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IMAGE OBJECT LABELLING AND CLASSIFICATIONUSING AN ASSOCIATIVE MEMORYS E M O'Keefe, J AustinUniversity of York, UKABSTRACTAn essential part of image analysis is the location andidenti�cation of objects within the image. Noise andclutter make this identi�cation problematic, and thesize of the image may present a computational prob-lem. To overcome these problems, we use a windowonto the image to focus onto small areas. Conven-tionally we still need to know the size of the objectwe are searching for in order to select a window ofthe correct size. We describe a method for objectlocation and classi�cation which enables us to use asmall window to identify large objects in the image.The window focusses on features in the image, and anassociative memory recalls evidence for objects fromthese features, avoiding the necessity of knowing thedimensions of the objects to be detected.INTRODUCTIONThe motivation behind this work was the desire toanalyse large images, with a view to their classi�ca-tion. In particular, we are looking at the classi�ca-tion of document images according to their content.In order to determine the content of the images, weneed to locate and identify objects within the image,and build up a description of the image in termsof these objects. The work discussed below allowsfor the identi�cation of complex, arbitrarily shapedobjects in an image, and allows for them being over-lapped or partially obscured by other objects in theimage.Consider a two-dimensional object in an image. Theobject is composed of a number of features, not ne-cessarily unique, lying in particular relationships toeach other. If we can identify the features which com-prise the object and determine whether they exist inthe correct relationship to each other, then we areable to determine whether the object appears in anyimage to some level of con�dence based on the cer-tainty of correctly identifying features. This is thebasis of the Generalised Hough Transform (GHT)(Ballard (1)), used to detect arbitrary shapes in im-ages.Features and their corresponding parameter valuesdescribing the object are stored in a table (in e�ect,a template). If the object in the image does not

match the template of the object perfectly, then theprobability of detecting and correctly labelling theobject is reduced. Depending on the features usedto describe the object and the accuracy with whichthey are measured very small changes in individualfeatures can make a large change to how well theobject �ts the template, making this method verysusceptible to corruption of the image by noise, orocclusion etc. Grimson and Huttenlocher (2) analysethe GHT, allowing for possible inaccuracies in meas-urement, and making assumptions about the distri-bution of possible values for each feature. The resultsof their analysis show how fragile the method is.In the GHT, then, the object model is in the formof a template which describes the features compris-ing the object, and their relationship to each other.Matching a model to the image data involves a searchthrough all available models to decide which modelbest �ts the data. This search may present a com-putational problem when we have a large number ofmodels, as would be the case if we wished to analysea real image. We solve the computational problemby implementing the Generalised Hough Transformusing a fast associative memory, ADAM (AdvancedDistributed Associative Memory)(Austin and Ston-ham (3), O'Keefe and Austin (4)). ADAM is a neuralnetwork speci�cally designed for application to imageanalysis tasks (Austin et al. (5)). Simply put, thenetwork allows for the association of input and out-put patterns in a compact form, so that the present-ation of an input pattern stimulates the output ofthe associated pattern without a serial search of thepattern memory. Thus, the network is ideal for per-forming the sorts of template matching involved inthe GHT. The network is able to generalise from thefeatures it has been trained on, so that it is able torecognise noisy or corrupted versions of features, andreturns a measure of con�dence in the recognition ofeach feature.IMPLEMENTATIONWe have implemented an object recognition tool foruse in the analysis of images, using the ADAM neuralnetwork to implement the GHT. This implementa-tion o�ers several enhancements over a conventionalGHT, and provides the basis for further enhance-ments of the method to improve the resilience of re-



cognition to noise and clutter in the image.General DescriptionThe recogniser follows the principles of the GHT. Itis trained to associate object features with a para-meterised description of the object. The recognisersearches the image for features that it has beentrained to recognise, and recalls the associated para-meter values. The evidence for the existence of theobject in the image is accumulated as the image issearched. When the whole image has been scanned,the resulting accumulation of evidence at each loca-tion is analysed to determine the location and classof objects in the image.Generalised Hough TransformIn this implementation, the parameterisation used tomodel the target objects is as an association betweenfeatures and vector/label pairs describing the classof object and the position of the notional object\centre" relative to the features. The features whichare used to describe the objects are m � m blocksof pixels selected from a training example of the ob-ject. These features are associated with the relevantvector/label pairs.The label used for the class of object is an N-pointcode. that is, it is a string of binary elements of whichexactly N are set to 1. The method of encoding ob-ject class allows di�erent labels to be superimposedwhen evidence is accumulated, and allows the dom-inant label at each position to be retrieved reliably.The position vector is encoded by approximating itto a position in a grid of points surrounding the fea-ture position. Each position in the grid contains thelabels for object classes which have appeared at thisposition relative to the feature during training. Thefeature is associated with this grid data structure.As with the GHT, each feature may occur any num-ber of times, and in many di�erent classes of objects.The feature is therefore associated with any numberof vector/label pairs. The template for the objectsearch is the set of all the features and their associ-ated parameter values.To locate an object in an image, we search for them �m blocks of pixels constituting the features wehave learned. When a feature is found in the im-age, the corresponding vector/label pairs are foundfrom the template. From the position of the feature,and the recalled position of the object centre, we �ndthe location of the putative object in the image (�g-ure 1). At this position, we accumulate the label forthe object. In fact, we do this for all vector/labelpairs that we recall for the feature. This is repeatedfor every feature we �nd in the image.
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Figure 1: Calculation of object position from featureposition and recalled parametersWhen the whole image has been scanned for features,we threshold the accumulated evidence. When anobject is actually present in the image, and all ormost of its features are found, a large number oflabels are accumulated for that object at the ap-proximate position of the object centre. Thus, onthresholding the labels accumulated at each pointon the image, we can determine what the dominantlabel is at each position, and the con�dence attachedto that dominant label.ADAM neural networkThe GHT is implemented using ADAM. ADAM is afast, high-capacity associative memory, designed foruse in image analysis tasks.ADAM uses binary correlation matrix memories(CMMs) to learn and recall associations between in-put and output arrays of binary data. An exampleof such a matrix is shown in �gure 2. A is the in-put array and B is the output array. The matrixM represents the outer product of A and B. Allelements of M are set to 0 initially. During train-ing, the elements of M record the intersections ofthe rows corresponding to the bits set to 1 in A,with the columns corresponding to the bits set to 1in B. At these intersections the elements of the ar-rays are set to 1. Each subsequent pattern is writtenover existing patterns, forming the logical OR of thepatterns.To recall an associated pattern from the memory,the test pattern is placed in A and a matrix multi-plication is performed, with the result placed in B.The result will be a (integer) array, which must bethresholded to give a binary result. The threshold-ing method used is that developed by Austin (3),and is referred to as N-point thresholding (some-times termed L-max (Casasent and Telfer(6))). Inthis method, every original pattern in B has N bits
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BFigure 2: Binary correlation matrix M , with inputA and output Bset. On recall, the N elements of the array whichhave the highest value are set to 1, and all others areset to 0.ADAM consists of two of these CMMs. Because theinput and output patterns may be very large, a singleCMM associating input and output would be im-practical. ADAM uses an intermediate code whichis much smaller than either of the input or outputarrays. The �rst CMM learns associations betweenthe contents of the input array and some intermedi-ate code, selected to be unique for that input, andthe second CMM learns the association between theintermediate code and the output. In this way, thetotal size of the matrices is reduced.
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Figure 3: The ADAM associative memoryThe layout of ADAM is shown in �gure 3. The in-put array is shown with tupling. This preprocessingof the input splits it into groups of binary elements(\tuples"). Each tuple decoder interprets the values

in its tuples as representing a state. The decoder hasa separate output for each state, and sets to one theoutput corresponding to the state of the tuple. Asa consequence of this tupling of the input, linearlyinseparable patterns may be classi�ed; the input tothe �rst CMM is much more sparse than the originaldata, thereby reducing saturation of the memory andincreasing capacity; and the number of bits set in theinput to the CMM is �xed, making thresholding ofthe output from the CMM simpler.ImplementationThe implementation of the GHT-based recogniser isshown in �gure 4. The recogniser is trained by teach-ing the ADAM to associate features (m �m blocksof pixels) with object labels and positions. Once theADAM has been trained, the recogniser can searchfor the object in an image. An m � m window isstepped over the test image. At each position, them � m block of pixels is extracted. If the ADAMrecognises this feature, it recalls the associated vec-tor/label pairs. Recognition of a feature is determ-ined by the con�dence with which the �rst CMM pro-duces the intermediate code | a high con�dence istaken recognition of a feature, and low con�dence im-plies the feature is not recognised. The vector/labelpairs are recalled in the form of a grid. Object la-bels appear on the grid points corresponding to theobject position relative to the feature.
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Figure 4: Implementation of the recogniserThe contents of this recalled grid are added into anaccumulator grid. Thus, at each position in the accu-mulator we will get some number of labels accumu-lated, corresponding to putative objects in the image,for which there is some feature evidence belonging tothe object. Once the whole image has been scannedfor features, and the evidence has been accumulated,we need to determine where objects are. This we doby looking at every cell in the accumulator and de-



termining whether the accumulated evidence in thatcell exceeds the threshold for an object. Assumingthat the ADAM has been trained to recognise morethan one object, then each cell of the accumulatormay hold labels for more than one class of object.This is illustrated in �gure 5.
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1 2Figure 5: Labels for more than one class of objectaccumulated in one cellTo determine which is the dominant class of objectat this location, we N-point threshold the contents ofthe accumulator cell. That is, we select the N largestelements in the cell. This gives us the object label\0 0 1 0 0 1". To determine the level of con�dence wehave in this label, we look at the di�erence betweenthe \strength" of this label and the other labels in thecell which we are treating as noise, and compare thiswith the response we expect from the object model.RESULTSTo demonstrate the capabilities of the recogniser, ithas been applied to the problem of recognising ob-jects in fax images. These images present di�cultiesbecause of their size, and the presence of noise in theimages.The recogniser has been trained on two of the largecharacters in the section of image shown in �gure 6,speci�cally on the \A" and the \C". The feature sizeis 15�15 pixels, and the position of the feature relat-ive to the object is approximated by an 21� 21 grid,with seven pixels between grid points. The image isthen presented to the recogniser, which must locatethese objects in the image. The recognition processtakes of the order of twenty seconds, running on aHewlett Packard Apollo workstation.Figure 7 shows the results of this initial processing.Each map shows the con�dence with which the classof objects has been located at each point in the im-age. The higher the peak on the map, the higher thecon�dence that the object is at that point (con�d-ences are scaled to a maximum of 256). It can beseen that object \C" has been located, and both in-

Figure 6: Test image (fax image)stances of object \A". Note that this separation ofthe con�dence maps for the two classes of objects ismerely for convenience in visual interpretation of theresults. The accumulator actually holds the inform-ation about all objects in the image as overlappedcodes. In practice, it is intended that further ana-lysis of the image would make use of the informationin the accumulator without the necessity of �lteringout particular objects.It is clear from �gure 7 that the recogition of objectsis complicated by noise and clutter in the image. Thenext development will be to introduce feedback intothe recognition process. The initial identi�cation ofobjects in the image is used to recall, for each object,the type and location of the features in the object.This information is combined with the original fea-ture information and passed through the recogniseragain, until we are able to con�dently label objects.Another step in the development is the transition tospecialised hardware. The C-NNAP processor (Aus-tin et al (7)) is designed to implement ADAM dir-ectly in hardware, and to run ADAMs in parallel.Migration to this hardware will give two orders ofmagnitude increase in the speed with which imagesare analysed.CONCLUSIONSWe have implemented an object recogniser, using aGHT-like algorithm, and using ADAM to provide thefast associative look-up. The system can search formultiple objects in parallel | features in the imageprompt the recall of the associated object or objectsdirectly, without a serial search of the memory. Thesearch of the image for features is also an obviouscandidate for parallelisation, since the detection ofa feature and the recall of the object information atany location is independent of feature detection in



Figure 7: Results of processing. Each map shows the con�dence with which the class of objects has been locatedat each point in the image. Con�dences are scaled to a maximum of 256.the rest of the image. When the recogniser is imple-mented using the C-NNAP hardware, rather thansimulating this in software, we expect a considerableincrease in speed.The drawbacks of the system at the moment relate tothe cost of implementing ADAM in software. Evenfor small numbers of object models with relativelyfew features, we still need large correlation matrixmemories, so the bene�ts of this implementation arenot apparent for small problems. The system alsosu�ers from noise and clutter in the image, and thenext stage of development is the inclusion of feed-back, so that the recogniser can iterate towards asolution, labelling objects con�dently and suppress-ing the e�ects of noise.References1. Ballard, D. H., 1981, \Generalising the houghtransform to detect arbitrary shapes",Patt Rec, 12, 111-1222. Grimson, W. E. L. and Huttenlocher, D. P.,1990, \On the sensitivity of the HoughTransform for Object Recognition",IEEE Trans. P.A. and M. I.,12(3),255-2743. Austin, J. and Stonham, T. J., 1987, \TheADAM associative memory", T.R. YCS 94,Department of Computer Science, University ofYork4. O'Keefe, S. E. M. and Austin, J., 1994,\Application of an Associative Memory to theAnalysis of Document Fax Images",Proceedings, British Machine VisionConference, BMVA Press,5. Austin, J., Brown, M., Kelly, I. and Buckle, S.,1993, \ADAM neural networks for parallelvision", JFIT Technical Conference 1993
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