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IMAGE OBJECT LABELLING AND CLASSIFICATION

USING AN ASSOCIATIVE MEMORY

S E M O’Keefe, J Austin

University of York, UK

ABSTRACT

An essential part of image analysis is the location and
identification of objects within the image. Noise and
clutter make this identification problematic, and the
size of the image may present a computational prob-
lem. To overcome these problems, we use a window
onto the image to focus onto small areas. Conven-
tionally we still need to know the size of the object
we are searching for in order to select a window of
the correct size. We describe a method for object
location and classification which enables us to use a
small window to identify large objects in the image.
The window focusses on features in the image, and an
associative memory recalls evidence for objects from
these features, avoiding the necessity of knowing the
dimensions of the objects to be detected.

INTRODUCTION

The motivation behind this work was the desire to
analyse large images, with a view to their classifica-
tion. In particular, we are looking at the classifica-
tion of document images according to their content.
In order to determine the content of the images, we
need to locate and identify objects within the image,
and build up a description of the image in terms
of these objects. The work discussed below allows
for the identification of complex, arbitrarily shaped
objects in an image, and allows for them being over-
lapped or partially obscured by other objects in the
image.

Consider a two-dimensional object in an image. The
object is composed of a number of features, not ne-
cessarily unique, lying in particular relationships to
each other. If we can identify the features which com-
prise the object and determine whether they exist in
the correct relationship to each other, then we are
able to determine whether the object appears in any
image to some level of confidence based on the cer-
tainty of correctly identifying features. This is the
basis of the Generalised Hough Transform (GHT)
(Ballard (1)), used to detect arbitrary shapes in im-
ages.

Features and their corresponding parameter values
describing the object are stored in a table (in effect,
a template). If the object in the image does not

match the template of the object perfectly, then the
probability of detecting and correctly labelling the
object is reduced. Depending on the features used
to describe the object and the accuracy with which
they are measured very small changes in individual
features can make a large change to how well the
object fits the template, making this method very
susceptible to corruption of the image by noise, or
occlusion etc. Grimson and Huttenlocher (2) analyse
the GHT, allowing for possible inaccuracies in meas-
urement, and making assumptions about the distri-
bution of possible values for each feature. The results
of their analysis show how fragile the method is.

In the GHT, then, the object model is in the form
of a template which describes the features compris-
ing the object, and their relationship to each other.
Matching a model to the image data involves a search
through all available models to decide which model
best fits the data. This search may present a com-
putational problem when we have a large number of
models, as would be the case if we wished to analyse
a real image. We solve the computational problem
by implementing the Generalised Hough Transform
using a fast associative memory, ADAM (Advanced
Distributed Associative Memory)(Austin and Ston-
ham (3), O’Keefe and Austin (4)). ADAM is a neural
network specifically designed for application to image
analysis tasks (Austin et al. (5)). Simply put, the
network allows for the association of input and out-
put patterns in a compact form, so that the present-
ation of an input pattern stimulates the output of
the associated pattern without a serial search of the
pattern memory. Thus, the network is ideal for per-
forming the sorts of template matching involved in
the GHT. The network is able to generalise from the
features it has been trained on, so that it is able to
recognise noisy or corrupted versions of features, and
returns a measure of confidence in the recognition of
each feature.

IMPLEMENTATION

We have implemented an object recognition tool for
use in the analysis of images, using the ADAM neural
network to implement the GHT. This implementa-
tion offers several enhancements over a conventional
GHT, and provides the basis for further enhance-
ments of the method to improve the resilience of re-



cognition to noise and clutter in the image.

General Description

The recogniser follows the principles of the GHT. It
is trained to associate object features with a para-
meterised description of the object. The recogniser
searches the image for features that it has been
trained to recognise, and recalls the associated para-
meter values. The evidence for the existence of the
object in the image is accumulated as the image is
searched. When the whole image has been scanned,
the resulting accumulation of evidence at each loca-
tion is analysed to determine the location and class
of objects in the image.

Generalised Hough Transform

In this implementation, the parameterisation used to
model the target objects is as an association between
features and vector/label pairs describing the class
of object and the position of the notional object
“centre” relative to the features. The features which
are used to describe the objects are m x m blocks
of pixels selected from a training example of the ob-
ject. These features are associated with the relevant
vector /label pairs.

The label used for the class of object is an N-point
code. that is, it is a string of binary elements of which
exactly N are set to 1. The method of encoding ob-
ject class allows different labels to be superimposed
when evidence is accumulated, and allows the dom-
inant label at each position to be retrieved reliably.

The position vector is encoded by approximating it
to a position in a grid of points surrounding the fea-
ture position. Each position in the grid contains the
labels for object classes which have appeared at this
position relative to the feature during training. The
feature is associated with this grid data structure.

As with the GHT, each feature may occur any num-
ber of times, and in many different classes of objects.
The feature is therefore associated with any number
of vector/label pairs. The template for the object
search is the set of all the features and their associ-
ated parameter values.

To locate an object in an image, we search for the
m x m blocks of pixels constituting the features we
have learned. When a feature is found in the im-
age, the corresponding vector/label pairs are found
from the template. From the position of the feature,
and the recalled position of the object centre, we find
the location of the putative object in the image (fig-
ure 1). At this position, we accumulate the label for
the object. In fact, we do this for all vector/label
pairs that we recall for the feature. This is repeated
for every feature we find in the image.
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Figure 1: Calculation of object position from feature
position and recalled parameters

When the whole image has been scanned for features,
we threshold the accumulated evidence. When an
object is actually present in the image, and all or
most of its features are found, a large number of
labels are accumulated for that object at the ap-
proximate position of the object centre. Thus, on
thresholding the labels accumulated at each point
on the image, we can determine what the dominant
label is at each position, and the confidence attached
to that dominant label.

ADAM neural network

The GHT is implemented using ADAM. ADAM is a
fast, high-capacity associative memory, designed for
use in image analysis tasks.

ADAM wuses binary correlation matrix memories
(CMMs) to learn and recall associations between in-
put and output arrays of binary data. An example
of such a matrix is shown in figure 2. A is the in-
put array and B is the output array. The matrix
M represents the outer product of A and B. All
elements of M are set to O initially. During train-
ing, the elements of M record the intersections of
the rows corresponding to the bits set to 1 in A,
with the columns corresponding to the bits set to 1
in B. At these intersections the elements of the ar-
rays are set to 1. Each subsequent pattern is written
over existing patterns, forming the logical OR of the
patterns.

To recall an associated pattern from the memory,
the test pattern is placed in A and a matrix multi-
plication is performed, with the result placed in B.
The result will be a (integer) array, which must be
thresholded to give a binary result. The threshold-
ing method used is that developed by Austin (3),
and is referred to as N-point thresholding (some-
times termed L-max (Casasent and Telfer(6))). In
this method, every original pattern in B has N bits
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Figure 2: Binary correlation matrix M, with input
A and output B

set. On recall, the N elements of the array which
have the highest value are set to 1, and all others are
set to 0.

ADAM consists of two of these CMMs. Because the
input and output patterns may be very large, a single
CMM associating input and output would be im-
practical. ADAM uses an intermediate code which
is much smaller than either of the input or output
arrays. The first CMM learns associations between
the contents of the input array and some intermedi-
ate code, selected to be unique for that input, and
the second CMM learns the association between the
intermediate code and the output. In this way, the
total size of the matrices is reduced.
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Figure 3: The ADAM associative memory

The layout of ADAM is shown in figure 3. The in-
put array is shown with tupling. This preprocessing
of the input splits it into groups of binary elements
(“tuples”). Each tuple decoder interprets the values

in its tuples as representing a state. The decoder has
a separate output for each state, and sets to one the
output, corresponding to the state of the tuple. As
a consequence of this tupling of the input, linearly
inseparable patterns may be classified; the input to
the first CMM is much more sparse than the original
data, thereby reducing saturation of the memory and
increasing capacity; and the number of bits set in the
input to the CMM is fixed, making thresholding of
the output from the CMM simpler.

Implementation

The implementation of the GHT-based recogniser is
shown in figure 4. The recogniser is trained by teach-
ing the ADAM to associate features (m x m blocks
of pixels) with object labels and positions. Once the
ADAM has been trained, the recogniser can search
for the object in an image. An m X m window is
stepped over the test image. At each position, the
m x m block of pixels is extracted. If the ADAM
recognises this feature, it recalls the associated vec-
tor/label pairs. Recognition of a feature is determ-
ined by the confidence with which the first CMM pro-
duces the intermediate code — a high confidence is
taken recognition of a feature, and low confidence im-
plies the feature is not recognised. The vector/label
pairs are recalled in the form of a grid. Object la-
bels appear on the grid points corresponding to the
object position relative to the feature.
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Figure 4: Implementation of the recogniser

The contents of this recalled grid are added into an
accumulator grid. Thus, at each position in the accu-
mulator we will get some number of labels accumu-
lated, corresponding to putative objects in the image,
for which there is some feature evidence belonging to
the object. Once the whole image has been scanned
for features, and the evidence has been accumulated,
we need to determine where objects are. This we do
by looking at every cell in the accumulator and de-



termining whether the accumulated evidence in that
cell exceeds the threshold for an object. Assuming
that the ADAM has been trained to recognise more
than one object, then each cell of the accumulator
may hold labels for more than one class of object.
This is illustrated in figure 5.

ACCUMULATOR COUNT

BIT POSITION

Figure 5: Labels for more than one class of object
accumulated in one cell

To determine which is the dominant class of object
at this location, we N-point threshold the contents of
the accumulator cell. That is, we select the N largest
elements in the cell. This gives us the object label
“001001”. To determine the level of confidence we
have in this label, we look at the difference between
the “strength” of this label and the other labels in the
cell which we are treating as noise, and compare this
with the response we expect from the object model.

RESULTS

To demonstrate the capabilities of the recogniser, it
has been applied to the problem of recognising ob-
jects in fax images. These images present difficulties
because of their size, and the presence of noise in the
images.

The recogniser has been trained on two of the large
characters in the section of image shown in figure 6,
specifically on the “A” and the “C”. The feature size
is 15 x 15 pixels, and the position of the feature relat-
ive to the object is approximated by an 21 x 21 grid,
with seven pixels between grid points. The image is
then presented to the recogniser, which must locate
these objects in the image. The recognition process
takes of the order of twenty seconds, running on a
Hewlett Packard Apollo workstation.

Figure 7 shows the results of this initial processing.
Each map shows the confidence with which the class
of objects has been located at each point in the im-
age. The higher the peak on the map, the higher the
confidence that the object is at that point (confid-
ences are scaled to a maximum of 256). It can be
seen that object “C” has been located, and both in-
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Figure 6: Test image (fax image)

stances of object “A”. Note that this separation of
the confidence maps for the two classes of objects is
merely for convenience in visual interpretation of the
results. The accumulator actually holds the inform-
ation about all objects in the image as overlapped
codes. In practice, it is intended that further ana-
lysis of the image would make use of the information
in the accumulator without the necessity of filtering
out particular objects.

It is clear from figure 7 that the recogition of objects
is complicated by noise and clutter in the image. The
next development will be to introduce feedback into
the recognition process. The initial identification of
objects in the image is used to recall, for each object,
the type and location of the features in the object.
This information is combined with the original fea-
ture information and passed through the recogniser
again, until we are able to confidently label objects.

Another step in the development is the transition to
specialised hardware. The C-NNAP processor (Aus-
tin et al (7)) is designed to implement ADAM dir-
ectly in hardware, and to run ADAMs in parallel.
Migration to this hardware will give two orders of
magnitude increase in the speed with which images
are analysed.

CONCLUSIONS

We have implemented an object recogniser, using a
GHT-like algorithm, and using ADAM to provide the
fast associative look-up. The system can search for
multiple objects in parallel — features in the image
prompt the recall of the associated object or objects
directly, without a serial search of the memory. The
search of the image for features is also an obvious
candidate for parallelisation, since the detection of
a feature and the recall of the object information at
any location is independent of feature detection in
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Figure 7: Results of processing. Each map shows the confidence with which the class of objects has been located
at each point in the image. Confidences are scaled to a maximum of 256.

the rest of the image. When the recogniser is imple-
mented using the C-NNAP hardware, rather than
simulating this in software, we expect a considerable
increase in speed.

The drawbacks of the system at the moment relate to
the cost of implementing ADAM in software. Even
for small numbers of object models with relatively
few features, we still need large correlation matrix
memories, so the benefits of this implementation are
not apparent for small problems. The system also
suffers from noise and clutter in the image, and the
next stage of development is the inclusion of feed-
back, so that the recogniser can iterate towards a
solution, labelling objects confidently and suppress-
ing the effects of noise.
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