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Abstract

For the one-dimensional telegraph process, we obtain explicitly the distribution of the
occupation time of the positive half-line. The long-term limiting distribution is then
derived when the initial location of the process is in the range of sub-normal or normal
deviations from the origin; in the former case, the limit is given by the arcsine law.
These limit theorems are also extended to the case of more general occupation-type
functionals.
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1. Introduction

Let B = (Bt, t ≥ 0) be a standard Brownian motion on R starting from the origin
(B0 = 0), and consider the occupation time functional

hT :=
1

T

∫ T

0

H(Bt) dt, T > 0, (1.1)

where H(x) is the Heaviside unit step function (i.e., H(x) = 0 for x ≤ 0 and H(x) = 1
for x > 0). That is to say, hT ∈ [0, 1] is the proportion of time spent by the Brownian
motion (Bt, 0 ≤ t ≤ T ) on the positive half-line. It is well known that the probability
distribution of the random variable hT does not depend on T (which is evident from
the scaling property of the Brownian motion and the fact that H(αx) ≡ H(x) for any
α > 0) and is given by the classic arcsine law,

P{hT ≤ y} =
2

π
arcsin

√
y, 0 ≤ y ≤ 1, (1.2)

with the probability density

pas(y) :=
1

π
√

y(1 − y)
, 0 < y < 1. (1.3)
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The beautiful formula (1.2) dates back about 70 years to P. Lévy [Le40, Théorème 3,
pp. 301–302], who has also proved that the arcsine law (1.2) is the limit distribution for
the relative frequency of positive sums among consecutive partial sums of independent
symmetric Bernoulli (0–1) random variables [Le40, Corollaire 2, p. 303]. Using the
invariance principle, the latter result was extended by P. Erdős and M. Kac [EKa47] to
the case of sums of arbitrary i.i.d. random variables with zero mean and unit variance
(cf. [St93, Theorem 4.3.19, p. 236]). More recently, R. Khasminskii [Kh99] obtained
the limit distribution, as T → ∞, of more general functionals of the form

hT (x; f) :=
1

T

∫ T

0

f(x + Xt) dt,

where Xt (X0 = 0) is a diffusion process on R with generator L = a(x) d2/dx2, and
f : R → R is a probing function from a suitable class. In particular, the results of
[Kh99] imply that if limx→±∞ a(x) = a0 > 0 and f is a bounded piecewise continuous
function such that

lim
x→±∞

1

x

∫ x

0

f(u) du = f± , f+ 6= f− , (1.4)

then the distribution of the random variable (hT (x; f)−f−)/(f+−f−) converges weakly,
as T → ∞, to the arcsine law (1.2).

In the present paper, we obtain similar results for the so-called telegraph process

defined by

Xt := V0

∫ t

0

(−1)Nu du, t ≥ 0, (1.5)

where (Nt, t ≥ 0) is a homogeneous Poisson process (with rate λ > 0), V0 is a random
variable with equiprobable values ±c independent of the process Nt, and c > 0 is a
parameter (see [Go51, Ka74, Pi91]). That is, Xt is the position at time t ≥ 0 of a
particle starting at t = 0 from the origin and moving on the line with alternating
velocities ±c, reversing the direction of motion at each jump instant of the Poisson
process Nt; the initial (random) direction is decided by the sign of V0. Note that
the process Xt itself is non-Markovian, however if Vt = dXt/dt = (−1)Nt V0 is the
corresponding velocity process, then the joint process (Xt, Vt) is Markov on the state
space R×{−c, +c} (see [EtK86, §12.1, p. 469]). We shall also consider the conditional
telegraph processes obtained from Xt by conditioning on V0,

X±
t := ±c

∫ t

0

(−1)Nu du, t ≥ 0, (1.6)

where the choice of the + or − sign determines the initial direction of motion.

Remark 1.1. Here and throughout the paper, we adopt a notational convention that
any formula involving the ± and ∓ signs combines the two cases corresponding to the
choice of either the upper or lower sign, respectively.

Remark 1.2. The telegraph process is the simplest example of so-called random evolu-

tions (see, e.g., [EtK86, Ch. 12] and [Pi91, Ch. 2]).
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The model of non-interacting particles moving in one dimension with alternating
velocities (updated at random on a discrete time grid) was first introduced in 1922
by G. I. Taylor [Ta22] in an attempt to describe turbulent diffusion; later on (around
1938–1939) it was studied at length by S. Goldstein [Go51] in connection with a certain
hyperbolic partial differential equation (called the telegraph, or damped wave equation,
see (1.7) below) describing the spatio-temporal dynamics of the potential in a trans-
mitting cable (without leakage) [We55]. In his 1956 lecture notes, M. Kac (see [Ka74])
considered a continuous-time version of the telegraph model. Since then, the tele-
graph process and its many generalizations have been studied in great detail (see, e.g.,
[Or90, Pi91, FK94, Or95, Ra99, We02]), with numerous applications in physics [We02],
biology [Ha99, HH05], ecology [OL01] and, more recently, financial market modelling
[Ra07, RM08] (see also further bibliography in these papers).

An efficient conventional approach to the analytical study of the telegraph process,
analogous to that for diffusion processes, is based on pursuing a fundamental link
relating various expected values of the process with initial value and/or boundary value
problems for certain partial differential equations (see, e.g., [Go51, Or90, Or95, Ra97,
Ra99, Ra06]). In particular, Kac [Ka74] has shown that, for any bounded continuously
differentiable function g0 : R → R, the functions

v±(x, t) := E
[

g0(x + X±
t )

]

, x ∈ R, t ≥ 0,

satisfy the set of partial differential equations

∂v±(x, t)

∂t
∓ c

∂v±(x, t)

∂x
= ∓λ

(

v+(x, t) − v−(x, t)
)

, t > 0,

with the initial conditions

v±(x, 0) = g0(x), x ∈ R.

These equations can be easily combined (see details in [Ka74] or [EtK86, §12.1, p. 470])
to show that the function

v(x, t) := E [g0(x + Xt)] =
1

2
v−(x, t) +

1

2
v+(x, t)

satisfies the telegraph (or telegrapher’s) equation (see, e.g., [We55, §15])

∂2v

∂t2
+ 2λ

∂v

∂t
= c2 ∂2v

∂x2
(1.7)

with the initial conditions

v(x, 0) = g0(x),
∂v

∂t
(x, 0) = 0. (1.8)

Remark 1.3. The telegraph equation (1.7) first appeared more than 150 years ago in
work by W. Thomson (Lord Kelvin) on the transatlantic cable [Th54].
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The (unique) solution of the Cauchy problem (1.7)–(1.8) can be written explicitly
(see, e.g., [We55, §§46, 74] or [Pi91, §0.4]) as

v(x, t) =
1

2
e−λt

(

g0(x + ct) + g0(x − ct)
)

+
1

2
e−λt

∫ t

−t

g0(x + cu)

(

λI0

(

λ
√

t2 − u2
)

+
λt√

t2 − u2
I1

(

λ
√

t2 − u2
)

)

du,

(1.9)
where

I0(z) :=
∞

∑

n=0

(z/2)2n

(n!)2
and I1(z) := I ′

0(z) =
z

2

∞
∑

n=0

(z/2)2n

n! (n + 1)!
(z ∈ R)

are the modified Bessel functions of the first kind (of orders 0 and 1), respectively)
[AS72, 9.6.12, p. 375; 9.6.27, p. 376].

It is well known that, under a suitable scaling, the telegraph process satisfies a
functional central limit theorem.

Theorem 1.1. Assume that λ, c → +∞ in such a way that c2/λ → 1. Then the

distribution of the telegraph processes (X±
t , t ≥ 0) converges weakly in C[0,∞) to the

distribution of a standard Brownian motion (Bt, t ≥ 0). The same is true for the

unconditional telegraph process (Xt, t ≥ 0).

As was observed by Kac [Ka74, p. 501], this result formally follows from the tele-
graph equation (1.7), which in the limit λ, c → +∞, c2/λ → 1 yields the diffusion
(heat) equation

∂v

∂t
=

1

2

∂2v

∂x2
,

associated with the standard Brownian motion Bt. A rigorous proof of Theorem 1.1,
along with some extensions, can be found in [EtK86, §12.1, p. 471] and [Ra99, Theorem
5.1] (see also [Or90, §4] for a density version).

Our main goal in the present paper is to analyze the distribution of the occupation
time of the telegraph process Xt and, in particular, to obtain a limit distribution, as
T → ∞, of the occupation-type functionals of the form ηT (x; f) := T−1

∫ T

0
f(x+Xt) dt

for a suitable class of probing functions f . In particular, we prove that the limit
distribution is given by Lévy’s arcsine law providing that the starting point x is in
the range of subnormal deviation from the origin (i.e., x = o(

√
T )). For technical

simplicity, we impose a stronger condition on the asymptotics of f at ±∞, assuming
that the corresponding limits f± exist.

The rest of the paper is organized as follows. In Section 2 we state the main results
of this work (Theorems 2.1–2.4), which are then proved in Sections 4–7, respectively.
Section 3 contains a suitable version of the Feynman–Kac formula, with applications
to the Laplace transforms for the occupation-type functionals under study, which is in-
strumental for our techniques. We finish in Section 8 with concluding remarks and some
conjectures, which are illustrated by the results of computer simulations. Appendix A
contains alternative (probabilistic) proofs of Theorems 2.2, 2.3 and 2.4, providing ad-
ditional insight into these results.
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2. Statement of the main results

For T > 0, x ∈ R, consider the following occupation time random variables

ηT (x) :=
1

T

∫ T

0

H(x + Xt) dt, η±
T (x) :=

1

T

∫ T

0

H(x + X±
t ) dt, (2.1)

where H(x) = 1(0,∞)(x) is the Heaviside step function and Xt, X±
t are the telegraph

processes introduced above (see (1.5), (1.6)). Note that the total time spent by the
processes (x + X±

t , 0 ≤ t ≤ T ) at the origin almost surely (a.s.) equals zero, since by
Fubini’s theorem we have

E

∫ T

0

1{0}(x + X±
t ) dt =

∫ T

0

P{X±
t = −x} dt = 0 . (2.2)

Hence, the complementary quantity 1− η±
T (x) a.s. equals the proportion of time spent

by the processes (x + X±
t , 0 ≤ t ≤ T ) on the negative side of the axis,

1 − η±
T (x) =

1

T

∫ T

0

1(−∞,0)(x + X±
t ) dt (a.s.),

and by symmetry (with respect to simultaneous transformations x 7→ −x, ± 7→ ∓) it
follows that

η±
T (x)

d
= 1 − η∓

T (−x), x ∈ R . (2.3)

Let us consider the function ϕT (t) (t ≥ 0) defined by

ϕT (t) :=
1

4πλT

∫ t

0

1 − e−2λTu

u3/2
√

t − u
du (t > 0), ϕT (0) :=

1

2
. (2.4)

After the substitution u = ty, we have in the limit as t ↓ 0,

ϕT (t) =
1

4πλTt

∫ 1

0

1 − e−2λTty

y3/2
√

1 − y
dy → 1

2π

∫ 1

0

1
√

y(1 − y)
dy =

1

2
(2.5)

(see (1.3)), and so ϕT (·) is continuous at zero (and hence everywhere on [0,∞)). Note
the following useful scaling relation, which easily follows from the representation of ϕ
given by (2.5):

ϕαT (t) = ϕT (αt), t ≥ 0, α > 0. (2.6)

Let us also set
ψT (y) := 2λTϕT (y)ϕT (1 − y), 0 ≤ y ≤ 1. (2.7)

We are now ready to state our first result.

Theorem 2.1. The random variables η±
T (0) defined in (2.1) have the distribution

P
{

η±
T (0) ∈ dy

}

= 2ϕT (1) δx±(dy) + ψT (y) dy, 0 ≤ y ≤ 1, (2.8)

where δx is the Dirac measure (of unit mass) at point x, with x− = 0, x+ = 1. Fur-

thermore, the distribution of ηT (0) (see (2.1)) is given by the formula

P
{

ηT (0) ∈ dy
}

= ϕT (1)δ0(dy) + ϕT (1)δ1(dy) + ψT (y) dy, 0 ≤ y ≤ 1. (2.9)
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In other words, the distribution of η−
T (0), η+

T (0) has a discrete part with atom of
mass 2ϕT (1) at point 0 or 1, respectively, and an absolutely continuous part with the
density ψT defined by (2.7). Similarly, the distribution of ηT (0) has atoms at points 0
and 1, both of mass ϕT (1), and an absolutely continuous part with the density ψT as
above.

Remark 2.1. The ±-duality in (2.8) becomes clear from relation (2.3) (with x = 0) and
the symmetry property ψT (y) ≡ ψT (1 − y) (see (2.7)).

Remark 2.2. Using an integral formula (see [AS72, 9.6.16, p. 376]) for the modified
Bessel function I0, it is easy to check that the function ϕT defined by (2.4) admits
another representation,

ϕT (t) =
1

2λTt

∫ λTt

0

e−y I0(y) dy, t > 0,

which is further evaluated (see [AS72, 11.3.12, p. 483]) to yield ϕT (t) = 1
2
e−λTt

(

I0(λTt)
+ I1(λTt)

)

. Thus, the distribution of η±
T (0) and ηT (0) can be expressed through the

modified Bessel functions I0 and I1, as well as the distribution of the telegraph process
(cf. (1.9)).

In the next theorem, we give explicit integral formulas for the distribution of η±
T (x)

in the case x 6= 0. For simplicity, we only present the answer for x < 0, the case x > 0
readily following in view of the duality relation (2.3).

Theorem 2.2. Assume that x < 0 and set T0 := |x|/c. Then, for any T > 0, the

random variables η±
T (x) defined in (2.1) have the following distribution:

(a) if T ≤ T0 then P{η±
T (x) = 0} = 1;

(b) if T > T0 then, for 0 ≤ y ≤ 1 − T0/T ,

P{η±
T (x) ∈ dy} =

(
∫ ∞

T

Q±
−x(u) du

)

δ0(dy) + µ±
T (dy) + Ψ±

x (y, T )dy, (2.10)

where µ−
T (dy) := 0 and

µ+
T (dy) := 2e−λT0ϕT (1 − T0/T ) δ1−T0/T (dy) + e−λT0 ψT−T0

(

y

1 − T0/T

)

dy

1 − T0/T
,

(2.11)

Ψ±
x (y, T ) := 2T Q±

−x((1 − y)T ) ϕT (y) +

∫ (1−y)T

T0

Q±
−x(u) ψT−u

(

y

1 − u/T

)

du

1 − u/T
,

(2.12)

with ϕT and ψT given by (2.4) and (2.7), respectively, and the functions Q±
−x(u) (−x >

0) defined for all u ∈ [T0,∞) by

Q+
−x(u) :=

λT0 e−λu

√

u2 − T 2
0

I1

(

λ
√

u2 − T 2
0

)

, (2.13)

Q−
−x(u) := λe−λu I0

(

λ
√

u2 − T 2
0

)

− λ(u − T0) e−λu

√

u2 − T 2
0

I1

(

λ
√

u2 − T 2
0

)

. (2.14)
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For the next theorem, we need a few notations. For a > 0, consider the function

qa(t) :=
a√
2πt3

exp

(

−a2

2t

)

, t > 0, (2.15)

with Laplace transform (see [AS72, 29.3.82, p. 1026])
∫ ∞

0

e−st qa(t) dt = e−a
√

2s , s ≥ 0. (2.16)

Let Ya (a ≥ 0) be a family of random variables with values in [0, 1], such that Y0

has the arcsine distribution (1.2), with the density pas (see (1.3)), while for a > 0 the
distribution of Ya is given by

P{Ya ∈ dy} = maδ0(dy) + fa(y) dy, (2.17)

where

ma :=

∫ ∞

1

qa(u) du =
2√
2π

∫ a

0

e−y2/2 dy, (2.18)

fa(y) :=

∫ 1−y

0

qa(u)

1 − u
pas

(

y

1 − u

)

du =
a

√

2π3y

∫ 1−y

0

e−a2/(2u)

u3/2
√

1 − y − u
du. (2.19)

Remark 2.3. It is easy to verify, either from (2.15) or using the Laplace transform

(2.16), that qa
w∗

→ δ0 as a → 0+, where δ0(·) is the Dirac delta function and
w∗

→ denotes
weak-∗ convergence of generalized functions; hence ma → 0 (which can also be seen

directly from the right-hand side of (2.18)) and fa
w∗

→ pas (see the first part of formula

(2.19)). That is, Ya
d→ Y0 as a → 0+, and so the distribution of Ya is continuous in

parameter a ∈ [0,∞).

Theorem 2.3. Suppose that the initial position X±
0 = x, as well as the parameters c

and λ, may depend on T in such a way that λT → ∞ and (c2T/λ)−1/2 x → a ∈ R as

T → ∞. Then, as T → ∞,

ηT (x), η±
T (x)

d−→
{

Y−a , a ≤ 0,

1 − Ya , a ≥ 0.
(2.20)

In particular, for a = 0 the limit is given by the arcsine distribution (1.2).

To order to generalize these results in the spirit of [Kh99], let f : R → R be a
bounded, piecewise continuous function (i.e., continuous on R outside a finite set Df ,
where it has finite left and right limits), such that, for some finite constants f+ 6= f− ,

lim
x→−∞

f(x) = f− , lim
x→+∞

f(x) = f+ . (2.21)

Consider the random variables

η±
T (x; f) :=

1

(f+ − f−) T

∫ T

0

(

f(x + X±
t ) − f−

)

dt, x ∈ R. (2.22)
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Clearly, by a linear transformation of the function,

f(x) 7→ f̃(x) :=
f(x) − f−
f+ − f−

, x ∈ R, (2.23)

we may and will assume without loss of generality that f− = 0, f+ = 1, so that (2.22)
is reduced to

η±
T (x; f) :=

1

T

∫ T

0

f(x + X±
t ) dt. (2.24)

Theorem 2.4. Let the function f satisfy the above conditions including assumption

(2.21) with f− = 0, f+ = 1. Suppose that the hypotheses of Theorem 2.3 are satisfied,
and assume in addition that c2T/λ → ∞ as T → ∞. Then the distribution of η±

T (x; f)
converges weakly, as T → ∞, to the law determined by the right-hand side of (2.20).

Remark 2.4. We conjecture that Theorem 2.4 holds under a weaker assumption (1.4) of
Cesàro-type averaging of the probing function f at ±∞, replacing the limit condition
(2.21). It seems plausible that the analytic techniques developed in the paper (espe-
cially in Section 7) may be suitably adjusted to this effect, and we will address this
problem elsewhere. Some numerical evidence in favour of our conjecture is presented
below in Section 8.

3. The Feynman–Kac formula and applications

Let us recall the Feynman–Kac formula for the telegraph processes.

Theorem 3.1. Let (X±
t , t ≥ 0) be the telegraph processes (1.6). Suppose that g0 and

g are bounded functions on R such that g0 ∈ C1(R) and g is piecewise continuous, i.e.,
g ∈ C(R \Dg), where Dg is a finite set, and moreover, g has finite left and right limits

at the points of Dg. Then the functions

v±(x, t) := E

[

g0(x + X±
t ) exp

{
∫ t

0

g(x + X±
u ) du

}]

, x ∈ R, t ≥ 0, (3.1)

for all (x, t) ∈ R × R+ such that x ± ct /∈ Dg satisfy the set of partial differential

equations

∂v±(x, t)

∂t
∓ c

∂v±(x, t)

∂x
= ∓λ

(

v+(x, t) − v−(x, t)
)

+ g(x)v±(x, t),

with the initial conditions

v±(x, 0) = g0(x), x ∈ R.

This theorem is proved (see details in [Ra06]) similarly to the analogous result for
diffusion processes (cf., e.g., [IM74, §2.6]). An alternative probabilistic representation
for the solution of a deterministic telegraph-like equation is developed in [DMT08].

8



Let η±
T (x) be defined by (2.1). For β ∈ R, set

v±
T (ξ, t) := E

[

e−βt η±

Tt
(cTξ)

]

, ξ ∈ R, t ≥ 0, (3.2)

or more explicitly (cf. (3.1))

v±
T (ξ, t) = E

[

exp

{−β

T

∫ Tt

0

H(cTξ + X±
u ) du

}]

, ξ ∈ R, t ≥ 0. (3.3)

Since H(·) is a bounded function, the expectation in (3.3) is finite for all β ∈ R.
Let us record some simple properties of the function v±

T .

Lemma 3.2. For each β ∈ R and any T > 0, the functions v±
T (ξ, t) are continuous in

each variable on R × R+ and

lim
ξ→−∞

v±
T (ξ, t) = 1, lim

ξ→+∞
v±

T (ξ, t) = e−βt . (3.4)

Proof. Continuity in t ∈ R+ is obvious. As mentioned above (see (2.2)), for any ξ0 ∈ R

we have a.s. that cTξ0 + X±
u 6= 0 for all u ∈ [0, T t] except on a (random) set of

Lebesgue measure zero. Since the function H is continuous outside zero, this implies
that, for such u, H(cTξ + X±

u )
a.s.−→ H(cTξ0 + X±

u ) as ξ → ξ0 and hence, by Lebesgue’s

dominated convergence theorem,
∫ Tt

0
H(cTξ + X±

u ) du
a.s.−→

∫ Tt

0
H(cTξ0 + X±

u ) du as
ξ → ξ0. The continuity of v±

T (·, t) at point ξ0 now follows by Lebesgue’s dominated
convergence theorem applied to the expectation (3.3), since everything is bounded (for
a fixed t).

To prove (3.4), note that, for T > 0 and each u ≥ 0, we have cTξ + X±
u

a.s.−→
±∞ as ξ → ±∞. Since H is bounded on R, the claim now follows by dominated
convergence.

From the definition (3.3), it is clear that if β ≥ 0 then, for each ξ ∈ R, the functions
v±

T (ξ, ·) are bounded on [0,∞), so we can define the Laplace transform

w±
T (ξ, s) :=

∫ ∞

0

e−st v±
T (ξ, t) dt (s > 0). (3.5)

Lemma 3.3. Set s̃ := s+β. For any fixed s > 0, the functions w±
T = w±

T (ξ, s) defined

by (3.5) are continuous in ξ ∈ R and satisfy the following set of differential equations

∂w±
T

∂ξ
= λT

(

w+
T − w−

T

)

±
(

s + H(cTξ)
)

w±
T ∓ 1, ξ 6= 0. (3.6)

Moreover,
lim

ξ→−∞
w±

T (ξ, s) = s−1, lim
ξ→+∞

w±
T (ξ, s) = s̃−1. (3.7)
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Proof. The continuity of the functions w±
T (ξ, s) in ξ follows from the definition (3.5)

and the first part of Lemma 3.2. Further, applying Theorem 3.1 (with g0(x) ≡ 1 and
g(x) = −βT−1H(x)), we see that the functions v±

T = v±
T (ξ, t) defined by (3.2) satisfy

the initial value problem

∓∂v±
T

∂t
+

∂v±
T

∂ξ
= λT

(

v+
T − v−

T

)

± βH(cTξ)v±
T , t > 0, ξ ± t 6= 0, (3.8)

v±
T (ξ, 0) = 1, ξ ∈ R. (3.9)

Integrating by parts and using the initial condition (3.9), we have

∫ ∞

0

e−st ∂v±
T (ξ, t)

∂t
dt = −v±

T (ξ, 0) + s

∫ ∞

0

e−st v±
T (ξ, t) dt = −1 + sw±

T (ξ, s). (3.10)

Applying the Laplace transform (with respect to t) to equation (3.8) and taking into
account (3.10), we immediately obtain the differential equation (3.6). Finally, the
boundary conditions (3.7) readily follow from (3.4) by Lebesgue’s dominated conver-
gence theorem applied to (3.5).

Let us also make similar preparations for the random variables η±
T (x; f) defined in

(2.22). As explained in Section 2 (see (2.23)), without loss of generality this definition
can be simplified to the form (2.24). Consider the functions (cf. (3.2))

v±
T (ξ, t; f) := E

[

exp
(

−βtη±
Tt(cTξ; f)

)]

, ξ ∈ R, t ≥ 0,

and the corresponding Laplace transform

w±
T (ξ, s; f) :=

∫ ∞

0

e−st v±
T (ξ, t; f) dt, s > 0. (3.11)

Then, again applying Theorem 3.1 (with g0(x) ≡ 1 and g(x) = −βT−1f(x)), similarly
to Lemmas 3.2 and 3.3 one can show that w±

T = w±
T (ξ, s; f), for each s > 0, is a

continuous bounded function of ξ ∈ R, satisfying the differential equation (cf. (3.6))

∂w±
T

∂ξ
= λT

(

w+
T − w−

T

)

±
(

s + βf(cTξ)
)

w±
T ∓ 1, ξ ∈ R \ Df , (3.12)

with the same boundary conditions at ±∞ as (3.7),

lim
ξ→−∞

w±
T (ξ, s; f) = s−1, lim

ξ→∞
w±

T (ξ, s; f) = s̃−1. (3.13)

4. Proof of Theorem 2.1

In what follows, the prime ′ denotes the transposition of vectors. Introducing the
vector notations

wT (ξ, s) := (w+
T (ξ, s), w−

T (ξ, s))′, 1 := (1, 1)′, 1̃ := (1,−1)′,

10



we can write down equations (3.6) and (3.7) in the matrix form,

∂wT (ξ, s)

∂ξ
= AT (ξ, s)wT (ξ, s) − 1̃ (ξ 6= 0), (4.1)

lim
ξ→−∞

wT (ξ, s) = s−11, lim
ξ→+∞

wT (ξ, s) = s̃−11, (4.2)

where s̃ = s + β (see Lemma 3.3) and

AT (ξ, s) := λTJ1 +
(

s + βH(cTξ)
)

J2

=

{

λTJ1 + sJ2 =: AT ≡ AT (s), ξ < 0,

λTJ1 + s̃J2 =: ÃT ≡ AT (s̃), ξ > 0,
(4.3)

J1 :=

(

1 −1

1 −1

)

, J2 :=

(

1 0

0 −1

)

. (4.4)

Note that
J11 = 0, J11̃ = 2 ·1, J21 = 1̃, J2 1̃ = 1, (4.5)

where 0 := (0, 0)′. Hence (see (4.3))

AT (s)1 = s 1̃, AT (s) 1̃ = (s + 2λT )1. (4.6)

Let us set

κ ≡ κ(s) :=
√

s(s + 2λT ) , κ̃ := κ(s̃) =
√

s̃(s̃ + 2λT ) . (4.7)

Using formulas (4.6) and (4.7), it is easy to check that the matrix AT (s) has the
eigenvalues ±κ(s) with the corresponding eigenvectors

a± ≡ a±(s) := ±κ1 + s1̃, AT a± = ±κa± . (4.8)

In particular, relations (4.8) imply that the exponential of AT (s) can be represented
as follows:

eAT ξ = 1
2
eκξ

(

I + κ−1AT

)

+ 1
2
e−κξ

(

I − κ−1AT

)

, (4.9)

where I is the identity matrix.
Recall that we are looking for a solution to the boundary value problem (4.1)–(4.2)

continuous at the origin. The following lemma gives an explicit form of such a solution.

Lemma 4.1. For each s > 0, the differential equation (4.1) subject to the boundary

conditions (4.2) has the unique continuous solution given by

wT (ξ, s) =















−eκξ βs−1

sκ̃ + s̃κ
(κ1 + s1̃) + s−11, ξ ≤ 0,

e−κ̃ξ β s̃−1

sκ̃ + s̃κ
(κ̃1 − s̃ 1̃) + s̃−11, ξ ≥ 0.

(4.10)

In particular,

wT (0, s) =
(κ̃ + κ)1 + (s − s̃)1̃

sκ̃ + s̃κ
. (4.11)
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Proof. Observe that the step function w∗
T (ξ, s) :=

(

s + βH(cTξ)
)−1

1 is a particular
solution of the equation (4.1) for each s > 0 and all ξ 6= 0. Indeed, the function w∗

T (·, s)
is piecewise constant outside zero, hence (∂/∂ξ)w∗

T (ξ, s) = 0 (ξ 6= 0), whereas, due to
(4.3) and (4.5),

AT (ξ, s)w∗
T (ξ, s) = λT

(

s + βH(cTξ)
)−1

J11 + J21 ≡ 1̃.

Therefore, a general solution of the linear differential equation (4.1) can be repre-
sented in the form (see (4.3))

wT (ξ, s) =

{

eAT ξ c(s) + s−11, ξ < 0,

eÃT ξ c̃(s) + s̃−11, ξ > 0,
(4.12)

with arbitrary vectors c(s), c̃(s) (which may also depend on T ). Let us now find
suitable c(s) and c̃(s) so that the solution wT (·, s) would satisfy the required boundary
conditions at infinity and the continuity condition at zero. From the representation
(4.12) it is clear that conditions (4.2) are satisfied if and only if

lim
ξ→−∞

eAT ξ c(s) = 0 , lim
ξ→+∞

eÃT ξ c̃(s) = 0 . (4.13)

Recalling that ÃT (s) = AT (s̃) and using the exponential formula (4.9), it is easy to see
that conditions (4.13) are reduced to the equations

(I − κ−1AT ) c(s) = 0 , (I + κ̃−1ÃT ) c̃(s) = 0 ,

which implies that c(s) and c̃(s) are eigenvectors of the matrices AT and ÃT , respec-
tively, with the corresponding eigenvalues κ and −κ̃. On account of formulas (4.8), this
immediately gives c(s) = C(s) a+ , c̃(s) = C̃(s) ã− , with some real-valued functions
C(s), C̃(s). Therefore, after the substitution of expressions (4.8), formula (4.12) takes
the form

wT (ξ, s) =

{

eκξ C(s)(κ1 + s1̃) + s−11, ξ < 0,

−e−κ̃ξ C̃(s)(κ̃1 − s̃1̃) + s̃−11, ξ > 0.
(4.14)

Furthermore, taking into account the continuity of wT (·, s) at zero, from (4.14) we
have

C(s)(κ1 + s1̃) + s−11 = C̃(s)(−κ̃1 + s̃1̃) + s̃−11,

whence, by equating the coefficients of 1 and 1̃ on the left- and right-hand sides, we
obtain

{

C(s)κ + s−1 = −C̃(s) κ̃ + s̃−1,

C(s)s = C̃(s) s̃ .

Solving this system of equations we find

C(s) =
−βs−1

sκ̃ + s̃κ
, C̃(s) =

−βs̃−1

sκ̃ + s̃κ
,

and the substitution of these expression into (4.14) yields the required formula (4.10).
Finally, the expression (4.11) for wT (0, s) follows from (4.10) by setting ξ = 0 and

using that β = s̃ − s (see Lemma 3.3). This completes the proof of Lemma 4.1.
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Lemma 4.2. The components w±
T (0, s) (see (4.11)) are explicitly given by the expres-

sions

w+
T (0, s) =

2

κ̃ + s̃
+

2λT

(κ + s)(κ̃ + s̃)
, (4.15)

w−
T (0, s) =

2

κ + s
+

2λT

(κ + s)(κ̃ + s̃)
. (4.16)

Proof. From the vector expression (4.11) we have

w±
T (0, s) =

κ̃ ∓ s̃ + κ ± s

sκ̃ + s̃κ
. (4.17)

Note that, according to (4.7),

κ2 − s2 = 2λTs, κ̃2 − s̃2 = 2λT s̃, (4.18)

hence the expression (4.17) may be rewritten as

w±
T (0, s) =

1

sκ̃ + s̃κ

(

κ2 − s2

κ ∓ s
+

κ̃2 − s̃2

κ̃ ± s̃

)

=
2λT

sκ̃ + s̃κ

(

s

κ ∓ s
+

s̃

κ̃ ± s̃

)

=
2λT

(κ ∓ s)(κ̃ ± s̃)
, (4.19)

which is equivalent to (4.15), (4.16); for instance, for w+
T (0, s) (corresponding to the

choice of the upper sign in ± and ∓), from formula (4.19) we obtain, again using (4.18),

w+
T (0, s) =

2λT

(κ − s)(κ̃ + s̃)
=

2λT (κ + s)

(κ2 − s2)(κ̃ + s̃)
=

κ + s

s(κ̃ + s̃)

=
2

κ̃ + s̃
+

κ − s

s(κ̃ + s̃)
=

2

κ̃ + s̃
+

2λT

(κ + s)(κ̃ + s̃)
,

in agreement with (4.15). Thus, Lemma 4.2 is proved.

Lemma 4.3. Let the function ϕT (t) be defined by (2.4). Then, for each s > 0,
∫ ∞

0

e−st ϕT (t) dt =
1

κ + s
,

∫ ∞

0

e−st e−βtϕT (t) dt =
1

κ̃ + s̃
, (4.20)

and
∫ ∞

0

e−st

(
∫ t

0

e−βy ϕT (y)ϕT (t − y) dy

)

dt =
1

(κ + s)(κ̃ + s̃)
, (4.21)

where s̃ = s + β and κ = κ(s), κ̃ = κ(s̃) are defined in (4.7).

Proof. Inserting (2.4) and changing the order of integration, we obtain
∫ ∞

0

e−st ϕT (t) dt =
1

4πλT

∫ ∞

0

1 − e−2λTu

u3/2

(
∫ ∞

u

e−st

√
t − u

dt

)

du

=
Γ(1

2
)

4πλT
√

s

∫ ∞

0

e−su
(

1 − e−2λTu
)

u−3/2 du. (4.22)
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Integration by parts via u−3/2 du = −2 d(u−1/2) yields the right-hand side of (4.22) in
the form

1

2λT
√

πs

∫ ∞

0

u−1/2
(

(s + 2λT )e−(s+2λT )u − se−su
)

du

=

(√
s + 2λT −√

s
)

Γ(1
2
)

2λT
√

πs
=

1

κ + s
,

and the first formula in (4.20) is proved. The second one readily follows by the shift
s̃ = s + β.

Furthermore, using the convolution property of the Laplace transform, the left-hand
side of (4.21) is reduced to the product

∫ ∞

0

e−st e−βt ϕT (t) dt ×
∫ ∞

0

e−st ϕT (t) dt =
1

(κ̃ + s̃)(κ + s)
,

according to (4.20), which completes the proof of the lemma.

Combining Lemmas 4.2 and 4.3 and using the uniqueness theorem for the Laplace
transform (3.5), we obtain

v±
T (0, t) =

(

1 + e−βt ∓ 1 ± e−βt
)

ϕT (t) + 2λT

∫ t

0

e−βyϕT (y)ϕT (t − y) dy.

In particular, setting t = 1 (see (3.2)) and recalling the definition (2.7) of the function
ψT , we get

E
[

e−βη±

T
(0)

]

=
(

1 + e−β ∓ 1 ± e−β
)

ϕT (1) +

∫ 1

0

e−βyψT (y) dy,

and it is evident (in view of the uniqueness theorem for Laplace transform) that the
distribution of η±

T (0) is given by formula (2.8).
Finally, the result (2.9) for ηT (0) readily follows from (2.8) and the decomposition

P
{

ηT (0) ∈ dy
}

=
1

2
P
{

η+
T (0) ∈ dy

}

+
1

2
P
{

η−
T (0) ∈ dy

}

(0 ≤ y ≤ 1). (4.23)

Thus, the proof of Theorem 2.1 is complete.

5. Proof of Theorem 2.2

The plan of the proof below is to calculate the Laplace transform (see (3.2) and
(3.5))

w±
T (ξ, s) =

∫ ∞

0

e−st
E

[

e−βt η±

Tt
(cTξ)

]

dt (5.1)

from the explicit (hypothetical) distribution of η±
T (x) given by formula (2.10), and to

verify that the result coincides with formulas (4.10) obtained in Lemma 4.10. The claim
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of Theorem 2.2 will then follow by the uniqueness theorem for Laplace transform. To
be specific, we will focus on the w+

T case, the proof for w−
T being similar.

Due to the space-time change (x, T ) 7→ (cTξ, T t) used in (5.1), the time threshold
T0 = |x|/c becomes T0 = T |ξ|, whereas the former condition T > T0 is converted into
t > |ξ|. As a first step in the proof, using the probability distribution proposed by the
theorem (including its part (a)) we can represent the Laplace transform of tη+

Tt(cTξ)
as

E
[

e−βtη+

Tt
(cTξ)

]

=











1, t ≤ |ξ|,
5

∑

i=1

J (i)
T (ξ, t), t > |ξ|, (5.2)

where J (i)
T (ξ, t) (i = 1, . . . , 5) arise from the three parts on the right-hand side of

the representation (2.10), with the last two further subdivided each into two terms,
according to (2.11) and (2.12). More precisely, using the scaling property (2.6) of
the function ϕT and making the substitutions y 7→ ty and u 7→ T (u + |ξ|) wherever

appropriate, the functions IJ (i)
T (ξ, t) can be expressed as

J (1)
T (ξ, t) := T

∫ ∞

t

Q+
cT |ξ|(Tu) du, (5.3)

J (2)
T (ξ, t + |ξ|) := 2e−βt−λT |ξ| ϕT (t), (5.4)

J (3)
T (ξ, t + |ξ|) := e−λT |ξ|

∫ t

0

e−βy ψTt

(y

t

) dy

t
, (5.5)

J (4)
T (ξ, t + |ξ|) := 2T

∫ t

0

e−βy ϕT (y) Q+
cT |ξ|

(

T (t + |ξ| − y)
)

dy, (5.6)

J (5)
T (ξ, t + |ξ|) := T

∫ t

0

e−βy

(
∫ t−y

0

Q+
cT |ξ|

(

T (u + |ξ|)
)

ψT (t−u)

(

y

t − u

)

du

t − u

)

dy.

(5.7)

Consequently, from (5.1) and (5.2) we get

w+
T (ξ, s) =

1

s

(

1 − e−s|ξ|) +
5

∑

i=1

∫ ∞

|ξ|
e−stJ (i)

T (ξ, t) dt. (5.8)

Let us now calculate the Laplace transform (with respect to t) of each of the terms

J (i)
T (ξ, t) (i = 1, . . . , 5). In so doing, the next formula will be useful,

T

∫ ∞

|ξ|
e−st Q+

cT |ξ|(Tt) dt = e−κ|ξ| − e−(s+λT )|ξ| (s > 0, ξ ∈ R), (5.9)

where κ =
√

s(s + 2λT ) (see (4.7)), which immediately follows from the definition
(2.13) according to [AS72, 29.3.96, p. 1027].

Remark 5.1. An analogous formula for Q− (needed for the proof in the case of w−)
follows from (2.14) by applying [AS72, 29.3.93, 29.3.96, p. 1027]).
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(i) From (5.3) we obtain, integrating by parts and using (5.9),

∫ ∞

|ξ|
e−stJ (1)

T (ξ, t) dt = Ts−1e−s|ξ|
∫ ∞

|ξ|
Q+

cT |ξ|(Tt) dt − Ts−1

∫ ∞

|ξ|
e−st Q+

cT |ξ|(Tt) dt

=
1

s

(

e−s|ξ| − e−(s+λT )|ξ|) − 1

s

(

e−κ|ξ| − e−(s+λT )|ξ|)

=
1

s

(

e−s|ξ| − e−κ|ξ|). (5.10)

(ii) After the substitution t 7→ t + |ξ|, from (5.4) we get, using formula (4.20) in
Lemma 4.3,

∫ ∞

|ξ|
e−stJ (2)

T (ξ, t) dt = 2e−(s+λT )|ξ|
∫ ∞

0

e−(s+β)tϕT (t) dt = 2e−(s+λT )|ξ| 1

κ̃ + s̃
. (5.11)

(iii) Likewise, from (5.5) we obtain, recalling the definition (2.7) of the function ψT

and again using the scaling property (2.6),

∫ ∞

|ξ|
e−stJ (3)

T (ξ, t) dt = e−(s+λT )|ξ|
∫ ∞

0

e−st

(
∫ t

0

e−βy ψTt

(y

t

) dy

t

)

dt

= e−(s+λT )|ξ| 2λT

∫ ∞

0

e−st

(
∫ t

0

e−βy ϕT (y) ϕT (t − y) dy

)

dt

= e−(s+λT )|ξ| 2λT

(κ + s)(κ̃ + s̃)
, (5.12)

as follows from formula (4.21) in Lemma 4.3.

(iv) Similarly, taking advantage of the convolution theorem, the Laplace transform
of (5.6) can be written as

∫ ∞

|ξ|
e−stJ (4)

T (ξ, t) dt = e−s|ξ|
∫ ∞

0

e−st

(

2T

∫ t

0

e−βy ϕT (y) Q+
cT |ξ|

(

T (t + |ξ| − y)
)

dy

)

dt

= 2

∫ ∞

0

e−st e−βt ϕT (t) dt × e−s|ξ|T

∫ ∞

0

e−st Q+
cT |ξ|

(

(t + |ξ|)T
)

dt

=
2

κ̃ + s̃

(

e−κ|ξ| − e−(s+λT )|ξ|), (5.13)

according to formulas (4.20) and (5.9).

(v) Interchanging the integrations, we can rewrite (5.7) in the form

J (5)
T (ξ, t + |ξ|) = T

∫ t

0

Q+
cT |ξ|

(

T (u + |ξ|)
)

(
∫ t−u

0

e−βy ψT (t−u)

(

y

t − u

)

dy

t − u

)

du,
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hence, by the convolution theorem, the Laplace transform of J (5)
T (ξ, t) is reduced to

∫ ∞

|ξ|
e−st J (5)

T (ξ, t) dt = e−s|ξ| T

∫ ∞

0

e−st Q+
cT |ξ|

(

T (t + |ξ|)
)

dt

×
∫ ∞

0

e−st

(
∫ t

0

e−βy ψTt

(y

t

) dy

t

)

dt

=
(

e−κ|ξ| − e−(s+λT )|ξ|) 2λT

(κ + s)(κ̃ + s̃)
, (5.14)

as was shown in (5.12) and (5.13).

Finally, substituting the results (5.10), (5.11), (5.12), (5.13) and (5.14) into formula
(5.8) and recalling expression (4.15) for w+

T (0, s), we get

w+
T (ξ, s) =

1

s

(

1 − e−κ|ξ|) + e−κ|ξ|
(

2

κ̃ + s̃
+

2λT

(κ + s)(κ̃ + s̃)

)

=
1

s

(

1 − e−κ|ξ|) + e−κ|ξ| w+
T (0, s)

= e−κ|ξ|
(

w+
T (0, s) − 1

s

)

+
1

s
,

which is consistent with formula (4.10) for w+
T (ξ, s) obtained in Lemma 4.1. Thus, the

proof of Theorem 2.2 is complete.

6. Proof of Theorem 2.3

It suffices to prove the theorem for the conditional versions η±
T (x) only; indeed, since

the latter have the same distributional limit, the result for ηT (x) will readily follow (cf.
(4.23)).

In the next lemma, we find the Laplace transform for a suitable parametric family
Ya(t) extending the random variables Ya introduced in Section 2 (see (2.17), (2.18) and
(2.19)). Recall that s̃ = s + β.

Lemma 6.1. For any a ≥ 0 and t > 0, set Ya(t) := t Ya/
√

t . Then, for any s > 0 and

β > 0, we have

∫ ∞

0

e−st
E

[

e−βYa(t)
]

dt = e−a
√

2s

(

1√
ss̃

− 1

s

)

+
1

s
, (6.1)

∫ ∞

0

e−st
E

[

e−β (t−Ya(t))
]

dt = e−a
√

2s̃

(

1√
ss̃

− 1

s̃

)

+
1

s̃
. (6.2)

In particular, for a = 0

∫ ∞

0

e−st
E

[

e−βY0(t)
]

dt =
1√
ss̃

. (6.3)
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Proof. It is sufficient to prove formula (6.1) only; indeed,
∫ ∞

0

e−st
E

[

e−β(t−Ya(t))
]

dt =

∫ ∞

0

e−s̃t
E

[

eβYa(t)
]

dt, (6.4)

hence the left-hand side of (6.2) can be computed using (6.1) by changing s to s̃ and
β to −β, which amounts to interchanging the symbols s and s̃ in (6.1), thus leading
to formula (6.2). (Note that the right-hand side of (6.4) is well defined since Ya(t) ≤ t
and so e−(s+β)t

E[eβYa(t)] ≤ e−st.)
Now, if a = 0 then Y0(t) = tY0, where Y0 has the arcsine distribution with the

density (1.3), hence the left-hand side of (6.3) is reduced to

∫ ∞

0

e−st

(

1

π

∫ t

0

e−βy

√

y(t − y)
dy

)

dt. (6.5)

The internal integral here can be interpreted as the convolution (f1 ∗ f2)(t) of the
functions f1(t) = e−βt t−1/2 and f2(t) = t−1/2, hence the Laplace transform (6.5) reduces
to the product

1

π

∫ ∞

0

e−st e−βt t−1/2 dt

∫ ∞

0

e−st t−1/2 dt =
Γ(1

2
)

π
√

s + β
· Γ(1

2
)√

s
=

1√
s̃s

,

and the required formula (6.3) follows.
If a > 0 then, noting that qa/

√
t(u) = tqa(ut) and using (2.17), (2.18) and (2.19),

we have

E
[

e−βYa(t)
]

=

∫ ∞

t

qa(u) du +

∫ t

0

e−βy

(
∫ t−y

0

qa(u)

t − u
pas

(

y

t − u

)

du

)

dy. (6.6)

Interchanging the order of integration and making the substitution y = z(t − u), we
can rewrite the second (iterated integral) term on the right-hand side of (6.6) as

∫ t

0

qa(u)

(
∫ 1

0

e−β(t−u)z pas(z) dz

)

du,

which can be viewed as the convolution (qa ∗ p̂β)(t), where

p̂β(t) :=

∫ 1

0

e−βtz pas(z) dz = E
[

e−βY0(t)
]

. (6.7)

Returning to (6.6) and applying the Laplace transform (with respect to the variable t),
by the convolution theorem the left-hand side of (6.1) can be expressed as

∫ ∞

0

e−st

(
∫ ∞

t

qa(u) du

)

dt +

∫ ∞

0

e−st qa(t) dt ×
∫ ∞

0

e−st p̂β(t) dt. (6.8)

Recall that, according to (2.16),
∫ ∞

0

e−st qa(t) dt = e−a
√

2s, (6.9)
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whence, integrating by parts and using (2.16), we obtain

∫ ∞

0

e−st

(
∫ ∞

t

qa(u) du

)

dt =
1

s
− 1

s
e−a

√
2s. (6.10)

Furthermore, from (6.7) and (6.3) we have

∫ ∞

0

e−st p̂β(t) dt =
1√
ss̃

. (6.11)

As a result, substituting expressions (6.9), (6.10) and (6.11) into (6.8), we obtain
formula (6.1).

Proof of Theorem 2.3. As T → ∞, we have

ξ := (cT )−1x = (λT )−1/2
(

a + o(1)
)

,

whereas from (4.7) it follows that κ(s) ∼ (2λTs)1/2, κ̃(s) ∼ (2λT s̃)1/2. Hence, from
(4.10) we obtain, for ξ ≤ 0, a ≤ 0,

lim
T→∞

w±
T (ξ, s) = −ea

√
2s β s−1

√
s̃ (

√
s̃ +

√
s )

+
1

s
= ea

√
2s

(

1√
ss̃

− 1

s

)

+
1

s
,

and similarly, for ξ ≥ 0, a ≥ 0,

lim
T→∞

w±
T (ξ, s) = e−a

√
2s̃ β s̃−1

√
s (

√
s +

√
s̃ )

+
1

s̃
= e−a

√
2s̃

(

1√
ss̃

− 1

s̃

)

+
1

s̃
.

Comparing these results with Lemma 6.1, by the continuity theorem for Laplace
transforms we conclude that, for each t > 0, the distribution of the random variable
tη±

Tt(x) (see (2.1) and (3.2)) converges weakly, as T → ∞, to the arcsine distribution
(1.3) if a = 0 and to the distribution of either Y−a(t) if a < 0 (see (6.1)) or t− Ya(t) if
a > 0 (see (6.2)). Specialized to the case t = 1, this readily gives the result of Theorem
2.3.

7. Proof of Theorem 2.4

Similarly to Section 4, let us set wT (ξ, s; f) := (w+
T (ξ, s; f), w−

T (ξ, s; f))′ (see (3.11))
and rewrite equations (3.12), (3.13) in the matrix form (cf. (4.1), (4.2))

∂wT (ξ, s; f)

∂ξ
= AT (ξ, s; f)wT (ξ, s; f) − 1̃, ξ ∈ R \ Df , (7.1)

lim
ξ→−∞

wT (ξ, s; f) = s−11, lim
ξ→+∞

wT (ξ, s; f) = s̃−11, (7.2)

with the matrix (cf. (4.3))

AT (ξ, s; f) := λTJ1 +
(

s + βf(cTξ)
)

J2 ,
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where J1 and J2 are defined in (4.5). Let us set

δT (ξ, s) := wT (ξ, s; f) − wT (ξ, s; H), (7.3)

where H is the Heaviside step function (cf. (4.3)). Owing to the properties of the
solution wT (ξ, s; f) (see the end of Section 3), the function δT (ξ, s) is bounded and
continuous in ξ ∈ R (for any fixed T, s > 0). From relation (7.3) and equations (7.1)
and (7.2), we obtain the differential equation

∂δT (ξ, s)

∂ξ
= AT (ξ, s; H)δT (ξ, s) + f0(cTξ)w̄T (ξ, s), ξ ∈ R \ (Df ∪ {0}), (7.4)

where f0 := f − H and w̄T (ξ, s) := βJ2 wT (ξ, s; f) (for short), with the boundary
conditions

lim
ξ→±∞

δT (ξ, s) = 0 . (7.5)

More explicitly, equation (7.4) splits into two equations on the negative and positive
half-lines, respectively:

∂δT (ξ, s)

∂ξ
= AT δT (ξ, s) + f0(cTξ)w̄T (ξ, s), ξ < 0, (7.6)

∂δT (ξ, s)

∂ξ
= ÃT δT (ξ, s) + f0(cTξ)w̄T (ξ, s), ξ > 0, (7.7)

where AT ≡ AT (s) = λTJ1 + sJ2, ÃT ≡ AT (s̃) = λTJ1 + s̃J2 (cf. (4.3)).
By the variation of constants, equation (7.6) is equivalent to the integral equation

δT (ξ, s) = eξAT cT +

∫ ξ

0

e(ξ−y)ATf0(cTy)w̄T (y, s) dy, ξ ≤ 0, (7.8)

where cT ≡ cT (s) = limξ→0− δT (ξ, s) is a constant vector (for fixed T and s). By the
exponential formula (4.9), equation (7.8) takes the form

δT (ξ, s) =
1

2
eκξ

[

(I + κ−1AT )cT (s) + q+
T (ξ, s)

]

+
1

2
e−κξ

[

(I − κ−1AT )cT (s) + q−
T (ξ, s)

]

,

(7.9)
where

q±
T (ξ, s) := (I ± κ−1AT )

∫ ξ

0

e∓κyf0(cTy)w̄T (y, s) dy, ξ ≤ 0. (7.10)

For fixed s and T , we have q+
T (ξ, s) = e−κξ o(1) as ξ → −∞. Indeed, via the change

of variables z = y− ξ and applying Lebesgue’s dominated convergence theorem, we see
that, as ξ → −∞,

∣

∣

∣

∣

∫ ξ

0

e−κ(y−ξ)f0(cTy)w̄T (y, s) dy

∣

∣

∣

∣

= O(1)

∫ ∞

0

e−κz
∣

∣f0(cT (z + ξ))
∣

∣ dz = o(1),
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since w̄T and f0 are bounded whereas f0(cT (z + ξ)) → 0 for each z, according to the
hypothesis of Theorem 2.4. Hence, due to the boundary condition (7.5) at ξ = −∞,
equation (7.9) implies

e−κξ
{

(I − κ−1AT )cT (s) + q−
T (ξ, s)

}

= o(1), ξ → −∞. (7.11)

Note that the expression in the curly brackets in (7.11) has a finite limit as ξ → −∞,
which then must vanish in order to extinguish the multiplier e−κξ → ∞, that is,

(I − κ−1AT )cT (s) = −q−
T (−∞, s). (7.12)

Conversely, condition (7.12) implies the limit (7.11), since, by the l’Hôpital rule, we
have

q−
T (ξ, s) − q−

T (−∞, s)

eκξ
∼ (I − κ−1AT )

f0(cTξ)w̄T (ξ, s)

κ
= o(1), ξ → −∞.

Analogous considerations applied to (7.7) lead to the integral equation

δT (ξ, s) = eξÃT c̃T +

∫ ξ

0

e(ξ−y)ÃT f0(cTy)w̄T (y, s) dy, ξ ≥ 0, (7.13)

with c̃T ≡ c̃T (s) = limξ→0+ δT (ξ, s), which, similarly to (7.12), implies the condition

(I + κ̃−1ÃT ) c̃T (s) = −q̃+
T (+∞, s), (7.14)

where κ̃ = κ(s̃) and

q̃±
T (ξ, s) := (I ± κ̃−1ÃT )

∫ ξ

0

e∓κ̃yf0(cTy)w̄T (y, s) dy, ξ ≥ 0. (7.15)

Moreover, since the function δT (·, s) is continuous at ξ = 0, from formulas (7.8) and
(7.13) we see that cT (s) = c̃T (s). Using this and subtracting (7.12) from (7.14), we
obtain

cT (s) =
(

κ−1AT + κ̃−1ÃT

)−1
[

q−
T (−∞, s) − q̃+

T (+∞, s)
]

. (7.16)

Evaluation of the matrix inverse in (7.16) is facilitated by introducing the matrices
(suggested by formulas (4.6))

K :=

(

1 1

−1 1

)

, K−1 =
1

2

(

1 −1

1 1

)

(7.17)

and observing that

K−1AT K = κ

(

0 s/κ

κ/s 0

)

.

This gives

K−1
(

κ−1AT + κ̃−1ÃT

)

K = (sκ̃ + s̃κ)R−1
T (s), RT (s) :=

(

0 ss̃

κκ̃ 0

)

, (7.18)
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and, returning to (7.16), we finally get

cT (s) = (sκ̃ + s̃κ)−1KRT (s)K−1
[

q−
T (−∞, s) − q̃+

T (+∞, s)
]

. (7.19)

In view of Theorem 2.3 and according to (7.3), to complete the proof of Theorem
2.4 we have to check that if ξ

√
λT → a ∈ R as T → ∞ then δT (ξ, s) → 0. To this end

suppose, for instance, that ξ ≤ 0 and a ≤ 0 (the mirror case ξ ≥ 0, a ≥ 0 is considered
similarly). Note that, as T → ∞,

κ ∼
√

2sλT , κξ =
√

2s a + o(1), κ−1AT = λTκ−1J1 + O(κ−1). (7.20)

Recall that the vectors q±
T (ξ, s), q̃+

T (ξ, s) are defined in (7.10), (7.15), respectively.

Lemma 7.1. For each s > 0, q−
T (−∞, s) = o(1) and q̃+

T (+∞, s) = o(1) as T → ∞.

Proof. Both q−
T and q̃+

T are considered similarly. For instance, using (7.20) and making
the change of variable z = κy, we have

|q−
T (−∞, s)| = O(1)

∫ 0

−∞
ez

∣

∣f0(cTκ−1z)
∣

∣ dz = o(1), T → ∞, (7.21)

since, by the assumption of Theorem 2.4, cTκ−1 ∼ (2s)−1/2
√

c2T/λ → ∞, hence
f0(cTκ−1z) → 0 for each z < 0, and we can apply Lebesgue’s dominated convergence
theorem.

Lemma 7.2. As T → ∞, if xT := ξ
√

λT → a ∈ R then, for each s > 0, q±
T (ξ, s) → 0.

Proof. By the substitution y = ξz and with the help of asymptotic relations (7.20), we
have

q±
T (ξ, s) = ±

(

λTκ−1J1 + O(1)
)

ξ

∫ 1

0

e∓κξzf0(cTξz)w̄T (ξz, s) dz

= O(1) xT

∫ 1

0

∣

∣f0

(

zxT

√

c2T/λ
)
∣

∣ dz. (7.22)

Now, if xT → a = 0 then the right-hand side of (7.22) vanishes in the limit as T →
∞, since the function f0 is bounded. If xT → a 6= 0 then, similarly to the proof
of Lemma 7.1, the integral in (7.22) tends to zero thanks to Lebesgue’s dominated
convergence theorem.

Let us now return to equation (7.9). Using the identity (7.12) and regrouping, we
have

δT (ξ, s) = eκξ κ−1AT cT (s) − cosh(κξ) q−
T (−∞, s) +

1

2
eκξ q+

T (ξ, s) +
1

2
e−κξ q−

T (ξ, s)

= O(1)κ−1AT cT (s) + o(1), T → ∞, (7.23)
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according to the second asymptotic relation in (7.20) and Lemmas 7.1 and 7.2. Further,
substituting the expression (7.19) for cT and using Lemma 7.1 and the last relation in
(7.20), we obtain

κ−1AT cT =
1

κ(sκ̃ + s̃κ)

(

λTJ1 + O(1)
)

KRT K−1o(1), T → ∞. (7.24)

In turn, using the expressions (7.17) for the matrices K and K−1 and recalling the
definition of the matrix RT given in (7.18), it is easy to calculate

KRT K−1 =
κκ̃

2
J1 + O(1), T → ∞. (7.25)

Finally, combining (7.24) and (7.25) and noting that J2
1 = 0 (see (4.4)), we have

κ−1AT cT = o(1) and hence, from (7.23), δT (ξ, s) = o(1) as required. This completes
the proof of Theorem 2.4.

8. Concluding remarks

We performed computer simulations to illustrate numerically the convergence to
the arcsine law, as stated by Theorems 2.3 and 2.4, for the occupation time func-
tional η±

T (0; f) = T−1
∫ T

0
f(X±

t ) dt with various probing functions f . The simulation
algorithm is easily implemented by virtue of the obvious decomposition

Tη±
T (0, f) ≡

∫ T

0

f(Xt) dt =
n−1
∑

i=0

∫ τi+1

0

f
(

Xσi
+ (−1)ict

)

dt

+

∫ T−σn

0

f
(

Xσn
+ (−1)nct

)

dt,

where (τi) is a sequence of independent random times with exponential distribution
each (with parameter λ), and σi := τ1 + · · · + τi are the successive reversal times of
the telegraph motion; the threshold value n is determined by the condition σn ≤ T <
σn + τn+1.

Throughout the simulations, we used the standardized parameters c = 1, λ = 1,
and plotted histograms of the sample values of η±

T (0; f) based on N = 10,000 runs
of the telegraph process. To be specific, we simulated the plus-version of the process,
X+

t (i.e., with positive initial velocity), leading to histograms slightly skewed to the
right, especially at moderate times T . No formal goodness-of-fit tests were applied,
but the histograms in Figs. 1 and 2 below clearly demonstrate the developing U -shape
characteristic of the arcsine distribution, however with the speed of such a convergence
apparently depending on the function f involved (and, of course, on the observation
time T used).

We start with the “canonical” case where the Heaviside function H(x) = 1(0,∞)(x)
plays the role of the probing function f . Simulated values of η+

T (0; H) were obtained
over the observation time T = 1000. The histogram plotted in Fig. 1a shows a very
good fit of the data to the theoretical arcsine density (rescaled according with the
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chosen representation of the histogram). As already mentioned, the noticeable differ-
ence between the highest columns at the left and right edges may be attributed to
asymmetry of the process X+

t . More precisely, the proportion of the sample values
of η+

T (0; H) falling, say, in the first box, ∆1 (from 0 to 0.01) and the last box, ∆100

(from 0.99 to 1) is given by 510 and 750, respectively, yielding the relative frequencies
510/10,000 = 0.051 and 750/10,000 = 0.075. The corresponding limiting probabilities,
computed from the arcsine distribution (1.3), equal 0.064 for both ∆1 and ∆100 (here
and below, we give numerical values to two significant figures). This discrepancy can
be quantified using the exact theoretical distribution of η+

T (0; H) obtained in Theorem
2.1 (see formula (2.8) with T = 1000), giving the probability 0.052 for ∆1 and 0.077
for ∆100, where the latter includes the atom 2ϕT (1) = 0.025. For comparison, with
a tenfold observation time T = 10000, these probabilities become 0.060 and 0.068,
respectively, with the atom much reduced, 0.008. It is also worth mentioning that, as
indicated by these results, the fit with the limiting arcsine distribution would be much
better for the “symmetric” version ηT (0; H) corresponding to the telegraph process Xt

(see (1.5)).
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Figure 1: Histograms for the occupation time functional η+

T
(0; f) with (a) the Heaviside step function

f = H and (b) the function f(x) = π−1 arctan x + 1

2
. The parameters of the telegraph process X+

t

are standardized to c = 1 and λ = 1. Both histograms are obtained with N = 10,000 simulations,
each over the observation time T = 1000. The length of each box on the histogram is ∆ = 0.01. The
red solid curve represents the scaled arcsine density (i.e., multiplied by N∆ = 100).

The long-term prediction contained in a more general Theorem 2.4 was verified
by computer simulations for the functional η+

T (0; f) with the probing function f(x) =
π−1arctan x + 1

2
. The new histogram plot (see Fig. 1b), obtained with the same values

of c, λ, T and N , is qualitatively similar to that on Fig. 1a, including a small right
bias, but convergence to the arcsine distribution becomes slower, apparently due to
additional time needed for the process to explore the limiting values f± of the function
f at ±∞, which eventually determine the distributional limit.

Incidentally, this observation helps to understand the difference between the sets
of hypotheses in Theorems 2.3 and 2.4; indeed, the additional condition of Theorem
2.4, requiring that c2T/λ → ∞ as T → ∞, guarantees a sufficient mobility of the
telegraph process needed to gauge the limits f± available only at remote distances
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from the origin. In contrast, if the function f is reduced to the Heaviside step function
H, the limiting values H− = 0, H+ = 1 are encountered by the process straight away,
so no extra mobility is needed.

Let us point out that the asymptotic condition (2.21) imposed in Theorem 2.4 on the
probing function f is rather strong, assuming the existence of the limits limx→±∞ f(x) =
f±. This is in contrast with the paper by Khasminskii [Kh99] mentioned in the In-
troduction, where f is subject to the weaker condition limx→±∞ x−1

∫ x

0
f(u) du = f±

(cf. (1.4)). Unfortunately, we were unable to reach the same level of generality; in
particular, our proofs of formulas (7.12), (7.14) and the key Lemmas 7.1 and 7.2 (see
Section 7) are heavily based on condition (2.21).
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Figure 2: Histograms for the functional η+

T
(0; f) with the probing function f(x) = π−1arctanx +

cos x + 1

2
. The parameters of the telegraph process are as in Fig. 1, with the same number of runs

N = 10,000 and the observation time (a) T = 1000 or (b) T = 10000. Compare with Fig. 1 and note
the improved quality of fit to the hypothetical arcsine distribution (red curve) on the right plot as
compared to the left one.

However, we conjecture that Theorem 2.4 does hold under the weaker limiting
condition (1.4) (see Remark 2.4). To verify this claim numerically, we carried out
computer simulations for the distribution of η+

T (0; f) with f(x) = π−1arctan x+cos x+
1
2
. Figure 2a shows the simulated histogram with the old values T = 1000 and N =

10,000, which reveals a bimodal distribution but not quite well fit to the hypothetical
arcsine limit; in particular, there are noticeable “parasite” shoulders outside the interval
[0, 1], which are indeed possible because the function f may take values less than 0 and
bigger than 1. However, the fit with the arcsine shape significantly improves under
longer observations, T = 10000 (see Fig. 2b). In particular, the high modes at the
edges are better pronounced, while the shoulders outside [0, 1] are considerably reduced.

Appendix A. Probabilistic proofs of Theorems 2.2, 2.3 and 2.4

A.1. Theorem 2.2

The probabilistic proof below is based on the idea to reduce the general case η±
T (x)

to η±
T (0) via conditioning on the hitting time of the origin. This proof explains how

formulas (2.10) can be derived (rather than verified as was done in Section 5); however,
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in so doing the prior knowledge of the distribution of η±
T (0) (provided by Theorem 2.1)

is essential.
Let us recall some information related to the first-passage problem for the telegraph

process X±
t . For x < 0, let T±

−x := inf{t ≥ 0 : X±
t = −x} (with the convention that

inf ∅ := +∞) be the hitting time of point −x > 0 by the process X±
t (starting from the

origin, X±
0 = 0). If we set T0 := (−x)/c, then the distribution of T±

−x is concentrated
on [T0,∞) and is given by (see [Pi91, §0.5, pp. 12–13], [FK94, pp. 150–153] or [Or95,
Theorem 4.1, p. 18])

P{T+
−x ∈ dt} = e−λT0 δT0

(dt) + Q+
−x(t) dt, P{T−

−x ∈ dt} = Q−
−x(t) dt, (A.1)

where the densities Q±
−x are defined exactly by equations (2.13), (2.14).

Consider the two-dimensional Markov process (X±
t , V ±

t ), where X±
t is the (condi-

tional) telegraph process (1.6) (i.e., with the initial velocity V0 = ±c, respectively),
and V ±

t = dX±
t /dt = ±c(−1)Nt is the corresponding velocity process driven by a Pois-

son process Nt which determines the reversal instants of the motion X±
t (see (1.6)).

It is obvious that T±
−x is a stopping time for the process (X±

t , V ±
t ). Also note that

V ±
t

∣

∣

t=T
±

−x

= +c (a.s), since the first passage through point −x > 0 by the process X±
t ,

starting from the origin, with probability 1 can only occur from left to right, that is,
with positive velocity. Hence, conditioning on the hitting time of the origin starting
from x < 0 (which, of course, has the same distribution as T±

−x) and using the strong
Markov property of the joint process (X±

t , V ±
t ), we have, for each y ∈ [0, 1 − T0/T ],

P{η±
T (x) ∈ dy} = P{T±

−x > T}δ0(dy) + E
[

P{η±
T (x) ∈ dy, T0 ≤ T±

−x ≤ T |T±
−x}

]

=

(
∫ ∞

T

P{T±
−x ∈ du}

)

δ0(dy)

+

∫ (1−y)T

T0

P{T±
−x ∈ du}P{(1 − u/T ) η+

T−u(0) ∈ dy}. (A.2)

Here, the first integral represents the case where the telegraph process X±
t does not

reach the origin before time T and, therefore, never enters the positive half-line (thus
contributing to the atom δ0(dy)), while the second integral (where integration is taken
with respect to du) accounts for the first passage event (at time instant u ∈ [T0, (1 −
y)T ]), so that the telegraph process, restarted from the origin (with the initial velocity
+c), has to spend on the positive half-line the required time T dy during the remaining
travel time T − u.

In view of (A.1) together with (2.13) and (2.14), and due to equation (2.8) which
provides the distribution of η+

T−u(0), formula (A.2) furnishes an explicit representation
of the distribution of η±

T (x). On account of the atom in (A.1), the right-hand side of
(A.2) specializes to

(
∫ ∞

T

Q±
−x(u) du

)

δ0(dy) + µ±
T (dy) +

∫ (1−y)T

T0

Q±
−x(u) P

{

η+
T−u(0) ∈ dy

1 − u/T

}

du,

(A.3)
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where µ−
T (dy) := 0 and

µ+
T (dy) := e−λT0 P

{

η+
T−T0

(0) ∈ dy

1 − T0/T

}

. (A.4)

Using (2.8), for any u ∈ [T0, (1 − y)T ] we have

P

{

η+
T−u(0) ∈ dy

1 − u/T

}

= 2ϕT−u(1) δ1−u/T (dy) + ψT−u

(

y

1 − u/T

)

dy

1 − u/T
. (A.5)

Substituting (A.5) (with u = T0) into (A.4) readily gives (2.11), while the last term on
the right-hand side of (A.3) is reduced to (cf. (2.10))

2T Q±
−x((1 − y)T ) ϕT (y) dy +

∫ (1−y)T

T0

Q±
−x(u)

(

ψT−u

(

y

1 − u/T

)

dy

1 − u/T

)

du,

where the contribution of the atom δ1−u/T (dy) from (A.5) is easily computed via the ob-
vious symbolic formula δ1−u/T (dy) du = Tδ(1−y)T (du) dy . Indeed, for any test functions
F (y) and G(u) we have, by changing the order of integration,

∫ 1−T0/T

0

F (y)

∫ (1−y)T

T0

G(u) δ1−u/T (dy) du

=

∫ T

T0

G(u) du

∫ 1−u/T

0

F (y) δ1−u/T (dy)

=

∫ T

T0

G(u) F (1 − u/T ) du

= T

∫ 1−T0/T

0

F (y)

(

∫ (1−y)T

T0

G(u) δ(1−y)T (du)

)

dy.

A.2. Theorem 2.3

The idea of a probabilistic proof of Theorem 2.3 (as well as of Theorem 2.4, see
Appendix A.3 below) is based on the diffusion approximation of the telegraph process
(see Theorem 1.1). More precisely, making the substitution t = Tu and using that
H(αx) ≡ H(x) for any α > 0, we can rewrite formula (2.1) as

η±
T (x) =

∫ 1

0

H(x + X±
Tu) du =

∫ 1

0

H(xT + Z±
u,T ) du, (A.6)

where xT := γ
−1/2
T x, Z±

u,T := γ
−1/2
T X±

Tu, and γT := c2T/λ. Note that (Z±
u,T , u ≥ 0) is

a telegraph process with rescaled parameters λT := λT → ∞, cT := (λT )1/2 → ∞,
which therefore converges weakly to a standard Brownian motion (Bu, u ≥ 0) (by
Theorem 1.1). Hence, if xT → a as T → ∞ (cf. the hypotheses of Theorem 2.3) then
from (A.6) we immediately obtain the convergence in distribution

η±
T (x)

d−→ h1(a) :=

∫ 1

0

H(a + Bu) du, T → ∞. (A.7)

27



According to (1.1) and (1.2), the random variable h1(0) has the arcsine distribution,
which proves Theorem 2.3 for a = 0. For a < 0 (so that −a > 0), let τ−a := min{t ≥ 0 :
Bt = −a} be the hitting time of the point −a by the Brownian motion Bt starting from
the origin (B0 = 0). As is well known since P. Lévy’s paper [Le40, Théorème 2, p. 294]
(see also [IM74, §1.7, p. 26] or [Fe71, §VI.2(e), pp. 174–175]), the random variable τ−a

has probability density q−a(·) defined in (2.15). Note that τ−a is a stopping time (with
respect to the natural filtration Ft := σ{Bs, 0 ≤ s ≤ t}). Conditioning on τ−a (when
a + Bτ−a

= 0) and using the strong Markov property, we obtain, for any y ∈ [0, 1],

P{h1(a) ∈ dy} = P{τ−a > 1} δ0(dy) +

∫ 1−y

0

q−a(u) P{(1 − u)h1−u(0) ∈ dy} du

=

(
∫ ∞

1

q−a(u) du

)

δ0(dy) +

(
∫ 1−y

0

q−a(u)

1 − u
pas

(

y

1 − u

)

du

)

dy,

which coincides with (2.17) (for Y−a) in view of (2.18) and (2.19). Finally, the case

a > 0 easily follows by the obvious symmetry relation h1(a)
d
= 1 − h1(−a) (cf. (2.3)).

A.3. Theorem 2.4

According to the proof of Theorem 2.3, it suffices to establish an analogue of relation
(A.7), that is,

η±
T (x; f)

d−→ h1(a) =

∫ 1

0

H(a + Bu) du, T → ∞. (A.8)

Similarly to (A.6), rewrite formula (2.24) as

η±
T (x; f) =

∫ 1

0

f(x + X±
Tu) du =

∫ 1

0

f
(

γT (xT + Z±
u,T )

)

du,

where γT , xT and Z±
u,T are the same as in Appendix A.2. In particular, if xT → a then

the process Z̃u,T := xT +Z±
u,T weakly converges to the shifted Brownian motion a+Bu.

On the other hand, observing that γT → +∞ (by the hypothesis of Theorem 2.4), we
have f(γT x) → H(x) for each x 6= 0. Hence, it is natural to expect that

∫ 1

0

f(γT Z̃u,T ) du
d−→

∫ 1

0

H(a + Bu) du, T → ∞, (A.9)

which is equivalent to (A.8).
To verify (A.9), let us represent the left-hand side of (A.9) as

∫ 1

0

[

f(γT Z̃u,T ) − H(Z̃u,T )
]

du +

∫ 1

0

H(Z̃u,T ) du =: Ξ
(1)
T + Ξ

(2)
T .
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As already shown in Theorem 2.3 (see also (A.6) and (A.7)), Ξ
(2)
T

d→ h1(a), so it suffices

to prove that Ξ
(1)
T → 0 in probability (notation: Ξ

(1)
T = op(1)). Note that

∣

∣Ξ
(1)
T

∣

∣ ≤
∫ 1

0

∣

∣f
(

γT Z̃u,T

)

− H(Z̃u,T )
∣

∣1(1,∞)(
√

γT Z̃u,T ) du

+

∫ 1

0

∣

∣f
(

γT Z̃u,T

)

− H(Z̃u,T )
∣

∣1(−∞,−1)(
√

γT Z̃u,T ) du

+ 2

∫ 1

0

1[−1,1](
√

γT Z̃u,T ) du

=: L
(1)
T + L

(2)
T + 2L

(3)
T .

On the set {√γT Z̃u,T > 1} we have γT Z̃u,T >
√

γT → +∞ as T → ∞, hence

f
(

γT Z̃u,T

)

→ 1 whereas H(Z̃u,T ) = 1, and Lebesgue’s dominated convergence the-

orem implies that L
(1)
T → 0 a.s. Similarly, L

(2)
T → 0 a.s. It remains to show that

L
(3)
T = op(1). Indeed, let ǫ > 0, then by Chebyshev’s inequality

ǫ P{L(3)
T > ǫ} ≤ E(L

(3)
T ) =

∫ 1

0

P
{

|Z̃u,T | ≤ γ
−1/2
T

}

du.

By virtue of weak convergence of the process Z̃u,T , for each u ∈ [0, 1] and any δ > 0
we have

lim sup
T→∞

P
{

|Z̃u,T | ≤ γ
−1/2
T

}

≤ lim
δ→0+

lim sup
T→∞

P
{

|Z̃u,T | ≤ δ
}

≤ lim
δ→0+

P
{

|a + Bu| ≤ δ
}

= P
{

|a + Bu| = 0
}

= 0.

Hence, by Fatou’s lemma,

lim sup
T→∞

∫ 1

0

P
{

|Z̃u,T | ≤ γ
−1/2
T

}

du ≤
∫ 1

0

lim sup
T→∞

P
{

|Z̃u,T | ≤ γ
−1/2
T

}

du = 0.

Thus, L
(3)
T = op(1) and therefore Ξ

(1)
T = op(1), which completes the proof.

Remark A.1. Limiting relation (A.9) can also be justified with the help of a general
Mapping Theorem of weak convergence (see, e.g., [Bi68, Theorem 5.5, p. 34]). More
precisely, consider measurable mappings hT : C[0, 1] → R (T > 0) defined by

hT (x(·)) :=

∫ 1

0

f(γT x(u)) du, x(·) ∈ C[0, 1],

where γT → +∞ with T → ∞. If the function x(·) ∈ C[0, 1] is such that

∫ 1

0

1{0}(x(u)) du = 0 (A.10)
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(i.e., the set {u ∈ [0, 1] : x(u) = 0} has Lebesgue measure zero), then f(γT x(u)) →
H(x(u)) for almost all u ∈ [0, 1] (with respect to the Lebesgue measure), which by
dominated convergence implies

hT (x(·)) → h(x(·)) :=

∫ 1

0

H(x(u)) du, T → ∞.

Moreover, it is easy to see that if xT (·) ∈ C[0, 1] and xT (u) → x(u) uniformly on [0, 1],
then, under condition (A.10), we also have hT (xT (·)) → h(x(·)). Finally, the appli-
cation of the aforementioned Mapping Theorem readily yields the weak convergence

(equivalent to (A.9)) hT (Z̃u,T )
d→ h(a+Bu) (u ∈ [0, 1]), provided that condition (A.10)

is satisfied a.s. for random paths x(u) = a + Bu. But the latter is obvious (and in fact

well known) since E
∫ 1

0
1{0}(a + Bu) du =

∫ 1

0
P{Bu = −a} du = 0 (cf. (2.2)).
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