of specithickness. Minimising the variance
of the region draws the contour towards thick, homogeneousidaries in the image. Shih and
Zhang [164] combine the original energy term with a regiaalilarity energy that minimises the
difference between the intensity of the region encompalsgeélde contour and the intensity within
the contour vertex’s local neighbourhood and apply thitate objects in complex backgrounds.
Similar approaches, termed region-snakes, have been igk€hesnaud et al. [41] and Slabaugh
et al. [166], however, as the name implies, these are methesigned to segment regions of an
image and therefore tackle the problem of object extradtimm a different viewpoint. An additio-
nal model that has been proposed with respect to image segginaris called the Active Contour
Without Edges (ACWE) [37]. In this model two regions are defiras ‘inside’ and ‘outside’ of
a closed contour and the mean intensity values of thesen®gite calculated. The difference
between their average and the expected region intensitynisnised, and this minimum trans-
lates to the detection of an image segment having differeage intensity. Savelonas et al. [159]
point out that, with respect to texture segmentation, thimfilation cannot discriminate regions
of different textures that have equal average intensityasl To address this the ACWE model has
been extended to use vector-valued images [36], these msgpaeate RGB images, where each
pixel is a vector comprising red, green and blue componentsiulti-spectral images where each
pixel is a vector of components representing different wengths. Alternatively, vector-valued
images can be formed by deriving features from a Gabor wamsition [135, 158, 156], Wavelet
transformation [16] or LBP distributions [159]. These mybased active contours use informa-
tion regarding a region to define the contour’s convergencktlzerefore are not applicable in this
research.

4.1.1.3 Internal Energy

The effect of the contour collapsing upon itself in the alogseof potential energy is a side effect
of the internal energy formulation. Although these enexrdace the contour to form a smooth
shape and to have vertices that are in close proximity to ettedr, they also force the contour
to collapse into a point [184]. This is a side effect of thetomrity energy as it minimises the
distance between each vertex and therefore forcing the@gpit coalesce upon strong edges in
the image [9]. Williams and Shah [184] move towards addngsthis issue by exploring better
approximations to curvature. It is noted in the paper thatdhginal internal energies are not
normalised with respect to distance, although the valué®fehergy’s weight can be chosen to
correct this invariance. A curvature estimate is proposeskd upon the mathematical definition
of curvature (the angle between the x-axis and the tangeahttourve), however, this measure is
computationally expensive and is scale variant. Two anluiti measures are proposed, which are
based upon the original curvature measure. Squaring thatcue’s value forms a measure that is
dependent upon the distance between vertices and resaltsuirvature measure can be non-zero
when the contour is straight. Normalising the two vectorfoteetaking the difference removes
this the length dependence and, consequently, the cueveteasure is based solely upon the angle
between the vectors. Perrin and Smith [141] argue that aoaothat is a smooth circle and has
contour vertices equally spaced, fulfils the original hyyesis for the internal energy and therefore
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should be a minimum of the internal energy functions. Anriméenergy based upon geometric
properties is defined in the paper that fulfils this specificatFurthermore, this representation of
curvature combines the continuity and curvature energitesane term, simplifying the internal
energy’s computation in addition to the active contour nhode

4.1.1.4 Energy Minimisation

Within the original formulation proposed by Kass et al. gyeminimisation is achieved using a
variational approach by solving a pair of Euler equationagaiively. As such, it requires that the
energies are defined by differentiable functions and FDifierences or Finite Elements are used
to discretely approximate the continuous energy functidrs requirement does not allow hard
constraints to be defined upon the contour, such as imposdiixgcdiminimum distance between
the vertices [10]. Additionally, this method suffers fromimerical instability due to the compound
effects of the iterative approximations followed by a fertlyeometrical approximation from the
continuous plane, in which the optimisation is performedthe discrete grid of the image [9].
Search-based approaches to energy minimisation whictv aile inclusion of hard constraints,
such as simulated annealing [73] and dynamic programmihd¢®e been proposed. These tech-
nigues solve the energy minimisation iteratively, howgwlee simulated-annealing approach is
supervised and, as such, requires user intervention tdifléme contour's end points. Further-
more, these techniques are computationally expensiveeggptrform exhaustive searches within
the search space [89] and add additional complications aaathoosing the correct parameter
combination [75]. An additional iterative algorithm dext/ from the dynamic programming me-
thod [89] that allows the inclusion of hard constraints amdids exhaustive searches is proposed
by Williams and Shah [184]—the greedy algorithm. The awth@mve shown that this greedy algo-
rithm produces comparable results to the more complex rdsthie addition to which, it is much
faster than the dynamic programming method proposed by iehial. [9], having a complexity
of O(nm) as opposed t®(nm?), wheren is the number of contour vertices andis the number
of points in each contour vertex’s neighbourhood. The cexipt has been further reduced to
form the fast greedy algorithm [107], which reduces the cotation time by30% by evaluating
the energy function in alternative search patterns witlziohevertex’s neighbourhood. Further
improvements have been realised in the optimally fast gredgorithm [127]. More recently,
genetic snakes have been proposed that use a genetichatgdoitminimise the energy function
[17]. Using a genetic algorithm in this setting proved to Iseful in overcoming the problems
of initialisation, parameter selection and local minimathe energy function. In the case that
points on the object boundary can be supplied to the algoritidternative energy minimisation
approaches can be taken and, because of the restrictedispdtieh they work, these techniques
may lead to globally optimal solutions. The minimal path rgh [44] is one such method that
guarantees to find the global minimum of the energy functimh r@quires only one point on the
object boundary to be identified.
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4.1.1.5 Multiple Contours

An extension to the active contour model that allows for timeutaneous detection of multiple
objects within an image has also been presented in thetliterarl his approach can offer improved
detection rates in a number of different applications, iipalar when multiple objects that have
similar appearance exist within a single image. For thippse, Srinark and Kambhamettu [167]
propose a framework that contains an additional energy ¢atted the group energy. This energy
measures the variance of properties of the objects beirgt@etand is used to promote the correct
detection of ‘weak’ objects (i.e. poorly defined in the imphg the detection of ‘strong’ objects
and, as such, the objects must be of the same shape. An altermaltiple snake formulation is
proposed by Chalana et al. that utilises two snakes to éxteadiac boundaries within ultrasound
images [35]. In this model, however, the structure that @mtaur can model is independent of the
other. A further class of active contour model that utilisegltiple contours has been developed
to detect a single object using multiple contours [1, 198jyéver, these are applied to detecting
regions and not boundaries and are therefore not applibainée

This review has concentrated on aspects relevant to thégpnoposed by this thesis and as
such several unconnected developments regarding thes activtour model, have been omitted.
For example, extensions relevant to three-dimensionaoblgetection [42, 81], video analysis
[136], Active Shape Models [45] and Geodesic Active Cordd@d]—to name but a few.

4.2 Track Detection Framework

For the detection of features in the proposed domain twoefdbues discussed previously limit
the active contour’s application (in its original form)s isensitivity to initialisation and the as-
sumption that features are defined by local intensity gradi€hese limitations are addressed in
this section.

Itis the concern of this thesis to detect vertical curvilinéeatures within spectrogram images.
Therefore the active contour model described here is an epdad contour where the first and
last vertices are fixed to the top and bottom of the spectrogoa window within the spectrogram)
such thaw(0) = [z(0), p] andv(k — 1) = [z(k — 1), M — p], wherep is the height dimension of
the potential energy defined below. Movement of the conteutices is restricted in the y-axis to
ensure an even search along this axis. This has the addiitienefit of reducing problems that can
occur due to the internal energy’s sensitivity to the distabetween contour vertices [157] and
avoids the need to dynamically resample the contour by ptigethe vertices from becoming
too disparate.

4.2.1 Gradient Potential

Since its introduction it has been evident that the activeaar model is limited by its sensitivity
to the initialisation location and it is therefore requitecde initialised close to the desired feature
to ensure correct convergence. This is an effect of the flatemergy gradients being calculated
on a local basis and is overcome by Cohen in the closed contm& by introducing a balloon
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force that expands the contour, allowing it to be initiadissywhere within the feature boundary.
In the proposed model a similar force, the gradient potehtiais implemented, such that

W(w(t)) = [_1 (). (4.6)

This creates an uniform energy gradient across the speatmp@nd therefore across the contour’s
search space, biasing the contour to move in a given diregtith forcec. In effect, forcing
the contour to perform an even search throughout the sggatroafter being initialised at a low
frequency. As previously discussed with respect to theobalforce, the gradient potential also
prevents the contour from being trapped by spurious istlatiye points, allows it to pass over
weak edges [164] and reduces the contour’s sensitivitystnitial configuration [42]. Additio-
nally, this supplementary force enables the contour to nioteeconcave sections of the track
[89].

4.2.2 Potential Energy

Chan and Vese [37] state that a general edge-detector cagfihedlby a positive and decreasing
function g, that is dependent upon the intensity gradient of an imagsd ghat

Zlirﬂllfg(z) = 0. 4.7)
The original potential energy function fulfils this conditi but it has been shown in Chapter 3 that,
with respect for the application, where low SNRs are commenkountered, the performance of
a simple edge detector such as that expressed in the orgtettial energy function is insuffi-
cient. A problem that has also been encountered by Chalaia[86] with application to cardiac
boundary detection.

It was also shown in Chapter 3 that a detection mechanismedefined using machine lear-
ning technigues to exploit more of the information that igikable in the spectrogram. Such a
feature detector combines intensity information with gpanformation to allow for detection in
low SNR images and along broken (weak) tracks. In additiothéoproperty defined by Chan
and Vese, in this application it is required that the detecthechanism has a low computational
burden and it has been shown in Chapter 3 that exhaustivenalptdetectors do not have this
property. Nevertheless, a detector has been defined witltdmaputational burden, which per-
forms favourably in comparison with the ‘optimal’ detectord also has the property of a general
edge-detector defined by Eq. 4.7.

These properties were fulfilled by a feature detector thtneiv form the potential energy of
the active contour. The potential energy is therefore ddrivom intensity values taken within a
¢ x p pixel window W ;, centred on vertex(t) = [x(t), y(t)] where: = z(t) andj = y(t) using
Eq. (3.6). The method of spectrogram windowing is outlime8éction 3.1.2.1. Here, the windows
are taken dynamically under each vertex of the contour asives within the spectrogram. The
intensity values are arranged column wise into a vebttrusing Eq. (3.8) and PCA is utilised to
derive a compact feature vector that represents the windewiding the ‘curse of dimensionality’
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[28]). Its similarity to noise can be measured by testingriesnbership of a noise model. To allow
its use as a potential energy, the measure has to be formttatake a maximum value when the
window contains a signal track and minimum value when thedaincontains noise.

A multivariate Gaussian distribution is used as the noisdehand this is fitted to examples
of the noise class within a space defineddgyrincipal component basis vectors, such that

Go(t) = meéfﬂ(i")—lé) (4.8)

[MJIoH

for @ = UTV,’, whereX" is the standard deviation of the low-dimensional noisetetysnd
ij is the feature vector after removing the high-dimensiomagen cluster's mean (both of these
are determined during a training phase). When subtractiagrtean it is necessary to observe
the following condition; if a component of the vector is zgits corresponding value in the mean
removed vector is also zero. This enables the contour totafédy ‘ignore’ previously detected
pixels by setting their values to zero, a condition that $® gdhysically meaningful—if no power
is present in the pixel, no signal can be contributing to #kig. Therefore, during the training
phase the noise cluster will be centred on the origin of tiedamensional space by subtracting
the mean of the noise cluster in the high-dimensional sp‘ﬁme.vectorVij is therefore calculated

such that Ny
i 0 if V7 =0,
V) = Lo (4.9)
V) — u} otherwise

WhereVlij is thelth component of the vectdr/ andp; is thelth component of the vectqr™.

4.2.2.1 Noise Model Training

The parameter#/, u" and " are determined during a training phase and are then stored fo
use during the algorithm’s application. First it is necegda derive the subspace spanned by the
orthogonal basis vectous, . . . , u4 in which the noise model will be defined, whetés the rank

of the matrixU. The bases for the new space are derived through unsupkte@ming using
PCA [28] and therefore a training s& = [z1,...,=,]7 wherex; = V¥ is formed such that it
includes equal numbers of examples of windows containingatufe and those containing only
noise. The principal componenisg, of this training set, are found by maximising the quantity
such that

1 _
=1
whereZ is the mean vector oX, subject to the orthogonality constraint

T
u; Uy = oy,
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Figure 4.1. Windowed spectrogram feature vectors projeoteo the first two principal compo-
nents (window siz& x 21 pixels). The noise class is represented by red circulartggdine two
signal classes, having an SNR3&nd6 dB, are represented by blue and green crosses respecti-
vely and the contours represent the Gaussian distribuiimneasing the track’s SNR increases its
distance from the noise class. The three pronged fan steuagults from the track being present

in the left, middle or right of the window.

whered;, is the Kroneker delta. A subset of the basis vectbisis selected as the firgtprincipal
components to form the low dimensional space, such that

U:[ul,...,ud]. (410)

By storing the basis vectors, the window vectors derivechasattive contour evolves can be
projected into the same space. Projecting the trainingrgettbese basis vectors results in a distri-
bution similar to that presented in Fig. 4.1, in which thera tlear separation of the classes and in
which the noise is modelled using the Gaussian distributfooonsequence of the dimensionality
reduction process is that the number of basis vectors usenbdiel the subspace (the space’s di-
mensionality) is a parameter to be determined. In the caBE#éfthe dimensionality should reflect
the proportion of the training data’s variance that is tody@esented and the fraction of training
data available to the algorithm’s training process. Cousatly, the number of dimensions to be
used is dependent upon the training data used to derive ithegal components. Therefore the
value ofd that is applicable to the proposed application and databeiltietermined during the
algorithm’s training process.

Now that the space in which the noise model is to be defined éas tberived, the model can
be fitted to the data. The noise samples are extracted frotnainéng setX, such thatX™ ¢ X
whereX™ =# (), and their mean is calculated in the original high-dimenaispace, such that

pt=<> (4.11)
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(a) Single track, as defined in Eq. (4.14). (b) Multiple tracks, as defined in Eqg. (4.15)
(h =5andc = 0).
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(c) Original spectrogram. (d) Ground truth.

Figure 4.2: Potential energy topologies far&d x 180 pixel section of a spectrogram. The x-axis
represents frequency, the y-axis time and, in the origipatsogram, intensity is proportional to
power in voltage-squared per unit bandwidth, that ¥¥Mz. For easier interpretation the values

in (a) and (b) ara — E(v(t)), making the valleys peaks and vice versa. A window size »f21
pixels was used to generate this data.

where! is the number of vectors within the s&™. This mean is removed from the training
set to formX] = X" — u™. The termX is defined as the standard deviation of the noise
cluster within the low dimensional subspace. The mean edmtoise cluster is projected into the

low dimensional space such th&: = UTX" and therefore>2" can be calculated using the
maximum likelihood estimate [60], such that

ST 1 ~n NAVEX) ~n\T
> =7i§;<wi—u ) (@] — 1) (4.12)
where z
AT 1 ~n
7 =7;wz (4.13)

and wherevz" € XZ is a vector containing only noise ahd the number of such vectors within
the set?f?. The contours of level response resulting from such a maead@picted in Fig. 4.1.

4.2.2.2 Individual Track Detection

The noise model’s response can be combined with the grapidential that has been defined in
Section 4.2.1 to replace the original potential ene@yjn the energy formulation of the active
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contour model, Eg. (4.1), such that
P(u(t)) = W(v(t)) +7G(v(t)) (4.14)

where~ is the potential energy’s weighting.

The feature space topology resulting from Eq. (4.14) islainio that presented in Fig. 4.2a,
demonstrating that the combination of spatial and intgnsitormation produces few spurious
detections and a large gradient change at track locatiorsiratble properties for feature detec-
tion using the active contour algorithm. Neverthelessaiftesimultaneous track is a component
originating from a common source, and therefore is part dfaature pattern, the local nature
of the energy term results in multiple detections, one faheeomponent, and not a single de-
tection for the whole pattern. In addition to this, some & thlse positive detections have the
same magnitude as true positives and in short time framss #re hard to separate with a simple
threshold.

4.2.2.3 Multiple Track Detection

To overcome these issues when performing low-level featetection it has been necessary to de-
fine the harmonic transformation that was described in 8&@&i4. This transformation integrates
information from harmonic locations in the spectrogramoimrf a single, more distinguished, track
in the output and it also has the effect of suppressing falséipe detections. A similar transfor-
mation will be integrated into the potential energy of thivaccontour to alleviate the issues found
in the single track formulation. The transformation will &eended to integrate information from
locations defined by the characteristics of the target togdbeatied and as such the harmonic trans-
formation previously defined is a special case of this in Whie track relationships are defined
by integer multiples.

It was discussed in Chapter 1 that simultaneous tracksnatigig from a common source can
have some underlying linear relationship, for exampleiookr signals are made up of harmonic
frequencies and produce tracks in a spectrogram at harrfagtions. Thisa priori knowledge

can be represented by a pattern Bet= {m,...,my}, wherem; € R* is a multiple of the
fundamental frequency, and can be integrated into the patemergy function, Eq. (4.14), such
that

P(u(t) = W(v(t) + 7

h m; 0
o[ o) .

wherem; = 1 (the fundamental frequency) and the telir> 1 is the number of relative frequen-
cies inP,. Window samples in Eq. (4.15) are taken from relative laratias defined i and
the potential energy forms a pattern-based active conganck—an active ‘mesh’ (Fig. 4.3) that
stretches under the influence of the harmonic relationstspts fundamental position increases in
frequency.

The modified feature space incorporating harmonic infoionat similar to that presented in
Fig. 4.2b. The averaging of detections in several locati@ssly reduces the unwanted effects of
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Figure 4.3: The contour mesh, the contour ‘body’ in circlesharmonic set locations defined by
P, in squares and lines depicting the connection of potentialgy.

the energy term defined in Eq. (4.14). In particular, a trac&sponse is now located at a single,
more localised, position corresponding to the fundamédntguency of the signature pattern and
this is easily distinguished from the weaker harmonic raspo Gaps in the track, a result of
weaker signal sections, have been interpolated with irdtion from higher harmonics and false
positive detections are weaker due to the random, unctecglaature of noise. In this example,
these are now easily distinguished from true detectionhantgime periods.

A final point regarding the potential energy; it was outlimethe literature review presented at
the start of this chapter that some formulations of the actontour model require that the potential
energy is differentiable. For example, this is the case wiagiational calculus is used to minimise
the contour’s energy. Although it has not been presentedi@s within this thesis, the potential
energy force can be utilised as a separate transformatige sind applied to the spectrogram prior
to the active contour. In this case the original potentiargy (the pixel’s intensity value) can be
utilised and therefore any minimisation technique thatppligable in the original formulation
is also applicable in this case—thus it is equivalent. Tlyigdsses the need for a differentiable
potential energy, however, in this thesis the greedy enamgymisation technique will be used
and therefore the condition of differentiable energiesoisnecessary.

4.2.2.4 Noise Model

A single Gaussian distribution is used to model noise in top@sed algorithm. Noise excursions
above a certain threshold are classified as ‘signal’. In arsiged learning situation this improves
generalisation to unseen cases and is a useful propertyregiect to the concerned application,
and any that has similar characteristics, in which the fe&wappearance, for example the track’s
shape, can vary significantly against a background of umifobise. Consequently, it may be
necessary to model noise with different characteristiogdver, the formulation of this algorithm
facilitates this. In a similar vein to the generalisationdady Chan and Vese regarding the edge
detector, it is possible to state that any noise model thatbeadefined as a positive increasing
function and one that is dependent upon the noise in a samghebe adopted in the proposed
algorithm. In fact, all probabilistic models fulfil this ¢erion and have the additional benefit that
their outputs do not require scaling to fall within the umitsrval. Furthermore, this generalisation
permits the inclusion of a wider range of classification rodthsuch as those explored in the
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previous chapter.

In situations where the track class is well defined, i.e. wlitdras little variability, the problem
allows for the modelling of the track class. It is therefoosgible to augment the noise model with
information derived from the track model. Under this foratidn, wheres is a positive and in-
creasing function of membership to the track class, the &&imEg. 4.15 should be supplemented
such that

G(z) =1—s(z). (4.16)

Some problems may exhibit temporal variability of the nalsgribution—a characteristic that
is not explicitly accounted for with the proposed noise moblevertheless, an extension to expli-
citly model temporal variation of the noise’s mean intensan be incorporated into the proposed
model. This aspect is not fully explored in this thesis bub solutions to the problem will be
briefly presented here. The first solution achieves thisriamae by removing the mean from the
window vectors prior to processing, similar to the techeiag achieving lighting invariance in
photometric image analysis [71], which results in vectbit model each pixel's deviation from
the their mean and not their absolute intensity values. €herdl is a more complex method that
exploits the sparseness of frequency tracks in a specimpgramost cases a source will not be
present in a spectrogram, however, in the case where thists exsource that emits say ten nar-
rowband frequency components and the spectrogram is thi ofsa 1,000 frequency bin FFT
process, the track class represents dffyof the data. In this context the frequency tracks have
a very small skew on the maximum-likelihood estimate of tatad mean and can therefore be
ignored or accounted for through bias estimation [60]. Achsthe mean of the noise model can
be updated at each time step to be equal to the mean value afriest spectrogram frame.

4.2.3 Internal Energy

The internal energies for the active contour model are definyethe first and second derivatives
along the contour, Eq. (4.1). These energies force the apomertices to remain close to each
other, a condition enforced by the first derivative, and teehlow curvature, enforced by the
second derivative constraint. Williams and Shah demoatesthet for a closed contour under no
influence from a potential energy, these internal energiefthe contour to collapse into a point.

In the case of an open-ended contour, these energies fercetitour to have a straight, verti-
cal configuration. With reference to Figs. 4.4, 4.5 and 4n@malysis of the internal energy values
under three, ideal, configurations demonstrate this effdut three cases under investigation are:
configurations in which the contour is vertical; obliquedainusoidal. It can be seen that it is in
only one of these cases that the sum of the internal enegi@énimum (the case in which the
contour is vertical). The consequence of this is that therimatl energies bias the contour to form
a vertical configuration when detecting tracks that haveddrtige other configurations.

Perrin and Smith [141] alleviate this problem in the closedtour case by defining an internal
energy based upon local geometric properties of the neigirigp contour vertices. The energy
is calculated as the distance from the current contour xgsition to the point on the perpen-
dicular bisector of the two surrounding vertices that hagxerior angle equal to the mean of
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Figure 4.4: The original internal energies’ values when ellgty a straight vertical track.
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Figure 4.5: The original internal energies’ values when ellaty an oblique track.
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Figure 4.6: The original internal energies’ values when ellaty a sinusoidal track.
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Figure 4.7: Anillustration of the optimal contour vertexsit@n as defined by the internal energy
introduced by Perrin and Smith.

the exterior angles between the five neighbouring verticetheir paper, however, the solution is
presented in a descriptive manner and not mathematicalygorithmically. In this section this
point is addressed and a mathematical formulation of theggrie derived. This problem can be
formulated as calculating the lengths of sidesndb of an isosceles triangle, see Figure 4.7, and
can be solved through simple geometrical properties asvisll

The length of the base of the isosceles trianglgu& — 1) — v(¢ + 1)|| and the two equal
length sides have lengthi®)(t — 1) — v/(¢)|| = |lv(t + 1) — ¥(¢)|. The case in which the base
of the triangle is parallel to the x-axis will be consideradtfand then this will be generalised to
the case in which the triangle is arbitrarily rotated. Thesidvertex positiony’(t), for v(t) is at
v(t — 1) + [a b]T wherea andb are equal to half the length of the isosceles triangle’s baskts
height, respectively. The componenis therefore calculated such that

a =5l = Sllo(t 1)~ it + 1) (4.17)

whereb(t) is the length of the triangle’s base, and the midpoint betwee — 1) andv(t 4 1) is
simply

b () = v(t + 1) + %b(t). (4.18)
The componenb is the distance betweeh, (¢) and the ideal vertex position’(t) on the per-

pendicular bisector. This point lies on the perpendiculisedtor such that the angle between
v(t — 1) —2/(t) andv'(t) — v(t + 1) is equal to the mean anglét) of the three surrounding
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contour edges, such that

1 cos—1 u(t) - u(t—1)
=3 (nu(t)n T 1>||> (#.19)

wherewu(t) = v(t — 1) — v(t) for any non-zero vectou(t) [143]. Therefore anglé”(t) (see
figure 4.7) is

0'(t) = M (4.20)
and subsequently
0"(t) = 180 — 90 — &'(t). (4.21)
The distancé is calculated through basic trigopnometry, such that
1 !
b= 5\\b(t)H tan 6 (t) (4.22)

and the ideal vertex positionl (¢) is thereforev(t — 1) + [a b]” for the special case that the base
of the triangleb(t) is parallel to the x-axis. To generalise this, the veatdi]” needs to be rotated
by 6* degrees, wheré* is the angle at which the triangle’s base intercepts theix-aunch that

cos(6*)  sin(6%) (4.23)
—sin(6*)  cos(6*) .

a

v(t)=v(t—-1)+ ;

wheref* = ul(lzk%l\o}' The energy term, as defined by Perrin and Smith [141], is ttheislistance

betweenv’(t) andw(t), such that

Bin(v(t), z) = [[[v(t) + @] — v'(1)] (4.24)

wherex € neighbourhoo(t)).

This energy term preserves the curvature criterion, defimigihally by the second derivative
along the contour, by enforcing that the angles between dhéoar's edges are equal. It also
preserves the continuity criterion, defined originally be first derivative along the contour, by
forcing each contour vertex towards a point on the perpetalibisector of the surrounding ver-
tices. The energy term proposed by Perrin and Smith therefambines the properties of the two
original internal energy terms into one and thus reducestingber of internal energy parameters
by the same factor.

4.2.4 Energy Minimisation

The minimum of the active contour’s energy, as defined by £4)(translates to the detection of
a feature within a spectrogram. The iterative greedy algariproposed by Williams and Shah is
used as the energy minimisation technique, as it has a lovpatational complexityO(nm) and

it relaxes the constraints upon the forms of the energy fonstimposed by other minimisation
techniques. Specifically, the algorithm allows the eneggyns to have non-differentiable forms,
such as those of the internal and potential energies odtiimtnis chapter, without loss of accuracy
[184]. In terms of execution time, it has also been shown tipexform energy minimisation
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Algorithm 4.1 Contour energy minimisation
Input: S, spectrogramy; and f,, search range.
Output: o, contour positions.

1. s« 1

2: initialise contourv® at —1

3: initialise contourv®*~! at f;

4. while Vv®(t) < fo do

5: while Vv*(t) # v*~1(t) do

6: fort=0,1,...,k—1do

7: if v371(t) < fo then

8: v*(t) = [i,7]" where arg min E([4,7]7)
(4,5) €neighbourhoofvs—1(¢))

9: else

10: vi(t) = v L(t)

11: end if

12: end for

13: end while

14: if Jv°(t) < fo then

15: storev®(t) in detections such tha¥’ (t) = v*(t)

16: jJ+1

17: fort=0,1,...,k—1do

18: v3tL(t) = v*(t) + [2,0]7

19: Sy(t),2(t) = 0, where[z(t), y(t)] = v°(t)

20: end for

21: s+ s+1

22: end if

23: end while

24: return detectionsy

using finite differences and LU decomposition as utiliseddohen and Cohen [89]. The greedy
algorithm is a gradient descent method for energy miningiaatnd the pseudo-code that describes
this process in detail is presented in Algorithm 4.1. A aandiry note; due to the iterative nature
of this energy minimisation process it is possible that therithm cycles between two low energy
states indefinitely and therefore this occurrence shoutd o additional stopping condition when
implementing the algorithm.

The process updates each contour vertex’s position to themam within its local neighbou-
rhood (determined by the function neighbourh¢e@))). The neighbourhood is normally taken
to be the3 x 3 square neighbourhood centred on the contour vertex. Thépeated for each ver-
tex until the search range has been exceeded (or no movesmnsp—at this stage the contour
has converged to a minimum of the energy functéin The position of each contour vertex at
the minimum is stored as a detection (see Section 4.2.5 belod the contour re-initialised at
higher frequency bins that are out of range of the currergdtien; in the case of & x 3 pixel
neighbourhood each contour vertex is re-initialised twelsi higher in the frequency axis (line 18
in Algorithm 4.1). In this way, the contour does not miss aragcks that are close to the first. Al-
though the contour is re-initialised two pixels after a déta, the space between the position of
re-initialisation and the detection is captured withinteaontour vertex’s local neighbourhood,
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and so this space is not ignored. It is however harder fordhéocr to reach this space due to the
gradient potential biasing it in the increasing frequenitgadion. Once the maximum frequency
defined by the search range is reached the algorithm temsinegturning the detections found
during the energy minimisation process. The search rgpgeN and f> € N can be taken as the
complete frequency range available in the spectrogramfi.e- 0 and fo, = M — 1, so that an
exhaustive search for tracks within the spectrogram iswcted. Alternatively, if it is known that
the tracks to be detected are located within a specific freyueange, a contiguous subset of the
spectrogram corresponding to that range can be specifibdisaicf, < fo < M — 1.

A drawback of performing energy minimisation for the deitmttof features is that if a weak
feature and a strong feature reside in close proximity tdemhber (within each other’s local
neighbourhood) and the weak feature is encountered pritietstrong feature, it will be missed.
This is because the contour is drawn away from the weak featsithe minimum within the local
neighbourhood moves to the position of the stronger featm@te that this will not occur if the
strong feature is encountered first as, according to linef ¥gwrithm 4.1, it is removed before
the contour is re-initialised.

4.2.4.1 A Note on the Vertices’ Neighbourhood

Now that the potential energy is formulated to make use dlpitaken from within a window the
configuration of these windows in the vertex’s neighbouthshould be considered. The original
potential energy makes use of the pixel values in the vertesighbourhood and these pixels can
be thought of as a special case of a window that has thelsizd pixels. Extending this to a
window of a larger size results in windows that are centreshugach point in the neighbourhood.
If, for example, the window has a width &f pixels and these windows are centred upon each
point in the neighbourhood, the information derived fromesal points in the neighbourhood will
overlap. To correct for this, neighbourhood positions ®I#ft of the vertex should be associated
with the rightmost column of the window, those to the righd@sated with the leftmost column
of the window and those in the centre of the neighbourhoodildhze associated with the centre
column of the window. This results in a configuration in whtble evolution for each side of the
contour is driven solely by information from that side.

4.2.5 Rolling Window

Thus far, the spectrogram has been treated as a stationagg jfowever, in real applications this
is not always the case. The spectrogram can be constructeglitime and, as such, updated
as each observation arrives. The short-term Fourier wamsis applied to the observation and a
new row of the spectrogram becomes available. Convenligralthis time the oldest row of the
spectrogram is removed and a “rolling window” or “waterf@ibplay” of a fixed height is formed.
Track detection can be repeated within this scrolling wimds the data is updated. This leads to
the consideration of how often the detection is performetifaow the output of the algorithm (the
positions in each rolling window at which a track is detegtisdnterpreted. Consequently, two
configurations arise, each having separate approachettprigting the output.
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The first configuration is as follows; the detection is pearfed within the rolling window as
each new row becomes available and therefore the deteatimess integrates past (and perhaps
future) information to enhance the detection at each tinietpdn this way each row supports
k detections as it flows down a rolling windokvpixels in height and the active contour has
vertices corresponding to each row in the rolling windowthiis configuration several approaches
to interpreting the algorithm’s output exist, each of whbduces a different system behaviour,
these are:

a) The set of detection locatior3; composed of the co-ordinate positiojist]” of the first
contour vertex of each detection within the rolling winddar(each update of the rolling
window), such that

T
Dy = [l,j]T([l,j]T = [z H @{(o)] (4.25)

wherei = k,k+ 1,...,N — 1 is each row of the spectrogram aﬁgil(o) is the location
in the first row of thejth detection (convergence of the contour) within the rglimindow
that has row of the spectrogram as its first row. The muItipIicatiorix’}tO) with the vector
[1 0]T simply extracts the x-axis co-ordinate from the first row.isT¢an be interpreted as
the detection process utilising past information to enbahe detection in the current time
step.

b) The mean position along the x-axis of all the contour gesiof each detection within the
rolling window, such that

Dt = [lvj]T

k1221 !
1 /AR P - AJ‘
41" = [z M T H ¥ (t)] : (4.26)
t=0
This configuration could be beneficial if smoothing of theedtibn output is needed, the

averaging of locations smoothes detection irregularities
¢) A combination of the output from thie detections that each row supports, such that

T
D, = [l,j]T‘[l,j]T:[z’—t,[(l)]@g(t)] , t=01,....k—1 (4.27)

which allows an initial, quick, estimate to be made basechupe detection in one time
step, which is refined throughout subsequent iterationgs ifikerpretation requires post-
processing of the sdd; to combine the detections from the multiple iterations.

This configuration is characterised by an initial detectietay after the arrival of the first observa-
tion equal to the time that it takes to fill the rolling windo@nce this period has passed, detection
can take place each time that a new observation arrives.

The second detection configuration simplifies the processeimoving the overlap between
rolling windows and therefore detection is performed edmtie tthat the rolling window is com-
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pletely updated. In this configuration each row supportctix@ane detection and the delay in
detection is the amount of time in which it takes to refreshwhole rolling window. The out-
put of the detection process for each row in the rolling wimnds stored in each iteration of the
algorithm, such that

1 .
Dt={(17j) 1" =i -+, H @i(t)]} t=0,1,....k—1 (4.28)
wherei = k- 1,2k —1,..., L%j is the row of the spectrogram ard is the number of rows in
the spectrogram.

4.3 Complexity Analysis

In the context of a spectrogram track detection algorithapplication, it is important that detec-
tions are made in real-time. In a majority of situations thgpoathm would be expected to be
used on-line and therefore its complexity should refled. ttiis such, any training costs will be
ignored and the analysis of complexity will be concernechwlite algorithm’s on-line execution
costs. It is widely accepted that a linear or quadratic tim@glexity is acceptable as a tractable
solution under these considerations. Therefore, an asalfthe algorithm’s complexity in terms
of time and space, with regard to the potential energy and footmulations of the internal energy,
is conducted to establish whether or not it is a tractabletiewi (it has been shown that the greedy
energy minimisation algorithm has complexity»@n), Section 4.1.1.4). The notation that will be
used throughout this analysis is big O, wheris the number of elementary arithmetic operations
(add, subtract, multiply and divide).

It will be assumed that vector multiplication (and therefdhe dot product) has complexity
O(n) as, using schoolbook matrix multiplication [48], multiplg a matrix of sizen x n with a
matrix of sizen x p has the complexity Onnp). As such, two vectors that have the sides x
andx x 1, and thereforen = 1, n = x andp = 1, result in a multiplication complexity of
O(1nl) = O(n).

4.3.1 Original Internal Energy

A study into the algorithm’s time and space complexity révdhat they are both linear with
respect to all parameters except the dimensionality of tterpial energy’s feature space. This
non-linearity is the result of the computation and storifighe inverted matrix= ! in Eq. (4.8),
which has a time complexity of @?) using Gaussian elimination [60] and a space complexity of
O(n?). Although, as matrix inversion and multiplication are cautgtionally equivalent [5], the
more efficient Strassen [168] and Coppersmith-Winograd &gbrithms reduce this complexity.
Regarding the time complexity, &' does not vary during the algorithm execution its value can
be determined prior to execution and stored for subsequsert-teducing the execution time from
O(n?) to O(n?). Also, the matrix multiplication@” X ~! in Eq. (4.8) is processed in(@?) time
asQ” has a size of x s andX ! is a matrix of sizes x s (the complexity of matrix multiplication
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between & x m matrix and am x d matrix is Qnmd) using the schoolbook method [48]—as
m = d andn = 1 in this case, the order is(@?)). Fortunately a low PCA dimensionality
(typically 3—6 dimensions) is sufficient to capture enough informatiorefmzurate track detection
and therefore a non-linearity inis acceptable.

4.3.2 Perrin Internal Energy

In terms of the potential energy, the same formulation islis®oth versions of the algorithm and
therefore the complexity remains(@¥) due to the matrix multiplication betweed” and X!,

as described previously. What remains to be shown is tha®¢hen internal energy formulation
does not have a greater complexity than this. It can be se¢thin only components of the Perrin
calculation (outlined in Section 4.2.3) that are not linag: cos, sin, cos™ !, || ||, and the matrix
multiplication inv’(¢). Analysing these in turn; the elementary trigonometriccfions, cos, sin,
andcos~ !, can all be computed (M (m) log(m)),wherem is the number of digits precision
and M (m) is the number of single precision operations required tatipiylm-bit integers [31],
which within this analysis are assumed to be constant. Tharscand square root involved in the
distance function| || can all be computed with a complexity of @ (m)) using Newton’s method
[31]. The matrix multiplication involved in calculating’(¢) can be calculated using schoolbook
matrix multiplication, which has complexity @np), wherem, n andp are the matrix dimen-
sions, in this case» = 1, n = 2 andp = 2 = n and therefore the complexity is(@?) for a fixed

n = 2 as the size of these matrices do not change. As this is theamnpthat has the highest
complexity within the calculation of the Perrin internaleegy, and its complexity is equal to that
of the original formulation, it can be concluded that therlPeenergy introduces no additional
complexity to the algorithm.

4.4 Summary

This chapter has presented an active contour frameworkh&detection of single and multiple
tracks in spectrograms. A discussion of the original aatmetour algorithm, its limitations and
alternative methodologies, has also been presented. asiletl to the identification of issues that
prevent the algorithm in its original form from being appli® spectrogram track detection. Novel
solutions to these problems have been proposed in thisahaftie performance of the original
algorithm is dependent upon the location in which it is alifed and the gradient potential energy
function was proposed to overcome this. The potential gnfenge, which defines the feature’s
location in the image, relies upon intensity informatioanfr a single point and this was found in
Chapter 3 to be insufficient for this problem. To rectify trasnovel potential energy formulation
based upon supervised learning techniques has been pdojoosde advantage of structural and
intensity information to increase detection rates. Moegpthis potential energy has been exten-
ded to integrate information from harmonically relatedifposs in the spectrogram to improve
detection at low SNRs. The potential energy explicitly medbke noise, which improves gene-
ralisation to unknown track structures when using machéaening techniques. The conditions
under which the noise model can be augmented with informditan the track class, in problems
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where it is well defined, have been identified in Section 442.2% has also been shown that the
original internal energies bias the contour towards a cardigpn that does not accurately model
the variation of structure observed in spectrogram tradksese energies were therefore repla-
ced by the internal energy proposed by Perrin and Smith,wtt@moves the ‘geometrical’ bias.
Within the proposed framework the greedy energy minimiseéilgorithm was preferred over the
variational calculus approach as it relaxes the restristilmposed upon the forms of the energy
functions as well as having a reduced computational coritplekn analysis of the framework’s
computational complexity has shown that it is applicablectd-time implementations.






Chapter 5

Algorithm Evaluation

“The true method of knowledge is experinient.

— William Blake, 1757-1827.

It has been demonstrated in Chapter 3 that, when detectimdeleel features, structural and
harmonic information can be integrated into the processifmove track detection rates. In Chap-
ter 4 these findings have been realised within an active ooratgorithm for high-level track
detection. The active contour algorithm allows genertifisato unseen track structures due to the
flexibility of the model in the absence of rigid shape pararset

In this chapter the above algorithm is assessed using thbetimdata set described in Sec-
tion 3.3.1. The first section of this chapter presents, ascldises, the evaluation measure that will
be used throughout the experimentation. The subsequetitrs@cesents an analysis of several
of the algorithm’s parameters for which values can be detexdhfrom the experimental results
of Chapter 3. Following this analysis, several empiricahparisons are made between the detec-
tion performance achieved using variants of the algoritfihese comparisons aim to demonstrate
the algorithm’s applicability to the problem of weak feadetection, and more specifically, to
determine the validity of the following hypotheses:

» The internal energy proposed by Perrin and Smith modelsraunl structure observed in
this problem better than the original internal energy.

« The potential energy formulation proposed in this thestsaases track detection perfor-
mance when compared with the original potential energy.

« The detection of harmonic patterns of tracks, as opposeaddigidual tracks, increases
high-level detection performance.

Preceding each evaluation is presented a study into thiitstalb each variant of the algorithm
in relation to a variety of parameter value combinationsis Téads to the selection of appropriate
combinations of values for use in each experiment, whictdasigned to test the various aspects
of the algorithm by applying it to a number of test scenaridsdiscussion of the findings from
each evaluation is presented, related to existing liteeatind finally, the chapter’s conclusions are
drawn.

113
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5.1 Evaluation Measure

The evaluation measure chosen for use during this evatuaidhe Line Location Accuracy
(LLA) proposed by Pratt [145], and used by Di Martino and Tatnd [57] for this application.
The accuracy is evaluated by a figure of merit that is at itsimam when all track pixels are
detected and no false positive detections exist. A set afletcted pixel location®; can be
constructed from the output of the track detection modetleded in the previous chapter, and
there also exists ground truth data. This data is in the fofra set of actual pixel locations
P, = {(4,)|s:; belongs to a track therefore the figure of merit is formulated such that

1 1
F=—v— Z - — 5 (5.1)
max([A], 1Di) 4=, T+ min (1i,3) = [ HIP)
where |P;| and |D;| are the cardinalities of the actual and detected track @igerespectively,
I|[Z, 4] — [L, k]|| is the Euclidean distance between the detected track pix¢land the actual track
pixel [I, k] and\ € RT where, throughout this chapter,= 1.

The parameteh controls the influence of the distance from detection to kogation, values
below one suppress the measure’s degradation resultingifraccurate detections or false posi-
tives. It is therefore possible that two methods which aehigigh LLAs when\ = 1 may have
equal LLAs when\ = 0 as, in this state, the figure of merit is simply measuring #t®between
the number of detections and the number of true locationgh&umore, an algorithm that results
in fewer, more accurate, detections will result in a highleAlthan one which produces the correct
number of inaccurate detections whes= 1. When, however) is sufficiently small, it is possible
that the LLA of the former becomes less than that of the latter

It can be observed in Eq (5.1) that the occurrence of a numbesralitions drive the value
below its maximum. In the case that a detection is close tondiat the same location as the true
occurrence, the Euclidean distance between the deteatithe true position|[i, 5] — [I, k]|?,
reduces the function’s value. The difference between tinebmu of detections and the number of
true occurrenceg);| and|P;|, also reduces the function’s value when false negativelse fao-
sitive detections occur. The LLA measure therefore aggesga number of commonly measured
factors into one figure of merit.

5.1.1 Experimental Data

The training and test sets described in Section 3.3.1, ugoahwhe low-level feature detectors

were evaluated, are combined to form the training set usedgithe experiments presented in

this chapter. The training set therefore comprises twotspgams generated from each of the
parameter combinations previously outlined in Section13.Furthermore, a new test set is ge-
nerated, in the same manner as previously described, whitaios ten spectrograms generated
from each of the parameter combination.
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5.2 Parameter Selection

It has been shown in Section 3.3 that by calculating the PQAove using low SNR data samples,
the signal detection rate is maximised. The same procedurseid to calculate the PCA vectors
for use in the active contour’s potential energy to proviue liigh-level algorithm with sufficient
information to detect the features. The lower dimensionAkpace in which the noise is model-
led using Eq. (4.8) is therefore derived using PCA arid0 feature vectors containing noise and
1,000 feature vectors containing track and noise, each extrdmted within a3 x 21 pixel win-
dow from spectrograms having a mean SNR-of£5 dB. Previously, however, it has been found
that the best ROC performance is achieved using a subspai® tsx dimensions. The ROC
measure used to determine this is a balance between theéaiive detection rate and false ne-
gative detection rate. The active contour algorithm is igago false positive detections, which
can cause a local minimum of the contour’s energy gradietitinvits search space and therefore
result in false positive detections within the high-levetettion process. It can be seen in Ap-
pendix A, Fig. A.1, that increasing the dimensionality of gubspace, whilst increasing the track
detection performance, also decreases the noise detpetiformance. By analysing the track de-
tection performance as the dimensionality increases ibeasseen that a good balance is achieved
at a dimensionality of three. Using fewer than three dinmmsiesults in a large decrease of the
track detection performance and incurs an increase in itability. Adding further dimensions,
although increasing the track detection performance, donlys so by approximateli~2% per
dimension. The noise detection performance is reduced bydnrsmaller amount, however, it
should be noted that a typical spectrogram is largely coegbognoise. For example, in the condi-
tions of this evaluation the percentage of each spectrogmatiorms part of a track i8.63%—the
remaining99.37% is noise. It is therefore much more beneficial for highdeugorithms, such
as the active contour algorithm, to have fewer false pasiietections made at the low-level. The
use of three dimensions is further justified by analysing?@é\ eigenvalues, which are presented
in Fig. 5.1 and show that, of all the principal components, first three account for the largest
portion of the data’s variance and, by definition, theseghmencipal components minimise the
data’s mean square error.

Surface views of the principal component vectors, which lbarseen in Fig. 5.2, confirm
PCA's ability to capture salient information from this dafiche first is similar to the Prewitt, first
derivative, edge detector [147]; the second, a secondapaerivative edge detector, similar to
Eg. (5.2); and the third the inverse of that.

"
Sij = Si—1,j — 28ij + Sit1j (5.2)

Finally, the potential energy term, presented in Eq. (4.4Bpwsa priori information regar-
ding the position of relative frequencies to be built inte thetection process through the use of the
pattern setP. This additional information enables the potential engggyn to sample multiple
concurrent features and, therefore, increase the retiabil detection. Within the data set, five
frequency tracks are present that are described by thempateP, = {1,2,3,4,5} (plus the
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Figure 5.1: The eigenvalues associated with the principalponents derived by averaging over
10 random training sets, each containin00 examples of each class. The top line represents the
eigenvalues foR.5 dB SNR examples, the middle5 dB SNR and the bottors-0.5 dB SNR and
error bars of standard deviations (SNRs have been rounded to the n@arei).

(a) First Principal Component. (b) Second Principal Component.
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(c) Third Principal Component.

Figure 5.2: The first three principal component vectors e@as3 x 21 point surface plots.

fundamental frequency). The search was optimised by lisitig the contour withinl0% of the
expected frequency position for a particular source. Tinout all of the experiments presented
in this chapter, the active contour’s length is sefte= 20 and all SNRs quoted in this chapter
have been rounded to the nearés$tdB and calculated according to the definition presented in
Section 1.2.3.

5.3 Comparison of Internal Energies

The first of the hypotheses presented by this chapter ishiahternal energy proposed by Perrin
and Smith models the track structure observed in this pnotidetter than the original internal
energy. It has been discussed in Chapter 4 that the origiterinial energies bias the contour to
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take on a straight and vertical configuration and that therivatl energy proposed by Perrin and
Smith removes this bias. First, using the potential energpgsed in this thesis, each algorithm’s
sensitivity to varying weighting values is analysed, aahlé combination of weights for each is
selected, and the analysis is presented.

5.3.1 Parameter Sensitivity

The weighting parameters of the internal and potentialgiegiof the active contour algorithm and
the gradient potential, affect its ability to locate feain the spectrogram and to model the local
deformation of these features. Ballerini explains thatgtavalues for the continuity and curvature
weights will discourage convergence to a ‘busy’ contourd #mat “small weights may allow the
contour to be trapped into false edges or leak out througls gaghe boundary” [17]. These
parameters, therefore, form the balance of energies tiatni@e the final contour convergence.
As such, it is difficult to specify optimal parameter valuesng heuristics. Instead, a good set of
parameter values is searched for by varying each paranmetiemi throughout its range of values.
During this search the remaining parameters are fixed aesahat have been found to lead to
good convergences during preliminary experimentatiorthEperameter combination is evaluated
using the training set and the values that lead to the maxipenformance are chosen as those for
use in the evaluation of the test set. In this search, thexgfioe interactions between the energies
that these parameter values control are ignored. This ggsmummeans that the results are likely
to be sub-optimal, however, it greatly simplifies the opsiation process.

In this comparison two variants of the algorithm will be exated, both of which will employ
the definition of potential energy presented in this theBige difference between the two variants
will be that one has the original internal energy and therdtieinternal energy proposed by Perrin
and Smith. Plotting the line location accuracy as a functibeach parameter’s value also allows
the algorithm’s sensitivity to parameter values to be asedy Figure 5.3 presents the results of
this empirical investigation and affords an insight inte tble of each parameter.

The potential energy is the algorithm’s sole source of mfation to allow for the accurate
location of features in an image. Its weight is controlledtty value of the parameter, and as
this increases the active contour gains more informatiom fihe spectrogram. This fact is directly
reflected in both of the observed functionsyagcreases the LLAs also increase.

The gradient potential parameteenables the active contour to locate features that lie dritsi
its local gradient topology and to pass over false positeections that result from the potential
energy. It is observed in both of the algorithm variants Hsat increases, i.e. the contour moves
over false positives with a greater force, the LLAs alsoaase. If the value, however, is too great
(above0.36) the contour begins to be forced over true positives and ¢bection rates decrease.
In both variants of the algorithm, the functionsoliave, in general, the same form and the peak
in performance is observed at the same value, indicatingthieagradient potential balances the
effects of the potential energy and is, in the most part,pedeent of the contour’s internal energy.

The internal energy parameters control the contour’stgtidideform and to model the track’s
structure. When the original internal energy variant issidered, it can be observed that the
value of o (which controls the continuity of the contour) has venfditeffect on the detection
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(a) Original internal energy algorithm variant. The measnsdtard deviations for each function are—=
0.0042, g = 0.0052, v = 0.0044 andc¢ = 0.0057, a full list of the standard deviations is presented
in Appendix A.2.6, Table A.1a. Whilst varying each of the graeters the remainder took the following
values:a = 0.10, 8 = 0.20, v = 1.00 andc = 0.41.
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(b) Perrin internal energy algorithm variant. The meanddat deviations for each function afe= 0.0062,
~ = 0.0028 andc = 0.0047, a full list of the standard deviations is presented in AgjpeA.2.6, Table A.1b.
Whilst varying each of the parameters the remainder tooKalewing values: 5 = 0.20, v = 1.00 and
c=0.41.

Figure 5.3: The mean line location accuracy of training sétction as functions of each variant of
the algorithm’s parameter values. The results were olddnaen five repetitions of the experiment
using the potential energy proposed in this thesis.

rate. It seems that the information captured through théocmis second derivative, controlled
by the parametef (which controls the curvature of the contour), overlapg ttaptured by the
first derivative. The parametét has a far greater effect; at low values the contour has srifici
freedom to model track variations and evolve, however, wherinfluence is too great (above a
value of approximately.4) this ability is restricted and the contour is not able tolee@nd model
the tracks. A similar behaviour is observed in the variaat thilises the internal energy proposed
by Perrin and Smith, at low values @f(less tharD.2) the maximum of the LLA is reached and
the performance is relatively stable. Above this range,dwa the contour’s ability to evolve and
model the track’s structure is restricted and the LLA degsaaccordingly.

To confirm that choosing the parameter values by analysi@@ltjorithm’s performance as a
function of LLA is sensible, several additional measuresataken during the experiments. These
were designed to evaluate each compositional measurénthbt A aggregates into one measure.
The additional measures were the proportion of true trackiwences detected (those that are
within five pixels distance of the true location) and the mp@obability of false positive detections
per row of the spectrogram (the number of additional desestwithin the five pixel range plus
those outside of this range). The results are presented jpeddix A, Fig. A.3 and Fig. A.9,
and show that, in the large part, the parameter values fdr algorithm behave in accordance
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with the corresponding LLA. In both cases, as the potentiakgy parametey is increased, the
detection performance also increases and the false positie remains low (belo®.005 in the
Perrin algorithm variant an@.034 in the original variant). The internal energy parameterf the
Perrin variant reaches its LLA maximum@t6. It is evident from Figure A.3 that the detection
performance remains fairly stable at low valueg@nd is inversely proportional {6 as its value
increases. The false positive rate exhibits similar behayiat low values of the parametgra
small number of false positive detections are observedlagktdecline a8’s value is increased.
The parameter controlling the effect of the gradient pééént, has a distinct LLA maximum
at a value 00.36. Again, analysing the detection rate reveals that the ptmpoof true positive
detections is inversely proportional to the value,diowever, the mean probability of false positive
detections per row is also inversely proportional to thisiga The LLA measure has, therefore,
chosen a balance between these two measures, and the maxon@sponds to the value at
which the mean probability of false positive detections noev is low and the proportion of true
positive detections remains relatively high. Therefonethie case of the Perrin algorithm variant,
the LLA measure has determined an acceptable balance betwieénising the probability of
false positive detections and maximising the number of pagitive detections.

Regarding the original algorithm variant, the proportidntroe positive detections and the
mean probability of false positive detections per row issprged in Appendix A, Figure A.9. As
discussed earlier, the value @fshows no effect on the detection performance, which is confir
med by the number of observed true and false positive detectiThe internal energy weighting
parameter of the contour’s second derivatige reaches its maximum LLA at a value 0f22.
This corresponds to the point at which the mean probabilitialse positive detections per row
starts to increase. The proportion of true positive detestis very close to its maximum value
and therefore the LLA measure has provided an adequatedeabetween these two measures. In
confirmation of the previous observation, the gradientmideparameter, in all measures, exhibits
similarly behaviour to the gradient potential parametethim Perrin algorithm variant, although
the responses are at higher values. Again, the LLA measuwrechahed a compromise between
minimising false positive detections and maximising thepartion of true positive detections,
occurring at a value d.36.

In accordance with the results found during this invesitigatand for the remainder of the ex-
periments in this section, the following parameter valuesuged; for the original internal energy
variant, the internal energy parameters are setite: 0.96 and = 0.22, the potential energy
parameter tey = 1.00 and the gradient potential to= 0.36; and for the Perrin and Smith internal
energy variant, the internal energy parameter is sgt400.16, the potential energy parameter to
~ = 1.00 and the gradient potential to= 0.36. These values also correspond to points of low
standard deviation of the results, as presented in Appeh@6, Table A.1.

5.3.2 Performance

Using the parameter value combination that has been detedndor each variant of the algorithm,
itis now possible to analyse the algorithms’ performanceaxh type of track configuration found
in the test dataset. The line location accuracy of eachnamgplied to each track configuration,
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Figure 5.4: The mean line location accuracies of verticatkrdetections as functions of the
spectrogram’s SNR—a comparison between the original andhHAeternal energies. The mean
standard deviations for the Original detection8.i#60 and the Perrin detectiois0064, a full list

of the standard deviations is presented in Appendix A.2a®|&'A.2. The results were obtained
from ten repetitions of the experiment using the potentiglrgy proposed in this thesis.

is measured as a function of the SNR of the track. Not only doiesallow for the construction
of a detailed comparison between the two variants with gy their ability to detect differing
track structures but also for the analysis of the perforraathe track's SNR degrades.

The first of these comparisons, with regards to the vertigalkt structure, is presented in
Figure 5.4. At SNRs ofdB and above the Perrin variant outperforms the original logean
LLA measure 00.0260. Below this point the performance of both variants degradeever, the
original internal energy is marginally more resilient arasfan LLA measure that is, on average,
0.0298 higher than the Perrin internal energy variant in the SNRyeanl to —0.5dB. This is
possibly an effect of the shape bias that is exhibited by thggnal internal energy. As it has been
shown in Chapter 4, the original internal energy biases dméotir to form a straight vertical track,
a fact that could explain the apparent difference in perforoe at low SNRs. In this setting the
potential energy’s influence is diminished and therefoeeititernal energy’s role is accentuated.
This change in the balance of energies allows the interraiggis bias to have greater influence
on the contour, resulting in a convergence that coincidigntaatches the track’s shape.

The proportion of true positive detections and mean prdibabf false positive detections per
row for each algorithm variant are presented in Appendix yuFe A.4 and Figure A.10. The
mean probability of false positive detections per row résglfrom the original internal energy is
over ten times that of the Perrin internal energy variantydwer, the proportions of true positive
detections for each variant are comparatively close to etiwr. The reason that the LLAs of both
variants are similar is a combination of two effects. The fgs consequence of the true positive
measure, which deems a detection within five pixels of the kogation to be a true detection. If
false positive detections are located within this distaf@ral a true positive detection not made),
this would artificially inflate the measure. The second éffecue to the LLA incorporating a
measure of the detection’s distance from the true locatmhtlese results indicate that the Perrin
variant, although detecting as much, or possibly more, eftthcks than the original variant,
it has done so at the expense of location accuracy. The nuafliene positive detections of
each algorithm variant show that there is a relatively smedhn difference 06.0425 between
them. This indicates that the original internal energy nietlee tracks more closely and therefore
its resulting detections have a smaller distance from the kocation. This finding would be
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(a) Original internal energy algorithm variant. The meaandard deviations for the each function is:
1Hz/s = 0.0128, 2Hz/s = 0.0075, 4Hz/s = 0.0052, 8 Hz/s = 0.0031 and 16 Hz/s = 0.0031, a full
list of the standard deviations is presented in Appendix@.Z2able A.3a.
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(b) Perrin internal energy algorithm variant. The meandaaa deviations for the each function isHz/s =
0.0126, 2Hz/s = 0.0098, 4Hz/s = 0.0053, 8 Hz/s = 0.0029 and 16 Hz/s = 0.0015, a full list of the
standard deviations is presented in Appendix A.2.6, TahBbA

Figure 5.5: The mean line location accuracies of obliquektr@detections as functions of the
spectrogram’s SNR—a comparison between the original amihReternal energies. The results
were obtained from ten repetitions of the experiment udirgptotential energy proposed in this
thesis.

congruent with the theoretical analysis in Chapter 4.

The results of a comparison between the two algorithm veriahen applied to the detection
of oblique tracks is presented in Figure 5.5. These resolt$irm that the two variants of the
algorithm achieve very similar LLAs. The original variahwever, demonstrates more resilience
to reduced SNRs than the Perrin variant. Neverthelesscthilsl be partly due to the increase in
false positive detections that results from this form oéinal energy. In accordance with expec-
tations, as the gradient of the track increases the LLA dse® When detecting tracks with a
gradient ofl Hz/s the algorithm variants achieve mean LLA9@&996 (Perrin) and).8728 (origi-
nal) at SNRs o7 dB and at3—7 dB the means reduce 08355 (Perrin) and).8715 (original).
Therefore, in this case, although the Perrin variant predutdgher results at the higher SNRs,
the original variant is more consistent as the SNR decred¥ben detecting tracks with greater
gradients, the algorithm variant achieving the best peréorce reverses, for example, the mean
values for the detection &Hz/s gradient tracks in the same SNR range ar£386 (Perrin) and
0.4658 (original). Tracks that have a gradient®Hz/s and16 Hz/s seem beyond the capabilities
of both variants and the LLAs are close to zero. The origiaailant has a slightly higher LLA than
the Perrin variant, however, the original variant also picEs$ a greater number of false positive
detections and therefore, as discussed, it is possiblghbancrease in LLA is attributed to the
increase in the number of false positive detections. As thR 8f the tracks degrade, both algo-
rithms experience a decline in performance, and this oatlapproximately the same point in the
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(a) Original internal energy algorithm variant. The meamndfrd deviations for the each functioni§ =
0.0178, 2% = 0.0112, 3% = 0.0203, 4% = 0.0166 and5% = 0.0205, a full list of the standard deviations
is presented in Appendix A.2.6, Table A.4a.

1.0 T T T T T T T
0.8F
< 0.6
—
—104r
0.2
5',-1\_-,5'___ R =T -
005 1 0 5 6

(b) Perrin internal energy algorithm variant. The meanddaa deviations for the each function 8% =
0.0044, 2% = 0.0056, 3% = 0.0083, 4% = 0.0166 and5% = 0.0095, a full list of the standard deviations
is presented in Appendix A.2.6, Table A.4b.

Figure 5.6: The mean line location accuracies of sinusdigal second period) track detections
as functions of the spectrogram’s SNR—a comparison betweioriginal and Perrin internal
energies. The results were obtained from ten repetitionhefexperiment using the potential
energy proposed in this thesis.

range of SNR considered. The original variant of the algarithowever, has LLAs 0#.6504,
0.1816 and0.0866 at an SNR of—1dB in comparison td).1522, 0.0402 and 0.0066 resulting
from the Perrin variant.

In Appendix A, Figure A.5 and Figure A.11, is presented thenber of true positive and
false positive detections attributed to these experimeédtge again, the false positive rate of the
original algorithm variant is far greater than that of tharfPevariant; the Perrin variant has a
maximum mean probability of false positive detections jpev of less thar).0026, however, the
original variant results in a maximum false positive ratattis more than a factor of ten higher
0.0611.

With regards to the detection of sinusoidal tracks, (Figur®, 5.7 and 5.8) an initial observa-
tion is that, as would be expected, as the amplitude (theecéeguency variation) of the sinusoid
increases the detection rate decreases, which holds fonboiants of the algorithm. A similar
trend to that found in the oblique track experiments is presethese results, the original variant
of the algorithm is more resilient to reduced SNRs than theifPeariant. When applied to the
detection of sinusoidal tracks with a period of ten and fifteeconds (Figure 5.6 and Figure 5.7)
and at SNRs greater thaiB both variants result in very similar LLAS; in some casesdhiginal
variant is marginally better than the Perrin and in otheesdbe opposite is true. When, however,
the algorithms are applied to the detection of sinusoidaikis with a period of twenty seconds
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(a) Original internal energy algorithm variant. The meamndard deviations for the each functioni§ =
0.0163, 2% = 0.0099, 3% = 0.0148, 4% = 0.0137 and5% = 0.0101, a full list of the standard deviations
is presented in Appendix A.2.6, Table A.5a.
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(b) Perrin internal energy algorithm variant. The meanddad deviations for the each function k% =
0.0051, 2% = 0.0055, 3% = 0.0049, 4% = 0.0050 and5% = 0.0045, a full list of the standard deviations
is presented in Appendix A.2.6, Table A.5b.

Figure 5.7: The mean line location accuracies of sinusdfidtden second period) track detections
as functions of the spectrogram’s SNR—a comparison betweioriginal and Perrin internal
energies. The results were obtained from ten repetitionhefexperiment using the potential
energy proposed in this thesis.

with low centre frequency variation (Figure 5.8) the Pewdmiant has marginally better LLAs at
SNRs abovel dB.

Upon inspection of the number of true positive and falsetpesdetections presented in Ap-
pendix A, Figures A.6—A.8 and Figures A.12—-A.14, it is agabvious that the original variant
produces many more false positive detections than therPeariant. The Perrin variant results in
a maximum mean probability of false positives per rowdfl55 (occurring when applied to the
detection of sinusoidal tracks having a period of ten sesavith 4% centre frequency variation)
whereas the original variant produdeg546, which is also its maximum mean probability of false
positives per row. For the remaining cases the mean pratyattifalse positives per row is largely
betweer).02—0.03 for the Perrin variant and.2—0.3 for the original, the Perrin variant producing
a factor of ten less than the original variant.

So as to not detract from the readability of the results it of the standard deviations for the
results presented here are included in Appendix A.2.6,eERAI2—-A.6, the means of which have
been presented in each figure’s caption. These standardtidegi demonstrate that the results
have a very low variation, typically exhibiting a standaeli@tion of less thaid.02 within five
repetitions of each experiment. A number of examples ofdtietes that are the result of both
variants of the algorithm are presented in Appendix A.2i§ufes A.27 and A.28.
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(a) Original internal energy algorithm variant. The meamndard deviations for the each functioni§ =
0.0107, 2% = 0.0068, 3% = 0.0171, 4% = 0.0183 and5% = 0.0121, a full list of the standard deviations
is presented in Appendix A.2.6, Table A.6a.
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(b) Perrin internal energy algorithm variant. The meanddaa deviations for the each function 8% =
0.0046, 2% = 0.0042, 3% = 0.0061, 4% = 0.0064 and5% = 0.0057, a full list of the standard deviations
is presented in Appendix A.2.6, Table A.6b.

Figure 5.8: The mean line location accuracies of sinusdtdadnty second period) track detections
as functions of the spectrogram’s SNR—a comparison betweioriginal and Perrin internal
energies. The results were obtained from ten repetitionhefexperiment using the potential
energy proposed in this thesis.

5.3.3 Discussion

The overall trend of the results from these experimentsyirtit, at the higher signal-to-noise ra-
tios, the difference between the two methods is negligibtbthe Perrin variant often outperforms
the original variant. Moreover, when the probability ofsilpositive detections per row is taken
into account, the Perrin variant provides more favouragseilts across all the experiments. When
the SNR decreases the original algorithm variant demdastraore resilience to the reduction in
the available information. Nevertheless, it is possibk this is due to the increased probability
of false positive detections per row and not the detectiaglityabf the algorithm. In this problem

it is difficult to measure the actual true positive detectiate as it is possible that the energy ba-
lance, with the addition of the gradient potential, causescontour to overrun the true location.
This fact, in relation to the balloon force, is commentedrupg Ji and Yan who state that “these
[balloon and similar] forces all have to be included at theildarium of their snakes/segments and
easily result in a slight overrun of the target contours”][8Bhe true positive measures, which
have been presented in Appendix A, therefore account feraferrun by taking a true positive
detection to be any detection that is within five pixels dis&of the true location. It is therefore
difficult to separate a true but overrun detection from agfalstection. This said, the Perrin energy
formulation results in a mean probability of false positdetections per row of less than022,
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0.003, 0.115, 0.030 and0.030 in the vertical, oblique, ten second sinusoidal, fifteeroadcsinu-
soidal and twenty second sinusoidal track experimentsentisply. These figures translate into
maximum mean false positive detections of approximatelyiarevery45, 333, 9 and33 lines of
the spectrogram. Therefore, the true positive detectiamrdigare relatively reliable when com-
pared with the original variant, which results in maximumaméalse positive detections evety
16, 3, 4 and4 lines. It has been seen that when the algorithms’ sengitiwiparameter variations
were evaluated, the strength of the gradient potentialrectly correlated with the probability of
false positive detections per row and a value that maxintised LA was chosen. If, however, the
false positive rate were to be minimised, a greater gradlieténtial should be chosen and it can
be seen in Appendix A, Figure A.3b and Figure A.9b, that \&aloabove0.44 result in a very
low false positive detection rate (less tHaf025 and0.0237 in the whole training data set for the
Perrin and original variants respectively), however, gt be noted that the true positive rate is
also directly correlated with the strength of the gradiesieptial.

It can be seen that, regardless of the internal energy remen used, the active contour
algorithm is able to detect all variations of the track stuue. There are limitations to this, ho-
wever; tracks that have a gradient greater thitz/s are beyond the deformable capabilities of
the contour or the generalisation capabilities of the g@kanergy. Sinusoidal tracks are detec-
ted with a high probability at SNRs abodes dB (with reference to the true positive detections
presented in Appendix A), and the same can be said for theta®teof oblique tracks. Vertical
tracks are reliably detected at very low SNRs of arouidiB.

5.4 Original Potential Energy

A second aim of the comparisons is to determine whether tkenpal energy proposed in this
thesis produces better detection performance than thaalrigotential energy. Again, this as-
sessment is initiated by evaluating the weighting pararisedensitivity to different values, which

allows an appropriate combination of values to be selecedde during the experimentation. As
these variants of the algorithm are completely determinisiultiple repetitions yield the same
result and therefore results derived from one repetitioth@fexperiments are presented.

5.4.1 Parameter Sensitivity

The line location accuracies that result from the use of thggr@al potential energy (see Figure 5.9)
have much more complicated forms than those that resulted fne use of the novel potential
energy term (see Figure 5.3). Nevertheless, in a broad s#msdrends between the two are
similar. The LLA is proportional to the value of as is the case when using the novel potential
energy and the LLA is indirectly proportional to the strdngif the gradient potential. When,
however, the behaviour of the LLA, as the value of the parametincreases, is analysed in
more detail it becomes apparent that there is a slight remuat the LLA as the value passes
0.88. Therefore a strong influence from the potential energyctvidefines the position of the
feature in the image, counterintuitively hinders perfoneg indicating that it is not suited to this
problem. The internal energy parametehas an interesting form in this variant, its value has
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Figure 5.9: The mean line location accuracy of the trainiegdetections as functions of each
variant of the algorithm’s parameter values. The resultevebtained using the original poten-

tial energy (the pixel's intensity). Whilst varying eachtbe parameters the remainder took the
following values:a = 0.1, 3 = 0.2,y = 1 andc = 0.41

only a very small effect on the LLA. To gain a deeper insight ithese results the proportion of
true positive detections and the mean probability of fatssitive detections per row are illustrated
in Appendix A, Figure A.15. The probability of false poséidetections per row increase as the
value of 3 increases, and the number of true positive detections rencainstant. The LLA must
therefore be optimising the location of the detection, Whioffset with the probability of false
positive detections per row when combined to form the LLA suga. As has been mentioned, the
LLA of the gradient potential behaves similarly to that of tariants that use the novel potential
energy. The true positive detection rate is at its maximurthérange)—-0.5 and then declines
after this. The false positive rate also has a similar behayinformation related to the accuracy
of the detections influence the LLA and the valués therefore results in the best track detection
accuracy. The LLA function of the parametealso has a similar behaviour; the maximum of this
function is reached at a value 082, which is also the maximum of the true positive detections,
however, the mean probability of false positive detectipasrow at this point is very large, at
1.6 per row. As indicated by both the LLA and the proportion ofetrdetections, the value of
the parameters controlling the internal energigsind «, do not have any noticeable effect on
the performance of the contour and therefore these paresrate set to the valugs= 0.66 and

a = 0.5. The maximum LLA when varying parameters reached at a value 6f18.

5.4.2 Performance

The LLASs resulting from the application of the original potial energy to this problem are pre-
sented in Figures 5.10-5.12. The LLAs are unequivocallyelothan those obtained using the
novel potential energy. As has been proved and discusselapt& 3, using the intensity values
of single pixels as features, in this setting, does not pl@enough class separability to be able
to reliably detect the tracks. This is also evident in thebphility of false positive detections per
row; with reference to Figures A.16—A.20 presented in Aplder\.2.3, the mean probability of
false positive detections per row of the spectrogram is venage, sixteen times higher than that
found with the novel potential energy.

Referring to the examples of the detections made when ubmg@tiginal potential energy
presented in Appendix A.2.5, Figures A.27 and A.28, it beesrapparent that the algorithm is
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Figure 5.10: The mean line location accuracies of vertreakt detections as functions of the spec-
trogram’s SNR. The results were obtained using the origintdntial energy (the pixel’s intensity)
and the original internal energies (the active contour'ggived first and second derivatives).
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Figure 5.11: The mean line location accuracies of obliqgaektdetections as functions of the spec-
trogram’s SNR. The results were obtained using the origintdntial energy (the pixel’s intensity)
and the original internal energy (the active contour’s Wigg first and second derivatives).

not detecting anything meaningful in the spectrogram. ThA s therefore giving weight to
false positive detections that are near to the true tracktime. This explains the absence of any
performance degradation as the complexity of the tracke@se and also as the SNR decreases.
That said, the oblique track case presents some degradiatibae LLA as the complexity of the
track increases. Coincidently, it can also be seen thatrbleapility of false positive detections
(Figure A.17b) reduce in these spectrograms, which is tke @@ all variants of the algorithm,
and therefore the LLA is apparently affected by a reductiothé number of false positives, rather
than the complexity of the track leading to fewer detections

The inappropriate nature of this form of potential energyewtapplied to this problem is
furthermore supported by the fact that, the optimal valuetie parametety has been found to
be less than its maximum value. Moreover, the probabilitfatsfe positive detections is directly
proportional to the potential energy’s influence (see Fegurl5 in Appendix A.2.3).

5.5 Multiple Versus Individual Track Detection

The final hypothesis that this chapter has set out to provthagsjetection of harmonic patterns of
tracks, as opposed to individual tracks, increases deteptrformance. To ascertain the answer
to this question, a variant of the algorithm that uses inftiam derived from the fundamental
track position, whilst adopting the novel potential eneagyl the original internal energy, is eva-
luated and the results are compared with those presentedciin® 5.3. Those results having
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Figure 5.12: The mean line location accuracies of sinustieek detections as functions of the
spectrogram’s SNR. The results were obtained using thénafigotential energy (the pixel’s in-
tensity) and the original internal energy (the active carigoweighted first and second derivatives).

been obtained using information derived from the fundaaléntaddition to the harmonic series,
are therefore compared with the results obtained usingrirdtion derived from the fundamental
position alone.

The effect of removing the averaging process upon the coatgearch space is that false
positive detections will be stronger. It is therefore neegg to determine the force of the gradient
potential that will be used with the single contour as thistoals the contour’s ability to pass over
false positive detections. An analysis of the LLA as the peater's value changes is presented in
Figure 5.13. As expected, a higher value for the force of tiaglignt potential than that used for
multiple track detection is necessary to induce a high LLAefEfore, the parameterwill have
the value.72 throughout the experiments presented in this section. dim@ining parameters are
fixed at the values found previously, i®= 0.96, 5 = 0.22 and~ = 1.00.
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Figure 5.13: The mean line location accuracy of trainingdsééction as a function of the gradient
potential's parameter values. The results were obtainam five repetitions of the experiment
using the potential energy proposed in this thesis. The mtarard deviations of this function
is 0.0204, a full list of the standard deviations is presented in Agler.2.6, Table A.7. Whilst
varying each of the parameters the remainder took the follpwalues:a = 0.10, 5 = 0.20,

v =1.00 andc = 0.41.
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Figure 5.14: The mean line location accuracies of verticdk detections as a function of the
spectrogram’s SNR. The results were obtained using thenti@teznergy proposed in this the-
sis and the original internal energy (the active contoursglvted first and second derivatives).
The mean standard deviations for the functio.i#@14, a full list of the standard deviations is
presented in Appendix A.2.6, Table A.8.

5.5.1 Performance

The results of applying a single contour to the detectionesfizal fundamental tracks are pre-
sented in Figure 5.14. At SNRs higher th@&dB the single contour has a LLA of almost one,
a mean increase @f.2144 over integrating information from four harmonic locatiofEus the
fundamental’s location). The true positive rate is, howesaghly equal at these SNRs (see Ap-
pendix A, Figures A.10a and A.22a). The difference in LLAKstefore reflecting the difference
in false positive rates, which are presented in Figures ar A.22b in Appendix A. Due to the
increased gradient potential necessary to reach the singkeur's maximum performance upon
the training set, the single contour produces no falseigesietections and this increases its LLA.
Below a SNR of0 dB the single contour’s true positive rate falls and consetjy the LLA de-
creases to a mean 01150 below that of the multiple contour detection. When detertiblique
tracks, integrating information from multiple locationgreases the LLA in all cases except for
1 Hz/s gradient tracks at SNRs greater thiaB (in which case the LLA is, on average 0445
higher when using a single contour), see Figure 5.15. Behisvpoint the LLA of simultaneous
multiple track detection is, on averag@4636 higher than single contour detection. The LLA
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Figure 5.15: The mean line location accuracies of obliqaekirdetections as functions of the
spectrogram’s SNR. The results were obtained using thenfiatenergy proposed in this thesis
and the original internal energy (the active contour’s g first and second derivatives). The
mean standard deviations for the each functionli$iz = 0.0100, 2Hz = 0.0062, 4Hz =
0.0014, 8 Hz = 0.0002 and16 Hz = 0.0000, a full list of the standard deviations is presented in
Appendix A.2.6, Table A.9.
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Figure 5.16: The mean line location accuracies of sinusdida second period) track detections
as functions of the spectrogram’s SNR. The results werdraatausing the potential energy pro-

posed in this thesis and the original internal energy (ttieecontour’s weighted first and second

derivatives). The mean standard deviations for the eaattibmis: 1% = 0.0073, 2% = 0.0054,

3% = 0.0042, 4% = 0.0057 and5% = 0.0029, a full list of the standard deviations is presented
in Appendix A.2.6, Table A.10.

achieved when integrating information from multiple laoas has a mean LLA that i8.2747,
0.1245, 0.0403 and0.0247 higher for the cases of detecting oblique tracks that hazdignts of
2Hz/s,4 Hz/s,8 Hz/s, andl6 Hz/s respectively.

A similar trend is observed in the detection of sinusoidatks that have a period of ten
seconds, the results of which are presented in Figure 5.1&.cantre frequency variation @%o
the detection of single tracks outperforms that of multtpdeks by a mean LLA 0.1206 at SNRs
above3.5 dB. Below a SNR o0B.5 dB, however, the integration of information from multiptatk
positions drastically outperforms the single track désecby a LLA of 0.3355. When the track
has greater centre frequency variation, the single tratdgctien strategy falls behind the multiple
track detection strategy, which results in mean LLASs that0e2497, 0.2456, 0.2318 and0.2294
higher for centre frequency variations 2%o, 3%, 4% and5% respectively.

As the period of the sinusoidal track increases, the detectf harmonic tracks, in addition
to the fundamental track, follow a similar pattern; exchgliracks that have a centre frequency
variation of1% and that have a high SNR (greater thiadlB when the period i45 seconds and
greater thar3 dB when the period i80 seconds), integrating information from multiple locagon
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Figure 5.17: The mean line location accuracies of sinusdfifteen second period) track de-
tections as functions of the spectrogram’s SNR. The resu#t® obtained using the potential
energy proposed in this thesis and the original internaiggn@he active contour’s weighted first
and second derivatives). The mean standard deviationfiéoedch function is1% = 0.0069,
2% = 0.0060, 3% = 0.0039, 4% = 0.0031 and5% = 0.0021, a full list of the standard deviations
is presented in Appendix A.2.6, Table A.11.
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Figure 5.18: The mean line location accuracies of sinusdidgenty second period) track de-
tections as functions of the spectrogram’s SNR. The resuit® obtained using the potential
energy proposed in this thesis and the original internalggnéhe active contour’s weighted first
and second derivatives). The mean standard deviationfidoedch function is1% = 0.0063,
2% = 0.0074, 3% = 0.0049, 4% = 0.0039 and5% = 0.0028, a full list of the standard deviations
is presented in Appendix A.2.6, Table A.12.

outperforms the detection of single fundamental trackdl itha experiments, the results of which
are presented in Figure 5.17 and Figure 5.18. Sinusoidzidraaving a period of fifteen seconds
are detected with a mean LLA difference 6f2010, 0.3027, 0.2804, 0.2778 and0.2567. Sinusoi-
dal tracks having a period of twenty seconds are detectddanitean LLA difference of0.1866,
0.3274, 0.3009, 0.2993 and0.2810. A number of examples of detections that are the result from
this variant of the algorithm are presented in Appendix 3\.Eigures A.27 and A.28.

Fewer false positive detections have occurred during #tpement than occurred when inte-
grating information from harmonic locations. This is dugtte necessity of increasing the gradient
potential, which in turn reduces the number of true positigtections.

5.5.2 Discussion

Predominantly, integrating detections from harmonicedliated positions in the spectrogram en-
hances detection rates. Very low false positive rates haga produced during the single contour
experimentation and in most cases no false positive detectivere observed at all. This would
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seem to contradict the proposition that integrating infation from harmonically related posi-
tions reduces the potential energy’s response to falséiyosdietections, however, it is necessary
to increase the gradient potential in the single contoue ¢agealise the algorithm’s maximum
performance upon the test set. This consequently redueedslde positive rate, but has the di-
sadvantage of reducing the contour’s sensitivity to low SNiRks. Unexpectedly, however, the
enhancement of detection rates is not always realisednire s@ses, particularly with near verti-
cal tracks at high SNRs, the single contour detection céipabj reflected in its LLA, outperform
those of integrating information from multiple positioisseems, however, that this is misleading.
The proportion of true positive detections presented inekulix A, demonstrate that integrating
information from harmonically related positions increafiee number of true positive detections.
It is in fact the extremely low rates of false positive deimts, realised by increasing the gradient
potential of the single contour, which increase the LLASs.

It is obvious throughout the results that integrating infation derived from harmonic loca-
tions offers a large amount of resilience to SNR degradatmmiependently of the track’s structure.

5.6 Further Discussion

After analysing each experiment in detail it is now posstbldiscuss some general findings with
respect to the proposed algorithm.

5.6.1 Active Contour Algorithm

It has been shown during optimisation that the value of tmarpatera has very little influence on
the detection performance of the algorithm. This was olesem two variants of the algorithm,
each using one of the two potential energies discusseddrittbsis. It is not possible to conclude
the reason for this behaviour without additional investaa however, it could potentially be due
to an overlap of the salient information captured by the irat the second derivatives (the conti-
nuity and curvature) of the active contour. The paramgtbeehaves similarly in both algorithm
variants, the key difference is that the maximum of the LLAdached at a higher value in the
original variant when compared with the Perrin variant, #md indicates two possibilities: the
first that the Perrin energy captures more salient infoilonagind therefore its influence does not
need to be as strong as the original internal energy; thendetite opposite, the Perrin energy does
not capture the correct information and so it is beneficiatthuce its influence. The experimental
evidence favours the former; the Perrin variant achieveslasi or higher LLAs compared with
the original variant at the higher SNRs and therefore, eviifstvhaving a lower influence on the
contour’s energy, it produces comparable results. Gdgenalwever, high weighting of the inter-
nal energies restricts the contour’s ability to deform awolve, resulting in a large degradation
in the detection performance and an increase in the pratyabflfalse positive detections. The
gradient potential, as designed, acts as a means of camgrédlse positive detections; a high gra-
dient potential force reduces the probability of false fisidetections and a low force increases
them. Itis therefore akin to a threshold and, as such, isgrgats value has the concomitant effect
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of reducing the number of true positive detections—a badhat should be a point of attention
when selecting the parameter’s value.

Moreover, the novel potential energy introduces the cdipaluf detecting multiple tracks
simultaneously. Integrating over harmonic positions iis thay reduces the potential energy’s
response to false positive detections (as noise is not machaevhich translates into a reduction in
the strength of the gradient potential force, and createsra finely balanced and sensitive detec-
tion strategy. Principally, the active contour algorithwhen utilising the novel potential energy,
has proven to be a reliable method for extracting unknowpesthéracks in spectrograms. Moreo-
ver, the potential energy proposed in this thesis produmefeWwer false positive detections when
compared with the original potential energy, promotingsiitability to the problem. Increasing
the influence of the original potential energy upon the corsoenergy results in an increase in
the probability of false positive detections, and the optiralue for the weighting of this energy
is below its maximum. Contrarily, as the novel potential rggis influence upon the contour’s
energy is increased, there is a relatively stable prolhififalse positive detections.

5.6.2 Relation to Existing Methods

It is now possible to relate this research to existing temphes found in the literature. Chapter 2
presents a review of a number of methods that have been mwposl that are based upon some
form of deformable model. Di Martino et al. introduce a nhumbgperceptual track features de-
rived from feature grouping theory [55] and these featuresdafined to be: frequential curvature
regularity; temporal continuity; high average intensigyd high point density. Equivalences to
these features are present in the active contour model gedpim this thesis. The frequential
curvature, temporal continuity and point density are defftaebe the continuity and curvature bet-
ween pixels in the spectrogram and is synonymous with tleeriat energies of an active contour.
High amplitude is taken to be the pixel's intensity value,iahhis equivalent to the original po-
tential energy evaluated in this chapter. These featueealso utilised in other work proposed by
the same authors [54], the primary difference between tloebiging the method of searching for
the instances of pixel groups that fulfil the criteria. Thetfsroposal is to perform an exhaustive
search between all pixels in the spectrogram, evaluatiag tost function, and selecting those
that result in high values. The second uses a self organieiaqy and tests its convergence for
the presence of a track using a cost function. Nevertheleisschapter and the investigation into
low-level feature detection presented in Chapter 3, hameotistrated the weakness of such me-
thods when applied to low SNR spectrograms. The resultepted have shown that relying upon
individual pixel's amplitude results in poor detection foemance at low SNRs. Furthermore, the
active contour’s energy minimisation has a far lower corafiahal burden (whilst ensuring an
even search throughout the spectrogram) as the multi-siagjsion process conducts an exhaus-
tive search between each and every pixel.

In addition to these methods, Di Martino and Tabbone [56bpse a similar cost function
that also incorporates the track’s amplitude and the sl@beden two pixels (an approximation
to the first derivative), but from which the curvature (thea®d derivative) is removed. Initially,
candidate locations of the spectrogram are identified fahéu processing within a stage that
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applies Gaussian filtering. In an analogous fashion to theoasi previous work, the cost function
subsequently groups pixels within the identified regions track structures. This simplifies the
algorithm’s complexity by removing the need for exhausgearches, however, it introduces the
caveat that the subsequent pixel grouping is dependent tingopower of the initial detection
process; any weak tracks that are overlooked in the initejesare removed from the solution.
This caveat is circumvented by the energy minimisation ggearawn on by the active contour,
which ensures an even search throughout the spectrograrmpkot dispersion of knowledge,
this, and the author’s previous work, could benefit from tiggght into the description of curvature
and continuity of a feature that is afforded by the numeraustributions to the active contour
research area. Moreover, it is possible to augment the isitigfleatures of individual pixel values
used to identify tracks by these methods by the potentialygrn@roposed in this thesis.

Methods which make use of the hidden Markov model [190, 13&fimise the probability
of a track based upon the observation (the current row of aetisggam) and the model's state
transition probabilities. Track structures that are wilik are therefore unaccounted for in this
representation, can be mismodelled. To overcome thisdtmit, a solution using multiple track
models, to be used in parallel, has been proposed [175]. ddidanal complexity resulting from
this solution is avoided with the active contour algorithsita internal energies afford great flexi-
bility. Moreover, the transition matrix of the hidden Maxkmodel can be loosely interpreted as a
probabilistic method for learning the form of the internakggy that is applicable to the problem.
As such, maximising the probability is therefore tantarmdaminimising a cost function that de-
fines the permitted model deformation. The distinct backgds of the hidden Markov model and
the active contour prevent ready insight into the possyhilf transference between the two algo-
rithms. Nonetheless, the potential energy proposed byhbiss was first defined in Chapter 3 as
a standalone low-level feature detector that outputs thiealnility of detection. As such, it should
be possible to use this low-level feature detector in cartjon with the hidden Markov model to
increase the reliability of the existing hidden Markov miostdutions presented in Section 2.3.4.2,
which derive probabilities from single pixel values.

Correlation methods such as that presented by Altes [8] lassed as ‘optimal’ detectors,
as defined in Chapter 3. These methods test hypotheses ®jatiog a template, or reference
spectrogram, with the spectrogram being analysed. As iamshm Section 3.2, correlation me-
thods are computationally expensive as they form largechespaces in which the true detection
needs to be located. The active contour model can be intetpas a flexible correlation method,
which, because of deformation and efficient energy minititiea(see Section 4.3) removes the
computational burden associated with correlation baststties.

Unfortunately, it is not possible to directly compare theulés presented in this chapter to those
presented by Di Martino and Tabbone [57], who first used the llbcation accuracy measure in
this application, as the value of the LLA paramekarsed to derive their results is not known.

5.6.3 Line Location Accuracy

The line location accuracy has been used to optimise thamedea values and to measure the
performance of the algorithms during the evaluation preegsem this chapter. This performance
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measure aggregates three pieces of information: the trsidveorate; the false positive rate; and
the location of the true positive detections. As such, ojstétion using this measure forms a
balance between the three detection criteria. One way iohwthis balance could manifest itself
would be to improve true positive detections at the expehfase positive detections or detection
location accuracy. Predominantly, this measure has le#tteteelection of parameter values that
provide acceptable performance. Nevertheless, fewer faisitive detections could be obtained
by raising the gradient potential force above the value et LA measure indicates is optimal
(obviously this would have consequence upon the numbeuefgositive detections). Moreover,
depending upon the specific application, some of the aspéd¢te LLA measure may be more
important than others. For example, in some applicationsaif be more desirable to identify the
presence of a source in a particular time frame. To know tieaalgorithm has detected the source
at a specific frequency may be secondary or unnecessaryimRgetoonditions such as this affords
the tuning of parameters to maximise true-positive dedastat the expense of location accuracy.

5.7 Summary

This chapter has presented a thorough evaluation of théregesim track detection algorithm pre-
sented in the previous chapter. In doing so, the benefitseofitirel potential energy, the internal
energy proposed by Perrin and Smith and the detection ofradrmac series of tracks, when ap-
plied to the problem of spectrogram track detection, weoh exaluated. It has been determined
that the Perrin internal energy achieves, and often suepasise LLA achieved by the original
internal energy at the higher SNRs. As the SNR degradesefutiowever, the original internal
energy produces higher LLA scores. Nevertheless, the piiiigaof false positive detections that
occur using the Perrin internal energy are over a factorrofdeer than those occurring with the
original internal energy. It is therefore possible that dniginal internal energy produces better
localisation results and that the Perrin internal enendtiypaigh producing greater specificity, over-
runs the target contour, which is a common condition whawéhicing forces such as the gradient
potential.

The novel potential energy proposed in this thesis greatjyroves the algorithm’s detection
capabilities. It has been shown that using the original mi@k energy formulation results in
very low LLA. This, in conjunction with the high probabilityf false positive detections that also
occur, indicate that the algorithm fails to detect anythimganingful in the data. The integration
of information from harmonic locations also proves to irse the LLA.

Finally, a discussion has been presented that relates tiedm of this chapter to existing
work in the area. It has been shown that the multi-stage idecfgocesses that optimise cost
functions are similar to the energy minimisation used ingt@posed algorithm. The energy mi-
nimisation technique used by the active contour, howesgdiar less computationally expensive
whilst ensuring an even search throughout the spectrogtammas also been proposed that the
amplitude features that these cost functions depend upold be substituted for the proposed
potential energy to enhance the method'’s detection ratbsslalso been discussed that the mea-
sures of continuity and curvature employed by the cost fanstcould benefit from research into
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the forms of the active contour internal energies. The pedalgorithm has also been related
to existing detection methods that utilise the hidden Mankmdel and it was proposed that the

low-level feature detector that the potential energy istagion could also enhance the detection
rates of these algorithms.



Chapter 6

Conclusions

“On the mountains of truth you can never climb in vain:
either you will reach a point higher up today,
or you will be training your powers
so that you will be able to climb higher tomorréw.

— Friedrich Nietzsche, 1844—-1900.

This thesis tackles the problem of detecting non-statiorprasi-periodic phenomenon in
time-series data. This problem is expressed as the deteatitracks in spectrograms, which
finds application in many remote sensing problems, and adbdefinition of this problem is out-
lined in Section 1.2. The research presented is precededtémyoaomy, review and survey of
existing algorithms from the literature (see Chapter 2)ictvimnas led to the identification of short-
falls in current research, and has motivated solutionsdsslissues. Chapter 3 addresses one such
shortfall by presenting a full investigation into low-lé¥eature detection. Subsequently, a novel
high-level detection algorithm based upon the active aamadgorithm, which allows for flexible
modelling of unknown track structures, is presented in @va$. The active contour algorithm
finds parallels with some aspects of the existing researpheajpto this problem and overcomes
some of their limitations (see Section 5.6.2). This higrelealgorithm integrates the findings of
Chapter 3, namely the low-level feature detection methadistae harmonic integration, into an
energy minimisation process. The strengths and weakne$ske proposed algorithm are em-
pirically evaluated in Chapter 5, where it is applied to tle¢edtion of tracks in a number of test
scenarios. Additionally, Chapter 5 evaluates the benefiieach of the novel solutions that have
been proposed in this thesis through an empirical compatsthe original algorithm [96].

This thesis’ main conclusions are:

* Itis concluded in Chapter 2 that many of the existing altpons applied to the problem of
spectrogram track detection rely upon simple low-levetdeadetection mechanisms;

« Chapter 3 shows that low-level feature detectors based gpwle pixel values produce
unreliable detection results;

137
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» Chapter 3 also demonstrates that integrating spatial tamctgral information into the low-
level detection process increases detection reliability;

« Utilising dimensionality reduction techniques duringvitevel feature detection has been
shown in Chapter 3 to reduce computational burden but alsediace detection rates;

* Integrating information from harmonic locations withihet spectrogram reduces the va-
riance of pixel values, and therefore, improves the rdligiaf low-level feature detection
(see Section 3.4 and Section 5.5);

» The internal energy proposed by Perrin and Smith [141]etyomodels the track structure
that can be observed in spectrograms (see Section 4.2.3gsuits in slight improvements
in the detection rates when compared with the original irgkeenergy formulation (see
Section 5.3);

» The active contour’s original potential energy, whichaglupon distinctions between single
pixel values, is not suitable in this application (see $&cH.3.2) and fails to achieve reliable
detection results when applied to detecting tracks in spgicims (see Section 5.4);

» The potential energy proposed by this thesis (see SectibhBA)4which is based upon low-
level feature detection strategies (see Chapter 3), efdgetfacilitates the active contour’s
application to the problem of spectrogram track detectsae (Sections 5.3, 5.4 and 5.5).

Following from these, the active contour algorithm progbseChapter 4 has fulfilled the thesis
proposition (see Section 1.3) as an effective method, wihiobrporates and extends existing me-
thodologies for detecting tracks that have a wide varietstifctural configurations at low SNRs.
Empirical and theoretical evidence for this claim is présdrihroughout this thesis. Therefore, in
general, this is a new application of a developed idea, wiaatls to new results. In conducting
this research several obstacles have been encountereal reftective discussion follows.

Existing research on spectrogram track detection has lmewdfto lie in disparate areas of
computer science and mathematics (see Table 2.2 in SecBprVreover, much of the research
has been conducted in conjunction with governmental agenwiith limited data, and is subject to
sensitivity clauses. As such, there existed no coherenéaocompassing work that fully described
the state of the art and the field itself. This offered the oppity to survey research that is
applied to the detection of tracks in spectrogram imaged@advance an original and important
contribution to the research community, this contributi®presented in Chapter 2.

The disparity of existing research has made it hard to déterequivalences in existing me-
thods, to view it as a whole, and consequently, to ascertalaaa initial research direction. The
locus of the initial investigation in Chapter 3 is therefeentred on the lowest level of abstraction
afforded when posed as a computer vision and pattern re@mymroblem—Ilow-level feature
detection [71]. From this viewpoint, statistical machiearhing techniques based upon the sim-
plest decision boundaries [60] have been applied and limits discussed (see Section 3.1.1).
Increasing the amount of information available to featusgedtion mechanisms with increasing
complexity has allowed their construction in a systematid egorous wayab initio (see Sec-
tions 3.1.2 and 3.1.3). Mathematical concepts like dimmradity reduction [92], and machine
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learning techniques [129] like neural networks [28] areliggto strike a balance between model
specificity and complexity (see Section 3.2).

The process of this low-level investigation allows for thgoaithms presented in the literature
review to be thought of in terms of pattern recognition peses, and for their low-level feature
detection capabilities to be related to the evaluatedeglied (see Section 2.5). Under this light, a
majority of the existing methods have been found to utilise/\basic low-level feature detection,
many of which utilise information derived from single pigeind ignore the spatial and structural
information which exists in the spectrogram (see Chapter @articular Section 2.5).

Subsequently, the active contour [96] is developed for sse lsigh-level [71] track detection
algorithm (see Chapter 4). Commonalities with existingpatbms that have been applied to this
problem are identified in Section 2.5 and Section 5.6.2, mnithitions that it overcomes are iden-
tified in Sections 2.4.2 and 5.6.2. More specifically, theppsed algorithm offers: the ability to
perform an even search of the whole spectrogram (see SdcHdr) at low computational burden
(see Section 4.3); the ability to model rapidly varying amétnown structure (see Section 4.2.3);
and allows for the integration of low-level feature detextimethods (see Section 4.2.2). An
even search of a spectrogram is ensured by the introductiarg@adient potential, however, this
can also cause localisation errors to occur [89] as the ooman overrun the true position (see
Section 5.3.3). The technique’s ability to generalise tohserved cases has been maximised in
Section 4.2.2 by explicitly modelling the noise distrilmutiand not the track class. Consequently,
the proposed algorithm solution has been shown in Chapteabaw for the detection of a great
variety of track structure using one model. This dissectibideas portrays the intricate nature
of research in the this field: interdependencies are inteneth non-linear in nature, lending to
complex solutions.

Due to the nature of the real-world data, and the absence oblily available data set, the
development and evaluation of the algorithm (see ChaptarasS)achieved using synthetic data.
The data set has been designed in collaboration with QinetiiQto match real-world data as
closely as possible, and opportunities to evaluate theocapjrusing real-world data have proved
the algorithm’s viability. The data set described in Seatt®3.1 has been designed to contain
low signal-to-noise ratio tracks to determine the limias of the algorithm (see discussions in
Chapter 5). Nevertheless, even the most carefully desigymthetic data set is no substitution for
real-world examples and, therefore, aspects of an algoritaveloped as such should be further
developed to guarantee its suitability. To facilitate ttiie development of the algorithm in Chap-
ter 4 has been described in a modular approach, the necessatifions for the substitution of
components of the algorithm, such as the potential eneayg been outlined (see Section 4.2.2).
Developments of this sort are further discussed in the feutfork’ section below. The algo-
rithm’s applicability to real-world spectrograms in itsreent state is, however, demonstrated in
Figure 6.1 by applying it to the detection of a track produbga fishing vessel.

Nonetheless, there are advantages for the use of a synthédiset: its use has allowed for the
evaluation presented in Chapter 5 to be performed upon angxe data set which spans the wide
range of test cases described in Section 3.3.1, far graderiould be afforded with real-world
data. In addition to this, accurate ground-truth data islingavailable (again in Section 3.3.1),
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(@) An example of a real spectrogram (b) The detection resulting from using the
image where intensity represetg(S). active contour algorithm, where the para-

meter values are = 0.17, « = 0.10,
B = 0.20 and~y = 1.00.

Figure 6.1: An example of real-world track detection. Thevaccontour model used to produce
this result utilised the original internal energy and the@igotential energy proposed by this
thesis.

which would also not be the case with real-world data. Exalgahe algorithm in this way has
added weight to some of the theoretical arguments put fahlwathis thesis, such as the develop-
ment of the low-level feature detector (see Chapter 3),ignaghotential (see Section 4.2.1) and
internal energy model (see Section 4.2.3). Quantitatisalte have been presented in Chapter 5 to
encourage the comparison of results between research. dang papers reviewed in Chapter 2
present qualitative results (see Section 2.3), for exafpMartino et al. [55], Scharf and Elliot
[162], Streit and Barrett [169], Shin and Kil [165], usingtaldhat is not available for compari-
son. To further encourage the dissemination of resultsgéte set and experimental code used
throughout this investigation accompany this thesis gdeafer to the included DVD for details).

A consequence of the lack of quantitative results is thattandard metric existed for the
evaluation of such an algorithm. The few researchers wheeptajuantitative results have adopted
the Line Location Accuracy (LLA) measure [145] (see SecBal), which provides an objective
aggregation of the number of true positive detectionsefalssitive detections, and a measure of
the detection’s location accuracy. Issues relating toabgregation are discussed in Section 5.6.3,
predominantly, however, the measure produces desiratdadss between the aggregated parts
(see Section 5.3).

Empirical evidence using the line location accuraciesvaerifrom direct comparisons, in
conjunction with theoretical analyses, has demonstrdiechecessity and benefits of the novel
solutions, as shown in Sections 5.3, 5.4 and 5.5. Each asp#ut proposed active contour al-
gorithm has been evaluated in isolation to ensure a fair esisyn, and to give credence to the
interpretations (also presented in Sections 5.3, 5.4 djd Boreover, the potential energy em-
ployed has undergone extensive evaluation as a low-leaélrie detector (see Chapter 3). This
evaluation has involved the calculation of Receiver OpegaCharacteristics (ROC) [65] using an
extensive data set. The ROC has long been used in signatidetéeeory [63], and is increasingly
being used in the machine learning community to charaetéhis trade-off between true positive
and false positive detections [65]. This measure allowsstfi@rs to be organised and selected
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based upon their performance.

To re-iterate what has been stated in the introduction efttiésis, this research has focussed
on the detection of tracks in spectrogram images, a probtéowvihich any time series data that
contains narrowband quasi-periodic phenomenon can bsforamed. Although this research has
focussed on the application of passive sonar for the detedfi mechanical devices, many other
directly related acoustic problems exist. marine mammatitodng [130, 125], speech formant
tracking [163], engine vibration monitoring and wolf poatibn monitoring [61], to nhame but a
few.

6.1 Future Work

Included in this section is a discussion of possible futeearch directions that have arisen as a
result of the research presented in this thesis. Some ofuiligestions specifically apply to the
proposed algorithm, whilst others are general problemshvixist in the research area.

6.1.1 Track Association

In can occur that multiple tracks exist in a spectrogram &iatl &t some point in time they cross
each other. High-level processing may require completek$rao be extracted from the spec-
trogram and this occurrence complicates the matter. A numbalgorithms are able to detect

crossing tracks [3, 55, 98], including the one proposed iap@ér 4, however, it is still left to sepa-

rate them into distinct tracks. This limits the ability ofhilevel algorithms to uniquely associate
the state of each source during and after the crossing oaodrgherefore, over the whole length
of the track. Mellema has recently proposed a techniquestocéate piece-wise sections of a track
that has undergone temporal discontinuities, or, to agsoaiultiple simultaneous tracks origina-
ting from a common harmonic series [124]. This would lodicaixtend to the case of crossing

tracks, however, this has not been explicitly investigaedt falls outside of the scope of this

thesis. Integrating this type of track association intstmng detection algorithms could improve
detection rates and eliminate the need for post-procestitige detections. Existing solutions

that currently achieve this are based upon the hidden Mamnkogtel and integrate information

about the track’s gradient into the state representati8id,[190]. The limitations relating to these
algorithms have been fully discussed in Chapter 2.

6.1.2 Ambient Noise

A consequence of conducting the algorithm’s developmergymthetic data is that the potential
energy may need to be developed further to account for marplex noise conditions that can
be encountered in application. One such condition is thepteah noise variation that may be
observed in the sea, a limitation that exists in a number gdérdhms present in the literature
(see Table 2.3 and the remainder of Chapter 2). Much of thiahility in the sea’s ambient

noise is caused by changing dominant sources [174]. Domswmces of ambient noise in the
sea which affect the frequency ranges of concefrHz—1 kHz) are identified by Urick [174] as
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being shipping noise and wind noise. Distant shipping (grethan1,000 miles away) and local
shipping can produce broadband ambient noise in the range-600 Hz [182] (it is also possible
that distant storms act similarly [174]). Ambient noise b#s been shown to be correlated with
local wind speed [142], the direct mechanism causing theend still uncertain Urick [174],
however, theoretical research has indicated that wind oagiupe noise in the frequency range of
0.1-1 kHz [174]. In the absence of ambient sources (such as disgping) wind speed becomes
the dominant factor of the background noise levels [174]ngeguently, ambient noise sources
remain relatively constant, noise levels in the sea remelatively constant, and therefore, the
proposed potential energy is sufficient. For a detailedudision on these and further sources of
ambient noise the reader is referred to “Principles of Uwdégr Sound” by Urick [174].

The effects of temporal variation of the ambient noise onfi@ spectrogram is still rela-
tively unclear, and the design of the sensing apparatus ieilyg influence this effect [174]. A
hydrophone located in the sea receives pressure waves ftargearadius and the contribution
from local weather changes and ambient noise is directid7dl]. Therefore, these contributions
become averaged over a large volume. Consequently, it cardeeted that local conditions will
not effect the background noise dramatically, permitting tise of the existing potential energy,
and normalisation of the spectrogram [72] can correct fgnamiations that do occur.

As discussed, the algorithm presented in this thesis ddesxpticitly model temporal fluctua-
tions of noise. Solutions to this issue that are presentariitbrature are discussed in Chapter 2.
A simple rectification, which is proposed in Section 4.2.2s4to update the mean of the distri-
bution to that of the observed data (tracks in the spectrogrecount for a very small fraction of
the observed data and their effects on the mean could beeidrwraccounted for through bias
estimation), however, this has not been evaluated and vismudth interesting future development.

6.1.3 Clutter

Distinct to the problem of temporal noise variability is theneral problem of clutter, a problem
which affects all remote sensing mechanisms: radar [78 (f&i8sive sonar [174]; and active sonar
[64, 15]. Clutter is caused by phenomenon which produce otedatarget-like features in the
received sonar or radar data and can be caused, in the untdeemgironment, by: explosions;
earthquakes and volcanoes; shipping; biological noisé;raim [174]. The difficulty attributed to
this problem is that its sources, biological in particufarm an unpredictable part of the ambient
background [174].

As such, there are three methods to deal with clutter: iategr priori knowledge regarding
the clutter into the detection algorithm itself [14, 11@entify and remove the clutter using a pre-
processing stage [118, 14]; or identify false detectiorssilting from clutter in post-processing
[110]. There exists much research into the modelling oftefun active sonar [70, 12, 132, 18],
however, such research is lacking in the case of passive.sona

The averaging process formulated in the algorithm propase8ection 4.2.2 reduces the
chance of false positive detections resulting from clugguming that it is not harmonic in nature.
Nevertheless, false positive detections in passive stiadrésult from clutter are a real problem
for current algorithms and should be the focus of future stigation. One possible solution that
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could be applied to detection algorithms, in particulat fir@sented in this thesis, is to explicitly
model the track class and augment the noise model with tfasniration (a further discussion is
presented in Section 4.2.2.4). This dependency upon a tnaclkel, however, would reduce the
algorithm’s ability to generalise to unknown track struetu

6.1.4 Automatic Determination of Harmonic Features

One of the contributions of this thesis is a track detectigorithm which aims to boost detection
rates in low signal-to-noise ratio spectrograms by intiggainformation from locations defined
by harmonic relationships (see Chapter 4). These reldtipssthe relative frequencies between
tonal harmonics and the fundamental frequency, are a refstlie mechanical components within
a source which are typically identified as being the propulsind auxiliary machinery (engine,
motors, reduction gears, generators and pumps etc.) [Afgdrithms of this sort can be tailored
to function as detection mechanisms for a particular sortee case that harmonic relationships
are not defined as integer multiples but as some arbitragatirelationship. Currently, these har-
monic relationships are manually determined, either thinoobservation, or, through analysis of
a source’s mechanical structure. In remote sensing afiplisait may not be possible to have
a priori knowledge regarding a source’s mechanical componentseder, different operating
conditions may excite or inhibit the mechanisms that predparticular harmonics, and there-
fore, the components that are observed. This complicatem#nual identification of a source’s
identifying harmonics. Machine learning techniques caapyaied to this problem, automatically
learning the linear relationships of harmonic componemas identify the source within varying
conditions. One drawback of supervised machine learnitftgisequirement of manually labelled
ground-truth data. If this is not available, there are twprapches to overcome this requirement:
utilising unsupervised learning techniques removes thairement for ground-truth data; or em-
ploying supervised learning techniques using noisy, aatmally generated, ground-truth data.
This noisy ground-truth data can be generated using a @wmiattechanism that has a high true
positive, as well as a high false positive detection ratéchvis a common trade-off when perfor-
ming detection within noisy data. If a suitable superviseathine learning technique is applied,
and enough training data is available, the relationshipsden true frequency components, which
are common between multiple observations, are likely tcebabily discovered.

An additional complication in the automatic discriminatiof sources based upon harmonic
components is that subsets of these components belongitigtitact sources may overlap. The
degree to which these overlap will directly influence a syé&eability to distinguish between the
sources that share common subsets. Multi-objective ogditioin can be employed to minimise
these effects by determining the optimal combination of gonents that uniquely identifies each
source with respect to all other sources. Thus, optimisiegsystem’s ability to discriminate
between sources. This type of optimisation problem is aalidpplication of supervised ma-
chine learning techniques that are able to optimise conipfewtheses. Evolutionary computing
methods, such as genetic algorithms, are one such techidig@k These stochastic search algo-
rithms search a large space of hypotheses, progressielingemultiple competing hypotheses
until an optimal solution is found according to a predefinékfis function. As these algorithms
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perform searches in large spaces the optimisation canitake levertheless, once the system has
been designed, the optimisation is a fully automatic preedsich is performed off-line and only
needs to be repeated when a new set of sources are to be thclude

As such, two areas in which the application of machine legriechniques could improve
existing systems have been identified as a result of thendspeesented in this thesis. Namely, the
automatic identification of reliable time-invariant feads for remote sources, and the optimisation
of these features for source discrimination and detectismliscussed in this section.



Appendix A

Additional Diagrams

A.1 Chapter 3

In this section of the appendix is presented the additiogalkdis from Chapter 3.
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Figure A.1: PCA low-level feature detection performanceadsnction of the training set's SNR
(SNRs have been rounded to the neafesdB). The training sets consisted df000 samples
of each class.
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Figure A.2: PCA low-level feature detection performanceadsnction of the window's height
and width. The training set comprised bf00 samples of each class, the track class having a
SNR of —0.5dB.
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A.2 Chapter5

In this section of the appendix is presented the additiogakdés from Chapter 5.

Each figure represents the mean of five repetitions of eackriexent in addition to the stan-
dard deviation of these repetitions, each repetitionsa@dia different random training set. Two
sets of results are presented for each experiment; the dgitve performance, which is the pro-
portion of correct detections, i.e. those that are withia fiixels of the true detection, and the false
positive performance, which represents the mean probabiliadditional detections per row of
the spectrogram within, plus those outside of, this randeSNRs have been rounded to the nea-
rest0.5 dB.

A.2.1 Perrin Internal Energy and the Proposed Potential Enegy

This subsection presents the additional figures resultimg the experiments conducted upon the
active contour algorithm using the Perrin internal enengy e novel potential energy proposed
in this thesis (multiple track detection). These resulesatributed to Section 5.3.
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(b) Mean probability of false positive detections per spagtam row.

Figure A.3: The mean detection performance of the traingtgas functions of the algorithm’s
parameter values. Whilst varying each of the parametersethaining took the following values:
B = 0.20, v = 1.00, ¢ = 0.41, and the potential energy’s window size was taken t3 be21
pixels.
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Figure A.4: The algorithm’s detection performance of \@titracks as a function of the spectro-
gram’s SNR in addition to the mean probability of false posi per spectrogram row measured
during the experiment. The parameter values used weee:0.16, v = 1.00, ¢ = 0.36, and the
potential energy’s window size was taken tode 21 pixels.
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(b) Mean probability of false positive detections per spagtam row.

Figure A.5: The algorithm’s detection performance of obdidracks as functions of the spectro-
gram’s SNR in addition to the mean probability of false posi per spectrogram row measured
during the experiment. The parameter values used weee:0.16, v = 1.00, ¢ = 0.36, and the
potential energy’s window size was taken tode 21 pixels.
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(b) Mean probability of false positive detections per spagtam row.

Figure A.6: The algorithm’s detection performance of sgidal tracks having a period of ten
seconds as functions of the spectrogram’s SNR in addititmetanean probability of false positives
per spectrogram row measured during the experiment. Tlaengder values used werg:= 0.16,

~ = 1.00, ¢ = 0.36, and the potential energy’s window size was taken t8 be21 pixels.
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(b) Mean probability of false positive detections per spaEgtam row.

Figure A.7: The algorithm’s detection performance of saidal tracks having a period of fifteen
seconds as functions of the spectrogram’s SNR in additidmetsean probability of false positives
per spectrogram row measured during the experiment. Tlzersder values used werg:= 0.16,

~ = 1.00, ¢ = 0.36, and the potential energy’s window size was taken t8 lse21 pixels.
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(b) Mean probability of false positive detections per spagtam row.

Figure A.8: The algorithm’s detection performance of saidal tracks having a period of twenty
seconds as functions of the spectrogram’s SNR in addititmetanean probability of false positives
per spectrogram row measured during the experiment. Tlaengder values used werg:= 0.16,

~ = 1.00, ¢ = 0.36, and the potential energy’s window size was taken t8 be21 pixels.
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A.2.2 Original Internal Energy and the Proposed Potential Ehergy

This subsection presents the additional figures resultiogn fthe experiments conducted upon
the active contour algorithm using the Original internaémgmes (the weighted first and second
derivatives of the active contour) and the novel potentisrgy proposed in this thesis. These
results are attributed to Section 5.3.
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Figure A.9: The mean detection performance of the traingtgas functions of the algorithm’s
parameter values. Whilst varying each of the parametersethaining took the following values:

£ =0.20, « = 0.10, v = 1.00, ¢ = 0.41, and the potential energy’s window size was taken to be
3 x 21 pixels.
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Figure A.10: The algorithm’s detection performance ofieatttracks as a function of the spectro-
gram’s SNR in addition to the mean probability of false posi per spectrogram row measured
during the experiment. The parameter values used were0.22, o = 0.96, v = 1.00, ¢ = 0.36,
and the potential energy’s window size was taken t@ be21 pixels.
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3.5dB 4.0dB 4.5dB 5.0dB 5.5dB 6.0dB 6.5dB 7.0dB Mean

1Hz/s 0.0414 0.0315 0.0404 0.0667 0.0472 0.1139 0.0289 8.03®.0611
2Hz/s 0.0259 0.0451 0.1009 0.0549 0.0293 0.0067 0.0426 10.02®.0400
4Hzl/s 0.0259 0.0162 0.0051 0.0228 0.0222 0.0111 0.0079 8.028®.0218
8 Hz/s 0.0160 0.0141 0.0250 0.0111 0.0111 0.0093 0.0167 D.02®.0144
16 Hz/s 0.0087 0.0042 0.0095 0.0181 0.0286 0.0181 0.0219 0.00®.0143

(b) Mean probability of false positive detections per spagtam row.

Figure A.11: The algorithm’s detection performance of @bé tracks as functions of the spectro-
gram’s SNR in addition to the mean probability of false pesi per spectrogram row measured
during the experiment. The parameter values used viere0.22, o = 0.96, v = 1.00, ¢ = 0.36,,
and the potential energy’s window size was taken t8 be21 pixels.
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(a) Proportion of true positive detections.

—2.0dB —-1.5dB —-1.0dB —-0.5dB 0.0dB 0.5dB 1.0dB 1.5dB 2.0dB

1% - 0.4192 0.2862 0.2288 0.4326  0.2037 0.3324 0.0965 0.1156
2% 0.1657 0.1052 0.2538 0.3778 0.3428 0.2792 0.2692  0.10642114.
3% 0.3397 0.1674 0.2967 0.2275 0.4025 0.2290 0.3793  0.3191422D.
4% 0.2296 0.0898 0.3326 0.2886 0.4055 0.2840 0.3103  0.5899270D.
5% 0.3699 0.1280 0.3682 0.2927 0.3641 0.4116 0.2807  0.39144059.

2.5dB 3.0dB 3.5dB 4.0dB 45dB 5.0dB 5.5dB 6.0dB Mean

1% 0.1595 0.2831 0.2187 0.2091 0.1032  0.1468 0.2298  0.20272298.
2% 0.1531 0.4138 0.1508 0.3555 0.2838 0.2621 0.3338  0.2476253D.
3% 0.3463 0.2643 0.2852 0.4432 0.6242 0.7142 0.6945 0.83014109.
4% 0.3576 0.5103 0.6783 0.7663 0.6416 0.8318 0.6880 - 0.4546
5% 0.4897 0.4345 0.5449 0.6365 0.6422  0.6153 - - 0.4250

(b) Mean probability of false positive detections per spagptam row.

Figure A.12: The algorithm’s detection performance of swidal tracks having a period of ten
seconds as functions of the spectrogram’s SNR in addititmetaean probability of false positives
per spectrogram row measured during the experiment. Tlaepzder values used werg:= 0.22,

a = 0.96, v = 1.00, ¢ = 0.36, and the potential energy’s window size was taken t@ be21
pixels.
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(a) Proportion of true positive detections.

—2.0dB —-1.5dB —-1.0dB —-0.5dB 0.0dB 0.5dB 1.0dB 1.5dB 2.0dB

1% 0.1936 0.3451 0.3227 0.3152 0.3455 0.2136  0.2752  0.4633202D.
2% - 0.3485 0.3408 0.2660 0.3267 0.2585 0.2577 0.1652  0.2338
3% 0.1546 0.1719 0.3383 0.2618 0.2636  0.2467  0.2913  0.1130273D.
4% 0.1903 0.4007 0.1082 0.3094 0.1276  0.2320 0.1621  0.1918117D.
5% 0.2702 0.3173 0.2160 0.1798 0.1952 0.3247 0.1734  0.1630113D.

2.5dB 3.0dB 3.5dB 4.0dB 45dB 5.0dB 5.5dB 6.0dB Mean

1% 0.3101 0.2161 0.0624 0.2795 0.2241  0.1327 0.1347  0.18902486.
2% 0.3380 0.1195 0.1965 0.0684 0.1983 0.1364 0.3960  0.12332358.
3% 0.3027 0.1801 0.2503 0.1119 0.2188 0.2074  0.3349  0.47552469.
4% 0.1938 0.3285 0.2004 0.3158 0.1693 0.4013 0.3330 0.49012518.
5% 0.2123 0.1306 0.2269 0.2821 0.3083 0.2267 0.3395 0.08362218.

(b) Mean probability of false positive detections per spagtam row.

Figure A.13: The algorithm’s detection performance of soidal tracks having a period of fifteen
seconds as functions of the spectrogram’s SNR in addititirettean probability of false positives
per spectrogram row measured during the experiment. Tlaeneder values used werg:= 0.22,

a = 0.96, v = 1.00, ¢ = 0.36, and the potential energy’s window size was taken t@ be21
pixels.
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(a) Proportion of true positive detections.

—2.0dB —-1.5dB —-1.0dB —-0.5dB 0.0dB 0.5dB 1.0dB 1.5dB 2.0dB

1% 0.5000 0.0641 0.1493 0.0834 0.3907 0.1518 0.2444  0.18502088.
2% - 0.1602 0.1859 0.2717 0.2287 0.1850 0.2318 0.1011 0.3380
3% 0.0014 0.1574 0.1345 0.1522 0.2866 0.2917 0.2336  0.18263158.
4% 0.0627 0.3508 0.1861 0.2998 0.3109 0.2880 0.2834  0.20212988.
5% 0.3655 0.0753 0.1989 0.2242 0.4552  0.3412 0.1513 0.20033598.

2.5dB 3.0dB 3.5dB 4.0dB 45dB 5.0dB 5.5dB 6.0dB Mean

1% 0.0966 0.3267 0.1631 0.2975 0.1473 0.2254 0.0847  0.22472084.
2% 0.1185 0.1988 0.2289 0.1578 0.3262 0.1136 0.1743  0.1031195D.
3% 0.3202 0.2612 0.2123 0.3767 0.2640 0.2240 0.1309  0.22882220.
4% 0.2332 0.2265 0.1331 0.4177 0.1707 0.3739 0.2851  0.5549275D.
5% 0.1825 0.2927 0.3178 0.4870 0.3485 0.3004 0.0972 0.28252758.

(b) Mean probability of false positive detections per spagptam row.

Figure A.14: The algorithm’s detection performance of swidal tracks having a period of twenty
seconds as functions of the spectrogram’s SNR in addititmetaean probability of false positives
per spectrogram row measured during the experiment. Tlaepzder values used werg:= 0.22,

a = 0.96, v = 1.00, ¢ = 0.36, and the potential energy’s window size was taken t@ be21
pixels.
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A.2.3 Original Internal Energy and the Original Potential E nergy

This subsection presents the additional figures resultiom fthe experiments conducted upon
the active contour algorithm using the original internaémgies (the weighted first and second
derivatives of the active contour) and the original potrginergy (the pixel's intensity). These
results are attributed to Section 5.4.
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(b) Mean probability of false positive detections per spagtam row.

Figure A.15: The mean detection performance of the traisiigas functions of the algorithm’s
parameter values. Whilst varying each of the parametersethaining took the following values:
f=0.20, « = 0.10, vy = 1.00 andc = 0.41.
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(a) Proportion of true positive detections.

—1.0dB —-0.5dB 0.0dB 0.5dB 1.0dB 1.5dB 2.0dB 2.5dB 3.0dB
3.6558 3.6418 3.6472 3.6540 3.6577 3.6766 3.6723 3.6596 73B.6
3.5dB 4.0dB 45dB 5.0dB 5.5dB 6.0dB 6.5dB 7.0dB Mean
3.7024 3.6973 3.7025 3.7061 3.7134 3.7071 3.7152 3.7203 823.6

(b) Mean probability of false positive detections per spaEgtam row.

Figure A.16: The algorithm’s detection performance ofieatttracks as a function of the spectro-
gram’s SNR in addition to the mean probability of false pee# per spectrogram row measured
during the experiment. The parameter values used were: 0.66, « = 0.50, v = 0.82 and

c = 0.18.
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(a) Proportion of true positive detections.

—1.0dB —-0.5dB 0.0dB 0.5dB 1.0dB 1.5dB 2.0dB 2.5dB 3.0dB

1Hz/s 2.1750 2.1361 2.1315 21349 21311 21410 2.1250 @.11@.1167
2Hz/s 1.1267 1.1256 11294 1.1222 1.1283 1.1228 1.1106 @.120.1000
4Hz/s 0.5722 0.5728 0.5753 05697 0.5764 0.5773 0.5702 49.57D.5667
8 Hz/s 0.2856 0.2917 0.2944 0.2880 0.2827 0.2884 0.2877 0.2840.2824
16 Hz/s 0.2528 0.2494 0.2488 0.2476 0.2449 0.2486 0.2545 0.244.2495

3.5dB 4.0dB 4.5dB 5.0dB 5.5dB 6.0dB 6.5dB 7.0dB Mean

1Hz/s 2.1217 2.0969 2.0980 2.1300 2.1094 2.0994 2.1100 @.092.1213
2Hz/s 1.1037 1.1007 1.1111  1.1019 1.0965 1.0867 1.0815 Q.08Q.1087
4Hz/s 0.5722 0.5736 0.5677 05756 0.5631 0.5651 0.5698 9.558.5705
8 Hz/s 0.2854 0.2828 0.2792 0.2813 0.2778 0.2801 0.2722 10.26®.2830
16 Hz/s 0.2540 0.2519 0.2495 0.2429 0.2476 0.2457 0.2429 6.24D.2484

(b) Mean probability of false positive detections per spsgptam row.

Figure A.17: The algorithm’s detection performance of gl tracks as functions of the spectro-
gram’s SNR in addition to the mean probability of false posi per spectrogram row measured
during the experiment. The parameter values used were: 0.66, « = 0.50, v = 0.82 and

c = 0.18.
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(a) Proportion of true positive detections.

—2.0dB —-1.5dB —-1.0dB —-0.5dB 0.0dB 0.5dB 1.0dB 1.5dB 2.0dB

1% - 3.6481 3.6384 3.6542 3.6496 3.6419 3.6416 3.6308 3.6240
2% 3.5961 3.6357 3.6320 3.6141 3.6320 3.6334 3.6047 3.6192635B.
3% 3.5868 3.5984 3.6068 3.5949 3.6013 3.5825 3.5881  3.588458638.
4% 3.5769 3.5788 3.5860 3.5682 3.5543 3.5798 3.5594  3.5644549B.
5% 3.6240 3.6233 3.5933 3.6034 3.6160 3.6156 3.6040 3.59856013.

2.5dB 3.0dB 3.5dB 4.0dB 45dB 5.0dB 5.5dB 6.0dB Mean

1% 3.6285 3.6189 3.6035 3.6372 3.6331 3.6323 3.6348 3.60606323.
2% 3.6047 3.6114 3.6068 3.5875 3.6091 3.5979 3.5958 3.60316128.
3% 3.5735 3.5627 3.5532 3.5692 3.5635 3.5398 3.5474 3.54825758.
4% 3.5495 3.5391 3.5318 3.5364 3.5361 3.5144  3.5487 - 3.5546
5% 3.5944 3.5818 3.5866 3.5745 3.5922  3.5585 - - 3.5978

(b) Mean probability of false positive detections per spagtam row.

Figure A.18: The algorithm’s detection performance of swidal tracks having a period of ten
seconds as functions of the spectrogram’s SNR in addititimetanean probability of false positives
per spectrogram row measured during the experiment. Tlaengder values used werg:= 0.66,

a = 0.50, v = 0.82 andc = 0.18.
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(a) Proportion of true positive detections.

—2.0dB —-1.5dB —-1.0dB —-0.5dB 0.0dB 0.5dB 1.0dB 1.5dB 2.0dB

1% 3.7047 3.6657 3.6415 3.6444 3.6548 3.6400 3.6357 3.6375649G.
2% - 3.6292 3.6207 3.6426 3.6305 3.6262 3.6285 3.6212 3.6323
3% 3.6026 3.5966 3.6026 3.6149 3.5976 3.5781 3.5933  3.5838600C.
4% 3.5929 3.5801 3.5819 3.5738 3.5696 3.5710 3.5750 3.57055868.
5% 3.6123 3.6114 3.6045 3.6196 3.6060 3.6075 3.5942  3.58916063.

2.5dB 3.0dB 3.5dB 4.0dB 45dB 5.0dB 5.5dB 6.0dB Mean

1% 3.6277 3.6240 3.6360 3.6391 3.6230 3.6235 3.6128  3.61056393.
2% 3.6207 3.6037 3.5955 3.5933 3.5969 3.5951 3.5872  3.5841613G.
3% 3.5918 3.5900 3.5880 3.5634 3.5701 35875 3.5665 3.57385883.
4% 3.5814 3.5738 3.5584 3.5565 3.5503 3.5587 3.5560  3.5554570B.
5% 3.5943 3.5940 3.5802 3.5682 35713 35741 35636  3.51535883.

(b) Mean probability of false positive detections per spagptam row.

Figure A.19: The algorithm’s detection performance of sidal tracks having a period of fifteen
seconds as functions of the spectrogram’s SNR in addititmetsean probability of false positives
per spectrogram row measured during the experiment. Tlzergder values used werg:= 0.66,

a = 0.50, v = 0.82 andc = 0.18.
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(a) Proportion of true positive detections.

—2.0dB —-1.5dB —-1.0dB —-0.5dB 0.0dB 0.5dB 1.0dB 1.5dB 2.0dB

1% 3.6295 3.6602 3.6607 3.6581 3.6536 3.6583 3.6290 3.62906498G.
2% - 3.6233 3.6014 3.6194 3.6113 35936 3.5903 3.5983  3.5965
3% 3.6267 3.5571 3.6004 3.6038 3.5914 3.5971 3.5916  3.59585883.
4% 3.5627 3.5891 3.6025 3.5736 3.5877 3.5751 3.5833  3.58325803.
5% 3.6357 3.6195 3.6214 3.6182 3.6037 3.6286 3.6106 3.6061613G.

2.5dB 3.0dB 3.5dB 4.0dB 45dB 5.0dB 5.5dB 6.0dB Mean

1% 3.6400 3.6371 3.6171 3.6202 3.6147 3.6565 3.6158 3.62436383.
2% 3.5956 3.5865 3.5818 3.5680 3.5710 3.5838 3.5682  3.57455913.
3% 3.5917 3.5909 3.5801 3.5967 3.5875 35771 35741 3.55265884.
4% 3.5788 3.5718 3.5744 3.5816 3.5670 3.5657 3.5616  3.55435763.
5% 3.6125 3.6113 3.6062 3.6070 3.6017 3.5874 3.5938 3.58976098.

(b) Mean probability of false positive detections per spagtam row.

Figure A.20: The algorithm’s detection performance of swidal tracks having a period of twenty
seconds as functions of the spectrogram’s SNR in addititimetanean probability of false positives
per spectrogram row measured during the experiment. Tlaengder values used werg:= 0.66,

a = 0.50, v = 0.82 andc = 0.18.
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A.2.4 Single Track Detection

This subsection presents the additional figures resultiogn fthe experiments conducted upon
the active contour algorithm using the original internaémgmes (the weighted first and second
derivatives of the active contour) and the proposed pakatiergy when applied to single track
detection. These results are attributed to Section 5.5.
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(b) Mean probability of false positive detections per spegptam row.

Figure A.21: The mean detection performance of the trais&tgas a function of the gradient po-
tential’'s parameter values. Whilst varying the paramsteaiue, the remaining took the following
values:$ = 0.20, o = 0.10 and~ = 1.00.
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(a) Proportion of true positive detections.
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(b) Mean probability of false positive detections per spagtam row.

Figure A.22: The algorithm’s detection performance ofigalttracks as a function of the spectro-
gram’s SNR in addition to the mean probability of false posi per spectrogram row measured
during the experiment. The parameter values used were: 0.22, « = 0.96, v = 1.00 and

c = 0.74.
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(a) Proportion of true positive detections.

—1.0dB -0.5dB 0.0dB 0.5dB 1.0dB 15dB 2.0dB 2.5dB 3.0dB

1Hz/s 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00@.0000
2Hz/s 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00®.0000
4 Hz/s 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00@.0000
8 Hz/s 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00@.0000
16 Hz/s 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00®.0000

3.5dB 4.0dB 4.5dB 5.0dB 5.5dB 6.0dB 6.5dB 7.0dB Mean

1Hz/s 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00®.0000
2Hz/s 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00®.0000
4Hz/s 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00®.0000
8 Hz/s 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00®.0000
16 Hz/s 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00®.0000

(b) Mean probability of false positive detections per spagtam row.

Figure A.23: The algorithm’s detection performance of @bé tracks as functions of the spectro-
gram’s SNR in addition to the mean probability of false pesi per spectrogram row measured
during the experiment. The parameter values used were: 0.22, « = 0.96, v = 1.00 and

c = 0.74.
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(a) Proportion of true positive detections.

—2.0dB —-1.5dB —-1.0dB —-0.5dB 0.0dB 0.5dB 1.0dB 1.5dB 2.0dB

1% - 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2% 0.0000 0.0000 0.0000 0.0000 0.0004 0.0000 0.0000 0.00000000.
3% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000000.
4% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00020000.
5% 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.00000000.

2.5dB 3.0dB 3.5dB 4.0dB 45dB 5.0dB 5.5dB 6.0dB Mean

1% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000000.
2% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000000.
3% 0.0008 0.0002 0.0001 0.0092 0.0250 0.0471 0.0496  0.10550140.
4% 0.0001 0.0021 0.0039 0.0053 0.0288 0.0586 0.0171 - 0.0073
5% 0.0001 0.0001 0.0017 0.0044 0.0096  0.0193 - - 0.0024

(b) Mean probability of false positive detections per spagptam row.

Figure A.24: The algorithm’s detection performance of swidal tracks having a period of ten
seconds as functions of the spectrogram’s SNR in addititmetanean probability of false positives
per spectrogram row measured during the experiment. Tlaepder values used werg:= 0.22,
a=0.96,v = 1.00 andc = 0.74.
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(a) Proportion of true positive detections.

—2.0dB -1.5dB -1.0dB -0.5dB 0.0dB 0.5dB 1.0dB 1.5dB 2.0dB

1% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000000.
2% - 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000000.
4% 0.0000 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000000.
5% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000000.

2.5dB 3.0dB 3.5dB 4.0dB 45dB 5.0dB 55dB 6.0dB Mean

1% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000000.
2% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000000.
3% 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0019000D.
4% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.00060000.
5% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004 0.00000000.

(b) Mean probability of false positive detections per spagtam row.

Figure A.25: The algorithm'’s detection performance of swidal tracks having a period of fifteen
seconds as functions of the spectrogram’s SNR in addititmetanean probability of false positives
per spectrogram row measured during the experiment. Tlaengder values used werg:= 0.22,
a=0.96, v = 1.00 andc = 0.74.
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(a) Proportion of true positive detections.

—2.0dB -1.5dB -1.0dB -0.5dB 0.0dB 0.5dB 1.0dB 1.5dB 2.0dB

1% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000000.
2% - 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000000.
4% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000000.
5% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000000.

2.5dB 3.0dB 3.5dB 4.0dB 45dB 5.0dB 55dB 6.0dB Mean

1% 0.0000 0.0000 0.0000 0.0000 0.0000  0.0000 0.0000  0.00000000.
2% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000000.
3% 0.0000 0.0000 0.0000 0.0000 0.0000  0.0000 0.0000  0.00000000.
4% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0008000D.
5% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000000.

(b) Mean probability of false positive detections per spaEgtam row.

Figure A.26: The algorithm’s detection performance of sidal tracks having a period of twenty
seconds as functions of the spectrogram’s SNR in addititmetsean probability of false positives
per spectrogram row measured during the experiment. Tlzersder values used werg:= 0.22,

a =0.96, v = 1.00 andc = 0.74.
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A.2.5 Example Detections
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(c) Original internal and novel potential energy. (d) Perrin internal and novel potential energy.
The LLA of the fundamental track detection is The LLA of the fundamental track detection is
0.7640. 0.8025.
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(e) Original internal and original potential (f) Original internal and novel potential energy,
energy. The LLA of the fundamental track de- single contour. The LLA of the fundamental
tection is0.2100. track detection i9.6791.

Figure A.27: A set of example detections. The SNR of the spgram is4.5dB and contains
vertical and oblique tracks that have a gradient biz/s.
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(c) Original internal and novel potential energy. (d) Perrin internal and novel potential energy.
The LLA of the fundamental track detection is The LLA of the fundamental track detection is
0.3967. 0.3658.
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(e) Original internal and original potential () Original internal and original potential
energy. The LLA of the fundamental track de- energy, single contour. The LLA of the funda-
tection is0.1134. mental track detection i&4568.

Figure A.28: A set of example detections. The SNR of the spgrm is6.5dB and contains
sinusoidal tracks that have a centre frequency variatig¥ef
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A.2.6 Standard Deviations

This subsection presents the standard deviations attdhotthe results presented in Sections 5.3,

5.4 and 5.5.
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24
o 0.0060 0.0034 0.0057 0.0054 0.0031 0.0042 0.0058 0.0046 050.0 0.0047 0.0043 0.0057 0.0046
B 0.0039 0.0041 0.0045 0.0045 0.0028 0.0034 0.0060 0.0047 079.0 0.0019 0.0072 0.0050 0.0072
~y 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 000.0 0.0000 0.0000 0.0000 0.0000
c 0.0006 0.0002 0.0004 0.0002 0.0007 0.0005 0.0013 0.0003 01D.0 0.0021 0.0033 0.0071 0.0036
0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44 0.46 0.48 0.50
o 0.0032 0.0046 0.0088 0.0046 0.0038 0.0039 0.0048 0.0058 028.0 0.0083 0.0063 0.0049 0.0025
B 0.0068 0.0024 0.0050 0.0025 0.0037 0.0045 0.0116 0.0107 146.0 0.0093 0.0142 0.0107 0.0032
¥ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 018.0 0.0072 0.0035 0.0062 0.0055
c 0.0094 0.0140 0.0122 0.0121 0.0036 0.0012 0.0029 0.0039 036.0 0.0068 0.0080 0.0043 0.0117
0.52 0.54 0.56 0.58 0.60 0.62 0.64 0.66 0.68 0.70 0.72 0.74 0.76
o 0.0027 0.0044 0.0042 0.0016 0.0047 0.0037 0.0078 0.0032 048.0 0.0007 0.0034 0.0027 0.0047
B 0.0031 0.0025 0.0063 0.0037 0.0051 0.0039 0.0041 0.0031 068.0 0.0073 0.0050 0.0026 0.0032
~ 0.0067 0.0079 0.0073 0.0169 0.0083 0.0063 0.0086 0.0053 118.0 0.0104 0.0134 0.0048 0.0050
c 0.0036 0.0045 0.0075 0.0083 0.0146 0.0112 0.0085 0.0050 168.0 0.0170 0.0113 0.0056 0.0039
0.78 0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00 Mean
o 0.0050 0.0031 0.0044 0.0024 0.0037 0.0032 0.0042 0.0051 019.0 0.0013 0.0017 0.0035 0.0042
B 0.0037 0.0027 0.0023 0.0041 0.0029 0.0063 0.0050 0.0058 038.0 0.0029 0.0038 0.0028 0.0052
¥ 0.0060 0.0061 0.0066 0.0080 0.0099 0.0116 0.0125 0.0057 058.0 0.0077 0.0059 0.0031 0.0044
c 0.0068 0.0042 0.0039 0.0055 0.0046 0.0063 0.0052 0.0032 078.0 0.0048 0.0029 0.0015 0.0057
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(a) Original internal energy algorithm variant. Whilst yeng each of the parameters the remainder took the

following values:a = 0.10, 8 = 0.20, v = 1.00 andc = 0.41.

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24
B 0.0105 0.0043 0.0052 0.0027 0.0033 0.0012 0.0037 0.0057 029.0 0.0049 0.0074 0.0039 0.0080
¥ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 000.0 0.0000 0.0000 0.0000 0.0000
c 0.0008 0.0005 0.0007 0.0011 0.0021 0.0019 0.0026 0.0040 048.0 0.0044 0.0113 0.0090 0.0165
0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44 0.46 0.48 0.50
B 0.0038 0.0070 0.0040 0.0096 0.0081 0.0058 0.0022 0.0023 110.0 0.0075 0.0041 0.0083 0.0088
¥ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 000.0 0.0000 0.0000 0.0001 0.0001
c 0.0076 0.0097 0.0087 0.0056 0.0026 0.0037 0.0035 0.0031 060.0 0.0065 0.0034 0.0063 0.0108
0.52 0.54 0.56 0.58 0.60 0.62 0.64 0.66 0.68 0.70 0.72 0.74 0.76
B 0.0049 0.0049 0.0073 0.0093 0.0079 0.0071 0.0083 0.0097 058.0 0.0110 0.0052 0.0088 0.0102
Y 0.0001 0.0001 0.0001 0.0002 0.0002 0.0048 0.0039 0.0087 080.0 0.0032 0.0081 0.0063 0.0101
c 0.0057 0.0046 0.0062 0.0101 0.0104 0.0070 0.0066 0.0063 074.0 0.0079 0.0127 0.0047 0.0036
0.78 0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00 Mean
B 0.0051 0.0050 0.0034 0.0084 0.0082 0.0073 0.0039 0.0034 040.0 0.0047 0.0053 0.0086 0.0062
¥ 0.0105 0.0130 0.0103 0.0093 0.0060 0.0127 0.0039 0.0072 034.0 0.0045 0.0054 0.0028 0.0028
c 0.0060 0.0024 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 000.0 0.0000 0.0000 0.0000 0.0047

(b) Perrin internal energy algorithm variant. Whilst vanyieach of the parameters the remainder took the
following values:5 = 0.2, v = 1.00 andc = 0.41.

Table A.1: The standard deviation of five repetitions of ttaning set detections as functions
of each variant of the algorithm’s parameter values. Thaltesvere obtained using the poten-
tial energy proposed in this thesis. These standard dem@tire attributed to Figure 5.3a and
Figure 5.3b in Chapter 5.
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—1.0dB -0.5dB 0.0dB 0.5dB 1.0dB 1.5dB 2.0dB 2.5dB 3.0dB

Original 0.0085 0.0046 0.0098 0.0066 0.0049 0.0061 0.0043 0.0050 064.0
Perrin 0.0088 0.0051 0.0102 0.0069 0.0081 0.0096 0.0059 0.0054 064.0

3.5dB 4.0dB 4.5dB 5.0dB 5.5dB 6.0dB 6.5dB 7.0dB Mean

Original 0.0061 0.0043 0.0042 0.0064 0.0063 0.0040 0.0077 0.0077 060.0
Perrin 0.0044 0.0038 0.0054 0.0045 0.0055 0.0059 0.0055 0.0069 064.0

Table A.2: The standard deviations of ten repetitions oflite location accuracies of vertical
track detections as functions of the spectrogram’s SNR—ragpemison between the original and
Perrin internal energies. These standard deviations tileut¢d to Figure 5.4 in Chapter 5.

—1.0dB —-0.5dB 0.0dB 0.5dB 1.0dB 1.5dB 2.0dB 2.5dB 3.0dB

1Hz/s 0.0328 0.0118 0.0127 0.0158 0.0084 0.0094 0.0180 1©.014.0113
2Hz/s 0.0151 0.0041 0.0081 0.0137 0.0091 0.0041 0.0080 9.009.0096
4Hz/s 0.0061 0.0040 0.0078 0.0034 0.0053 0.0029 0.0060 0.00D.0063
8 Hz/s 0.0037 0.0025 0.0029 0.0031 0.0027 0.0033 0.0032 6.00D.0022
16 Hz/s 0.0033 0.0020 0.0031 0.0013 0.0032 0.0028 0.0022 8.004€.0019

3.5dB 4.0dB 45dB 5.0dB 5.5dB 6.0dB 6.5dB 7.0dB Mean

1Hz/s 0.0054 0.0141 0.0112 0.0100 0.0156 0.0092 0.0087 8.008.0128
2Hz/s 0.0048 0.0105 0.0055 0.0058 0.0062 0.0041 0.0070 4.00D.0075
4Hz/s 0.0062 0.0069 0.0048 0.0058 0.0024 0.0052 0.0042 1©.00®.0052
8 Hz/s 0.0040 0.0025 0.0029 0.0028 0.0033 0.0038 0.0033 1©.009.0031
16 Hz/s 0.0020 0.0025 0.0016 0.0042 0.0025 0.0020 0.0020 0.01®.0031

(a) Original internal energy algorithm variant.

—1.0dB —-0.5dB 0.0dB 0.5dB 1.0dB 1.5dB 2.0dB 2.5dB 3.0dB

1Hz/s 0.0295 0.0058 0.0182 0.0188 0.0119 0.0198 0.0136 0.01D.0140
2Hzl/s 0.0079 0.0113 0.0058 0.0079 0.0062 0.0059 0.0172 1©.01D.0210
4Hz/s 0.0102 0.0049 0.0034 0.0027 0.0019 0.0064 0.0029 6.009.0048
8 Hz/s 0.0012 0.0003 0.0020 0.0015 0.0021 0.0024 0.0031  0.004.0017
16 Hz/s 0.0018 0.0013 0.0023 0.0002 0.0017 0.0023 0.0012 0.002.0012

3.5dB 4.0dB 4.5dB 5.0dB 5.5dB 6.0dB 6.5dB 7.0dB Mean

1Hz/s 0.0107 0.0132 0.0137 0.0062 0.0058 0.0110 0.0054 9.009.0126
2Hz/s 0.0108 0.0119 0.0090 0.0093 0.0090 0.0063 0.0068 P.00D.0098
4Hz/s 0.0074 0.0067 0.0040 0.0114 0.0041 0.0050 0.0040 9.004.0053
8 Hz/s 0.0028 0.0036 0.0027 0.0026  0.0027 0.0065 0.0024 6.00D.0029
16 Hz/s 0.0011 0.0011 0.0009 0.0014 0.0022 0.0011 0.0016 0.002.0015

(b) Perrin internal energy algorithm variant.

Table A.3: The standard deviations of the line location sacies of oblique track detections
as functions of the spectrogram’s SNR—a comparison betweoriginal and Perrin internal
energies. These standard deviations are attributed tod-f6b and Figure 5.5a in Chapter 5.
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—2.0dB —-1.5dB —-1.0dB —-0.5dB 0.0dB 0.5dB 1.0dB 1.5dB 2.0dB

1% - 0.0407 0.0254 0.0073 0.0697 0.0217 0.0407 0.0054 0.0034
2% 0.0138 0.0035 0.0048 0.0039 0.0007 0.0055 0.0165 0.01830350.
4% 0.0533 0.0144 0.0131 0.0156 0.0020 0.0004 0.0274  0.01000410.
8% 0.0177 0.0010 0.0184 0.0042 0.0170  0.0053 0.0005 0.050702149.
16% 0.0106 0.0234 0.0235 0.0211 0.0416 0.0138 0.0077 0.01380100.

2.5dB 3.0dB 3.5dB 4.0dB 45dB 5.0dB 5.5dB 6.0dB Mean

1% 0.0086 0.0033 0.0105 0.0252 0.0070 0.0051 0.0177 0.01050178.
2% 0.0035 0.0175 0.0203 0.0064 0.0144 0.0050 0.0118 0.0091011D.
4% 0.0131 0.0158 0.0064 0.0552 0.0003 0.0150 0.0175  0.04490208.
8% 0.0387 0.0093 0.0041 0.0403 0.0149 0.0063 0.0158 - 0.0166
16% 0.0429 0.0369 0.0218 0.0172 0.0085 0.0150 - - 0.0205

(a) Original internal energy algorithm variant.

—2.0dB —-1.5dB —-1.0dB —-0.5dB 0.0dB 0.5dB 1.0dB 1.5dB 2.0dB

1% - 0.0061 0.0039 0.0038 0.0037 0.0034 0.0117 0.0009 0.0040
2% 0.0000 0.0020 0.0027 0.0079 0.0115 0.0041 0.0038 0.00200106.
4% 0.0067 0.0058 0.0026 0.0018 0.0063 0.0072 0.0210 0.01170020.
8% 0.0026 0.0006 0.0027 0.0043 0.0224 0.0067 0.0143  0.00580046.
16% 0.0057 0.0011 0.0120 0.0096 0.0153 0.0081 0.0058 0.0007011D.

2.5dB 3.0dB 3.5dB 4.0dB 45dB 5.0dB 5.5dB 6.0dB Mean

1% 0.0012 0.0067 0.0058 0.0024 0.0020 0.0069 0.0051 0.002600449.
2% 0.0019 0.0021 0.0015 0.0219 0.0067 0.0008 0.0097 0.00650056.
4% 0.0078 0.0162 0.0017 0.0048 0.0070 0.0071 0.0253  0.00600088.
8% 0.0059 0.0160 0.0099 0.0171 0.0154 0.0270 0.1100 - 0.0166
16% 0.0075 0.0153 0.0072 0.0172 0.0163  0.0089 - - 0.0095

(b) Perrin internal energy algorithm variant.

Table A.4: The standard deviations of the line location eacies of sinusoidal (ten second period)
track detections as functions of the spectrogram’s SNR—gpanison between the original and
Perrin internal energies. These standard deviations taitsudéd to Figure 5.6a and Figure 5.6b in
Chapter 5.
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—2.0dB —-1.5dB —-1.0dB —-0.5dB 0.0dB 0.5dB 1.0dB 1.5dB 2.0dB

1% 0.0650 0.0054 0.0112 0.0313 0.0059 0.0136 0.0211  0.00320014.
2% - 0.0209 0.0000 0.0142 0.0247  0.0079  0.0077 0.0098 0.0076
4% 0.0098 0.0093 0.0133 0.0246 0.0097 0.0315 0.0037 0.00330179.
8% 0.0289 0.0077 0.0085 0.0102 0.0024 0.0113 0.0038 0.0073006D.
16% 0.0032 0.0071 0.0148 0.0118 0.0036  0.0073 0.0171  0.00660068.

2.5dB 3.0dB 3.5dB 4.0dB 4.5dB 5.0dB 5.5dB 6.0dB Mean

1% 0.0204 0.0148 0.0094 0.0127 0.0302 0.0041 0.0136  0.01410168.
2% 0.0098 0.0104 0.0179 0.0006 0.0032 0.0038 0.0132  0.00650099.
4% 0.0374 0.0061 0.0187 0.0107 0.0197 0.0116 0.0192 0.00470148.
8% 0.0134 0.0063 0.0145 0.0291 0.0124 0.0208 0.0116  0.0392013D.
16% 0.0013 0.0015 0.0037 0.0247 0.0167 0.0177 0.0241  0.00390100.

(a) Original internal energy algorithm variant.

—2.0dB —-1.5dB —-1.0dB —-0.5dB 0.0dB 0.5dB 1.0dB 1.5dB 2.0dB

1% 0.0016 0.0166 0.0078 0.0027 0.0014 0.0012 0.0072 0.01220018.
2% - 0.0063 0.0135 0.0044 0.0051 0.0081 0.0037 0.0030 0.0111
4% 0.0058 0.0047 0.0062 0.0070 0.0093 0.0033 0.0056 0.00100058.
8% 0.0007 0.0034 0.0032 0.0012 0.0013 0.0066  0.0015  0.001400249.
16% 0.0128 0.0072 0.0062 0.0012 0.0015 0.0022 0.0014 0.00560008.

2.5dB 3.0dB 3.5dB 4.0dB 45dB 5.0dB 5.5dB 6.0dB Mean

1% 0.0033 0.0037 0.0000 0.0077 0.0044 0.0065 0.0032 0.0047005D.
2% 0.0042 0.0017 0.0003 0.0021 0.0093 0.0006 0.0140 0.00060058.
4% 0.0079 0.0057 0.0059 0.0017 0.0046  0.0028 0.0025 0.00420049.
8% 0.0041 0.0042 0.0021 0.0091 0.0028 0.0024 0.0191 0.01930050.
16% 0.0023 0.0028 0.0057 0.0047 0.0070 0.0057 0.0093 0.00000048.

(b) Perrin internal energy algorithm variant.

Table A.5: The standard deviations of the line location eacies of sinusoidal (fifteen second
period) track detections as functions of the spectrogré@hN&—a comparison between the ori-
ginal and Perrin internal energies. These standard demgtire attributed to Figure 5.7a and
Figure 5.7b in Chapter 5.
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—2.0dB -1.5dB —-1.0dB -0.5dB 0.0dB 0.5dB 1.0dB 1.5dB 2.0dB

1% 0.0058 0.0000 0.0011 0.0009 0.0110 0.0056  0.0030  0.00350058.

2% - 0.0008 0.0014 0.0074 0.0015 0.0025 0.0073 0.0005 0.0138

4% 0.0000 0.0127 0.0067 0.0034 0.0072 0.0064 0.0065 0.0078001D.

8% 0.0000 0.0121 0.0018 0.0072 0.0025 0.0028 0.0066  0.00300038.

16% 0.0163 0.0013 0.0038 0.0087 0.0103 0.0122 0.0014 0.0051003D.

2.5dB 3.0dB 3.5dB 4.0dB 4.5dB 5.0dB 5.5dB 6.0dB Mean

1% 0.0021 0.0188 0.0028 0.0062 0.0033 0.0008 0.0003 0.00760046.

2% 0.0020 0.0043 0.0014 0.0036 0.0152 0.0002 0.0041 0.0011004D.

4% 0.0065 0.0044 0.0036 0.0105 0.0066 0.0110 0.0033 0.0057006D.

8% 0.0015 0.0050 0.0000 0.0053 0.0034 0.0087 0.0172 0.02800069.

16% 0.0012 0.0089 0.0034 0.0098 0.0064 0.0024 0.0009 0.0015005D.

(a) Original internal energy algorithm variant.
—2.0dB -1.5dB -1.0dB -0.5dB 0.0dB 0.5dB 1.0dB 1.5dB 2.0dB
1% 0.0373 0.0178 0.0116 0.0119 0.0107 0.0185 0.0133 0.01680200.
2% - 0.0094 0.0115 0.0080 0.0129 0.0139 0.0174 0.0144 0.0121
4% 0.0000 0.0064 0.0020 0.0035 0.0035 0.0061 0.0088 0.0158011D.
8% 0.0001 0.0064 0.0066 0.0087 0.0077 0.0074 0.0129 0.0127016D.
16% 0.0129 0.0024 0.0067 0.0073 0.0117 0.0088 0.0085 0.00550090.
2.5dB 3.0dB 3.5dB 4.0dB 4.5dB 5.0dB 5.5dB 6.0dB Mean

1% 0.0072 0.0195 0.0102 0.0135 0.0087 0.0087 0.0047 0.01890140D.
2% 0.0119 0.0116 0.0113 0.0143 0.0112 0.0179 0.0084 0.00930118.
4% 0.0164 0.0124 0.0114 0.0112 0.0083 0.0048 0.0097 0.00660080D.
8% 0.0074 0.0104 0.0125 0.0129 0.0085 0.0141 0.0129 0.00860098.
16% 0.0181 0.0109 0.0153 0.0134 0.0128 0.0093 0.0119 0.01280104.

(b) Perrin internal energy algorithm variant.

Table A.6: The standard deviations of the line location smcies of sinusoidal (twenty second
period) track detections as functions of the spectrogré&8iNf—a comparison between the ori-
ginal and Perrin internal energies. These standard dem@tare attributed to Figure 5.8a and
Figure 5.8b in Chapter 5.

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24
0.0075 0.0101 0.0109 0.0093 0.0126 0.0159 0.0103 0.0101 074.0 0.0152 0.0185 0.0109 0.0203
0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44 0.46 0.48 0.50
0.0133 0.0239 0.0160 0.0203 0.0069 0.0322 0.0116 0.0199 110.0 0.0198 0.0073 0.0367 0.0225
0.52 0.54 0.56 0.58 0.60 0.62 0.64 0.66 0.68 0.70 0.72 0.74 0.76
0.0374 0.0345 0.0311 0.0299 0.0252 0.0240 0.0368 0.0274 256.0 0.0222 0.0280 0.0350 0.0199
0.78 0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00 Mean

0.0277 0.0294

0.0284 0.0169

0.0345

0.0137

0.0143

0.0220

316.0 0.0216

0.0132

0.0084

0.0204

Table A.7: The standard deviation of five repetitions of ttaning set detections as a function
of the gradient potential’s parameter values. The resutt®wbtained using the potential energy
proposed in this thesis and using a single active contouesd standard deviations are attributed
to Figure 5.13 in Chapter 5.

—1.0dB —-0.5dB 0.0dB 0.5dB 1.0dB 15dB 2.0dB 2.5dB 3.0dB
0.0049 0.0028 0.0025 0.0042 0.0013 0.0014 0.0008 0.0021 008.0
3.5dB 4.0dB 45dB 5.0dB 55dB 6.0dB 6.5dB 7.0dB Mean
0.0005 0.0007 0.0005 0.0002 0.0002 0.0002 0.0001 0.0003 014.0

Table A.8: The standard deviations of the line location e&cigs of vertical track detections
as functions of the spectrogram’s SNR—single track deinctiThese standard deviations are
attributed to Figure 5.14 in Chapter 5.
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—1.0dB -0.5dB 0.0dB 05dB 1.0dB 1.5dB 2.0dB 2.5dB 3.0dB

1Hz/s 0.0015 0.0022 0.0037 0.0095 0.0091 0.0135 0.0143 8.022.0218
2Hz/s 0.0008 0.0010 0.0001 0.0012 0.0010 0.0019 0.0045 8.00D.0008
4Hz/s 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004 0.0000 1©.00D.0022
8Hz/s 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00@.0002
16 Hz/s 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00@.0000

3.5dB 4.0dB 45dB 5.0dB 55dB 6.0dB 6.5dB 7.0dB Mean

1Hz/s 0.0195 0.0168 0.0081 0.0066 0.0082 0.0023 0.0060 8.004€.0100
2Hz/s 0.0069 0.0166 0.0124 0.0093 0.0120 0.0118 0.0112 ©0.008.0062
4Hz/s 0.0020 0.0006 0.0012 0.0005 0.0037 0.0027 0.0036 P.004.0014
8Hz/s 0.0005 0.0000 0.0017 0.0000 0.0005 0.0002 0.0005 0.00@.0002
16 Hz/s 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00@.0000

Table A.9: The standard deviations of the line location sacies of oblique track detections
as functions of the spectrogram’s SNR—single track deiectiThese standard deviations are
attributed to Figure 5.15 in Chapter 5.

—2.0dB —-1.5dB —-1.0dB —-0.5dB 0.0dB 0.5dB 1.0dB 1.5dB 2.0dB

1% - 0.0008 0.0011 0.0011 0.0123 0.0080 0.0073 0.0106 0.0120
2% 0.0000 0.0000 0.0003 0.0004 0.0009 0.0020 0.0022  0.0006004D.
4% 0.0001 0.0000 0.0000 0.0000 0.0016 0.0004 0.0006 0.00140058.
8% 0.0000 0.0000 0.0010 0.0005 0.0016  0.0006 0.0011  0.0048001D.
16% 0.0000 0.0000 0.0003 0.0025 0.0003 0.0006 0.0003 0.00120010.

2.5dB 3.0dB 3.5dB 4.0dB 45dB 5.0dB 55dB 6.0dB Mean

1% 0.0040 0.0066 0.0186 0.0109 0.0108 0.0067 0.0046 0.00200078.
2% 0.0070 0.0058 0.0132 0.0088 0.0228 0.0145 0.0046  0.00430054.
4% 0.0047 0.0061 0.0054 0.0075 0.0141 0.0071  0.0108  0.0059004D.
8% 0.0045 0.0047 0.0050 0.0136 0.0037  0.0139  0.0352 - 0.0057
16% 0.0036 0.0042 0.0052 0.0058 0.0071  0.0110 - - 0.0029

Table A.10: The standard deviations of the line locationueacies of sinusoidal (ten second
period) track detections as functions of the spectrogré®iN®R—single track detection. These
standard deviations are attributed to Figure 5.16 in Chdpte

—2.0dB —-1.5dB —-1.0dB —-0.5dB 0.0dB 0.5dB 1.0dB 1.5dB 2.0dB

1% 0.0000 0.0019 0.0014 0.0029 0.0043 0.0079 0.0153 0.02000076.
2% - 0.0006 0.0011 0.0009 0.0012 0.0016 0.0024 0.0050 0.0044
4% 0.0000 0.0000 0.0009 0.0000 0.0002 0.0003 0.0008 0.0005001D.
8% 0.0000 0.0000 0.0000 0.0004 0.0001  0.0000 0.0005 0.00000008.
16% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001  0.0000000D.

2.5dB 3.0dB 3.5dB 4.0dB 4.5dB 5.0dB 5.5dB 6.0dB Mean

1% 0.0113 0.0142 0.0116 0.0037 0.0101 0.0017 0.0022 0.00070069.
2% 0.0094 0.0072 0.0090 0.0102 0.0146  0.0075 0.0101  0.01110060.
4% 0.0030 0.0016 0.0108 0.0041 0.0082 0.0127 0.0115 0.00980039.
8% 0.0002 0.0016 0.0026 0.0101 0.0041 0.0101 0.0100 0.0124003D.
16% 0.0013 0.0010 0.0014 0.0044 0.0060 0.0030 0.0085 0.0103002D.

Table A.11: The standard deviations of the line locatiornuaacies of sinusoidal (fifteen second
period) track detections as functions of the spectrogrédlNf—single track detection. These
standard deviations are attributed to Figure 5.17 in Chdpte
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—2.0dB -15dB -1.0dB -0.5dB 0.0dB 0.5dB 1.0dB 1.5dB 2.0dB
1% 0.0000 0.0000 0.0016 0.0007 0.0059 0.0055 0.0122 0.0174017D.
2% - 0.0000 0.0000 0.0006 0.0034 0.0012 0.0038 0.0016 0.0177
4% 0.0000 0.0000 0.0001 0.0000 0.0008 0.0019 0.0005 0.00180029.
8% 0.0000 0.0002 0.0000 0.0000 0.0002  0.0000 0.0002  0.00200020.
16% 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0001 0.00040014.
2.5dB 3.0dB 3.5dB 4.0dB 45dB 5.0dB 5.5dB 6.0dB Mean
1% 0.0164 0.0058 0.0058 0.0050 0.0050 0.0026 0.0041 0.00150068.
2% 0.0048 0.0108 0.0084 0.0100 0.0169 0.0150 0.0095 0.015000749.
4% 0.0046 0.0034 0.0080 0.0173 0.0138 0.0127 0.0092  0.00710049.
8% 0.0015 0.0034 0.0028 0.0114 0.0070 0.0121 0.0088  0.01420039.
16% 0.0022 0.0023 0.0040 0.0108 0.0078 0.0068 0.0052  0.00620028.

Table A.12: The standard deviations of the line locatiorueacies of sinusoidal (twenty second
period) track detections as functions of the spectrogré@iN&R—single track detection. These
standard deviations are attributed to Figure 5.18 in Chdpte
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Doppler effect, 2628, 31, 80
Dynamic programming, 49, 58, 94

Ecology, 25

Edge detector, 40-41, 96
Bi-directional morphological, 92
Canny, 92
Mero-Vassey, 92
Sobel, 79, 84, 92

Eigenvalue, 115

Electromagnetic, 31

Energy
Contour, 90
Deformable modelseeActive contour
Function, 43
Gradient, 90
Initialisation, 95

Continuity, 42, 59, 90, 93, 105, 117, 132-135
Continuous signal, 23, 26

Correlation, 39, 134

Cost function, 42, 43, 45, 48, 133-135
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Internal, 90, 93-94, 102-105, 113, 116—
125, 127, 132-135, 138, 140

Minimisation, 90, 94, 105-107, 133-135

Potential, 90, 92-93, 95-102, 113, 115,
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117-120, 125-127, 133-136, 138
Expectation-maximisation, 50
Expert system, 23, 55-56, 59

Feature grouping theorj2, 59, 133
Filter, 40, 56
Gaussian, 40, 43
Steerable filter, 43-44
Force
Balloon, 91, 95, 124
Frequency
Component, 23, 24, 26-28, 30-32
Domain, 24, 25, 32, 80
Fundamental, 2727, 28, 31, 39, 80, 84,
116, 127, 129
Pattern, 26
Perceived , 28

Gain, 28
Gaussian, 41, 54
Classifier,75, 75-77, 79, 81, 84
Distribution, 97, 101
Filter, 40, 43, 134
Noise, 27
Genetic algorithm, 45
Gradient potential96, 117, 119, 125, 128,
132, 133, 139, 140
Gradient topology, 117
Graviational external force, 92
Ground truth 80

Harmonic, 27, 31, 39, 59
Integration, 84
Location, 132, 133, 135, 138
Pattern, 89, 113, 115, 127-132, 135
Series, 100
Series learning, 143-144

Hidden Markov model, 33, 37, 47-53, 58,

59, 86, 134, 136

Baum-Welch algorithm, 50
Extended Baum-Welch algorithm, 50
Forward-backward algorithm, 50-52

INDEXES

Viterbi algorithm, 47, 50-53, 58
High-level detection, 113, 115
Hilbert transform, 43
Hough transform, 79, 84
Hydrophone, 25, 39, 142

Image processing, 23, 33, 37, 39-44, 59
Inter-harmonic, 27, 31

k-nearest neighbour, 75
Kalman filter, 53

Laplacian line detection, 79, 84
Learning
Back-propagation, 46
Hebb's rule, 46
Likelihood ratio test, 39, 41-42
Line detection, 26
Line location accuracy, 34114, 114, 116—-
132, 134-136, 140
Linear discriminant analysis, 73—77
Lloyd mirror, 26
LOFARgram,seeSpectrogram
Low-level feature, 33, 5%1, 61-87, 89, 113,
133, 134, 136, 138-140

Machine learning, 33, 72, 96, 138, 143, 144
Manifold, 78
Marine mammal, 24, 25, 41
Maximuma posteriorj 63,65, 68, 82
Maximum likelihood, 37-39, 51, 59, 685,
68, 82, 92
Meteor, 24
Minimum description length, 45
Morphological operator
Closing, 41
Dilation, 41
Erosion, 41
Multi-stage decision process, 42—-44, 86, 133,
135

Near-periodic, 23
Neighbourhood, 107
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Neural network, 3744, 44-48, 59, 73, 78,
139
Auto-associative memory, 46—47
Generalisation, 44-46, 77
Hidden noded44
Kohonen self-organising map, 48, 75—
133

Multi-layer feed-forward, 47—-48
Multi-layer perceptron, 4647, 74
Neuron, 44
Ockham'’s network, 44, 435
Radial basis function, 75-76
Soft weight sharing, 44
Supervised learning, 44-48
Unsupervised learning, 48
Weight decay, 44, 45
Weight sharing45

Noise, 26, 28, 30
Ambient, 141-142
Broadband, 40, 41
Model, 97-99, 101-102
model, 139
Noise level, 28
Temporal variation, 102, 141

Ocean, 26-28

Parameter sensitivity, 117-119

Parseval's theorem, 30

Particle filter, 53-54, 58

Pattern recognition, 24, 33, 35, 138

Pattern set, 27, 80

Period,80

Periodic, 23, 24, 27

PeriodogramseeSpectrogram

Power spectrum, 29-31

Prewitt, 115

Principal component analysis, 62, 73—-78, 81,

87, 96-99, 115

Probabilistic data association, 51

Probability density function, 50, 53, 54, 63
Exponential, 64
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Gamma, 64
Propagation of sound, 24, 26, 28—-29
Propeller blade, 24, 27

Ray path bending, 28

Receiver array, 28

Receiver operating characteristics, 33,82,
85, 115, 140

Reflection, 28

Scattering, 28
Sensor, 26, 28
Ship, 24, 25, 27, 142
Short-term Fourier transform, 23, 25, 29
Signal level 28
Signal processing, 24
Signal-to-noise ratio, 23, 2@2, 31-32, 37,
116, 124
Signature, 27
Simulated annealing, 54-55, 86, 94
Snake seeActive contour
SONAR
Passive, 24-33
SonogramseeSpectrogram
Source, 28
Spectral waterfallseeSpectrogram
Spectrogram, 23-2&29, 29-32, 115, 117,
118, 127, 131, 133-135, 139
Spectroscopy, 31
Speech formant, 24
Speed of sound, 29
Spreading, 28
Statistical model, 23, 33, 37, 44, 49-53, 59
Submarine, 24, 25, 27

Template, 134

Test set, 80-81, 114, 117, 139

Threshold, 40-42, 46, 51-53, 55, 56, 70, 79
Detection threshold, 28
Gradient potential, 132
Hysteresis, 43

Time domain, 24, 29, 32
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Time-series, 23, 24
Torpedo, 24, 25, 27
Track, 23, 25, 26, 31
Association, 36, 141
Birth, 35
Death, 35
Features, 42, 48, 59, 133
Gradient,80
Oblique, 24, 80, 121, 122, 125, 127, 129
Sinusoidal, 80, 122, 123, 125, 130
Structure, 24, 35, 40, 44, 132, 134
Vertical, 24, 80, 120, 125
Training set, 80-81, 114, 117, 118, 139
Transmission loss, 28
Two-pass split-window, 40

Ultrasonic, 27
UNESCO, 29

Waterfall displayseeRolling window
Wavelet transform, 93
Weightedk-nearest neighbour, 75
Window, 48, 59, 6167, 72, 79, 96, 107, 115
Hamming, 29
Rolling, 31, 107-109






