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Abstract 

We review the application of advanced numerical techniques such as 

adaptive mesh refinement, implicit time-stepping, multigrid solvers and 

massively parallel implementations as a route to obtaining solutions to the 

3-dimensional phase-field problem with a domain size and interface 

resolution previously possible only in 2-dimensions. Using such 

techniques it is shown that such models are tractable even as the interface 

width approaches the solute capillary length. 
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Introduction 

The modelling of solidification structures, in particular the growth of dendritic 

crystals, is a subject of intense and enduring interest within the scientific community, 

both because dendrites are a prime example of spontaneous pattern formation and 

they have a pervasive influence on the engineering properties of metals. However, in 

all but the most restrictive of cases, analytical solutions to the equations of motion for 

the solid-liquid interface, using techniques such as boundary integral methods 

(microscopic solvability theory [1]), cannot be found and recourse must be made to 

numerical techniques. One such technique which over the last few decades has 

received the most attention is that of phase-field simulation [2, 3], in which a non-

conserved order parameter φ, which encodes the phase state of the material, is defined 

over the whole domain. By assuming the interface between the solid and liquid (or 

different solid phases in multi-phase modelling) to be diffuse, φ is rendered 

continuous, wherein standard techniques for partial differential equations (PDEs) may 

be used. This allows a regular Eulerian mesh to be used and avoids many of the 

topological complexities involved with front tracking methods. 

 

However, phase-field modelling presents significant computational challenges in that 

the resulting set of PDE�s is highly non-linear and generally the width of the diffuse 

interface must be much narrower than the smallest physical feature to be simulated.  

This results in very large computational meshes, particularly when the problem is 

solved in 3-dimensions. The issue of mesh size arises because although the phase-

field equations are formulated such that in the asymptotic limit of the diffuse interface 

width, W0, tending to zero, the corresponding sharp interface equations are recovered 

exactly, this is not sufficient to ensure that the solutions do not have a dependence 

upon W0. Such limitations may be mitigated by formulating the model in the so-called 

�thin interface limit� [4], whereby asymptotic expansions of the solution on the inner 

and outer regions of the solid-liquid interface are matched to obtain an equation set in 
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which dependencies which are linear in the diffuse interface width, W0, are eliminated. 

However, dependencies which are of order , and higher, remain and consequently 

care still needs to be exercised in choosing W0 sufficiently small to ensure 

convergence to a solution independent of W0. Moreover, in order to perform the 

asymptotic matching highly restrictive assumptions need to be made about the 

thermodynamics governing the phase transformation, which can restrict the 

applicability of such models. Consequently, in many cases phase-field models are 

constructed such that W0 is much smaller than the other length scales characteristic of 

the problem, wherein for W0 sufficiently small convergence towards a solution 

independent of W0 may be obtained. In the context of the models similar to that 

described below, the effect of the interface width has been explored in 2-dimensions 

by [5, 6], from which it is clear that W0 ≈ 5d0 constitute the maximum interface width 

wherein reliable solutions may be obtained, d0 being the chemical capillary length, 

which is typically of the order 2�5×10
−10

 m. This compares with typical 

microstructural length scales which are of the order 10
−6

�10
−5

 m. 
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Due to this multi-scale nature phase-field simulations tend to be highly 

computationally intensive, requiring very significant spatial resolution in the vicinity 

of the (moving) phase interface. Consequently, much of the literature on phase-field 

simulation has tended historically to focus on two-dimensional problems, partly 

because such problems are generally tractable using simple numerical techniques such 

as explicit time stepping and uniform spatial meshing. However, even in two 

dimensions the limitations of such naive numerical approaches are well known and 

the advantages of using more sophisticated techniques, such as mesh adaptivity [7] 

and implicit time stepping [8], have been clearly demonstrated. 

 

In this paper we describe the application to phase-field of a range of advanced 

numerical techniques, including dynamic mesh adaptivity, implicit temporal 

descretisation, non-linear multigrid solvers and parallel implementation that may 

move us towards making the problem of quantitative dendritic growth simulations in 

3-dimensions with physically realistic interface widths tractable.  

 

Mathematical Model 

The phase-field model used here to illustrate the numerical techniques is that used by 

Echebarria et al. [ 9 ], in which, following non-dimensionalization against 

characteristic length and time scales, W0 and τ0, the evolution of the phase-field 

equations is given by  
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with an anisotropy function A = A(ϑ,ψ) given in terms of the standard spherical 

angles, ϑ and ψ, by 

 

( )[ ]{ } cossin21sincos1 ),( 2244
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which corresponds to a preference for growth along the Cartesian coordinate axis. The 

small parameter ε governs the strength of the anisotropy, M is the scaled magnitude of 

the liquidus slope, c∞ is the solute concentration far from the interface and Ω is a 

scaled superstauration given by 
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λ is a coupling parameter which determines the width of the diffuse interface, W0, via 

the relation  
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where is the dimensionless solute diffusivity.  

 

The evolution equation for the dimensionless concentration field, U, is given by 
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where k is the equilibrium partition coefficient. The non-dimensional concentration 

field, U, is related to the concentration, c, via 
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Full details of the model used are given in [10, 11].  

 

Numerical Methods 

It is important to emphasise that none of the scientific computing techniques that we 

have developed here are specific to this particular mathematical model, so the 

proposed approach is equally applicable to other phase-field models and indeed other 

coupled system of non-linear parabolic PDE�s unrelated to phase-field simulation. 

There are a number of components to this approach, however the overall solution 

technique may be summarised as follows. Select an appropriate spatial discretization 

(in this case we use second order finite differences) in order to semi-discretize the 

governing PDEs into a large system of initial value ordinary differential equations 

(ODEs); select an unconditionally stable implicit time-stepping scheme of equal order 

to the spatial discretization (here we choose 2
nd

 Order Backward Differences (BDF2), 

which can be shown to be A-stable [12]) which reduces the problem at each time step 

to that of solving a large nonlinear algebraic system; employ a nonlinear multigrid 

solver (we use Brandt�s full approximation scheme (FAS), [13]) in order to obtain the 

fast solution of each of these algebraic systems of equations with an initial guess 
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based upon the solution from the previous time level. In order to apply the FAS solver 

it is necessary to have a hierarchy of finite difference meshes so as to be able to 

resolve the solution at different length scales: we achieve this using nested hexahedral 

meshes which allow local mesh refinement and derefinement. This local adaptivity 

provides the necessary spatial resolution throughout the computational domain 

without requiring unnecessary degrees of freedom. 

 

In order to control the three-dimensional mesh refinement and de-refinement we use 

the open source library, PARAMESH [14]. This library provides functions to generate 

meshes in an oct-tree structure of mesh blocks. Starting with a base block (of 8×8×8 

cubic cells for example) it is possible to refine this into up to 8 child blocks (with each 

block always being of the same dimension as the base block) and then to refine any of 

these child blocks successively. Functions are also provided to undo regions of this 

local refinement (i.e. de-refinement) and to interpolate or restrict solution fields 

between meshes. A further capability of PARAMESH is that it is able to undertake 

this meshing in parallel in a manner that is hidden from the user � each block is 

simply treated as independent of its neighbours and PARAMESH takes care of which 

process owns each block, using its own dynamic load balancing scheme. A price that 

has to be paid for this simplicity is that every block is required to store guard cells in 

each dimension regardless of whether its neighbouring blocks are actually owned by a 

different process: PARAMESH�s guard cell update routines then take care of all of 

the transfer of data between neighbouring blocks, regardless of their location in 

memory. 

 

The use of PARAMESH imposes a number of constraints upon our choice of finite 

difference stencil. Specifically, we avoid the use of any points around cell (i, j, k) that 

are not of the form (i±1, j±1, k±1) as this ensures that our parallel implementation 

needs only a single layer of guard cells between blocks of the mesh that are stored on 

different processors � which reduces the memory and communication overhead 

significantly. For the results reported here a compact 27-point stencil is used, which is 

found to significantly reduce mesh induced anisotropy relative to the standard 2nd
 

order 7-point stencil in 3-dimensions.  

 

The local refinement and de-refinement capability provided by PARAMESH is 

essential for this work since our phase-field models require very fine meshes around 

the solid-liquid interface in order to ensure that the interface is resolved with 

sufficient accuracy. The nondimensionalization used to derive the systems introduced 

in section 2 is such that the interface width is O(1) and so our mesh spacing cannot be 

greater than Δx = 1 around the interface. Hence the finest grid resolution needs to be 

at least this size (for a domain of dimension (0,400)×(0,400)×(0,400) at least nine 

levels of refinement are required, wherein 400/2
9
 gives Δx = 0.78125 � though a tenth 

level is necessary if we wish to ensure that the interface is even moderately well 

resolved in its normal direction). Without the use of local mesh refinement and de-

refinement there would need to be an excessive number of cells, creating a 

computational load that would be unmanageable without the very largest 

supercomputing resources, a uniform mesh with comparable resolution to our level 10 

mesh here having > 1 billion elements.  

 

As outlined above, the need for multigrid arises from our use of an unconditionally 

stable time-stepping scheme which result in a large system of nonlinear algebraic 
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equations at each time step. It has already been demonstrated in [8] that the use of 

implicit time-stepping for this particular phase-field model is essential for fine spatial 

resolution to be achieved, even in two space dimensions. This is because the stability 

constraints imposed on the time-step size by the small spatial mesh size at the phase 

boundary mean that explicit time-stepping is prohibitively slow. The extension of the 

PARAMESH capability to include nonlinear multigrid is explained in [ 15 ].The 

essential ingredients are the extension of the restriction and prolongation operators for 

the FAS scheme and for the use of the multi-step BDF formula (requiring data from 

previous time steps to be used at each multigrid level). 

 

Results 

Numerical validation of the model has been undertaken by comparing against the 3-

dimensional adaptive explicit code due to Dantzig et al. [16]. For this test we used the 

following parameters; k = 0.15, Ω = 0.55, ε = 0.02 with D in the range 0.8 � 2.0, 

which corresponds to the interface width being in the range 1.4 � 3.6d0, broadly 

satisfying the stated condition that the width of the diffuse interface should be 

physically realistic, i.e. of the order a few atomic diameters. A typical dendrite 

morphology is shown in Fig. 1.  Table 1 and Figure 2 give quantitative results of the 

comparison, in terms of the dimensionless tip radius, ρ/d0, and velocity, Vd0/D, for a 

dendrite that has reached stead-state (i.e. the simulation has run for a sufficiently long 

time that no further variation in velocity or radius is observed with further growth). 

Good agreement is observed between the models in that for each value of D both the 

steady-state tip velocity and radius agree between the two models to within 5%. Due 

to computational limitations within the explicit code, which is also restricted to serial 

execution, we have run the comparison at a mesh spacing of Δx = 0.8, although given 

that D = 0.8, corresponds to W0 = 1.4 this is barely sufficient to resolve the diffuse 

interface, so we have also used the implicit code to run a set of simulations for a more 

heavily refined mesh in which the minimum spacing is Δx = 0.4. Unfortunately, it was 

not possible to run a direct comparison for Δx = 0.4 using the explicit code as this 

potentially increases the computational time by a factor of 32 (there are up to 8 times 

as many elements in the mesh and due to the stability condition the time step needs to 

be reduced by a factor of 4 as the mesh spacing is halved). However, the results are 

generally encouraging in that the additional mesh refinement makes only a marginal 

difference to the results.  

 

Perhaps more surprising is the extent to which both the velocity and tip radius vary as 

a function of the interface width. It is clear from Figure 2 that both the velocity and tip 

radius converge to a steady-state value in the implicit model as D is decreased 

towards D < 1 (corresponding to W0 < 1.8d0). In the explicit model the tip radius also 

appears to be converging in this limit, although it is not clear that the velocity is 

converging for the explicit model, possibly because the mesh spacing is approaching 

the diffuse interface width. Similarly restrictive conditions on the width of the diffuse 

interface required to obtain quantitatively valid results were found in [17].  
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Figure 1. Typical 3-dimensional dendrite geometry produced by the phase-field 

model. 

 

Method Δx Domain Dimensionless Velocity, Vd0/D 

   D = 0.8 D = 1.0 D = 1.5 D = 2.0 

Explicit 0.8 204.8 × 102.4 × 102.4 0.057 0.055 0.051 0.047 

Implicit 0.8 204.8 × 102.4 × 102.4 0.057 0.056 0.051 0.046 

Implicit 0.4 400 × 400 × 400 0.059 0.058 0.053 0.048 

 

Dimensionless Radius, ρ/d0 

   

D = 0.8 D = 1.0 D = 1.5 D = 2.0 

Explicit 0.8 204.8 × 102.4 × 102.4 16.61 16.95 18.77 21.73 

Implicit 0.8 204.8 × 102.4 × 102.4 17.70 17.79 19.52 21.63 

Implicit 0.4 400 × 400 × 400 17.30 17.64 19.76 23.05 

 

Table 1 - Comparison of the steady-state tip radius and velocity using the 3-d implicit 

software described here against an explicit 3-d code due to [16]. 

 

 

 
 

Figure 2. Variation of the dendrite tip velocity (open symbols, left-hand axis) and 

radius (solid symbols, right-hand axis) as a function of D, and hence of the diffuse 

interface width (W0 ≈ 1.8D). Note that quantitative convergence is only obtained close 

to D ≤ 1.  
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Summary & Conclusions 

We have demonstrated that by using a range of advanced numerical techniques such 

as mesh adaptivity, implicit time-stepping and a non-linear multigrid solver, coupled 

with solution in parallel, it is feasible to use phase-field techniques to solve for the 

growth of a solutally controlled dendrite using a diffuse interface width comparable to 

the length scale over which crystalline order would be expected to be lost in the solid-

liquid interface in metals. The model demonstrates that for interface widths larger 

than ≈ 2d0 (0.4-1.0 nm) it may be difficult to guarantee quantitatively valid results, 

which posses severe computational challenges for 3-dimensional phase-field models, 

particularly those using explicit temporal descretisation schemes.  
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