
promoting access to White Rose research papers

White Rose Research Online
eprints@whiterose.ac.uk

Universities of Leeds, Sheffield and York
http://eprints.whiterose.ac.uk/

This is an author produced version of a paper published in 10th IEEE
International Conference on Computer and Information Technology

White Rose Research Online URL for this paper:

http://eprints.whiterose.ac.uk/74969/

Published paper:

Sargeant, AJ, Webster, DE, Djemame, K and Xu, J (2010) Testing the
Effectiveness of Dynamic Binding in Web Services. In: 10th International
conference on computer and information technology. International Workshop on
Dependable Service-Oriented Computing (DSOC 2010) at the 10th IEEE
International Conference on Computer and Information Technology (CIT 2010),
29 June - 1 July 2010, Bradford.

http://dx.doi.org/10.1109/CIT.2010.228

http://eprints.whiterose.ac.uk/74969/
http://dx.doi.org/10.1109/CIT.2010.228

Testing the Effectiveness of Dynamic Binding in Web Services

Anthony Sargeant, David Webster, Karim Djemame and Jie Xu
School of Computing
University of Leeds

LS2 9JT
United Kingdom

{scs5ajs, d.e.webster, k.djemame, j.xu}@leeds.ac.uk

Abstract

In recent years, Service Oriented Architectures (SOA)
have risen in use as an architectural style for distributed
systems. They have many desirable features such as flexi-
bility, software reuse and cost benefits. In addition to this,
SOA enables and indeed encourages the binding of ser-
vices at runtime in the form of dynamic binding. Here,
services are bound to service requests at runtime and the
choice of service is determined with minimal user interven-
tion. Presently, Web Services have risen as the de facto
implementation of SOA and existing research for the test-
ing of Web Services have assumed the choice of service at
design-time. However, dynamic binding of services raises
several additional challenges, such as managing complex-
ity in service compositions using dynamic binding and non-
deterministic behaviour in service selection. Few research
exists that involve dynamic binding but with limitations as
they do not consider the dynamic binding system itself. This
paper focusses on the importance of the dynamic binding
system and proposes a technique that can be used to test
dynamic binding systems such that the behaviour of the al-
gorithm can be determined.

1 Introduction

Service Oriented Computing (SOC) represents a move
from traditional computer architectures such as mainframe
computing, to more distributed architecture styles such as
Service Oriented Architectures. Service Oriented Architec-
ture (SOA) offers an architecture where software function-
ality is encapsulated in discrete services, each of which can
be discovered and bound to at either design time, or runtime
[1].

Services within SOAs are considered to be software that
is used, but not owned and traditionally offer functionality
on a per-use basis [2]. Each service can be either a single

or atomic service, or a composite service, itself made up
from one or more atomic/composite services which are ag-
gregated as a workflow. Service consumers are loosely cou-
pled to services via well defined interfaces, and use standard
methods for intercommunication. Over recent years, Web
Services technology has emerged as the de facto implemen-
tation of SOA [3] and is experiencing widespread adoption,
along with Web Services Business Process Execution Lan-
guage (WS-BPEL) — an XML-based workflow composi-
tion language — as a popular orchestration language [4].

With the introduction of this new paradigm, comes new
challenges. In particular as services are potentially de-
veloped independently, consumers can have a variety of
functionally-equivalent services to choose from, each hav-
ing a different Quality of Service. Moreover, traditional
software testing techniques have been shown to be inappro-
priate with respect to SOAs due to the black-box nature of
services [2]. One of the promises of SOA is Dynamic Bind-
ing of services, where service requests are bound to con-
crete services at runtime [3, 5, 6, 7].

Existing research considers the challenges of testing in
SOA through a variety of test frameworks. In each of these
frameworks, the focus is on SOA through static binding of
services, where requests are bound to services that are cho-
sen at design time. This paper examines these approaches
and considers their suitability with respect to implementing
SOA through dynamic binding of services.

Current research involving dynamic binding assumes
that the binding mechanism itself is a ‘black-box’ from the
perspective of the ‘user’ and thus concentrates on the output
of a system, such as in the case of [7]. Where that work has
its limitations, is that the binding algorithm itself could be
subject to faults, and the behaviour of the dynamic binding
algorithms could be non-deterministic [8]. The black-box
approach makes third party testing of the dynamic bind-
ing algorithm challenging. This paper seeks to address this
problem by proposing a framework whereby the binding al-
gorithm itself is subjected to testing to allow its behaviour

to be deterministic and compared against expected output.
The structure of this paper is as follows: Section 2 dis-

cusses the characteristics of SOA both in terms of static
and dynamic binding. Section 3 gives a brief overview of
software testing and existing approaches to the testing of
Web Services. Section 4 discusses the limitations of current
work and suggests approaches that can be used to test the
behaviour of dynamic binding algorithms in Web Services.
Section 5 proposes a prototype implementation of a system
that will be a platform for the testing of dynamic binding
algorithms in Web Services. Finally we present our conclu-
sions and proposed future work in Section 6.

2 Service Oriented Architecture (SOA)

SOA uses a ‘service-centric’ approach which enables
the composition of applications by binding together discov-
ered services that are located across a network to achieve a
particular goal. Services themselves reside in a heteroge-
nous environment and are linked together using standard,
message-based protocols and thus the composed service is
ultimately platform independent [9]. As a result of these
service compositions, one service may be the client of an-
other.

The Web Services model has three clear roles [10]: Ser-
vice Requestor, Service Provider and Discovery Agency.
The Service Requestor (also referred to as a consumer)
is the requestor of a particular service. In order to find
the required service that meets the needs of the consumer,
they can consult a Directory Agency (also referred to as
a registry), such as a Universal Description Discovery
and Integration (UDDI) registry, which acts like a ‘yellow
pages’ of services offered by various providers. Finally,
services are delivered by Service Providers (referred to as
providers) and registered with the directory agency so that
consumers can find them. [10]

2.1 Dynamic Binding of Web Services

The Web Services Architecture as illustrated in Figure 1,
is an example of services that are discovered at design time
and which are then statically bound at runtime. This is the
form of binding that features in existing research. In this
instance, the consumer binds to exactly one provider for all
service requests of a given type at runtime. This method of
very early binding results in a tight-coupling of consumers
to services as re-binding requires the selection of a new ser-
vice and connection to that new service by the user [11].

SOA enables and promotes the late-binding of service
requests to services at runtime in the form of dynamic bind-
ing. In contrast to static binding, dynamic binding pro-
vides the ability to bind to services dynamically at runtime

Discovery Agencies

Service
Requestor Service Provider

Client

Service
Description

Service

Service
Description

PublishFind

Interact

Figure 1. The Web Services Architecture as
defined by the W3C in [10].

whereby a request for a service is bound to a suitable con-
crete service [3, 5]. One of the key aspects of dynamic bind-
ing that most literary sources agree on, is the need to have
a broker to manage the binding of a service request, to a
provider. In this instance, a consumer forms an abstract re-
quest, that is to say that they need to use a particular service
of a given type, and at runtime, they delegate the decision
of which concrete service to use to the broker. The broker,
via a discovery mechanism, will discover candidate services
that best meet the request and choose the most appropriate
service to bind to. The response from the concrete service is
then able to be passed back to the consumer via the broker.

The challenge here is because the service provider is not
known in advance, the choice of service to bind to must
be delegated at runtime. This requires the use of a service
broker that can connect service requests to the concrete ser-
vice implementation. To achieve this, the broker chooses
the most appropriate service using an algorithm. An exam-
ple of a simple algorithm would be: 1. Select candidate
services; 2. Rank services in a particular order; 3. Select
the top service to bind to.

Choosing the most appropriate service is not as straight-
forward when we consider multiple services in a workflow
such as those defined using BPEL. An example of this is in
the work of Mabrouk et al. in [7]. The authors state that de-
cisions made at runtime are subject to time-constraints and
that choosing an optimal service composition from a pool
of services is NP-hard.

Given that the key aspect to any dynamic binding algo-

rithm is the choice of service to bind to, we must consider
the factors that affect the decision. In the literature, factors
such as functional and nonfunctional requirements of the
user, the scenario context and fluctuations in the Quality of
Service (QoS) attributes of the candidate services all con-
tribute to the behaviour of the dynamic binding algorithm
[12].

3 Software Testing and Web Services

Software Testing is a relatively new discipline, with a
short history beginning in the 1950s. Most sources agree
the purpose of software testing is to prove that a piece of
software is fit for the purpose to which it is intended [13].

3.1 Testing Strategies

In the present literature, there are three key strategies
for the testing of software systems; Unit Testing aims to
test small programs or, in the case of object-oriented pro-
gramming, individual objects of a program. Unit tests are
in no way a guarantee that when two objects are combined
to form a program, the subsequent combination is free of
faults. It is for this reason that Integration Testing is the next
stage of a traditional test plan and aims to find emergent
faults that arise from interactions between objects. Finally
System Testing is described by [14] to be the most complex
phase of testing and can be considered to be a higher level
of integration testing. However, it also involves many other
types of testing such as user-acceptance testing which is be-
yond the scope of our research.

3.2 Web Services Test Frameworks

Web Services can be distributed across networks and de-
veloped by various vendors. Consequently, when vendors
implement Web Services, service consumers may not have
access to the source code or the execution environment [2].
Furthermore, if the service composition is particularly com-
plex, the number of services and possible combinations of
services could be large [7]. It is for these reasons that tradi-
tional testing techniques are not applicable as they require
access to the system source code [15]. To overcome some
of these issues, several authors have suggested new test-
ing techniques and/or frameworks that help consumers to
assert a level of trust upon a service or composition of ser-
vices. Despite this, there are common patterns of test frame-
work: Service-based, Middleware-based, Model-based, and
Development-based.

With a service-based framework, the focus is aimed at
testing the services themselves. Due to the challenges as-
sociated with testing remote services, many research efforts
consider Web Services as black-box systems. Test cases are

generated by deriving information about the services inter-
face [16].

In middleware-based frameworks, the emphasis shifts
away from testing the services themselves, to testing aspects
of the middleware such as the workflow composition, or us-
ing a broker-architecture as launchpad for testing of services
[3, 1].

Model-based testing, for instance the work of [1], aims
to test services by using a modelling language to generate
test cases that are then applied to the services themselves.

Development-based test frameworks such as proposed
by Canfora and Di Penta in [2] look to create test services
based around existing services. When there is a need to test
the service, the test interface is called.

It is worth noting the increasing use of ontologies to give
semantic meaning to services. Work by [3] suggests that ap-
plying semantic meaning to services, will aid the automatic
selection and testing of services and hence dynamic bind-
ing. Despite ongoing research efforts, semantic approaches
are still not widely used in practice [17] therefore, imple-
menting a semantic framework for the selection of services
is beyond the scope of this research.

4 Dynamic Binding in Web Services — Test-
ing Challenges and Opportunities

As we have seen thus far, there are many approaches
to testing a service-oriented system. What is evident from
the literature is that current research efforts have not ap-
proached the testing of Web Services from a dynamic bind-
ing perspective. Indeed, only Karam et al. in [1] considers
creating a methodology for testing dynamically composed
Web Services as part of their future work. Due to the ben-
efits that a dynamic binding brings however, it is necessary
to incorporate the testing of the dynamic binding system in
addition to using existing techniques.

Many of the existing test frameworks for Web Services
assume static binding of services. That is to say that the ser-
vices requested are known at design time and as such these
testing approaches can be employed. These approaches can
still be applied to the dynamic binding of Web Services but
with the drawback that none of these approaches consider
the dynamic binding system.

As in a static context, service-based testing focuses on
the testing of the services themselves. Although testing an
individual service does not require the use of a dynamic
binding mechanism, the use of dynamic binding can be used
to select a service either randomly or based on certain cri-
teria such as nonfunctional requirements, i.e. Service Level
Agreement (SLA) or functional requirements, such as a par-
ticular operation to be tested.

In middleware-based testing, dynamic binding can be in-
corporated into a middleware system such as a broker. This

dynamic binding system might be in the form of an Enter-
prise Service Bus (ESB) or intelligent UDDI registry. By
incorporating dynamic binding into the testing strategy, it is
possible to test the system’s ability to rebind services or the
ability to execute the workflow correctly. Alternatively, it
can be used to assert a level of confidence on the workflow
composition itself. In model-based testing approaches, the
test cases are generated based on modelling the behaviour of
the service under test, or the composition of services under
test. In this instance, dynamic binding can be incorporated
by using a dynamic modelling language such as Petri nets
which help to model nondeterministic systems [3]. Using
a dynamic binding system, the selection of a service to be
bound, is determined by certain factors (response time, cost,
etc) if a truly random choice is not employed. Even so, it is
still possible to assign probabilistic values to services based
on those factors.

Development-based frameworks seek to incorporate el-
ements of testing and/or create separate test interfaces for
the purposes of testing services. In this instance, dynamic
binding would allow the selection of a test interface based
on similar criteria as with selecting a normal service.

In each of the above examples the common factor is how
to incorporate dynamic binding into these frameworks. In
each instance, the way the binding system works changes
according to the desired outcome of each test framework.
Given the outcome and the number of factors that can affect
the behaviour of the binding system, it is clear that the im-
plementation of the system itself, is just as important as de-
termining the validity of the resulting bound services. Yet,
previous work in this area does not consider the behaviour
of the system beyond the output of the system — the sys-
tem is treated as a ‘black-box’ with the assumption that if
the output is what is expected, then the system is function-
ing correctly.

To illustrate this, let us consider the dynamic binding
system itself. Consequently the system potentially may be
subject to faults like any other system. For example, con-
sider two candidate services that have functionally and se-
mantically equivalent operations. In this instance, the dy-
namic binding system can choose to use either services. We
acknowledge that were one service to change its interface,
then there is a risk of an interface mismatch that can lead to
an “interaction fault” as per the taxonomy by Avizienis et.
al in [18]. In this current work, we are not addressing this
problem, but is scheduled to be the subject of future work.

5 Prototype Solution

It is the focus of current and future research to assess
the dependability of dynamic binding in Web Services as
it provides us with a convenient real-world implementation
of SOA in which to conduct our experimentation. Our pro-

posed methodology is to use a simulation-based approach in
order to implement and assess binding systems. Much like
the work of [19], this research will focus on the middleware
layer, such as an intelligent broker or ESB-based solution
as it is here where the dynamic binding system resides.

5.1 System Model

The system model for our proposed solution, as illus-
trated in Figure 2, is based on the models by [8] and consists
of three entities: A consumer, who is requesting a service;
A broker who manages consumer requests and binds those
requests to concrete service instances; and service providers
such that 2 ≤ p ≤ n where p is a concrete service instance
and n is the number of service instances available to the
broker.

In this model, the system works as follows: 1. The con-
sumer sends a request for a service to the broker. 2. The bro-
ker analyses the request and then finds the most appropriate
services from the service repository. 3. The broker ranks
the services according to some criteria. This criteria can be
specified by the consumer in the form of QoS requirements.
4. The broker selects a service from the list of ranked ser-
vices and consumes the service on behalf of the consumer.
5. The result is sent back to the consumer. Our model makes
the following assumptions: Firstly all services have been
discovered by some mechanism - dynamic service discov-
ery is beyond the scope of this research. Secondly there
are at least two concrete service instances for every service
request in the repository. Where QoS attributes are not ad-
vertised, the service selection may looked to historical data
via a monitoring mechanism such as used by [11].

<<SOAP>>

Broker

P1 P2
Pn

Consumer

QoS
Requirements

<<SOAP>>

Binding
Mechanism

Provenance
Repository

Service
Repository

Figure 2. System Model showing one con-
sumer, an intelligent broker and n providers
in a service repository.

To test the dynamic binding system, we intend to manip-
ulate the operating environment through the introduction of
faults at the middleware level. In order to simulate these
faults, a fault-injection mechanism based on the work of
Looker [16] will be employed. This mechanism will in-
volve creating a system which will intercept messages and

assess whether or not the message needs to be processed for
faults.

In order to force the dynamic binding mechanism to re-
bind, two possible techniques can be used. The first in-
volves simulating faults with the services such as that em-
ployed by Looker [16]. For example, by introducing faults
such as service availability faults, we can force the binding
mechanism to choose an alternative service. The second ap-
proach would be to vary the individual QoS parameters of
the SLA such that the binding mechanism has to be either
more or less selective when choosing a service to bind to in
the presence of faults.

5.2 Fault Model for Dynamic Binding Systems

In order to inject the correct types of faults, Looker in
[16] considered the types of fault that can affect Web Ser-
vices. The high-level fault model included Physical Faults,
Software Faults, Resource Management Faults, Commu-
nication Faults and Life-cycle faults. However, Looker’s
work considered binding from a static perspective thus the
fault model does not consider dynamic binding. When we
consider a dynamic binding system, then we must extend
the fault model to include additional classes of faults such
as Timing Faults as in Figure 3. For example, when using a
dynamic binding system, timing is crucial if we are to bind
to the best possible service. If an ideal service is selected,
but unavailable at the time of binding then a fault will occur
and we must rebind to another service. A detailed taxon-
omy of faults associated with a Dynamic Binding System
will be the subject of future work.

5.3 Evaluation Measures and Metrics

In order to evaluate this work, it is important to have a
series of measures and metrics by which to judge the be-
haviour of a dynamic binding system. In the work of [20],
measures are defined as being derived from interpretations
of one or more metrics with metrics being indicators of sys-
tem, user, and group performance that can be observed,
singly or collectively, while executing scenarios. Conse-
quently, future experimentation for this work will focus on
key dependability attributes as defined in [18] for instance,
availability, reliability and integrity, etc. as metrics and can
be captured as measures of QoS. It should be noted at this
point, that the evaluation strategy for services will differ
from the evaluation strategy for a dynamic binding system.

In the case of testing services, the focus can be either
upon the functional requirements — i.e. the output of the
service, or the nonfunctional requirements — i.e. the per-
formance of the service, or both. For example, in [16], the
authors focus on two metrics; correctness and timeliness.
Correctness is described as verifying whether or not a ser-

Physical Faults

Software Faults

Resource
Management

Faults

Communication
Faults

Life-cycle Faults

Timing Faults

 SOA Fault

Figure 3. High-level fault model.

vice returns a correct result. Timeliness is described as ver-
ifying whether or not the service returns a result within a
certain timeframe.

When testing dynamic binding systems, it should be
noted that although the system involves services, the mea-
sures and metrics associated with services will still apply to
the dynamic binding system itself, but the context is differ-
ent. For example, in a dynamic binding system, timeliness
refers to whether or not a service was bound within a given
timeframe — specified as a nonfunctional requirement. and
correctness refers to whether or not the correct type of ser-
vice was bound at runtime — specified as a functional re-
quirement.

As discussed, the intention of future work is to create
a simulated network of services in an environment where
faults can be inserted to test the dynamic binding system.
By repeated runs of these experiments we will be able to
statistically analyse the results to ascertain the behaviour of
the dynamic binding system under test.

6 Conclusions

In this paper we have considered the challenges and re-
search opportunities with respect to testing Web Services
that take advantage of dynamic binding. We have demon-
strated that existing research covers a wide range of testing
approaches with respect to Web Services, but none consider
the dynamic binding mechanisms that can be employed.

We believe that by manipulating the operating environment
through the simulation of faults, we will be able to assess
and monitor the behaviour of a dynamic binding system
which will result in benefits with respect to the testing of
dynamically bound Web Services. A prototype system is
presently in development that will enable the testing of dy-
namic binding systems via a middleware solution that in-
corporates a fault injection framework.

References

[1] M. Karam, H. Safa, and H. Artail, “An abstract
workflow-based framework for testing composed web
services,” in Computer Systems and Applications,
2007. AICCSA ’07. IEEE/ACS International Confer-
ence on, pp. 901–908, 2007.

[2] G. Canfora and M. Di Penta, “Testing services and
service-centric systems: challenges and opportuni-
ties,” IT Professional, vol. 8, no. 2, pp. 10–17, 2006.

[3] A. Bertolino, G. De Angelis, and A. Polini, “A QoS
test-bed generator for web services,” Lecture Notes in
Computer Science, vol. 4607, p. 17, 2007.

[4] P. Wohed, W. van der Aalstand Marlon Dumas, and
A. H.M. ter Hofstede, Analysis of Web Services Com-
position Languages: The Case of BPEL4WS, pp. 200–
215. Springer Berlin, 2003.

[5] X. Gu and K. Nahrstedt, “Dynamic qos-aware mul-
timedia service configuration in ubiquitous computing
environments,” Distributed Computing Systems, Inter-
national Conference on, vol. 0, p. 311, 2002.

[6] M. Di Penta, R. Esposito, M. L. Villani, R. Codato,
M. Colombo, and E. Di Nitto, “Ws binder: a frame-
work to enable dynamic binding of composite web
services,” in SOSE ’06: Proceedings of the 2006 inter-
national workshop on Service-oriented software en-
gineering, (New York, NY, USA), pp. 74–80, ACM,
2006.

[7] N. B. Mabrouk, S. Beauche, E. Kuznetsova, N. Geor-
gantas, and V. Issarny, “Qos-aware service compo-
sition in dynamic service oriented environments,”
in Middleware ’09: Proceedings of the 10th
ACM/IFIP/USENIX International Conference on Mid-
dleware, (New York, NY, USA), pp. 1–20, Springer-
Verlag New York, Inc., 2009.

[8] N. Looker, Dependability Analysis of Web Services.
PhD thesis, Durham University, 2006.

[9] G. Hohpe and B. Woolfe, Enterprise Integration Pat-
terns: Designing, Building and Deploying Messaging
Solutions. Boston: Addison-Wesley, 2004.

[10] The World Wide Web Consortium W3C, “Web Ser-
vices Architecture.” http://www.w3.org/TR/
2002/WD-ws-arch-20021114/, November
2009.

[11] A. Erradi and P. Maheshwari, “Dynamic binding
framework for adaptive web services,” in Proceedings
of the 2008 Third International Conference on Inter-
net and Web Applications and Services, pp. 162–167,
IEEE Computer Society, 2008.

[12] L. Baresi, E. Di Nitto, and C. Ghezzi, “Toward open-
world software: Issue and challenges,” Computer,
vol. 39, no. 10, pp. 36–43, 2006.

[13] G. J. Myers, The Art of Software Testing. New York:
John Wiley & Sons, 1979.

[14] J. Abbott, Software Testing Techniques. Manchester:
NCC Publications, 1986.

[15] N. Looker, M. Munro, and J. Xu, “A comparison
of network level fault injection with code insertion,”
in Computer Software and Applications Conference,
2005. COMPSAC 2005. 29th Annual International,
vol. 1, 2005.

[16] N. Looker, J. Xu, and M. Munro, “Determining the
dependability of service-oriented architectures,” In-
ternational Journal of Simulation and Process Mod-
elling, vol. 3, no. 1, pp. 88–97, 2007.

[17] L. Cavallaro and E. Di Nitto, “An approach to
adapt service requests to actual service interfaces,”
in SEAMS ’08: Proceedings of the 2008 interna-
tional workshop on Software engineering for adaptive
and self-managing systems, (New York, NY, USA),
pp. 129–136, ACM, 2008.

[18] A. Avizienis, J. C. Laprie, B. Randell, and
C. Landwehr, “Basic concepts and taxonomy of de-
pendable and secure computing,” Dependable and Se-
cure Computing, IEEE Transactions on, vol. 1, no. 1,
pp. 11–33, 2004.

[19] P. Mayer and D. Lübke, “Towards a bpel unit test-
ing framework,” in TAV-WEB ’06: Proceedings of the
2006 workshop on Testing, analysis, and verification
of web services and applications, (New York, NY,
USA), pp. 33–42, ACM, 2006.

[20] D. Russell, N. Looker, and J. Xu, “SOA, Dependabil-
ity, and Measures and Metrics for Network Enabled
Capability,” in IET Forum on Capability Engineering:
At Home and Abroad, 2006.

