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Abstract Insider attacks are often subtle and slow, or pre-

ceded by behavioral indicators such as organizational rule-

breaking which provide the potential for early warning of

malicious intent; both these cases pose the problem of iden-

tifying attacks from limited evidence contained within a large

volume of event data collected from multiple sources over

a long period. This paper proposes a scalable solution to

this problem by maintaining long-term estimates that indi-

viduals or nodes are attackers, rather than retaining event

data for post-facto analysis. These estimates are then used

as triggers for more detailed investigation. We identify es-

sential attributes of event data, allowing the use of a wide

range of indicators, and show how to apply Bayesian statis-

tics to maintain incremental estimates without global updat-

ing. The paper provides a theoretical account of the process,

a worked example, and a discussion of its practical implica-

tions. The work includes examples that identify subtle attack

behaviour in subverted network nodes, but the process is not

network-specific and is capable of integrating evidence from

other sources, such as behavioral indicators, document ac-

cess logs and financial records, in addition to events identi-

fied by network monitoring.

1 Introduction

Insider attacks pose a particular threat because of the knowl-

edge, access, and authority of their perpetrators (Randazzo
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et al, 2004). Such attacks often involve violations of physi-

cal or operational security, or the misuse of authority; they

may also involve electronic attacks, in which case the ‘elec-

tronic insider’ is as big a threat as a person. It may be safer

for a sophisticated external attacker to subvert an electronic

system, often via social engineering, than directly subvert an

employee.

The literature does not provide a single definition of ‘in-

sider’, which may be defined with respect to physical or log-

ical boundaries, employment, or degree of access to systems

or documents. For the purpose of this work we define an

insider to be someone who:

– Is able to operate within a defined boundary; and

– Is awarded some degree of privilege or trust within that

boundary.

The boundary is an important feature, since we assume

that the first line of defence in most systems - the perime-

ter - does not apply to an insider. The boundary may be a

national boundary, the physical limits of a place of work,

a logical boundary defined by electronic technology, or the

combination of physical and logical boundaries that define

an organization. Perimeter defences that are avoided by in-

siders may include immigration restrictions and constraints

on the import of dangerous goods or materials, physical bar-

riers, access controls and defences against fire and flood, or

electronic mechanisms such as firewalls. Boundaries may be

nested or even overlap; for example an accounts clerk may

be within a financial department within a company. This

does not present a difficulty, since we usually analyze these

entities and their risks separately.

Individuals within a country, organization or system gen-

erally have some degree of authority and some expectation

that they will comply with relevant policies. Within a na-

tion individuals are expected to comply with the law, and

their access to public places and facilities is usually on the
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basis that their motives are benign; similarly, within an orga-

nization insiders will have some degree of physical access,

and their work will usually involve authorized use of elec-

tronic systems. Examples of security violations by insiders

include ‘home grown’ terrorism, espionage, theft of indus-

trial secrets, sabotage, and employee fraud.

We also include in our definition of insider a person or

element of a system that has been subverted to act for an ex-

ternal attacker, because the detection problem is the same:

the system cannot be protected at the perimeter, and the at-

tacker has acquired some degree of internal authority. Ex-

amples of such attacks include the coercion or social engi-

neering of employees, including using such techniques to

subvert employees’ electronic equipment.

Attacks may involve a single major incident, such as ter-

rorist attack, sabotage, or theft, or may take place over a long

period. For example, the world’s largest credit card fraud

was achieved with a subverted internal system that avoided

discovery for over 17 months (Goodin, 2007).

Subtle attackers are unlikely to launch large-scale fraud-

ulent financial transactions, or use known electronic exploits;

they will seek to avoid any action that can be immediately

identified as an attack. However, they are likely to cause mi-

nor security events: an attacker may test known passwords,

probe for services, or test new exploits, expecting to hide

within the background of user errors, mistakes and other

‘noise’. The problem of detecting such an attacker is there-

fore one of accumulating relatively weak evidence over a

long period. This issue is identified as one of the ‘grand chal-

lenges’ of the internal attacker problem: “to combine events

from one or more sensors, possibly of various types” while

“reduce[ing] data without adversely impacting detection”

(Brackney and Anderson, 2004); it is also a long-standing

problem for Intrusion Detection Systems (see section 3).

This paper provides a solution to this critical problem.

Attackers planning a major incident, or who are predis-

posed to such an action, also generate a trail of subtle clues

before the attack. For example, Band et al (2006) describe

histories of observable rule-breaking, organizational conflict

and behavioral deviance as a precursor to espionage and em-

ployee sabotage. The ability to correlate a series of subtle

clues is potentially as important in identifying the precursor

to a major attack, as it is for detecting attackers who are at-

tempting to stay below alarm thresholds to avoid discovery.

The examples presented here identify subtle attack be-

haviour in subverted network nodes. The actions of the sub-

verted node or individual may be events that could be identi-

fied by an Intrusion Detection System (e.g. network probe),

or they may result from marginal use of a system by an au-

thorized individual, for example failed login attempts or un-

usual patterns of document access. However, the approach to

characterizing and combining diverse sources of weak evi-

dence is equally applicable to other problems in the insider

space, such as identifying criminal or espionage threats from

behavioral indicators, and this is discussed further in section

9.

This paper provides a process for combining evidence

from various sources based on the application of Bayesian

statistics, identifies attributes that must be available to allow

the combination of evidence from different types of sensor,

and demonstrates the effectiveness of this approach with a

simulated slow-attack on a network.

This paper presents the results of substantially more re-

search than its workshop predecessor (Chivers et al, 2009).

Although the principles and aims are the same, the hypoth-

esis on which the updating algorithm is based has been

changed, resulting in a improved updating factor, which

is effective at resolving some marginal discrimination ob-

served in the previous results. This paper also includes a

significantly larger realistic simulation, explicit results on

the limits of evidential accumulation, and a discussion on

normalization that justifies the stance that it is not necessary

to update scores for every individual following each event.

The paper is organized as follows: Section 2 provides

an overview of the proposed approach, section 3 describes

related work, and the evidential accumulation process is de-

veloped and described in section 4. After a brief explanation

of the simulation approach in section 5, section 6 shows that

the proposed process is well behaved in simple cases, and

that it gives the same estimate of behaviour regardless of the

size group an individual is associated with; section 7 then

explores the effective limits to updating evidence. Section 8

simulates a challenging insider detection problem, contrasts

the effectiveness of the evidence accumulation process with

a common, but naive, alternative approach, and shows how

the results vary with increasing uncertainty of identification

of nodes that originate events. Section 9 discusses results

and open issues, and the paper is concluded in section 10.

2 Overview

Consider how a human investigator might approach the prob-

lem of accumulating evidence in the system of Figure 1. The

system consists of a network nodes (a...i) with interconnec-

tivity as shown; it may be a social network of people, a net-

work of electronic components, or a hybrid network of indi-

viduals where the links between them are mostly electronic.

Two minor security events are detected x, and y; they may be

behavioral, perhaps originating from observations of deviant

behaviour or abnormal financial statistics, or electronic, for

example alerts from an intrusion detection system, or server

log.

Given information about event x and the traffic in the

network at the time, the investigator may determine that the

nodes most likely to have originated the event are a,b,c,d and
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Fig. 1 Intersecting weak evidence from several events may be enough

to indicate a common source. Event x may have originated from a,b,c,d

or e; event y from f,g or d; their intersection, d, suggests a possible

common factor.

e. Similarly, when y occurs at a much later date the possible

originating nodes are f, g and d. Intersecting these observa-

tions suggests node d as a common factor, and this may be

sufficient to trigger intensive monitoring to determine if it is

behaving maliciously.

The data used to identify these security events and their

possible sources is necessarily transient; it may not be pos-

sible to record sufficient of the history of interactions be-

tween nodes to allow this analysis retrospectively. However,

it is initially sufficient to just identify nodes that score differ-

ently; from the perspective of the defender in the long slow

game it is only necessary to ‘tip off’ a further investigation

by identifying one or more nodes whose behaviour may be

unusual. It is not essential to record the events, the actions

from which they were identified or even the graphs that iden-

tify possible sources, provided it is possible to somehow ac-

cumulate a ‘score’ for each node in the system.

This approach solves one of the critical issues in identi-

fying slow attacks: how to maintain long-term state. Systems

that try to model the behaviour of individuals or protocols

are forced to retain large amounts of data which limits their

scalability. In the approach described here the state size is a

small multiple of the number of nodes in the network; this

state is readily distributed and its storage is feasible, even

for organizations with global networks.

The ‘score’ that we propose for each node is the proba-

bility that the node is subverted, based on the application of

Bayesian statistics. This naturally allows incremental updat-

ing and translation of the problem frame from events which

are related to behaviour to individual attackers. Simpler ap-

proaches, such as the event counting used to introduce this

section, can be shown to be inferior, as demonstrated in sec-

tion 8.

In summary, we propose that to identify subtle or inside

attackers:

– The primary objective is to identify nodes for further in-

vestigation.

– Long-term state is restricted to an incremental estimate

of the probability that each node is an attacker.

– Node estimates are updated following every security

event, taking account of transient network information

that is available at the time of the event.

This process is complementary to conventional intrusion de-

tection using signatures or heuristics, or automated fraud

detection that identifies large deviations in user behaviour.

There is no need to gradually accumulate evidence if the at-

tack is evident, in such a case the secondary investigation is

concerned with incident management, rather than confirma-

tion.

Section 4 describes how scores are calculated and main-

tained, following a brief summary of related work.

3 Related Work

The idea of using primary tests or indicators to identify sus-

pects who then warrant further investigation is an established

financial management practice. Standard texts on fraud man-

agement (e.g. (Wells, 2008)) specify tests that can be used

to trigger further investigation, based on the likelihood that

fraudsters’ behaviour is sufficiently different from that of

normal employees to be statistically significant. For exam-

ple, employees who have an abnormally high level of cash

adjustments (i.e. accounting corrections) may be involved

in systematic sales or invoice fraud. Such systems are sup-

ported by forensic investigation once a fraud is suspected

and statistical triggers are supplemented by checks such as

surprise audits to detect and deter systematic low-level fraud.

Within the computer forensics community Bradford et al

(2004) have proposed a similar process of detection followed

by a more detailed forensic investigation. Users are profiled

according to their function and statistical tests are used to de-

termine if behaviour is anomalous and more intensive data

collection should be initiated. However, the authors do not

show an implementation of their approach and remark that it

could not be carried out for “every user regardless” but itself

requires a “triggering process”.

The problem is the volume of data that must be main-

tained, and this is also an issue with data mining approaches,

which are often proposed as an adjunct to intrusion detec-

tion or audit. Research proposals to alleviate the scalability

issue include improving the quality of the raw data, by dis-

covering better behavioral indicators (Nguyen et al, 2003)

or classifying input features (Chebrolua et al, 2004), the lat-

ter using a Bayesian classifier. An alternative approach by

Staniford et al (2002) is to selectively retain anomalous net-

work data, with the aim of identifying slow network scans.
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Anomalous packets are identified based on heuristics devel-

oped from real scans. Other approaches include statistical

filtering, primarily to reduce false alarm rates and support vi-

sualization (Colombe and Stephens, 2004). In essence, how-

ever, all these approaches require the storage of large vol-

umes of event data for later analysis, and the authors them-

selves identify scalability as a problem (Nguyen et al, 2003).

Aggregation as a means of detecting slow or stealthy at-

tacks has been proposed by Heberlein (2002). His assump-

tion is that slow attacks are still systematic and the attacker

will eventually repeat the attack many times, possibly against

different targets. Alerts are classified and displayed on a

visualization grid, and any persistent activity which raises

alerts of the same type over a long period can be identi-

fied. Although similarly motivated our work differs by accu-

mulating evidence of attackers, not of incidents, removing

the restriction that attackers need to repeat similar attacks.

Heberlein’s algorithm is also a counting process, which we

show to be inferior to statistical reasoning.

Other work directed toward the insider problem is fo-

cussed on characterising an attacker’s behaviour. The se-

curity indicators (‘events’) used may range from an indi-

vidual’s buying and travel preferences, to electronic alerts.

For example, Buford et al (2008) propose a comprehensive

framework of ‘observables’ that are used to build a model of

individuals’ behaviour via graph theory. Eberle and Holder

(2009) develop graphs of behavioral events, such as phone

calls, to identify sub-graphs of normal behaviour, which are

used to search for similar but anomalous occurrences. These

approaches offer the advantage of modeling the potential at-

tacker and providing interesting insights into observable be-

haviour; however, their application may be limited by the

computational cost of graph matching over large datasets,

as well as by data scalability.

Most of the work described above is still formative; net-

work intrusion detection, however, is established in the lit-

erature and supported by both open and propriety products

(Bace and Mell, 2001). An intrusion detection system (IDS)

uses a behavioral model of a system or protocol and detects

anomalous events by either recognizing predefined signa-

tures, or by heuristics. Both approaches have strengths and

weaknesses, but despite the use of IDSs in practice they are

hampered by a lack of scalability and tend to generate large

numbers of false positive alerts (Bace and Mell, 2001). From

the perspective of this paper, IDSs are an effective way of

generating events which may indicate an attack but are un-

able to maintain sufficient state to identify slow attacks.

An IDS is not the only possible source of security events;

other sources include the behavioral events referenced above,

operating system audit trails, document access records, and

even Honeypots (Spitzner, 2003), which are security traps

with no operational functionality.

In summary, the challenge of integrating information

from many sources in a manageable and scalable fashion,

in order to identify patient internal attackers, is still an im-

portant open question (Brackney and Anderson, 2004).

4 Accumulating Evidence

This section develops the detailed theory necessary to im-

plement the method outlined in section 2: to collapse the

problem of attacker identification to updating a single score

for each network node or user. The section first outlines the

evidential scenario and the attributes required to character-

ize security events. Standard Bayesian updating is summa-

rized, followed by the development of the process for updat-

ing evidence of insider attacks. Finally, the practical issue of

relating this process to real security events is discussed.

Definitions

Node: This paper uses network terminology, without loss

of generality to broader types of human or attack behav-

ior. A node is an individual or a system element such

as a user’s end system or a router. This theory does

not require a graph to accumulate evidence, so edges

between nodes are not formally defined. The edges or

links between nodes may, however, be needed to estab-

lish which nodes are the possible originators of security

events; examples of such links include network commu-

nications, indirect communication between individuals

(e.g via emails or documents), and direct social interac-

tion.

Event: An event is an alert that indicates a possible security

violation; it may be an anomalous phone call, a financial

anomaly, a failed system login, or something more cer-

tain, such as a known electronic exploit.

The evidential scenario is presented in Figure 2. Node a is

an individual or network node, and x is an event which is

detected somewhere in the system; there is some evidence

that identifies the nodes that may have originated the event.

Event x may indicate an attack. Some security events are

almost certainly attacks; however, there are many more that

may be user mistakes, network backscatter, or other forms

of ‘noise’. For example, an attempt by a user to obtain a re-

stricted document, or connect to a non-existent webserver,

may be a simple mistake but could also be a deliberate at-

tempt operate outside their legitimate authority.

In addition to uncertainty about the extent that an event

originates because of an attack, there may also be uncer-

tainty about the origin of the event. For example, a subverted

network node may be able to spoof its network address, or

the event may only be traceable to a subnetwork; in a behav-

ioral context only a proportion of the individuals associated
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Event x
P(Event is an Attack)

Node a
H: Hypothesis that (a) is Subverted

...  the set of nodes ...
that may originate x

Event y
...

Fig. 2 The Evidential Scenario: events are detected that may indicate

an attack, it is possible to identify some nodes as possible originators

of each event, and the objective is to investigate the hypothesis that a

particular node is the attacker.

with a particular event (behavioral indicator) may be identi-

fiable, for example, it may be able to identify most of the in-

dividuals with access to a ’leaked’ classified document, but

only estimate the total number who may have had access. In

order to accumulate evidence from a wide range of different

sources, events must be characterized by uniform parame-

ters that describe these various attributes. We propose that

security events can be characterized by three parameters:

– P(Attackx): the probability that a particular event, x, is

caused by an intentioned attack.

For an event generated by network intrusion sensors this

is the ratio of true positive alerts to all alerts, which

is a standard figure of merit. For behavioral indicators

(e.g. presence at a street demonstration) and other sys-

tem alerts (e.g. failed logins) it is necessary to estimate

the value based on likely event frequencies. In some cases

the historical rate of occurrence of certain attacks, such

as insider fraud, may be known, and this may be used to

estimate the probability that certain events derive from

such attacks. In a similar way to estimating risk likeli-

hoods, it may be sufficient to quantify these frequencies

to an accuracy of an order of magnitude.

– Cx: the Causal Node Set, which is the set of nodes or

individuals that are estimated to be the possible source

of the event.

In a network it may be possible to associate the event

with a packet stream that originated from an identifi-

able subnetwork or node. This may be a static feature

of the sensor’s location, or it may be deduced from the

data (the packet source address places it in a particular

subnetwork), or from dynamic system information (e.g.

current routing tables). In the case of behavioral infor-

mation it is likely to be an identifiable set of individuals

(e.g. visitors to an internet cafe during a specific period).

– P(Cx): the probability that the event originator is within

the causal node set.

It will not always be possible to identify with certainty

the set of nodes or individuals that include the event

originator: the estimate may be incomplete, or wrong.

For example: technical means such as indirection or ad-

dress spoofing (CERT Incident Note, 1998) may be used

to camouflage the source of an attack; routing tables or

traffic records may suggest that most packets came from

a specific network, but a few came from elsewhere; the

traceability of a packet to a particular subnetwork may

depend on the correct functioning of routers and fire-

walls, which themselves have a non-zero possibility of

being subverted. In the case of behavioral indicators it

may be possible to know the number of people involved

in an event, but only positively identify a fraction of the

individuals; for example, not all the visitors to an In-

ternet Cafe during a period in question are positively

identified. All these factors suggest the need for a metric

that quantifies the extent to which the event originator is

known to be within the estimated causal set.

Given a sequence of events characterized by these pa-

rameters, we wish to investigate the hypothesis that a partic-

ular node is subverted, or acting as the agent of an attacker.

We will first summarize the standard approach to Bayesian

updating, then show how it can be applied in this case.

4.1 Bayesian updating

Bayesian updating provides an estimate of the probability

that hypothesis H is true, given an event, x.

P(H|x) =
P(x|H) ·P(H)

P(x)
(1)

This theorem uses P(x|H), the probability of event (x)

given that the hypothesis is true, to update the initial (‘prior’)

estimate of the probability that the hypothesis is true, P(H).

Simple updating of this type is used in medical diagnosis;

given knowledge of the probability of a symptom (the event)

given a disease (the hypothesis), it provides a principled es-

timate of the likelihood of the disease given the symptom. It

is essentially this change of reference frame – from symp-

tom to cause – that is needed to identify attackers from their

behaviour.

The denominator P(x) is the probability of the event

and in many cases, including ours, is difficult to estimate.

However, standard results in Bayesian statistics (Russell and

Norvig, 2010) show that this can be replaced by a normaliz-

ing factor chosen to ensure that the probabilities of all possi-

ble hypotheses sum to unity. The problem of how to achieve

this normalization in the case of a distributed system is dis-

cussed in section 4.2.2, below.
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Assuming conditional independence (i.e. that the prob-

ability of an event is conditioned by the hypothesis, but not

by other events that are observed), a further standard result

is that the evidence updates from several events (e.g. x,y) are

combined as follows:

P(H|x,y) =
P(x|H) ·P(y|H) ·P(H)

N
(2)

Where N is a normalizing factor, as described above.

4.2 Combining evidence from security events

The evidential scenario at the start of this section defines

three key parameters: P(Attackx), Cx, and P(Cx) which char-

acterize an event; in addition, we define the following:

S The set of all nodes in the system.

#S The total number of nodes in the system.

a,b... Particular network nodes. a,b, ... ∈ S

Ha The hypothesis that we wish to update: that

node (a) is the node which is subverted, or

being used to mount an attack within the sys-

tem.

x,y... Particular events that may provide evidence

of an attack.

#Cx The number of nodes in set Cx

The hypothesis, Ha, assumes that only one node in the sys-

tem is subverted; this provides improved discrimination and

normalization over the alternative hypothesis that several

nodes may be subverted. This is a technical issue and does

not inhibit the practical use of the resulting scores to identify

several attackers. In practice the several-attacker problem

can be regraded informally as superposition, and we later

illustrate with an example that attackers with high levels of

activity do not mask more subtle attacks.

In order to carry out Bayesian updating as specified in

equation (2), it is necessary to calculate the update factor

P(x|Ha), the prior probability P(Ha), and when required to

normalize the result in such a way that the probabilities

across all nodes sum to unity.

4.2.1 The Bayesian update factor

The update factor P(x|Ha) is the likelihood of the event,

given the hypothesis Ha. Given that event x has been ob-

served, and the hypothesis that a is the only attacker, then

either:

– Event x originates because of an attack, and it came from

node a, or

– Event x did not originate because of an attack, and it may

have originated from any node.

The probability that x originates because of an attack is

the parameter P(Attackx) that characterizes the event, as de-

scribed above. The probability that the event did not origi-

nate because of an attack (i.e. it is a false positive) is there-

fore (1 - P(Attackx)).

Each event is associated with a set of nodes or individu-

als, Cx, that is expected to include the originator of the event;

we assume that each member of this set has an equal prob-

ability of being the event originator. It would be relatively

straightforward to extend the theory below to assign likeli-

hoods individually to members of Cx; however, we have yet

to find evidence that such a distinction would be useful in

practical event scenarios.

This set divides the population of nodes in the system

into two groups; node a, the subject of the hypothesis, may

be a member of Cx or may fall outside that set. If a is in Cx

then the probability that x originated from a is the probabil-

ity that Cx includes the originating node, P(Cx), divided by

the number of nodes in the set, #Cx. If a is not in Cx then the

probability that x originated from a is (1 - P(Cx)) divided by

the number of nodes outside Cx, (#S - #Cx).

This allows us to calculate the probability that x orig-

inates because of an attack, and it came from node a. As

described above, we must add the possibility that x did not

originate because of an attack to obtain the required update

factor:

i f a ∈Cx :

P(x|Ha) =
P(Attackx) ·P(Cx)

#Cx

+(1−P(Attackx)) (3)

i f a /∈Cx :

P(x|Ha) =
P(Attackx) · (1−P(Cx))

#S−#Cx

+(1−P(Attackx))(4)

These equations provide the Bayesian update factors; in

order to complete equation (2) it is also necessary to include

prior probabilities and normalize the result.

4.2.2 Normalizing the result and localizing the update

factor

By multiplying the prior probability for each node, P(Ha),

with the sequence of update factors derived from events it

is possible to calculate the numerator of equation (2), which

provides a score for each node in the system. The prior prob-

ability is a function of the network node, and may be esti-

mated in advance for the type of node, or if there is no basis

for distinguishing nodes (see section 4.3, below), it can be

set to 1/#S. The resulting score after two events, x and y, is:

Scorea = P(x|Ha) ·P(y|Ha) ·P(Ha) (5)
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As described in section 4.1, in order to obtain the prob-

ability of each hypothesis given the evidence it is necessary

to normalize the results such that the sum of the probabili-

ties over all possible hypotheses is unity. The working hy-

pothesis that there is a single attacker makes this straightfor-

ward assuming that nodes in the system are disjoint, since

it results in a single hypothesis for every node in the sys-

tem, giving a normalisation factor which is the sum of these

scores:

P(Ha|x,y) =
Scorea

∑i∈S Scorei

(6)

This allows probabilities to be recovered from node

scores when required, but it does not meet the need for effi-

cient evidence recording, since the updates in equations (3)

and (4) require the probability estimate associated with ev-

ery node to be updated for each event. For efficiency, and to

allow distributed calculation, it is very desirable to update

only the estimates of nodes that are within Cx - that is to up-

date only the scores of nodes that are indicated as possible

originators of a particular event.

It is therefore desirable to localize the updating process;

to do this we observe that multiplying all the update fac-

tors arising from a given event by a constant has no effect

on the normalized probability. This is trivial to prove: mul-

tiply P(x|Hi) in equation (5) by an arbitrary constant, K, for

all nodes i in S. This multiplies both the numerator and the

denominator of equation (6) by K, which cancel to give the

same normalized probability that would result if the constant

multiplier had not been used.

Our objective is to avoid updating node scores outside

Cx, and this can therefore be achieved by choosing a con-

stant K which sets the update factor for these nodes to unity.

The required constant is the reciprocal of equation (4); by

multiplying equation (3) by this factor we obtain an update

factor that is applied to only the scores of those nodes within

Cx.

∆x =

P(Attackx)·P(Cx)
#Cx

+(1−P(Attackx))

P(Attackx)·(1−P(Cx))
#S−#Cx

+(1−P(Attackx))
(7)

4.3 Evidence accumulation in practice

The forgoing sections provide the necessary theory to allow

the details of security events to be discarded, while retaining

a single score for each node which summarizes the evidence

that the node is an attacker. The algorithm to achieve this is:

1. Initialize each node score with its prior probability, P(Ha).

2. For each security event:

(a) Establish the distinguishing parameters: the proba-

bility that the event originates because of an attack,

the set of nodes that are likely to have originated the

event (Cx), and the probability that Cx contains the

event originator.

(b) Calculate ∆ from equation (7).

(c) Multiply the score for each node in Cx by ∆ ; do not

update the scores for nodes outside Cx.

3. When required, normalize the resulting node scores us-

ing equation (6), to obtain the probability that each node

is an attacker.

The prior probability is of value if different nodes

have significantly different priors. For example, in a net-

work there will be a significant difference between a well-

configured router and a laptop which is used outside the or-

ganizational perimeter; for individuals the prior probabili-

ties may vary with degree of background checking, or in the

case of large public populations with factors such as social-

economic group. In many cases where the priors are signif-

icant they can be estimated from survey information; if no

such information is available, then the priors can be set to

1/#S.

The three parameters that characterize an event were dis-

cussed in the introduction to section 4.

The assumption of event independence (see 4.1) has prac-

tical consequences for the choice of event. For example, in

a network attack, a particular sequence of actions may be

closely related (e.g. a known exploit, followed by an outgo-

ing connection that downloads specific malicious software).

Such chains of actions are clearly not independent events,

but are close enough in time to be correlated by an intrusion

system and regarded as a single event with a high certainty

that it is an attack. On the other hand, in a network scan,

which is a series of probes to different network locations, the

individual probes are only interdependent to the extent that

addresses scanned will depend to some extent on past his-

tory. In these situations the designer has a choice whether to

regard them as a separate events, with rather low P(Attack),

or if they occur within a short time interval to regard them

as a single event with a much higher P(Attack).

We are primarily concerned with comparative scores in

order to identify nodes that are distinctive and require further

investigation. In practice, then, it is sufficient to use Loga-

rithmic scores, simply adding Log(∆ ) to each node indicated

by an event. Equation (6) can still be reconstructed from this

information, but more usually the highest node score or set

of scores is chosen for further investigation.

The reader may be wondering about the value of calcu-

lating ∆ at all at this stage, since we simply add its loga-

rithm to the score for indicated nodes. However, this differs

significantly from a counting algorithm, where the score for

each node is incremented when it is identified as the possible

source of a security event. The update value, ∆ , character-



8

izes exactly how much evidence is provided by each event.

This important distinction is illustrated in the worked exam-

ple presented in section 8.

5 Simulation Approach

The sections that follow evaluate the evidence accumula-

tion process described above, partly by further exploration

of equation (7), and partly by simulation. This section briefly

describes the simulation rationale and approach.

It is rare to obtain useful network traces from real sys-

tems, especially large systems with subtle attackers. There-

fore, in order to explore a wide range of different scenarios,

we use network simulation. In this paper, simulation is first

used to demonstrate properties of the proposed evidence ac-

cumulation process, then used to demonstrate its effective-

ness in a complex network whose overall structure is typical

of those we encounter in practice.

The structure of the simulator is presented in fig 3.

Activity
Specification

Event Detection
Specification

Traffic
Generator

Evidence
Manager

Normaliser
& Readout

Scores

Output

Calculation
Function

Simulator
Problem

Specification

Test
Method

Fig. 3 The structure of the security event simulator. The modularity

allows the direct substitution of calculation methods for comparative

testing under identical conditions.

The simulator behaviour is controlled by two inputs: a

problem specification and a test method. The problem spec-

ification contains two main parts, a description of network

traffic including security related events, and a specification

for how event detection behaves. Traffic is generated by the

simulator at random, within rates set by the specification,

and can be typed to allow different sorts of detectors and

traffic to be simulated simultaneously. The event detection

section specifies what traffic events can be detected, and how

to determine the three key parameters: P(Attackx), Cx, and

P(Cx) for each event.

The test method provides score calculation and normal-

ization functions. Usually these functions implement equa-

tions (7) and (6) respectively, but they can be exchanged

with other methods, allowing exactly comparable results to

be obtained; this feature is used to contrast the updating pro-

cess proposed here with a counting approach in section 8.2,

below.

The simulator maintains separation between the calcu-

lation method and problem specification. It generates traffic

according to the activity specification, which is then screened

for events using the rule structure provided by the event de-

tection specification. Events detected are provided to the cal-

culation method, which updates the associated scores, and

when output is required the normalizer can be employed to

recover actual probabilities. In all the examples in this paper

the normalizer is not used, since Log scores are displayed,

as described in section 4.3.

6 Behaviour of Evidential Accumulation

Before showing a representatively difficult example of in-

sider attack in which the attacker attempts to hide below the

background noise of the system detection (see section 8.1),

this section explores if the evidential accumulation process

is well-behaved in simpler cases. Two examples are given,

the first explores a simple electronic network with variable

rate attackers, and the second is concerned with a social net-

work with multiple overlapping groups of individuals.

6.1 A simple network

Given a single subnetwork, in which the sender can be read-

ily identified, we explore some key questions for evidence

accumulation:

– Is it possible to identify an attacker sending at a slightly

higher rate than the background of errors from normal

nodes?

– If the rate of attack increases, is the process stable, and

does it enable the attackers to be identified earlier?

– Does the process accommodate multiple attackers with

different rates of attack (i.e. can one node hide behind

another’s attack)?

We simulate a small network of 50 nodes, in which the

originating node of an event can be identified with certainty

(i.e. #Cx = 1, and P(Cx) = 1); we assign P(Attack) an ar-

bitrary probability of 1/12. (The only special feature in this
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choice was to avoid a number that exactly divided the sys-

tem topology; we are not aware of any simplification that

would result from such a choice, but wished to avoid the

possibility.) Time is divided into slots (e.g. single minutes)

and the average background rate of random innocent events

that may be misinterpreted as attacks is 1/50 per node – in

other words, one event per minute. Three nodes within the

network are designated attackers, and they generate random

attacks at rates of 2, 4 and 8 times the total background rate.

Because these parameters identify the originator of an

event with certainty, then there is less opportunity for an at-

tacker to hide in the ’noise’ of a crowd; this experiment is

designed to illustrate that several attackers are treated inde-

pendently and that discrimination, or time to detection, im-

proves with higher event rates.
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Fig. 4 Scores resulting from three attackers at different rates in a small

network. The presence of high rate events from one or more attackers

does not interfere with the detection of lower-rate attacks from another.

The scores resulting from this scenario are shown in Fig.

4. All three attacking nodes are well distinguished from the

background level of events, which is indicated by the ‘con-

trol’ result, which is the score for a typical innocent node.

As would be expected, if the attack rate is higher the dis-

crimination improves. The accumulation of evidence is well

behaved and the higher rate nodes do not interfere with the

accumulation of evidence relating to attackers operating at a

lower rate.

6.2 Evidence from overlapping groups of individuals

Electronic networks are likely to have stable structures, re-

sulting in relatively simple and consistent groups of nodes

(i.e. the sets of Cx) that can be identified as the originator of

an event: for example the individual node, the logical sub-

network, or a local facility network. Under these circum-

stances it is important that the same evidence is accumulated

against two nodes whose behaviour is the same, but who are

usually identified with different size groups of nodes.

This issue becomes more significant when dealing with

social networks where innocent individuals associated with

’events’ (e.g. individuals visiting a specific internet cafe, or

taking a flight to a particular destination) are present by ac-

cident, rather than a result of a fixed network architecture.

These groups of individuals are much more ad-hoc, and the

attackers lie somewhere in their many random intersections.

The problem of ’false alarms’ occurs equally in the be-

havioral modeling of individuals as in the electronic moni-

toring of systems or networks. Most of the security breaches

recorded by government agencies, integrity lapses recorded

by police services, and disciplinary offences noted by com-

panies are false alarms, in the sense that they do not neces-

sarily indicate that the individual is a potential spy, is cor-

rupt, or is unsuitable as an employee.

To investigate how well such disparate groups can be as-

sessed we simulate three events that identify three radically

different sized groups of individuals (651, 51 and 25). Fig.

5 (a) illustrates the resulting sets of individuals, and the size

of two overlaps. All the individuals in the system generate

events at the same rate (P(event)=0.014), which results in

a total of 10 events per unit of time from the 700 individu-

als). The exceptions are the individuals in the overlaps, who

generate events in all the groups with which they are iden-

tified at the same rate as other group members, so they gen-

erate additional events pro-rata to their group memberships.

P(Attack) is .099 for all events, and the simulation was run

for 100,000 time units. The resulting scores are given in Fig.

5 (b).

14.3

14.2

14.2

625

1
24

25 25

Group A
(651)

Group B (51)

Group C (25)

28.5

42.7

Membership Scores

a. b.

Fig. 5 Investigating the scores for individuals in different size groups,

with the same behaviour within each group. (a) shows the sizes of the

three groups and their overlaps; (b) gives the final accumulated score

for representative single individuals. This demonstrates that scores de-

pend on activity level, and are independent of group size.

The results show that individuals generating ‘false

alarms’ at the same rate, but ascribed by the detection pro-
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cess to different sized groups, receive the same score; the

small differences are attributed only to small differences

in the random generation of events. This normalization be-

tween different group sizes is important because the objec-

tive is to identify individual behaviour and avoid identifying

individuals simply on the basis of the groups to which they

are ascribed. Section 8.2, below, provides a dramatic exam-

ple of how badly alternative processes perform if they do not

possess this attribute.

In this case the scores for the individuals in the inter-

section of these groups is predictable, as it arises simply

from the superposition of event rates. The reader should bear

in mind that this section is concerned only with basic be-

haviour. A real social network problem is likely to iden-

tify many more groups, with considerable uncertainty about

their membership, making it rather more difficult to identify

which individuals are potentially significant.

7 Limiting factors for Event Evidence

The equation for updating evidence can also be used as a

measure of effectiveness for event detectors. Specifically, we

can enquire under what circumstances does an event add in-

formation to our estimate that an individual is an attacker.

The threshold of usefulness of event detection occurs

when ∆ from equation (7) is unity; a value above unity adds

evidence to some hypothesis, below reduces evidence against

any of the identified nodes. We require:

P(Attackx)·P(Cx)
#Cx

+(1−P(Attackx))

P(Attackx)·(1−P(Cx))
#S−#Cx

+(1−P(Attackx))
>= 1 (8)

Multiplying by the denominator of the left hand side, then

subtracting (1−P(Attackx)) from both sides gives:

P(Attackx) ·P(Cx)

#Cx

>=
P(Attackx) · (1−P(Cx))

#S−#Cx

(9)

Dividing out P(Attackx), and multiplying out the denomina-

tors, we obtain:

(#S−#Cx) ·P(Cx)>= #Cx · (1−P(Cx)) (10)

Adding #Cx ·P(Cx) to both sides, then re-arranging, gives:

#S >=
#Cx

P(Cx)
(11)

This result is valid provided P(Attackx) is not zero. Val-

ues of P(Attackx) close to unity provide most evidence, and

as P(Attackx) tends toward zero the update factor approaches

unity, which is to be expected since the weight of evidence

is reducing.

Assuming that P(Attackx) is not approaching zero, then

this limit can be regarded as the point at which the whole

population is implicated by an event. A practical illustration

of this threshold is given in section 8.3, which shows how

evidence in a representative network behaves with decreas-

ing certainty of event attribution.

A special case of this result is if #Cx = #S; if an event

can only be ascribed to all the nodes in the system, then it

does not provide evidence that discriminates between nodes.

Alternatively, this limit can be expressed as a ratio be-

tween the size of the system and the number of nodes identi-

fied as possible originators, compared to the probability that

the originator is within these nodes, as shown in Fig. 6.
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Fig. 6 Evidential value is limited by the effective size of the set of

individuals that may have originated an event

8 Insider Attacks

This section shows that a subtle insider attack in a represen-

tative network can be identified by the proposed evidence

accumulation process, contrasts the principled accumulation

of evidence with a simple counting scheme, and explores

how evidential accumulation behaves as the attribution of

nodes that originate events becomes less certain. All the ex-

amples in this section use the same network and the same

simulation seeds, to provide comparable results.

8.1 A difficult detection problem

The network used in this section is a medium-sized system

(3000 endpoints) with features that are representative of the

problem space, including:
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– Sensors with different capabilities; for example, certainty

of detection and ability to identify source nodes.

– Attackers whose rate of attack is significantly below the

background rate of false positive alerts for the system.

– Attacks that employ address spoofing.

An important practical issue is the estimation of the three

parameters that characterize a security event; relating these

to actual systems and assessing the need for accuracy is sub-

ject to ongoing study. To date it has been possible to achieve

realistic results by assigning P(Attack) as a fixed value for a

given sensor within a deployment context, and by creating

a simple rule-set that maps the network connection associ-

ated with an event to a set of nodes, giving Cx and P(Cx)

depending on the configuration and protocol.

The network used in this example is given in Fig. 7.

This network has 3000 nodes, most of which are user sys-

tems located in eleven separate client subnetworks in sizes

that range from 33 to 500 nodes. Two of these subnetworks

have nodes that are subverted and are attacking the sys-

tem. The purpose of dividing the clients into several sub-

networks (apart from the fact that this is a standard config-

uration) is to contrast the detectability of attackers in dif-

ferent sized subnetworks, given that in many cases it will

be possible to identify only the subnetwork from which an

attack originated. This arrangement allows us to investi-

gate the scores accrued for an attack node (3 or 403) ver-

sus normally-behaving nodes in the same subnetwork, and

nodes in a control subnetwork which is larger (hence higher

false alarm rate) but has no attackers.

Most of the traffic in the system is between the clients

and servers via the core network. Router and firewall detail

is not shown, and because the object is to investigate evi-

dence accumulation rather than event generation we model

two unspecified types of security event: those that can be

detected within client subnetworks, and events in the server

farm. For example, an event could be an attempt to connect

to an exploitable network port.

Attackers are expected to generate security events at a

rate that is much lower than the background rate of ‘mis-

takes’ by normal clients, in order to remain undetected. In

the simulation below time is measured in arbitrary clocks

(e.g. minutes), and the probability of a normal client gen-

erating a security alert in any time slot is 1/20; in other

words the system suffers an average of 150 false alarms ev-

ery minute. In contrast, attackers generate events at a rate of

1/10; one event every 10 minutes.

In addition to the low attack rate, to further avoid de-

tection, attackers use address spoofing. Events detected out-

side the subnetwork containing the attacker can only be

assigned to the whole subnetwork. Only events identified

within the subnetwork containing the attacker (i.e. directed

toward nodes within that subnetwork) can be traced to a spe-

cific node.

An outline calculation illustrates the difficulty of this

problem. Consider the attacker at node 3. Viewed from out-

side, the subnetwork can be expected to generate innocent

background events (false alarms) at a rate of 1.6 events per

minute (33 ∗ 1/20). The events generated by the attacker

are distributed at random across the network, so of these,

33/3000 are towards the attacker’s own subnetwork; these

are the only events that can be identified to a particular at-

tacker, and they occur at a rate of one every 909 minutes

(P(Attack that can be assigned to a specific node)=1/10 *

33/3000).

The simulation is over 104 minutes; in this time we ex-

pect a total of 1.5 million events in the system as whole

(104 ∗ 33/20) of which 16000 (104 ∗ 1.6) can be ascribed

to the attacker’s subnetwork, and just 11 (104/909) to the

attack node.

Given this information the reader could devise a solution

to identify the attacker, but the problem addressed here is

how to use all the available information when the location of

the attacker and the traffic patterns are unknown in advance.

In summary, the event parameters used in the simulation

are:

Cx contains all the nodes in the source subnetwork, unless

the destination of the network message that caused the

event is in the same subnetwork as the source, in which

case Cx contains just the source node.

P(Cx) is set to unity, since Cx includes the node which orig-

inates the traffic. (The effect of varying this parameter is

discussed in section 8.3, below.)

P(Attackx) is set to 0.043 for all used locations except the

server nodes, for which a value of 0.0099 is assigned,

and events from a client to its own subnetwork, which

are given a value of 0.076.

These are arbitrary, for the sake of demonstration, al-

though they do reflect likely differences in expectation.

For example, it seems plausible that an incident at a loca-

tion to which most of the traffic is directed is less likely

to originate from an attack, but in practice that is de-

pendent on the actual event. The only special feature in

the choice of value is avoiding fractions such as 30/3000

that match the system topology, although we have not

detected any problems arising from such choices. Vary-

ing these parameters results in different scores, but not

at the expense of overall discrimination.

The network simulator was used to generate random traf-

fic as specified above, and the scores for the resulting se-

curity events were accumulated as described in section 4.3.

The results are shown in Fig. 8.

Fig. 8 shows node scores as they are accumulated. The

nodes shown are attackers (3 and 403), representative nodes

in the same subnetworks (4 and 404), and a node in a large

control subnetwork with no attackers (1000). Nodes 3 and 4
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Core

Network

Three small Client Subnets

Nodes 0-32,32-65,66-99

Attacker at node 3

Four Client Subnets

Nodes 100-199,200-299,

300-399,400-499

Attacker at node 403

Unallocated

but monitored

Nodes 2750-2999

Four Client Subnets

Nodes 500-999,1000-1499,

1500-1499,2000-2499

Servers

Allocated: 2500-2749

Fig. 7 The Test Network: a common configuration with a server farm and many client sub-networks communicating over a network core. Different

size sub-networks are shown for test purposes.
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Fig. 8 Network Simulation Results; attackers are clearly distinguished

from background noise.

are from 33-node subnetworks, nodes 403 and 404 are from

100-node subnetworks, and node 1000 is from a 500 node

subnetwork, of which there are four, which together contain

a significant proportion of the nodes in the network.

The results show that insider attacks can be clearly dis-

tinguished from background noise in the system.

For each size of subnetwork the proposed scoring clearly

distinguishes the attacker as an individual from other nodes

within the same subnetwork. Nodes are similarly scored re-

gardless of the size of the subnetwork in which they reside,

and there there is only a small difference in score between

other nodes in the subnetworks containing attackers and the

control node (approximately 2%), which can be attributed to

attackers slightly raising the score of their own network.

8.2 Contrasting evidence accumulation with event counting

The effectiveness of the approach presented in this paper can

be judged by comparison to the counting algorithm used to

introduce section 4, and adopted by some researchers. The

same events are generated with the same characteristics as

described in the previous section, but the calculation func-

tion uses counting rather than evidence accumulation, by

simply incrementing node scores if the node is identified as

a possible source of an event (i.e. is in Cx). The results are

presented in in Fig. 9.

On a realistic problem, the counting approach fails in

almost every respect. Attackers are not distinguished from

other nodes in their subnetwork. Instead, the primary dis-

tinction is between nodes on the basis of network size; es-

sentially the larger subnetworks generate more background

traffic, so receive a proportionately higher score.
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Fig. 9 Counting Algorithm Performance on the same problem; it fails

to identify attackers, and scores are proportional to background noise

which is related to sub-network size.

8.3 Uncertainty in identifying the nodes that originate an

event

The network example, above, assumed that the set of nodes

that may have originated an event could be identified with

certainty. Fig. 10 shows the results of a series of simula-

tions with varying degree of certainty of attribution of the

nodes that originate each event. For the sake of illustration

all events were given the same P(Cx); in practice this would

vary depending on the type of the event and the position in

the network where it was detected.

As would be expected, the greater the uncertainty the

lower the overall score. Importantly, the scores remain cor-

rectly ordered; even with high degrees of uncertainty of at-

tribution, attacking nodes would be correctly identified for

further investigation.

A noteworthy feature of this simulation is the node in

the control subnetwork, whose score decreases more quickly

than the others, eventually becoming negative. Section 7

showed that the limit of evidential value of an event is

the point where the degree of uncertainty encompasses the

whole network. The control node in this case is in a subnet-

work of 500 nodes; in a network with 3000 nodes equation

(11) gives the threshold value as P(Cx) = 500/3000 = 0.17,

which is consistent with the point at which the simulated

score is zero.
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Fig. 10 The variation in final scores of the network simulation with

P(Cx); uncertainty in identifying the source of events predicably weak-

ens the score, but the attackers remain identifiable.

The decreasing score of the control node in this exam-

ple therefore occurs because the attribution of events to that

node is approaching the limit of evidential value. This ef-

fect is the most likely cause of the small divergence between

non-attacker nodes (subnet 400 diverges a little); however,

given the random nature of the simulation this difference is

too small to justify a claim of significance.

In summary, this section illustrates that even given in-

creasing uncertainty about the origin of the events it remains

possible to distinguish attackers from other nodes; however,

the limits derived in section 7 apply if the uncertainty of at-

tribution of the event originator approaches the size of the

system.

9 Discussion

The proposed evidential updating process is effective be-

cause it relates event evidence to the hypothesis that a node

or individual is the attacker. The change of reference frame

from events to individuals allows event data to be discarded,

while retaining the weight of evidence for attackers. The
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process scales linearly with the number of nodes or indi-

viduals in the system, and is applicable to a very wide range

of systems and circumstances.

Bayesian statistics has been used, rather than the sim-

ple probability ratios that would be suggested if informa-

tion theory was employed, in order to effect the change of

viewpoint from the event to the attacker. The update factor,

∆ , importantly takes account of ancillary information such

as the number of nodes that are indicated by the event and

the degree of certainty in their estimation. These event pa-

rameters are not specific to any particular type of event and

the statistical approach given here is equally generic; in par-

ticular it avoids the need for Bayesian networks tuned for

specific problems by subject matter experts, as proposed by

some researchers (Caputo et al, 2009).

∆ can be used as a figure of merit for sources of infor-

mation: if ∆ is consistently fractional for a sensor, then the

resulting events will degrade the quantity of available infor-

mation, rather than improve it. We show that this depends on

the uncertainty of estimation of the set of event originators,

compared with the size of the overall system. Essentially, if

it is not possible to distinguish a set of possible event orig-

inators from the other individuals in the system, then the

event adds no value. This has practical consequences for in-

trusion systems and network design where such uncertainty

is likely to occur: as much attention should be given to iden-

tifying the source of events as to the false-alarm rates of sen-

sors.

The attributes described in section 4 (probability of at-

tack, P(Attackx), the likely originating nodes of an event,

Cx, and the probability that the event originator is in this set,

P(Cx)) are not specific to any particular type of event detec-

tor and can be applied at different levels of abstraction, if

necessary within the same system. As described in the in-

troduction, this approach is intended to apply to a mixture

of event types including both behavioral and network indi-

cators. However, different types of events will change the

speed with which attackers are discriminated. The network

scenario presented here was designed to be a difficult detec-

tion problem: it has a low attack rate compared with back-

ground noise, for most events the originator could not be

uniquely identified, and events were not known to be attacks

with certainty. In other words, all three parameters that char-

acterize an event were uncertain, inevitably resulting in a

long discrimination time. In practice the detection speed will

vary depending upon the available information. For exam-

ple, behavioral events such as organizational rule-breaking

will be uniquely identified with a particular individual, while

there may be uncertainty if this indicates a potential attacker;

in other cases, such as terrorist use of an Internet cafe, it may

be certain that a user during a certain period is an active ter-

rorist, but there may be uncertainty related to identification.

In practice, therefore, different strengths of evidence will be

found, and these will inevitably result in different detection

periods.

The example in section 6.2 illustrates a problem in be-

havioral modeling that is less common in networks. How-

ever, it is worth noting a specific problem with purely be-

havioral events which make more substantial empirical ex-

amples difficult to generate: the problem of giving plausi-

ble values for P(Attackx). In many circumstances it is pos-

sible to measure background levels of user behaviour; for

example, document access, Internet use and financial ac-

counting deviations are usually recorded, and false alarm

rates are a standard metric for intrusion detection sensors.

Unfortunately, relevant background levels of minor deviant

behaviours, such as organizational rule-breaking or disci-

plinary offences, are undocumented for populations of in-

terest. Case histories suggest that insiders who attack their

systems for profit or revenge often have a history of such be-

haviour. Herbig and Wiskoff (2002) record that within 150

espionage cases, 80% were observed to exhibit behaviours

that violate criteria in the guidelines for eligibility for access

to classified information. For example, the spy Ames had a

series of security violations, alcohol problems, and an unex-

plained lavish lifestyle. This would certainly provide a rich

source of behavioral indicators with no doubt about the in-

dividual to whom they relate; unfortunately, the underlying

level of such behaviours in the relevant population is un-

known. These case studies provide powerful anecdotal evi-

dence that behavioral histories are significant, but before any

data-analytic approach can be applied in such cases it will

be necessary to establish the underlying behavioral norms

in populations of concern.

The discussion in section 7 gives one limit to this method:

events that do not distinguish between individuals do not

add information to the resulting scores. As Cx/P(Cx) ap-

proaches the total number of nodes, the score generated by

event x drops to zero because the event fails to distinguish

between individuals. This, however, is a feature of events,

and is unlikely to be influenced by attacker behaviour. The

attacker can only avoid detection with certainty by adopt-

ing behaviour that generates identical events to the rest of

the population; from the defender’s perspective the objec-

tive is to ensure that the events are sufficiently comprehen-

sive to force insiders to either adopt compliant behaviour, or

be identified as potentially malicious.

From the perspective of network analysis there are a

number of practical considerations that are subject to on-

going study. The first implementation decision is which real

components are regarded as ’nodes’: should nodes model

all network components, just routing components and end-

points, or just endpoints such as clients, servers or users?

To date, only endpoint nodes have been considered; this de-

cision is based on the prior probability of network compo-

nents originating attacks, and the convenience in associating
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events with their possible sources. Further practical work is

also needed to relate the three event parameters to actual in-

trusion sensors and networks.

A key practical issue is how to determine which nodes

are a potential source of any particular event, and to what de-

gree. Ideally this assessment would be evidence-based using

recent network history, but although this is feasible in prin-

ciple, it is an open question if this can be achieved in prac-

tice. However, even simple strategies, such as the one used

in section 8.1, provide demonstrable benefit.

10 Conclusion

This paper provides a solution to a critical problem in in-

sider attacker discovery: how to combine events from multi-

ple sensors, and manage the data explosion that is otherwise

needed to support the identification of long-running attacks.

The key concept is to move away from maintaining mod-

els of the behaviour or sequencing of individual attacks, since

this in principle requires a hypothesis to be initiated for each

event. This is the process underlying existing Intrusion De-

tection Systems which provides an effective response to at-

tacks that can be detected over short periods of time but is

limited by scalability in identifying attacks developed over

a long period.

Instead, we propose to incrementally assess if every node

or individual in the system is an attacker. This approach is

extremely scalable; the updating algorithm is soundly based

in Bayesian statistics and avoids the need for global updating

after each event. The approach is well behaved in the sense

that higher certainty or volumes of attack make detection

faster, and in a worked example which includes several of

the difficulties faced in practice it significantly outperforms

counting algorithms (see section 8.1).

In addition, this work identifies the attributes or param-

eters that need to be standardized for disparate sources of

security event to be combined, allowing the use of a wide

range of different sources at different levels of abstraction.

We provide criteria for event attributes that must be met for

an event to add information rather than confusion: the ratio

of the number of nodes or individuals that may have orig-

inated the event, compared to the size of the system (see

section 7).

The process developed here is expected to be applicable

to behavioral information, as well as network-derived statis-

tics, based on evidence that events such as rule-breaking and

security violations are significant in the history of insiders

who eventually prove malicious. However, to confirm that

data-analytic approaches are able to allow the identification

of such insiders it is first necessary to establish the back-

ground rates of these events in populations of interest.

Research on this approach is ongoing, both using sim-

ulation and relating the work to real situations. The updat-

ing process described in this paper reflects a change of base

hypothesis from our earlier publications, and resolves some

of the open questions and marginal discrimination observed

previously; some remaining open questions are described in

section 9.
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