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A New Approach to Multi-Phase formulation for the

Solidification of Alloys

P. C. Bollada, P.K. Jimack, A. M. Mullis

Institute of Materials Research, University of Leeds, LS2 9JT

Abstract

This paper demonstrates that the standard approach to the modeling of
multi-phase field dynamics for the solidification of alloys has three major
defects and offers an alternative approach.

The phase field formulation of solidification for alloys with multiple solid
phases is formed by relating time derivatives of each variable of the system
(e.g. phases and alloy concentration), to the variational derivative of free
energy with respect to that variable, in such a way as to ensure positive
local entropy production. Contributions to the free energy include the free
energy density, which drives the system, and a penalty term for the phase
field gradients, which ensures continuity in the variables. The phase field
equations are supplemented by a constraint guaranteeing that at any point
in space and time the phases sum to unity. How this constraint enters the
formulation is the subject of this paper, which postulates and justifies an
alternative to current methods.

Keywords:

Multi-phase, Phase field, Lagrange multiplier, Solidification, Crystal
growth, Eutectic, Peritectic, Gibbs free energy

1. Introduction

In recent years the importance of phase-field simulation as a tool to un-
derstanding microstructure formation during solidification has grown signif-
icantly, (e.g.[1],[2],[3],[4] and [5]). As a result, phase-field modelling is now
the technique of choice for simulating solidification microstructures, with nu-
merous notable examples of its success. These include the inclusion of flow
effects, [6] and electric currents [7] in the solidifying melt, elucidating the
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mechanisms behind long-standing problems in solidification such as sponta-
neous grain refinement, [8], and predicting the effect of external oscillating
fields on dendrites [9]. The key advantage of such models is that by intro-
ducing a continuous (differentiable) phase variable, φ, the value of which
represents the phase of the material, the need to explicitly track the solid-
liquid interface is removed. Instead, the mathematically sharp interface is
replaced by a diffuse interface of finite width, the motion of which may be
tracked using standard techniques for partial differential equations. Early
phase-field models of solidification concentrated on single-phase systems, in
which there was the liquid and only a single solid phase present. This gener-
ally represented either the thermally controlled growth of a pure substances
(e.g. [10]), or the isothermal solidification of an ideal binary solid-solution
[11]. However, the phase-field concept may be extended to systems where
there is more than one solid phase present, resulting in multi-phase field mod-
els. For a topical review of multi-phase field modelling in material science
see [12]. In multi-phase field models the scalar variable, φ, is replaced by a
vector, θ, where the ith element θi, is the amount of phase i present1. This
extension has, though, yielded variations in the derivation techniques used to
obtain the equations of motion for the interface from the starting equations,
with consequent differences in the properties of the resulting models. One
of the main issues to arise in multi-phase field models is that because the
phases, θi, can act independently, an additional condition must be applied
to ensure that the sum of the phases remains everywhere constant.

There are two main ways in which this can be achieved, either by the
use of a Lagrange undetermined multiplier ( e.g. [13], [14],[15],[16]) or by
specifying explicitly how the phases vary with respect to one another ( e.g
[17],[18] and [19]). In this latter case a common assumption is that phase
transformations within a multiphase system are governed solely by interac-
tions at two-phase interfaces (but there are exceptions: see [22] for example,
which uses a higher order multipole exapnsion). Consequently, at a triple
point, where three phases meet, the dynamics of the system would be gov-
erned by the three, two-phase interfaces stretching out from the triple point.
This allows for any terms within the derivation which depend upon three
phases to be ignored in favour of terms dependent upon only two phases.

1We use the notation θi, i ∈ [1, N ] for the linearly dependent physical variable and
φi, i ∈ [1, N − 1] for the independent variables
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Both approaches have potential drawbacks. The use of a Lagrange undeter-
mined multiplier has been found to lead to the formation of spurious phases
local to the interface region: “... in the interface, the phase fields θk, k ̸= i, j,
can be different from zero” [20], which goes on to state: “... if computations
are to remain feasible, we have to accept the presence of additional phases
in the interfaces”. Conversely it has been shown that models assuming all
interactions occur at two-phase interfaces may produce incorrect triple point
morphologies (see [17]). Of these the Lagrange multiplier approach has gen-
erally received greater attention.

By examining the consequences of the Lagrange multiplier approach in
section 2, we demonstrate some critical weaknesses with this formulation.
In order to remedy this, we show that underlying the Lagrange multiplier
method is an assumption that the independent phase variables φi form the
coordinates of a flat surface (of dimension N − 1 embedded in RN). In
section 3, we relax this condition, taking care in section 3.1 to use the correct
(symmetric) transformation between the two different types of vector spaces
that the unconstrained phase field equations represent. We then postulate a
set of criteria that a reasonable alternative must possess leading, in sections
3.4 and 3.5, to the presentation of alternative formulations.

We end the paper with some numerical results in section 4.1, showing the
effect of N in growth rates, for the different formulations. For the Lagrange
multiplier approach, results show dependence on N , spurious phase growth
and less stability than the proposed formulations, which avoid these defects.

2. Standard Lagrange multiplier treatment

Most phase field models of solidification (both single and multi-phase)
have a common starting point, this being the definition of a free energy
functional, F , of the phase variables, θi, concentration, c and temperature,
T . The appropriate form of F for the multi-phase problem has been adapted
from several sources in the literature, e.g. [14]

F ≡
∫

Ω

1
2

j−1
∑

i=1

N
∑

j=2

Γij|θi∇θj − θj∇θi|2 d3x+

∫

Ω

f(θ, c, T ) d3x (1)

where: Ω is an arbitrary volume; Γij includes the gradient energy coeffi-
cients and the anisotropy between phases i and j necessary, for example, for
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dendritic growth; and f is the free energy density. A particularly simple ex-
ample of the latter, sufficient for this paper, is given by a minor modification
to the formulation of [14] (though the arguments to be presented here are
independent of the precise form assumed for f):

f ≡
j−1
∑

i=1

N
∑

j=2

Wijθ
2
i θ

2
j −

∑

j

mjθ
3
j (6θ

2
j − 15θj + 10) +

RT

vm
[c ln(c) + (1− c) ln(c)] ,

(2)

with the coefficients governing the concentration-dependent double-well po-
tential extended to N phases given by

Wij = WA
ij c+ (1− c)WB

ij

mj = mA
j c+ (1− c)mB

j .

Here R is the universal gas constant, vm the molar mass (assumed constant),
the constants WA

ij and WB
ij are entries of symmetric matrices whose values

are dependent upon the double-well potential barrier between phases i and j
and the constantsmA

i andmB
i relate to the Gibbs energy of phase i, for either

pure component A or B. Specifically, this formulation omits any enthalpy of
mixing terms, which restricts the type of solid phases that can result to ideal
binary solid solutions.

The equations governing the evolution of the phase and solute profiles
can be given as

−τ ∂θi
∂t

=
δF

δθi
, i ∈ [1, N ] (3)

and

∂c

∂t
= ∇ ·

(

D(θ)c(1− c)∇δF

δc

)

(4)

together with the constraint

N
∑

j=1

θj = 1, (5)

where: τ is a characteristic time equivalent to inverse mobility, which is here
assumed constant; D is a function defining the local diffusivity, which is a
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sum of the diffusivities for each phase weighted by the amount of each phase
present.

The constraint (5) implies a linear dependence of the variables indicating
that the system can be represented by N − 1 independent variables, which
we denote by φi, i ∈ [1, N − 1]. In particular, when N = 2 the multi-phase
system is related to a single phase system with variable φ. This may be set
to, say, φ = θ1, but there are other equally valid alternatives.

The Lagrange multiplier method for ensuring the constraint (5) expresses
(3) as

−τ ∂θi
∂t

=
δF

δθi
+ Λ, i ∈ [1, N ]

where, to guarantee
∑N

j=1 θ̇j = 0, we must have

Λ = − 1

N

N
∑

j=1

θj.

We now demonstrate that the standard Lagrange multiplier treatment of
multi-phase field dynamics, e.g. [14], does not reduce to the equivalent single
phase form 2. Let F (θ1, θ2, c) be the free energy for an N = 2 phase system
dependent on liquid phase, θ1 and solid phase, θ2 and concentration, c. Then
θ1 + θ2 = 1 and we choose a single variable φ so that

θ1 = φ

and

θ2 = 1− φ.

The multi-phase gradient contribution for N = 2, for example, is

G(θ1, θ2) =

∫

Ω

1
2
Γ12|θ1∇θ2 − θ2∇θ1|2 d3x

which reduces to

G(φ, 1− φ) =

∫

Ω

1
2
Γ12|∇φ|2 d3x

2This is a well known by many in the phase field community but has not, to our
knowledge, been explicitly stated in the literature.
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The single phase equation is

−τ φ̇ =
δF

δφ

This is equivalent, in the multi-phase (binary phase) variables to

−τ θ̇1 =
δF

δθ1
− δF

δθ2

−τ θ̇2 =
δF

δθ2
− δF

δθ1
(6)

since3

δF

δφ
=

∂θi
∂φ

δF

δθi

=
δF

δθ1
− δF

δθ2
.

Whereas in the multi-phase formulation the Lagrange multiplier gives

−τ θ̇i =
δF

δθi
− 1

N

N
∑

j

δF

δθj
,

which for N = 2 gives

−τ θ̇1 = 1
2

δF

δθ1
− 1

2

δF

δθ2

−τ θ̇2 = 1
2

δF

δθ2
− 1

2

δF

δθ1
.

Thus the Lagrange multiplier approach does not reduce to the single phase
formulation.

We now explore whether the discrepancy between the single and N = 2
multi-phase formulation is symptomatic of a more general problem. The
Lagrange multiplier treatment of the N phase free energy can be written

θ̇ = P(N)
δF

δθ
,

3Note that throughout this paper repeated sufficies will imply summation, unless they
appear on both sides of the equation.
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where P(N) = I − 1
N
U where the N × N matrix U has unit entries in all

components. For example,

P(2) =

[

1/2 −1/2
−1/2 1/2

]

, P(3) =





2/3 −1/3 −1/3
−1/3 2/3 −1/3
−1/3 −1/3 2/3



 ,

P(4) =









3/4 −1/4 −1/4 −1/4
−1/4 3/4 −1/4 −1/4
−1/4 −1/4 3/4 −1/4
−1/4 −1/4 −1/4 3/4









. (7)

Hence for N = 3, for example, the equation for θ1 is

θ̇1 =
2
3

δF

δθ1
− 1

3

(

δF

δθ2
+

δF

δθ3

)

and for N = 4, the equation for θ1 is

θ̇1 =
3
4

δF

δθ1
− 1

4

(

δF

δθ2
+

δF

δθ3
+

δF

δθ4

)

.

More generally, if we replace one of the phase variables, say θN = 1−∑N−1
j=1 θj

and write

φi = θi, i ∈ [1, N − 1], (8)

in the free energy, then the system

−τ φ̇i =
δF

δφi

(9)

is a different system of equations to those resulting from the Lagrange mul-
tiplier approach. However, the mapping (8) is not unique and the system (9)
should more correctly be written

−
N
∑

j=1

N−1
∑

k=1

τJjiJjkφ̇k =
δF

δφi

, i ∈ [1, N − 1],

(

or − τJTJφ̇ =
δF

δφ

)

(10)

where

Jij =
∂θi
∂φj

(

or J =
∂θ

∂φ

)

.
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This comes about because

δF

δφi

=
N
∑

j=1

∂θj
∂φi

δF

δθj
, i ∈ [1, N − 1]

(

or
δF

δφ
= JT δF

δθ

)

and

θ̇j =
N−1
∑

k=1

∂θj
∂φk

φ̇k, j ∈ [1, N ]
(

or θ̇ = Jφ̇
)

giving the constrained version of (3) as (10).
Note that the above argument allows for any smooth mapping

RN → RN−1

θ 7→ θ(φ).

Indeed in Appendix A we show that system (10) is identical to the Lagrange
multiplier approach (this is seen most easily when N = 2 where we have
J j
i J

j
k = J1

1J
1
1 + J2

1J
2
1 = 2). This observation might appear to indicate that

the single phase formulation formally requires a factor of 1
2
on the right-hand

side to be in general agreement with the Lagrange multiplier method for
N = 2. However, there is another difficulty with the Lagrange multiplier
method, which suggests that it is the Lagrange multiplier formulation of
the multi-phase field that is in error and consequently that the single phase
formulation may be assumed correct.

2.1. Spurious extra phases and N dependence

This section shows that the formulation in [14], when used with solidifica-
tion from a pure seed, say θ2 growing into melt θ1, leads to the unphysical for-
mation of the other phase(s), θi for i > 2. In cases where an additional phase
is actually required, for example, to correct an ill-spaced eutectic growth, it is
possibly preferable to introduce this by numerical noise rather than through
the formulation. Moreover, even in this case the additional phase would be
restricted at the liquid-solid interface and not at the solid-solid interface.

The Lagrange multiplier formulation in [14] is

−τ θ̇i =
δF

δθi
− 1

N

N
∑

j=1

δF

δθj

8



where for isotropy (Γij independent of θ) we have (see Appendix B)

δF

δθi
=

N
∑

j ̸=i

Γij{2(θi∇θj − θj∇θi) · ∇θj + (θi∇2θj − θj∇2θi)θj}

+
N
∑

j ̸=i

2Wijθiθ
2
j − 30miθ

2
i (1− θi)

2. (11)

Considering the Lagrange multiplier formulation for N = 3, with θ3 = 0, we
find

δF

δθ3
= 0

so that

τ θ̇3 =
1
3

(

δF

δθ1
+

δF

δθ2

)

.

Thus the growth of θ3 is zero if

δF

δθ1
+

δF

δθ2
= 0.

However, the left-hand side is non-vanishing at a (1, 2) interface and can give
rise to spurious unwanted phases, see Fig. 1. It should be added that with
careful choice of potential, see [5], spurious growth can be mitigated (see
Appendix C). However, this only holds for N = 3 and the generalisation to
N > 3 is not clear within the Lagrange multiplier formulation.

More generally, consider a system of N phases but only two phases θ1, θ2
present in some region with no interaction with other phases. With θi>2 = 0
the Lagrange multiplier gives

−τ θ̇1 = (1− 1
N
)
δF

δθ1
− 1

N

δF

δθ2

−τ θ̇2 = (1− 1
N
)
δF

δθ2
− 1

N

δF

δθ1

−τ θ̇i>2 = − 1
N

(

δF

δθ1
+

δF

δθ2

)

, (12)

and clearly the growth depends on N . Moreover, it is only for N = 2 that a
pure phase grows as single phase growth (up to a factor of two).
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Figure 1: The growth from two separated solid seeds of θ2 and θ3, in a melt θ1, using
the Lagrange multiplier model. The left shows θ2 and the right θ3. Surrounding each
growth is a significant amount of the other phase. This effect is not present in the model
developed in this paper — see section 3.
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3. Development of a new formulation

Having identified at least three defects in the Lagrange multiplier ap-
proach (non-reduction to single phase, spurious growth of additional phases
and N dependence) this section develops a new formulation that addresses
these issues. Specifically an N independent formulation with consistent re-
duction to single phase at any (pure) binary phase interface.

The matrix transformation, P, illustrated in (7), can be also looked at as
a projection (hence the nomenclature)

P = I− nnT (13)

where, for N = 2,

n =
1√
2
[1, 1]T

is the outward normal to the line θ2 = 1 − θ1. If we consider the phase
variables, θ1 and θ2 to be Cartesian coordinates, then n has unit length.

An alternative to the constant Lagrange multiplier was introduced by [21]
in order to eliminate N dependence. It is shown in the appendix that this
method is equivalent to a numerical implementation of the constraint used
currently, for example, in [22] and [27].

It uses a Lagrange multiplier vector Λi

−τ θ̇i =
δF

δθi
+ Λi

where

Λi = −θi
N
∑

j=1

δF

δθj
.

This is equivalent to the projection

P(N) = I(N) − [θ,θ, . . . ,θ]

For example, when N = 2,

P(2) =

[

1− θ1 θ1
−θ2 1− θ2

]

. (14)

We now show that this projection adopted and used in [21] is unacceptable
and that the projection must be a symmetric matrix.
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3.1. Consistency of form in the phase equations

Here, and in subsequent sections, we make use of the equivalence between
differential operators and vector bases (e.g. ∂

∂x
≡ i, ∂

∂y
≡ j etc). Any linear

combination of these bases is termed a contravariant vector. We also use
the concept of covariant vectors, which are equivalent to linear combinations
of differentials, e.g. dx, dθi etc. Transformations of these objects induced
by maps then follow the chain rule and are equivalent to the perhaps more
familiar Jacobian matrices (see for discussion [23]).

Consider the system

−τ ∂θi
∂t

=
δF

δθi
. (15)

In the language of differential geometry, the left-hand side may be written as
the push forward (linear map) of the tangent vector on the time line to the
phase variable space

∂

∂t
=

∂θi
∂t

∂

∂θi
.

The left-hand side of (15) is thus a contravariant vector. On the other hand,
the right-hand side of equation (15) is a covariant vector

δF =
δF

δθj
dθj

(see the book, [23], in the earlier chapters, for a discussion for the necessity of
the two types of vectors and Chapter 6 for discussion of Calculus of variations
and their connection with covariant vectors).

By equating the two objects in (15) we are saying something about the
metric, i.e. drawing an equivalence between the covariant vector basis, dθi,
and contravariant vector basis ∂

∂θi
. By making this equivalence we assume

the metric on the phase space is flat and the coordinates, Cartesian. For
other coordinates contravariant and covariant vectors are not (automatically)
equivalent, e.g. in polar coordinates, the angle, ∂

∂ϕ
, is not equivalent to dϕ 4.

To change a covariant vector to a physically equivalent contravariant vector
requires a metric g. The system (15) is more correctly written

τ
∂θi
∂t

= gij
δF

δθj
(16)

4On the other hand (1/r) ∂
∂ϕ

is considered physically equivalent to r dϕ
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where g is positive definite and symmetric. For Cartesian coordinates gij =
δij, so the metric is redundant and we can write (15). For an N − 1 di-
mensional surface, the metric is represented by a rank N − 1 matrix and
consequently is singular if, as in the Lagrange multiplier treatment, there are
N coordinates, θi, i ∈ [1, N ] (or non-singular if the unconstrained variables,
φi, i ∈ [1, N − 1] are used).

The constant Lagrange multiplier with metric P(N) is acceptable in this
respect, since it represents the metric of an N − 1 dimensional (flat) space
embedded in an N dimensional flat space with coordinates θi, but the vector
Lagrange multiplier, Λi, which gives rise to the matrix (14), is not symmetric
and therefore cannot be formally correct. This is because a projection is a
mapping from a contravariant vector to a contravariant vector implying P
has components P i

j. So the correct way of projecting (16) is

τ
∂θi
∂t

= P i
jg

jk δF

δθk
(17)

and we find that the object

P ik ≡ P i
jg

jk = (δij − ninj)g
jk = gik − nink

is symmetric. From hereon we assume P with components P ik is an N ×N
symmetric matrix with eigenvalues ≥ 0. In passing, it is interesting to note
the similarity between P in (17) and a projection operator, (denoted πP ),
found in [24]

As we have noted, the gij in equation (16) is necessary to balance the
covariant and contravariant vectors. Other tensors, e.g. T ij, can do this,
but a metric transformation retains the physical significance of the object —
in this case δF

δθj
— and can be constructed from a given specified, smooth,

N − 1 dimensional surface in an N dimensional Cartesian space. We give an
example of this in Sec. 3.3 where we construct a metric of a line embedded
in two dimensional flat space.

3.2. Properties that the mapping must possess

We are now able to lay down a set properties that the matrix (metric) P
must possess

1. Reduces to n < N case when only n phases are present locally in a N
phase system.
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2. The projection must never be zero at any point, as this will inhibit
growth from a pure phase.

3. The projection must be symmetric with positive or zero eigenvalues
as a result of the consistency requirement between the left-hand and
right-hand side components: the vector Lagrange multiplier (14) of [21]
fails this test.

4. The metric should be degenerate and continuous: that is, it must map
from dimension N to dimension n < N smoothly.

5. Triple points should be active parts of the system: this excludes the
model proposed by Steinbach [17].

Possibly the most difficult test to satisfy is the first one. The model [14]
fails this, but models such as Steinbach [17] are consistent with this test.

3.3. Mapping for correct reduction to single phase

This section introduces, forN = 2, a mapping from θ1, θ2 to a unit circular
arc which induces a metric which reproduces the single phase reduction. This
is used in the following section to build a more general mapping for arbitrary
N .

Consider the mapping

r = θ1 + θ2,

φ =
θ1
r

where r and φ are polar coordinates in a plane. The angle, φ, physically
representing the single phase variable and r physically representing the to-
tal quantity so that the constraint (5) is represented in this scheme as the
restriction in the plane to a unit circular arc. Rearranging we have

θ1 = rφ,

θ2 = r(1− φ),

which implies

∂

∂φ
= r

(

∂

∂θ1
− ∂

∂θ2

)

14



The Euclidean metric in polar coordinates is5

g =
∂

∂r
⊗ ∂

∂r
+

1

r2
∂

∂φ
⊗ ∂

∂φ

and so the projected metric on to a circular arc of radius r is

g − ∂

∂r
⊗ ∂

∂r
=

1

r2
∂

∂φ
⊗ ∂

∂φ

=

(

∂

∂θ1
− ∂

∂θ2

)

⊗
(

∂

∂θ1
− ∂

∂θ2

)

and since the tensor, P = P ij ∂
∂θi
⊗ ∂

∂θj
we have that the components are given

by the matrix

P =

[

1 −1
−1 1

]

and in particular when r = θ1 + θ2 = 1 the parameter φ is arc length. This
agrees with the single phase formulation (6).

There are other mappings, however, that do this. Consider the mapping
in Cartesian coordinates x, y

x =
1√
2
θ1, y =

1√
2
θ2

then by a similar process the metric on the surface, θ1 + θ2 = 1 (or x + y =
1/
√
2), is also

P =

[

1 −1
−1 1

]

since a unit Cartesian basis on the surface is

1√
2

(

∂

∂x
− ∂

∂y

)

=
∂

∂θ1
− ∂

∂θ2
.

The common feature of both mappings is that the resultant curve has unit
length. This suggests a generalisation to N = 3 (and beyond), where the
simplex lies on a hypersurface with the property that the edges have unit
length and, to avoid N dependence, the surface degenerates to a line for a

15



Figure 2: On the unit length circular arc we show two unit length (not to scale) vectors
defined at one point. A metric of the arc may be formed from a tensor combination of
either or both vectors.

pure interface. To this end we first write the above in a form that may be
generalised.

Let us define two unit vectors on the arc (see Fig. 2)

c1 ≡
∂

∂θ1
− ∂

∂θ2
, c2 ≡

∂

∂θ2
− ∂

∂θ1
.

Then we find that we can trivially write the metric on the arc as

P = αc1 ⊗ c1 + (1− α)c2 ⊗ c2

for any α. In particular we may write

P = θ1c1 ⊗ c1 + θ2c2 ⊗ c2

=
2
∑

i=1

θici ⊗ ci (18)

We can also trivially write

P =
θ1θ2

(1− θ1)(1− θ2)

[

1 −1
−1 1

]

(19)

5In Cartesian coodinates x, y the metric of a flat plane is g = ∂
∂x
⊗ ∂

∂x
+ ∂

∂y
⊗ ∂

∂y
, so

that using x = r cosφ, y = r sinφ and the chain rule we obtain the form given here.
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Generalisations to N > 2 of these two equivalent formulations, (18) and (19)
for N = 2 are exploited in the following subsections.

3.4. Proposed multi-phase formulation A

We now develop a natural generalisation of the N = 2 case, (18), to
N > 2. For N = 2 we could interpret the construction as a mapping from
the (straight) line segment θ1 + θ2 = 1 to a circular arc to induce a met-
ric. Extending this approach to N = 3 we consider a mapping from the 2
dimensional simplex θ1 + θ2 + θ3 = 1 to a 2 dimensional non flat surface –
in particular a sphere. In this way, under the constraint, θi form barycentric
coordinates on the simplex and map to spherical barycentric coordinates on
a sphere 6. We then modify the result so that the metric reduces to that of
N = 2 for a pure binary interface.

We first aim to establish a geodesic coordinate system on a spherical
triangular simplex. Consider first longitude and latitude on a sphere- θ, ϕ
respectively. Then θ parametrises a set of geodesics labelled by ϕ, and con-
versely the curves parametrised by ϕ intersect these curves at constant val-
ues of θ. Limiting the domain to an eighth sphere (positive x, y, z) with
θ, ϕ ∈ [0, π/2], we have an equilateral spherical triangle with three poles x =
(1, 0, 0), (0, 1, 0), (0, 0, 1) in Cartesian coordinates, where each geodesic of con-
stant ϕ conventionally begins at the pole (0, 0, 1) and ends at (cosϕ, sinϕ, 0).
We can equally well choose the other two poles as the origin of the geodesics.
Let us label these three coordinates systems (θ1, ϕ1), (θ2, ϕ2), (θ3, ϕ3). Note
that the duplicate use here of the symbol θi for angle as well as for the phase
field is no coincidence. The three sets of geodesicsC1(θ1, ϕ1),C2(θ2, ϕ2),C3(θ3, ϕ3)
are generated by and are integral curves of three vector fields, c1, c2 and c3
respectively. Considering the spherical equilateral triangle as a mapping from
a flat equilateral triangle, then the straight lines emanating from the vertices
of the flat triangle map to geodesics on the spherical triangle. The barycen-
tric coordinates of a point on the flat triangle, say (λ1, λ2, λ3), correspond
exactly to geodesic distances (π/2− θ1, π/2− θ2, π/2− θ3) to each respective
vertex. If we reverse the direction of the parameter θi so that the integral
curves begin at the equator and move towards the poles then the relation is
θi = (π/2)λi.

6However, we still interpret the vector fields ∂
∂θi

as existing in the N dimensional space.
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Figure 3: Eutectic growth of solid θ2 for the proposed model (left) and the Lagrange
multiplier (right). We see on the right that there is spurious growth of solid θ2 at the
interface between solid θ3 and the liquid θ1. This is not present at all in the proposed
model.
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Figure 4: Mapping from the N = 3 dimensional space to the flat simplex (implementing
the constraint) to the steradian (implementing the metric). The unit vectors ci point along
the line to the respective vertices, i. The distance between a vertex, xi and a point, x, is
given by the distance on the steradian, 1− θi. As a point approaches an edge, say θ2 → 0,
two of the vectors become colinear and a metric formed from just these two vectors gives
a metric of a curve.
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Moving on to the spherical triangle with unit geodesic edges (a stera-
dian) and with the reversed direction of parametrisation the correspondence
becomes λi = θi. This implies that the distance from a vertex i to a general
point is given by 1 − θi. Interestingly, the distances to a point in the flat

triangle from the vertices do not have such a neat relation to the barycentric
coordinates as the spherical barycentric coordinates do. See [25] for issues
on creating spherical barycentric coordinates, in particular the ‘coordinate’
system we have created does not have all the properties that a true barycen-
tric coordinate system has, e.g. lines of constant θ1 are not geodesics and
therefore not parametrised by θ2 or θ3.

The three unit geodesic vector fields on the unit spherical triangle corre-
spond to

ci =
xi − x

1− θi

on the flat triangle, where the barycentric position,

x =
∑

θixi,

with each pure phase given by

x1 = [1, 0, 0]T ,x2 = [0, 1, 0]T ,x3 = [0, 0, 1]T .

In component form ci is thus

(ci)j ≡ cij =
δij − θj
1− θi

, (20)

We know this because the geodesics from any point to any vertex on the
spherical triangle map to straight lines from x to each vertex xi on the flat
triangle. So a tangent to each geodesic maps to a tangent to each straight
line – see Fig. 4. To make this tangent vector unit length we divide by the
geodesic distance of the point on the spherical triangle, corresponding to x
on the flat triangle, from the vertices, i.e. 1 − θi. The relation between the
vectors on the N − 1 simplex ci and the N dimensional space is

ci = cij
∂

∂θj
.

We note that as a point approaches an edge, say θ2 → 0 two of the vectors
(c1 and c3) become colinear. A metric formed from just these two vectors
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will give a metric for a curve. With this in mind we construct a metric from
the three vector fields, for an arbitrary point on the simplex, as follows:

P =
N
∑

j

θjcj ⊗ cj (21)

where the coefficients, θi of P, amount to a postulate, without which we
would have no degeneracy to local regions n < N , where n is the number of
phases present in a local region. In component form the metric is

P ij =
N
∑

k

θkckickj (22)

Note that, for N = 3, by construction when say θ2 = 0, so that θ1 + θ3 = 1
and c3 = −c1 , then the metric degenerates to

P|θ2=0 = θ1c1 ⊗ c1 + θ3c3 ⊗ c3

= (θ1 + θ3)c1 ⊗ c1

= c1 ⊗ c1

=

(

∂

∂θ1
− ∂

∂θ3

)

⊗
(

∂

∂θ1
− ∂

∂θ3

)

. (23)

We can see that even though we have restricted the argument to N = 3,
the more general case is immediately found simply by allowing any N > 1.
For example, for N = 4 with only two phases present in a region the formula-
tion exactly reproduces N = 2 behaviour, which itself exactly reproduces the
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single phase formulation. To illustrate this we give P for this case explicitly

P(4) =
θ1

(1− θ1)2















(1− θ1)
2 − (1− θ1) θ2 − (1− θ1) θ3 − (1− θ1) θ4

− (1− θ1) θ2 θ2
2 θ2θ3 θ2θ4

− (1− θ1) θ3 θ2θ3 θ3
2 θ3θ4

− (1− θ1) θ4 θ2θ4 θ3θ4 θ4
2















+
θ2

(1− θ2)2















θ1
2 − (1− θ2) θ1 θ3θ1 θ4θ1

− (1− θ2) θ1 (1− θ2)
2 − (1− θ2) θ3 − (1− θ2) θ4

θ3θ1 − (1− θ2) θ3 θ3
2 θ3θ4

θ4θ1 − (1− θ2) θ4 θ3θ4 θ4
2















+
θ3

(1− θ3)2















θ1
2 θ1θ2 − (1− θ3) θ1 θ4θ1

θ1θ2 θ2
2 − (1− θ3) θ2 θ2θ4

− (1− θ3) θ1 − (1− θ3) θ2 (1− θ3)
2 − (1− θ3) θ4

θ4θ1 θ2θ4 − (1− θ3) θ4 θ4
2















+
θ4

(1− θ4)2















θ1
2 θ1θ2 θ3θ1 − (1− θ4) θ1

θ1θ2 θ2
2 θ2θ3 − (1− θ4) θ2

θ3θ1 θ2θ3 θ3
2 − (1− θ4) θ3

− (1− θ4) θ1 − (1− θ4) θ2 − (1− θ4) θ3 (1− θ4)
2















(24)

which indeed reduces to













1 −1 0 0

−1 1 0 0

0 0 0 0

0 0 0 0













for θ3 = θ4 = 0 when we impose
∑

j θj = 1. For a triple point θ1 = θ2 = θ3 =
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1/3 we obtain












1/2 −1/4 −1/4 0

−1/4 1/2 −1/4 0

−1/4 −1/4 1/2 0

0 0 0 0













.

This matrix has a singularity when any phase equals unity. There are a
number of ways of resolving this which are discussed in Section 3.6 after we
introduce an alternative formulation (model B).

3.5. Proposed multi-phase formulation B

It is not suggested that the proposed mapping and resulting projection,
Sec. 3.4, is the only acceptable approach to constraining the phase variables.
Further examples that do not reduce to single phase are given in Appendix
D. We give another example here which generalises the N = 2 case via
equation (19). For N = 3, we can construct P as follows:

P =
θ1θ2

(1− θ1)(1− θ2)





1 −1 0
−1 1 0
0 0 0



 +

θ2θ3
(1− θ2)(1− θ3)





0 0 0
0 1 −1
0 −1 1



 +

θ3θ1
(1− θ3)(1− θ1)





1 0 −1
0 0 0
−1 0 1



 .

where we note that if, say, θ3 = 0 we obtain the N = 2 case. The general
case follows as

P =
N
∑

j=2

j−1
∑

i=1

θiθj
(1− θi)(1− θj)

(xi − xj)⊗ (xi − xj),

where xi are the barycentric coordinates of each vertex, i.e. (xi)j = δij, so
that in components, (a, b)

Pab =
N
∑

j=2

j−1
∑

i=1

θiθj
(1− θi)(1− θj)

(δai − δaj)(δbi − δbj). (25)
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Figure 5: Red crosses show the value of tr(P) for a path joining vertex θ3 = 1 to the middle
of the interface opposite. The trace at the vertex differs from the value of 2 for model
A on this path even though it equals two on the adjoining edges (θ1 = 0 and θ2 = 0).
Formulation B has constant and therefore defined tr(P) for any path from a vertex.

24



This formulation (B) has the advantage of being lower order in θi than
that of formulation A of Sec. 3.4. The behaviour on an interface and at a
triple point is identical, but otherwise they differ.

3.6. Ill-defined P for a pure phase

Models A and B, as they stand, both suffer from being ill-defined at any
vertex, θi = 1. This is due to a feature of our construction that, at the
vertices, P depends on the path. For example, with N = 3, and θ1 = 1 we
find P degenerates to two matrices for paths along the two adjoining edges
θ3 = 0 and θ2 = 0:

P|θ3=0 =





1 −1 0
−1 1 0
0 0 0



 P|θ2=0 =





1 0 −1
0 0 0
−1 0 1



 . (26)

Thus we require, in addition to the definition (21), to define unique matrices
at each vertex. Alternatives such as enforcing θi < 1 via the initial condition,
the use of a small parameter in local averaging, or modifying the potential
are all problematic.

Many candidates for the value of P at the vertices fail, including: P = 0,
which inhibits growth; and P = I−U/N , which introduces spurious growth.
However, we found

Pvertex = 2I−U, if 1− θi < δ, for any i, (27)

where the small parameter, δ ≪ 1, did not significantly alter results7. To
discuss this we write this out for N = 3

Pvertex ≡





1 −1 −1
−1 1 −1
−1 −1 1





and assume that θ3 and its gradients vanish. Thus,

δF

δθ3
= 0

7For a range of 10−10 to 10−14 in δ we found the steady state growth rate was effectively
unaltered in eutectic or pure phase simulation
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Consequently the third column plays no role and θ̇1 and θ̇2 reduce correctly
to a binary phase formulation. On the other hand

τ θ̇3 =
δF

δθ1
+

δF

δθ2

has a right hand side which is non-zero in general. In fact, from (11) we see
that the contribution from the potential is zero leaving, for θ1 = 1:

τ θ̇3 = 2(∇θ1 · ∇θ1) +∇2θ1.

Now, since θ1 = 1 we must have ∇θ1 = 0 and ∇2θ1 ≤ 0 implying

τ θ̇3 ≤ 0.

Assuming negative contributions are trapped numerically (if θi < 0 then
θi = 0) this contribution is effectively ignored.

Hence, we have shown that when θ3 and all its gradients are vanishing,
then at one of the other vertices, we find that

Pvertex ≡





1 −1 −1
−1 1 −1
−1 −1 1



 is indistinguishable from





1 −1 0
−1 1 0
0 0 0





The general case, (27), easily follows.

3.7. Some properties of models A and B

This section considers the models from the perspective of eigenvectors
and eigenvalues of the matrix P in order to see the effect on the system. The
interface defined by θ3 = 0 gives the matrix

P =





1 −1 0
−1 1 0
0 0 0





This has one positive eigenvalue, 2, with corresponding eigenvector [1,−1, 0],
which aligns with the the interface. On the other hand, in the centre of the
simplex, θ = [1/3, 1/3, 1/3], we find one eigenvalue of 3/4 corresponding to
any vector lying on the simplex. So in the centre the matrix, P, simply
projects out the term normal to the simplex and multiplies by 3/4. On the
other hand, on the interface, P has the effect of also projecting out the term
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Figure 6: Eigen values and vectors displayed as ellipses as a function of position on the
triangular simplex. As a point approaches the boundary the ellipse degenrates to a line.
The main difference between the two models shows itself as a point approaches a vertex
along a bisector. Model A degenerates to a line whereas Model B remains elliptical.
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normal to the interface. In general P has the double effect of projecting out
the normal component and rescaling the components of the vector along the
two eigenvectors. Representing P at any point on the simplex by an ellipse
with major and minor axes of lengths and direction given by the eigenvalues
and eigenvectors, we can view the action of P in the centre as a circle and
at an interface a degenerate ellipse — a line (see Fig. 6).

Consider a typical path on an N = 3 simplex given by

x(t) = [θ1 = t, θ2, θ3 = 1− 2t], t ∈ [0, 1
2
]. (28)

We are interested in the property of P as we approach the vertex θ3 = 1 as
t tends to zero. We find, for formulation A that, in the limit, the effect of
P once again degenerates to a line (this time of length 3/2) pointing along
the path defined by (28). However, in formulation B we find that P is an
ellipse with major axis of length 3/2 pointing along the line and minor axis
of length 1/2. We find this type behaviour along all paths approaching the
vertices.

By inspecting the trace, tr(P) =
∑N

i Pii ,for both models we find for
formulation A that tr(P) is path dependent at a vertex. This is illustrated
in Fig. 5, which shows tr(P) for both models for a path θ1 = x, θ2 = x, θ3 =
1 − 2x, i.e. from vertex θ3 = 1 to a point on the interface opposite (where
tr(P) = 2) via the triple point (where tr(P) = 3/2).

A constant value of 2 for the trace of P throughout the simplex may be
enforced for both models by the transformation

P→ P̂ = 2
P

tr(P)
.

This modification of either model was found to make no significant change
to eutectic or single phase growth.

4. A numerical comparison of models

4.1. Growth velocity comparison for a single seed

In this section we study the growth of one solid phase, θ2, in a multi-phase
system N = 3 and N = 4 to measure and compare growth rates for the two
models. We stress that in this preliminary treatment we do not include
anisotropy and thus the growth from a circular seed grows as a circle, which
has no steady state velocity.
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Figure 7: Growth from a single seed θ2 in the melt, θ1 in a multi-phase N = 3, 4 model.
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Figure 8: Péclet number, 1

2
× Velocity × Radius/Diffusivity of liquid (1 × 10−9)m2/s

against log
10
(t), for: The proposed model ( A or B with N = 3 or N = 4 are all identical

in this test), Lagrange multiplier model used in Nestler-Wheeler (NW) N = 3 and (NW)
N = 4. We also include the Lagrange multiplier model with Folch-Plapp type change to
the potential (NW/FP) N = 3 which avoids spurious phase growth. The first 2000 time
steps (with ∆t = 3.5 × 10−9) are suppressed because of extreme transient behaviour in
the Lagrange multiplier models. The proposed model (BJM, continuous red line) clearly
exhibits more stable behaviour throughout the simulation.
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In the new models A or B (BJM) there is no difference in growth velocity,
whatever the value of N . On the other hand the Lagrange multiplier model
(NW) behaves differently, as expected, depending on N . We also include a
modified potential into the NWmodel to make the potential have a maximum
in the middle of the simplex in the manner of [5] (FP).

To calculate the interface velocity we use the formulation

vn =
xn − xn−1

∆t

where the x position of the interface at time tn is given by

xn =

∫∞

O
xh(θ1(x, tn)) dx

∫∞

O
h(θ1(x, tn)) dx

where O is the origin of the seed, θ1(x, tn) is the amount of liquid at the point
x at time tn, and the function (interface selector)

h(θ) ≡ 16θ2(1− θ)2

is used to isolate the interface.
A snap shot of θ2 in the simulation is illustrated in Fig. 7. Fig. 8

illustrates the differing growth rates using the Péclet number, 1
2
× Velocity ×

Radius/Diffusivity, for the models and also, detrimentally for the NW model,
we find differing growth rates for N = 3 and 4 cases. In BJM there is no
difference between N = 3 and N = 4 the growth rates being identical. The
simulation reveals that BJM is also more stable than the Lagrange multiplier
model(s). We also ran a simulation for the Lagrange multiplier formulation
with a modified potential (NW/FP) to eliminate spurious phases, but even
in this case there is significant difference in growth rate between this model
and the proposed model (BJM). We did not run a simulation for N = 4 with
the modified potential NW/FP because as commented in [12]: . . . a special

type of a potential function that guarantees the stability of dual interfaces is

constructed (in [5]).This formulation, however, is restricted to triple junctions

and will be difficult to generalize.

4.2. Eutectic growth differences between models A and B

There is a relationship (given for example in [26]) which relates the growth
velocity, v, and the width, λ, of the eutectic for a small under-cooling. Below
a certain width, λ = λ∗, the eutectic seed will melt. Conversely, above λ∗
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Figure 9: Velocity as a function of eutectic width (circles A(left) B(right)) against the
solid line, 1

λ
(1− λ∗

λ
).
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the eutectic solidifies more rapidly with increased width until a maximum,
λ = 2λ∗, is reached. This “velocity scaling law” can be shown to be:

v ∝ 1

λ

(

1− λ∗

λ

)

.

Fig. 9 shows the analytical relation (solid line) against the data for different
λ, for an undercooling of 6.9K. Both models A and B fit well through the
range from 1 to 3 times the minimum spacing λ→ λ∗. Modifying the models
to ensure trace 2 does not have any significant effect and there is no significant
observed difference between models A and B in this test. It has been shown
in [21] that the constant Lagrange multiplier model and vector Lagrange
multiplier do not reproduce this scaling correctly, whereas the model of [19]
does successful reproduce the law.

5. Conclusion

We have proposed two multi-phase formulations that reduce to standard
single phase, have no N dependence, do not generate spurious additional
phases at binary interfaces and fit the velocity scaling law well. Moreover,
they use a simple potential for general N , given in [14].

Towards these formulations we first explored properties of the Lagrange
multiplier method for multi-phase fields and identified the unphysical aspects:
non reduction to single phase, the generation of additional spurious phases
and N dependence. In particular we have shown that the Lagrange multiplier
method is equivalent to a projection with a specified normal which assumes
a Cartesian metric on the phase variables. By relaxing this assumption we
exploit the extra freedom to construct a projection that allows growth of a
pure seed into the melt without influence of the remaining phases.

Reduction to single phase is achieved by the introduction of a symmet-
ric matrix, which degenerates to a single non-zero eigenvalue when only two
phases are present. Thus the form of the potential is not critical at a pure
interface. However, reduction to single phase and N independence are con-
ditions that necessarily create an ambiguity when the phase is pure. For
example, a point of pure melt θ1 = 1 cannot simultaneously be a single
phase formultion for more than one solid growth. This reveals itself in the
proposed formulation as being ill-defined at these points. We resolved this
by specifying a particular matrix, Pvertex, at these points consistent with the
value of P nearby.
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Because the new formulation reduces exactly to the single phase formu-
lation at a pure binary interface more elaborate treatment of the latter, e.g.
solute anti trapping, may be imported into multi-phase field modelling. This
is a subject for future research.

5.1. Summary of the proposed multi-phase field models A and B

For the convenience of the reader we finish with a summary of the pro-
posed model.

• We use free energy in equation (1) with the potential, equation (2)

• The evolution of concentration is given by (4)

• The constraint (5) is applied to unconstrained phase field equations,
(3), by

−τ θ̇ = P
δF

δθ

• where P is an N × N symmetric matrix given in component form by
two proposed formulations:

– Model A: (22) with cij given by (20);

– Model B: (25)

• Because these formulations are ill-defined at pure phases (vertices θi =
1) we specify a matrix (27) if any of the phases approaches unity.

Both models A and B perform equally well in simulations and far better
than with the Lagrange multiplier approach for general N 8.

Appendix A. Proof of the equivalence of (10) and the Lagrange
multiplier approach

This section shows the equivalence between the Lagrange multiplier method
of constraining the N equations and that of using any mapping θ = θ(φ)

8However, for the special case of N = 3 the use of a potential obstacle (see Appendix
C) can eliminate spurious phases for the Lagrange multiplier formulation
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that automatically preserves the constraint
∑

i θi = 1. Since the Lagrange
multiplier pe se is traditionally used in pure minimisation problems (i.e. no
time dependence) it is not necessarily obvious that the two approaches are
identical, although the identification of the Lagrange multiplier as a projec-
tion (equation (13)) strongly suggests that they are.

We need to show that9

JTJφ̇ =
δF

δφ
, (A.1)

where the entries

N
∑

i=1

Jij = 0, j ∈ [1, N − 1],

is equivalent to

θ̇ = P
δF

δθ

with P given by

P ≡ I− 1

N
U,

and U defined as an N ×N matrix with unit entries.
First we note that

θ̇i =
∂θi
∂φj

φ̇j ⇒ θ̇ = Jφ̇ (A.2)

and similarly

δF

δφ
= JT δF

δθ
. (A.3)

So that constraining the system of N equations

θ̇ =
δF

δθ

9For the purpose of the proof we drop the constant, −τ
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to an N − 1 system by writing θ = θ(φ) and using (A.2) and (A.3) results
in the N − 1 independent equations (A.1)

JTJφ̇ =
δF

δφ
.

Using (A.2) and (A.3), we can rearrange this as the N dependent equations

θ̇ = Q
δF

δθ
.

where we define

Q ≡ J(JTJ)−1JT (A.4)

Hence, we need to show that P ≡ I − U/N = J(JTJ)−1JT ≡ Q. To
prove this result it is sufficient to prove the equality for the symmetric (N −
1) × (N − 1) matrix, P̂, formed from the independent rows and columns of
P. We choose, without loss of generality, that row and column N are deleted
to form P̂ and similarly the Nth row of J to form Ĵ etc—note that unlike J
and P, the rank N − 1 matrices Ĵ and P̂ are invertible.

Using

(JTJ)ij =
N
∑

k=1

JkiJkj

=
N−1
∑

k=1

JkiJkj + JNiJNj

=
N−1
∑

k=1

JkiJkj +

(

N−1
∑

m=1

Jmi

)(

N−1
∑

n=1

Jnj

)

=
(

ĴT Ĵ+ ĴT ÛĴ
)

ij

we find from (A.4)

Q̂ ≡ Ĵ(ĴT Ĵ+ ĴT ÛĴ)−1ĴT .

Using the notation Ĵ−T ≡ (ĴT )−1 we find

(ĴT Ĵ+ ĴT ÛĴ)−1 = J−1Q̂Ĵ−T .
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so that

Î = (ĴT Ĵ+ ĴT ÛĴ)J−1Q̂Ĵ−T

= ĴT Q̂Ĵ−T + ĴT ÛQ̂Ĵ−T

= Q̂+ ÛQ̂

= (Î+ Û)Q̂

implying

Q̂ = (Î+ Û)−1

Now

(Î− 1

N
Û)(Î+ Û) = Î+ Û− 1

N
Û− 1

N
ÛÛ

= Î+ Û− 1

N
Û− N − 1

N
Û

= Î

implying

Î− 1

N
Û = (Î+ Û)−1

and so

Q̂ = Î− 1

N
Û = P̂

giving P = Q as required.

Appendix B. Variational derivative calculations

The purpose of this appendix is to show how the variational derivative of
the gradient contribution enter the giverning equations (11).

We wish to find δG
δθk

where

G =

∫

Ω

h(θ,∇θ) d3x
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with

h = 1
2

N
∑

j=2

j−1
∑

i=1

Γij|θi∇θj − θj∇θi|2

Then

δG

δθk
=

∂h

∂θk
−∇ · ∂h

∂∇θk
Writing

rij ≡ θi∇θj − θj∇θi

we find

∂h

∂θk
=

N
∑

j=2

j−1
∑

i=1

Γijrij ·
∂rij
∂θk

=
N
∑

j=2

j−1
∑

i=1

Γijrij · (δik∇θj − δjk∇θi)

=
N
∑

j=2

Γkjrkj · (∇θj − δjk∇θk)

=
N
∑

j ̸=k

Γkjrkj · ∇θj.

A similar calculation gives

∂h

∂∇θk
=

N
∑

j=2

j−1
∑

i=1

Γijrij
∂rij
∂∇θk

= −
N
∑

j ̸=k

Γkjrkjθj.

and thus

−∇ · ∂h

∂∇θk
=

N
∑

j ̸=k

Γkj (θj∇ · rkj + rkj · ∇θj) .
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Hence

δG

δθk
=

N
∑

j ̸=k

Γkj (2rkj · ∇θj + θj∇ · rkj)

=
N
∑

j ̸=k

Γkj{2(θk∇θj − θj∇θk) · ∇θj + (θk∇2θj − θj∇2θk)θj}

Appendix C. A modified potential to suppress spurious growth in
the Lagrange multiplier model

This section examines a modification to the potential that mitigates spu-
rious phases in the Lagrange multiplier approach.

See Fig. C.10 showing the Nestler Wheeler potential on the left and the
Folch-Plapp potential on the right. The drawback for the NW potential is
that there is a gradient away from an interface (an edge of the simplex)
towards the centre. The Folch Plapp potential avoids this, whilst taking care
not to create a gradient out of the simplex.

The barrier contribution to the potential for N = 3 is

fbarrier =
3
∑

k=2

k−1
∑

j=1

Wjkθ
2
j θ

2
k

if we modify this potential

fbarrier =
3
∑

k=2

k−1
∑

j=1

Wjk(θ
2
j θ

2
k + αθ1θ2θ3) (C.1)

where α is a new parameter. We find for θ3 = 0

∂fbarrier
∂θ1

= 2W12θ1θ
2
2

∂fbarrier
∂θ2

= 2W12θ2θ
2
1

∂fbarrier
∂θ3

= αW12θ1θ2 (C.2)
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Figure C.10: Two potential for multi-phase potentials for N = 3 as a function of θ on the
simplex (bold triangle). The Nestler-Wheeler potential has a saddle point at the centre of
the simplex, which is avoided in the Folch/Plapp potential (left) thus mitigating against
the system wandering away from an interface (edge of the simplex).
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so that, for α = 1, with the Lagrange multiplier this contribution to the
growth of phase 3 is

2
3

∂fbarrier
∂θ3

− 1
3

(

∂fbarrier
∂θ1

+
∂fbarrier
∂θ2

)

= 0

since θ1 + θ2 = 1. So the addition of the ‘hump’ into the potential negates
its contribution to the growth of θ3, but there still remains contributions
to spurious growth due to the non-potential term. However, this can be
mitigated by choosing α > 1 and sufficiently large, relying on an infinite well
at the simplex boundary.

Appendix D. Alternative formulations for P

We state without comment or justification two possible forms for P which,
though they do not reduce correctly to the standard single phase formulation,
do demonstrate alternative approaches to implementing the constraint that
avoid N dependence and spurious phase generation:

1.

Pij = θiδij − θiθj;

2.

Pij = d2∇θi · ∇θj,

with d a parameter of dimension length commensurate with phase
width.

Appendix E. Numerical implementation of the constraint

Following a suggestion by the reviewers of this article we were asked
to comment on the method of [22] who in turn use the method of [27] for
implementing the constraint. Consider the equations with constants assumed
unity for simplicity:

θ̇i =
δF

δθj
.
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Using explicit Euler for time stepping for illustration, Hirouchi et al imple-
ment the constraint as follows:

At time step t = tn+1 the equation is computed first without the con-
straint

θn+1
i ← θni +∆t

δF

δθni

The constraint is then imposed by

θn+1
i ← θn+1

i
∑

j θ
n+1
j

.

To analyse this let us rewrite this process into one line

θn+1
i =

θni +∆t δF
δθni

∑

j θ
n
j +∆t

∑

j
δF
δθnj

=
θni +∆t δF

δθni

1 + ∆t
∑

j
δF
δθnj

which for small ∆t can be written

θn+1
i − θni
∆t

≈ δF

δθni
− θni

∑

j

δF

δθnj
.

We now see that this is the numerical approximation to

θ̇i =
δF

δθi
− θi

∑

j

δF

δθj

which is the vector Lagrange multiplier approach mentioned in [21].
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