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Abstract

The probability distribution µcl of a general cluster point process in a Riemannian
manifold X (with independent random clusters attached to points of a configuration
with distribution µ) is studied via the projection of an auxiliary measure µ̂ in the space
of configurations γ̂ = {(x, ȳ)} ⊂ X × X, where x ∈ X indicates a cluster “cen-
tre” and ȳ ∈ X :=

⊔
nXn represents a corresponding cluster relative to x. We show

that the measure µcl is quasi-invariant with respect to the group Diff0(X) of compactly
supported diffeomorphisms of X , and prove an integration-by-parts formula for µcl.
The associated equilibrium stochastic dynamics is then constructed using the method of
Dirichlet forms. General constructions are illustrated by examples including Euclidean
spaces, Lie groups, homogeneous spaces, Riemannian manifolds of non-positive curva-
ture and metric spaces.
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1. Introduction

The concept of a configuration space (over a suitable Riemannian manifold) is instrumental
in the description of various types of multi-particle structures and naturally appears in many
areas of mathematics and mathematical physics (e.g., theory of random point processes,
statistical mechanics, quantum field theory, representation theory) and applied sciences (e.g.,
chemical physics, image processing, spatial ecology, astronomy, etc.).

Despite not possessing any Banach manifold structure, configuration spaces have many
features of proper manifolds and can indeed be endowed with “manifold-like” structures
(see [31] and also [3, 4]). As it turns out, the way to do it depends heavily on the choice
of a suitable probability measure µ on the configuration space ΓX (over the manifold X).
Such a choice is often suggested by a physical system under study, but, in order to furnish
a meaningful analytical framework, the measure µ must satisfy certain regularity properties,
such as the Diff0-quasi-invariance with respect to the action of certain diffeomorphism group
and/or an integration-by-parts (IBP) formula. Hence, it is not surprising that the study of the
configuration space as a measure space (ΓX , µ) requires tools and techniques at the interface
of geometric analysis and measure theory. According to this paradigm, it is important (i)
to prove the quasi-invariance and IBP formulae for a wide class of measures µ arising in
applications, and (ii) to study the dependence of the properties of the measure µ on the
topology and geometry of the underlying manifold X and their interplay with the multi-
particle structure of the space ΓX .

Such a programme has been implemented for the Poisson and Gibbs measures on ΓX
in the case where X = Rd (see [3, 4, 5, 2, 1] and further references therein). The present
paper is a step towards realisation of this programme for the important class of (in general,
non-Gibbsian) measures on ΓX emerging as distributions of cluster point processes in X .
Intuitively, a cluster point process is obtained by generating random clusters around points of
the background configuration of cluster “centres” [15]. Cluster models are well known in the
general theory of random point processes [14, 15] and are widely used (both in temporal and
spatial domains) in numerous applications ranging from neurophysiology (nerve impulses)
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and ecology (spatial aggregation of species) to seismology (earthquakes) and cosmology
(constellations and galaxies); see [10, 14, 15] for some references to original papers.

In our earlier papers [8, 9, 10, 11], we have developed a projection construction of Pois-
son and Gibbs cluster processes in a Euclidean space X = Rd, based on the representation
of their probability distributions (i.e., the corresponding measures on the configuration space
ΓX) as the push-forward (image) of suitable auxiliary measures on a more complex config-
uration space ΓX over the disjoint-union space X :=

⊔
nX

n, with “droplet” points ȳ ∈ X

representing individual clusters (of variable size). Such an approach allows one to adapt
the ideas of analysis and geometry on configuration spaces developed earlier by Albeverio,
Kondratiev and Röckner [3, 4] for plain (i.e., non-cluster) Poisson and Gibbs measures in
ΓX , and to obtain results including the Diff0-quasi-invariance and IBP formula.

In the present paper, we extend the projection approach to the case of cluster measures on
general Riemannian manifolds X and with arbitrary centre processes. In so doing, suitable
smoothness properties of the distribution of individual cluster are required, but it should be
stressed that no smoothness of the centre process is needed. That is to say, attaching “nice”
clusters to points of a centre configuration acts as smoothing of the entire cluster process. To
an extent, this may be thought of as an infinite-dimensional analogue of the well-known fact
that the convolution of two measures in Rd is absolutely continuous provided that at least
one of those measures is such. However, this analogy should not be taken too far, since the
relationship between centres and clusters is asymmetric (the latter are attached to the former,
but not vice versa); in particular, as it turns out, smoothness of the centre process alone is not
sufficient for the smoothness of the resulting cluster process. Let us point out that the results
of the present paper are new even in the case of Poisson and Gibbs cluster point processes in
Rd, where our new approach allows one to handle more general models, for instance with the
probability distribution of centres given by a Poisson measure with a non-smooth intensity,
or by a Gibbs measure with a non-smooth interaction potential.

The structure of the paper is as follows. In Section 2 we introduce the general framework
of configuration spaces and measures on them and discuss a “fibre bundle” structure of the
configuration space over a product manifold. Section 3 is devoted to the projection construc-
tion of cluster measures µcl. Here we derive necessary conditions for the cluster measure
µcl to be well defined (i.e., with no multiple and accumulation points) and study the exis-
tence of moments. In Section 4 we prove the Diff0-quasi-invariance and an IBP formula for
µcl. Furthermore, for a general cluster measure we are able to construct the corresponding
Dirichlet form and to prove its closedness, which implies in a standard way the existence
of the corresponding equilibrium stochastic dynamics. In Section 5 we discuss examples of
cluster distributions that can be generated in a natural way via certain manifold structures,
such as the group action in the case of homogeneous manifolds and a metric structure for
general Riemannian manifolds. Finally, the Appendix contains some additional or support-
ing material.

2. Configuration spaces and measures

2.1. General setup: probability measures on configuration spaces

LetX be a Polish space equipped with the Borel σ-algebra B(X) generated by the open sets.
Let Z+ := {0, 1, 2, . . . }, and consider the space X built from all Cartesian powers of X , that
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is, the disjoint union
X :=

⊔
n∈Z+

Xn, (2.1)

including X0 = {∅}. That is, x̄ = (x1, x2, . . . ) ∈ X if and only if x̄ ∈ Xn for some n ∈ Z+.
We take the liberty to write xi ∈ x̄ if xi is a coordinate of the “vector” x̄. The space X is
endowed with the natural disjoint union topology induced by the topology in X .

Remark 2.1. Note that a set B ⊂ X is compact if and only if B =
⊔N
n=0Bn, where N <∞

and Bn are compact subsets of Xn, respectively.

Remark 2.2. X is a Polish space as a disjoint union of Polish spaces.

Denote by N (X) the space of Z+-valued measures on B(X) with countable (i.e., finite
or countably infinite) support. Consider the natural projection

X 3 x̄ 7→ p(x̄) :=
∑
xi∈x̄

δxi
∈ N (X), (2.2)

where δx is the Dirac measure at point x ∈ X . That is to say, under the map p each vec-
tor from X is “unpacked” into its components to yield a countable aggregate of (possibly
multiple) points in X , which can be interpreted as a generalised configuration γ,

p(x̄)↔ γ :=
⊔
xi∈x̄
{xi}, x̄ = (x1, x2, . . . ) ∈ X. (2.3)

In what follows, we interpret the notation γ either as an aggregate of points in X or
as a Z+-valued measure or both, depending on the context. Even though generalised con-
figurations are not, strictly speaking, subsets of X (because of possible multiplicities), it is
convenient to use set-theoretic notation, which should not cause any confusion. For instance,
we write γ ∩ B for the restriction of configuration γ to a subset B ∈ B(X). For a function
f : X → R we denote

〈f, γ〉 :=
∑
xi∈γ

f(xi) ≡
∫
X

f(x) γ(dx). (2.4)

In particular, if 1B(x) is the indicator function of a set B ∈ B(X) then 〈1B, γ〉 = γ(B) is
the total number of points (counted with their multiplicities) in γ ∩B.

Definition 2.1. The configuration space Γ ]
X is the set of all generalised configurations γ

in X , endowed with the cylinder σ-algebra B(Γ ]
X) generated by the class of cylinder sets

Cn
B := {γ ∈ Γ ]

X : γ(B) = n}, B ∈ B(X), n ∈ Z+ . We also denote by Γ 0
X := {γ ∈ ΓX :

γ(X) <∞} the space of finite configurations in X .

Remark 2.3. It is easy to see that the map p : X→ Γ ]
X defined by formula (2.3) is measurable.

Let us denote by M+(X) the class of non-negative measurable functions on X .

Lemma 2.1. For any f ∈ M+(X), the pairing 〈f, ·〉 defined in (2.4) is a measurable function
on the configuration space Γ ]

X .
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Proof. For functions of the form f(x) =
∑k

i=1 ci1Bi
(x) (with ci ≥ 0, Bi ∈ B(X)), we have

〈f, γ〉 =
∑
xi∈γ

k∑
i=1

ci1Bi
(xi) =

k∑
i=1

ci γ(Bi), γ ∈ Γ ]
X ,

which is a B(Γ ]
X)-measurable function of γ since each of the functions γ(Bi) is measurable

by definition of the cylinder σ-algebra B(ΓX). The general case is then derived by the usual
approximation and monotone class argument (see, e.g., [15, §A1.1]).

Definition 2.2. A configuration γ ∈ Γ ]
X is said to be locally finite if γ(B) < ∞ for any

compact set B ⊂ X . A configuration γ ∈ Γ ]
X is called simple if γ({x}) ≤ 1 for each

x ∈ X . A configuration γ ∈ Γ ]
X is called proper if it is both locally finite and simple. The

set of all proper configurations is denoted by ΓX and called the proper configuration space
over X . The corresponding σ-algebra B(ΓX) is generated by the cylinder sets Cn

B = {γ ∈
ΓX : γ(B) = n} (B ∈ B(X), n ∈ Z+).

Conventional theory of point processes (see, e.g., [15]) is usually built on the assumption
that the sample configurations of the process almost surely (a.s.) have no accumulation or
multiple points, so that its distribution µ is a probability measures on the proper configuration
space (ΓX ,B(ΓX)). However, many elements of standard theory can be extended to the
case of generalised configurations without much trouble. In particular, it still holds by the
Kolmogorov extension theorem (see, e.g., [27, Theorem 5.1, [page 144] or [15, Theorem
A1.5.IV, page 381]) that any probability measure µ on (Γ ]

X ,B(Γ ]
X)) is uniquely determined

by a family of its finite-dimensional distributions µ(Cn1
B1
∩ · · · ∩ Cnk

Bk
) (which is necessarily

consistent). Furthermore, any probability measure µ on Γ ]
X is uniquely characterised by its

Laplace functional

Lµ[f ] :=

∫
Γ ]

X

e−〈f,γ〉 µ(dγ), f ∈ M+(X) (2.5)

(note that the integral in (2.5) is well defined since 0 ≤ e−〈f,γ〉 ≤ 1). To see why Lµ[·]
completely determines a measure µ on B(Γ ]

X), note that if B ∈ B(X) then Lµ[s1B] as a
function of s > 0 gives the Laplace–Stieltjes transform of the distribution of the random
variable γ(B) and as such determines the values of the measure µ on the cylinder sets Cn

B ∈
B(Γ ]

X) (n ∈ Z+). In particular, Lµ[s1B] = 0 if and only if γ(B) = ∞ (µ-a.s.). Similarly,
using linear combinations

∑k
i=1 si1Bi

we can recover the values of µ on the cylinder sets

Cn1,...,nk

B1,...,Bk
:=

k⋂
i=1

Cni
Bi

= {γ ∈ Γ ]
X : γ(Bi) = ni, i = 1, . . . , k},

and hence on the ring C(X) of finite disjoint unions of such sets. Since the ring C(X)
generates the cylinder σ-algebra B(Γ ]

X), the Kolmogorov extension theorem ensures that the
measure µ on B(Γ ]

X) is determined uniquely.

2.2. Cluster point processes

Let us recall the notion of a general cluster point process with independent clusters (see, e.g.,
[14, 15]). Heuristically, its spatial realisations are built in two stages: (i) a background ran-
dom configuration of (invisible) “centres” is obtained as a realisation of some point process
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γc governed by a probability measure µ on ΓX , and (ii) relative to each centre x ∈ γc, a set of
observable secondary points (referred to as a cluster centred at x) is generated, independently
of all other clusters, according to a point process γ′x with distribution µx on Γ 0

X (x ∈ X).
The resulting (countable) assembly of random points, called the cluster point process (CPP),
can be expressed symbolically as

γ =
⊔
x∈γc

γ′x ∈ Γ
]
X ,

where the disjoint union signifies that possible multiplicities of points are taken into account.
More precisely, assuming a suitable measurability of the family of secondary processes γ′x
with respect to x ∈ X , the integer-valued measure corresponding to a CPP realisation γ is
represented as

γ(B) =

∫
X

γ ′x(B) γc(dx) =
∑
x∈γc

γ′x(B), B ∈ B(X). (2.6)

The distribution µx of the inner-cluster point process γ′x determines a probability measure
ηx on the space X symmetric with respect to permutations of coordinates. Conversely, µx is
a push-forward of the measure ηx under the projection map p : X→ Γ ]

X defined by (2.3),

µx = p∗ηx ≡ ηx ◦ p−1. (2.7)

Note that for any x ∈ X and for ηx-a.a. ȳ ∈ X the projection set p(ȳ) ⊂ X is locally finite
and simple.

We assume that the family of measures {ηx(·), x ∈ X} satisfies the following “weak
measurability” condition.

Condition 2.1. For any Borel set B ∈ B(X), the function

X 3 x 7→ ηx(B) ∈ [0, 1]

is measurable with respect to B(X).

This has the following useful corollary.

Lemma 2.2. Under Condition 2.1, for any bounded function f ∈ M+(X) the map

X 3 x 7→
∫

X

f(ȳ) ηx(dȳ) (2.8)

is B(X)-measurable.

Proof. For a linear combination f(ȳ) =
∑k

i=1 ci1Ai
(ȳ) (with some constants ci ≥ 0 and

Borel sets Ai ∈ B(X)), the integral in (2.8) is reduced to

k∑
i=1

ci

∫
X

1Bi
(ȳ) ηx(dȳ) =

k∑
i=1

ci ηx(Bi),

which is a measurable function in x owing to Condition 2.1. The general case then follows
by the standard approximation and monotone class argument (see, e.g., [15, §A1.1]).
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We are now ready to give a more formal definition of the cluster process distribution as a
measure µcl on the configuration space Γ ]

X . In view of the two-stage description of the cluster
process, it is natural to construct the measure µcl by first conditioning on the background
configuration γc = γ ∈ ΓX of centres and then averaging with respect to its distribution µ.
This can be expressed symbolically as an intuitively appealing decomposition

µcl(A) =

∫
ΓX

µcl(A |γ)µ(dγ), A ∈ B(Γ ]
X), (2.9)

however to make formula (2.9) well defined one needs to ensure that the integrand µcl(A |γ)
is measurable in γ with respect to the cylinder σ-algebra B(ΓX).

Taking advantage of the independent structure of the family of secondary processes, it
is more convenient to work with the Laplace functionals of the measures involved, leading
from (2.9) to an equivalent decomposition

Lµcl
[f ] =

∫
ΓX

Lµcl
[f |γ ]µ(dγ), f ∈ M+(X). (2.10)

Now, adapting a general method used to construct the distributions of conditioned-based
point processes (see [15, §6]), it follows that in order to make sure that formula (2.10) de-
termines the CPP distribution, one needs (i) to specify the conditional Laplace functional
Lµcl

[f |γ ] of the hypothetical cluster measure µcl conditioned on the configuration γ ∈ ΓX of
centres, and (ii) to check that this is a measurable function of γ (see [15, Section 6.1, Propo-
sition 6.1.II, page 165, and Lemma 6.1.III, page 166]). To this end, using the independence
of the in-cluster configurations γ′x (x ∈ γ), we obtain

Lµcl
[f |γ ] =

∫
X∞

exp

{
−
∑
x∈γ

∑
yi∈ȳx

f(yi)

}⊗
x∈γ

ηx(dȳx)

=
∏
x∈γ

∫
X

exp

{
−
∑
yi∈ȳx

f(yi)

}
ηx(dȳx)

= exp

{
−
∑
x∈γ

f̄(x)

}
= exp{−〈f̄ , γ〉},

where

f̄(x) := − log

(∫
X

exp

{
−
∑
yi∈ȳ

f(yi)

}
ηx(dȳ)

)
≥ 0, x ∈ X.

By Lemma 2.2, the function f̄(·) is B(X)-measurable, and Lemma 2.1 then implies that
Lµcl

[f |γ ] = exp{−〈f̄ , γ〉} is B(Γ ]
X)-measurable, as required.

Thus, we have established that the cluster measure µcl exists, and in particular its Laplace
functional is given by

Lµcl
[f ] =

∫
ΓX

∏
x∈γ

(∫
X

exp

(
−
∑
yi∈ȳ

f(yi)
)
ηx(dȳ)

)
µ(dγ), f ∈ M+(X). (2.11)

Remark 2.4. Formula (2.11) is well known in the case of CPPs without accumulation points
(see, e.g., [15, §6.3]).
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Remark 2.5. Unlike the standard CPP theory where the sample configurations are presumed
to be a.s. locally finite (see, e.g., [15, Definition 6.3.I]), the CPP constructed above may still
have accumulation and/or multiple points arising due to contributions from remote clusters,
even though both background point process γc and the inner-cluster processes γ′x are proper.
However, developing the differential analysis on configuration spaces in the spirit of Albeve-
rio, Kondratiev and Röckner [3, 4] demands that measures under study are actually supported
on the proper configuration space ΓX . We shall address this issue for the general cluster mea-
sure µcl in Section 3.2 below and give sufficient conditions in order that µcl-almost all (a.a.)
configurations are proper (see our earlier papers [10, 11] for the cases of the Poisson and
Gibbs CPPs, respectively).

2.3. Measures on marked configuration spaces

In this section, we develop a special construction of measures on marked configuration
spaces, which will be useful below.

Consider the product space Z := X × X endowed with the product σ-algebra B(Z) =
B(X)⊗ B(X), and the corresponding configuration space ΓZ . Let

pX(z) := x, pX(z) := ȳ, z = (x, ȳ) ∈ X × X,

denote the natural projections onto the spaces X and X, respectively. The maps pX and pX

can be extended to the configuration space ΓZ ,

ΓZ 3 γ̂ 7→ pX(γ̂) :=
⊔
z∈γ̂

pX(z) ∈ Γ ]
X ,

ΓZ 3 γ̂ 7→ pX(γ̂) :=
⊔
z∈γ̂

pX(z) ∈ Γ ]
X.

We will work on a smaller space, the so-called marked configuration space

ΓX(X) := {γ̂ ∈ ΓZ : pX(γ̂) ∈ ΓX},

endowed with the topology induced from ΓZ . Furthermore, for each γ ∈ ΓX , consider the
space Xγ := p−1

X (γ) (i.e., the fibre at γ), which can be identified with the corresponding
Cartesian product of identical copies of the space X,

Xγ =
∏
x∈γ

Xx, Xx = X.

Therefore, each marked configuration γ̂ ∈ ΓX(X) can be represented in the form

γ̂ = (γ, ȳγ) =
⊔
x∈γ
{(x, ȳx)}, (2.12)

with
γ = pX(γ̂) ∈ ΓX , ȳγ := (ȳx)x∈γ ∈ Xγ. (2.13)

More formally, a one-to-one correspondence between x ∈ γ and ȳx ∈ yγ is described by the
relations

x = pX
(
p−1

X (ȳx) ∩ γ̂
)
, ȳx = pX

(
p−1
X (x) ∩ γ̂

)
. (2.14)

Recall that the probability measure µ on ΓX and the (measurable) family of probability
measures {ηx, x ∈ X} on X were defined in Section 2.2.
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Lemma 2.3. Under Condition 2.1, for any bounded function f ∈ M+(Z) the map

X 3 x 7→
∫

X

f(x, ȳ) ηx(dȳ) (2.15)

is B(X)-measurable.

Proof. By a standard monotone class argument, it suffices to consider functions of the form
f(x, ȳ) = g(x) · 1B(ȳ), with a measurable function g(·) and a Borel set B ⊂ X. Then the
integral in (2.15) is reduced to

g(x)

∫
B

ηx(dy) = g(x)ηx(B),

which is obviously a measurable function of x owing to Condition 2.1.
For γ ∈ ΓX , define the corresponding product measure on the space Xγ ,

ηγ(dȳγ) :=
⊗
x∈γ

ηx(dȳx). (2.16)

Consider a probability measure µ̂ on ΓX(X) defined as the distribution of the marked point
process with configurations (2.12), governed by the measures µ and ηx, x ∈ X . According
to the general construction of point processes based on conditioning (see [15, §§6.1, 6.4]),
such a process exists under Condition 2.1. The measure µ̂ can be expressed symbolically as
a “skew product”

µ̂(dγ̂) = ηγ(dyγ)µ(dγ), γ̂ = (γ, yγ) ∈ ΓX(X). (2.17)

To be more precise, we can rewrite a heuristic expression (2.17) in integral form∫
ΓX(X)

F (γ̂) µ̂(dγ̂) =

∫
ΓX

(∫
Xγ

F (γ, ȳγ) ηγ(dȳγ)

)
µ(dγ), F ∈ M+(ΓX(X)). (2.18)

In particular, the aforementioned general construction ensures that the internal integral on
the right-hand side of (2.18) is measurable in γ ∈ ΓX .
Remark 2.6. A direct proof of the measurability of the internal integral on the right-hand side
of equation (2.18), based on a measurable indexation of the (proper) ground configurations
γ ∈ ΓX , is provided in Appendix A.
Remark 2.7. Given the probability measure µ on ΓX and the (measurable) family of prob-
ability measures {ηx, x ∈ X}, we can construct two point processes, the cluster process
(with distribution µcl) and the marked process (with distribution µ̂). The crucial difference
between them is that sample configurations of the latter are almost surely proper, in contrast
to the former process which, in general, is supported on the space of generalised configura-
tions. Moreover, many analytical properties of µ̂ are simpler than those of µcl. In fact, as will
be explained in Section 3 below, there is a natural link between the two processes, in that the
cluster measure µcl can be represented as a certain “projection” of the marked measure µ̂,
which paves the way for the study of µcl using µ̂. This is the main idea of our approach.
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3. Cluster measures on configuration spaces

3.1. Projection construction of the cluster measure

Recall that the “unpacking” map p : X→ Γ ]
X is defined in (2.3), and consider a map q : Z →

Γ ]
X acting by the formula

q(x, ȳ) := p(ȳ) =
⊔
yi∈ȳ
{yi}, (x, ȳ) ∈ Z. (3.1)

In the usual “diagonal” way, the map q can be lifted to the configuration space ΓX(X),

ΓX(X) 3 γ̂ 7→ q(γ̂) :=
⊔
z∈γ̂

q(z) ∈ Γ ]
X . (3.2)

Proposition 3.1. The map q : ΓX(X)→ Γ ]
X defined by (3.2) is measurable.

Proof. Observe that q can be represented as a composition

q = p ◦ pX : ΓX(X)
pX−→ Γ ]

X

p−→ Γ ]
X , (3.3)

where the maps pX and p are defined, respectively, by

ΓX(X) 3 γ̂ 7→ pX(γ̂) :=
⊔

(x,ȳ)∈ γ̂
{ȳ} ∈ Γ ]

X, (3.4)

Γ ]
X 3 γ̄ 7→ p(γ̄) :=

⊔̄
y∈γ̄

p(ȳ) ∈ Γ ]
X . (3.5)

For pX : ΓX(X)→ Γ ]
X (see (3.4)) we have

p−1
X (Cn

B̄) = Cn
X×B̄ = {γ̂ ∈ ΓX(X) : γ̂(X × B̄) = n} ∈ B(ΓX(X)),

since X × B̄ ∈ B(Z). Furthermore, the measurability of the projection p : Γ ]
X → Γ ]

X

(see (3.5)) was shown in [10, §3.3, p. 455]. As a result, the composition of maps in (3.3) is
measurable, as claimed.

Let us define a measure on Γ ]
X as the push-forward of µ̂ (see (2.17)) under the map q

defined in (3.1), (3.2),

q∗µ̂(A) ≡ µ̂(q−1(A)), A ∈ B(Γ ]
X), (3.6)

or, equivalently,∫
Γ ]

X

F (γ) q∗µ̂(dγ) =

∫
ΓX(X)

F (q(γ̂)) µ̂(dγ̂), F ∈ M+(Γ ]
X). (3.7)

The next general result shows that this measure may be identified with the original cluster
measure µcl.

Theorem 3.2. The measure (3.6) coincides with the cluster measure µcl,

µcl = q∗µ̂. (3.8)
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Proof. Let us evaluate the Laplace transform of the measure q∗µ̂. For any function f ∈
M+(X), we obtain, on using (2.17), (3.2) and (3.7),

Lq∗µ̂[f ] =

∫
Γ ]

X

exp(−〈f, γ〉) q∗µ̂(dγ)

=

∫
ΓX(X)

exp(−〈f, q(γ̂)〉) µ̂(dγ̂)

=

∫
ΓX

(∫
Γ ]

X

exp

(
−
∑
x∈γ

f(p(ȳx + x))

)⊗
x∈γ

η(dȳx)

)
µ(dγ)

=

∫
ΓX

(∫
Γ ]

X

∏
x∈γ

exp
(
−f(ȳx)

)⊗
x∈γ

ηx(dȳx)

)
µ(dγ)

=

∫
ΓX

∏
x∈γ

(∫
X

exp

(
−
∑
y∈ȳ

f(ȳ)

)
ηx(dȳ)

)
µ(dγ),

which coincides with the Laplace transform (2.11) of the cluster measure µcl.
An alternative description of the cluster measure µcl can be given as follows. Consider a

natural map rγ : Xγ → Γ ]
X defined by

Xγ 3 (ȳx)x∈γ
rγ7−→

⊔
x∈γ
{ȳx} ∈ Γ ]

X

(see (2.12)). The map rγ is measurable, which can be shown by repeating the arguments used
in [10, §3.3, p. 455] in the proof of measurability of p. Further, define the map (cf. (3.5))

pγ := p ◦ rγ : Xγ rγ−→ Γ ]
X

p−→ Γ ]
X . (3.9)

Clearly, pγ is measurable as a composition of measurable maps. Note that the projection pX

defined in (3.4) can be represented as

pX(γ̂) = rγ(ȳ
γ), γ̂ = (γ, ȳγ) ∈ ΓX(X). (3.10)

Furthermore, applying p to both sides of the equality (3.10) and using the relations (3.3) and
(3.9), we obtain the representation

q(γ̂) = pγ(ȳ
γ), γ̂ = (γ, ȳγ) ∈ ΓX(X). (3.11)

Consider the probability measures $γ and µγ on Γ ]
Xγ and Γ ]

X , respectively, defined by

$γ := r∗γη
γ, (3.12)

µγ := p∗γη
γ. (3.13)

Theorem 3.3. The cluster measure µcl on Γ ]
X is represented in either of the following two

forms

µcl(dγ) =

∫
ΓX

µζ(dγ)µ(dζ), (3.14)

µcl(dγ) = p∗$(dγ), (3.15)
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where $ is a measure on Γ ]
X defined by

$(dγ̄) :=

∫
ΓX

$γ(dγ̄)µ(dγ). (3.16)

Proof. By the change of measure (3.13) and the relations (2.17) and (3.11), we have, for any
Borel function F ∈ M+(Γ ]

X),∫
ΓX

(∫
Γ ]

X

F (ζ)µγ(dζ)

)
µ(dγ) =

∫
ΓX

(∫
X

F (pγ(ȳ
γ)) ηγ(dȳγ)

)
µ(dγ)

=

∫
ΓX(X)

F (q(γ̂)) µ̂(dγ̂)

=

∫
ΓX(X)

F (γ̂) q∗µ̂(dγ),

according to (3.8). Thus, formula (3.14) is proved.
Similarly, using the relation (3.16) and the change of measure (3.12), we get∫

Γ ]
X

F (ζ) p∗$(dζ) =

∫
ΓX

(∫
Γ ]

X

F (p(γ̄))$γ(dγ̄)

)
µ(dγ)

=

∫
ΓX

(∫
X

F (p ◦ rγ(ȳ
γ)) ηγ(dȳγ)

)
µ(dγ)

=

∫
ΓX

(∫
X

F (pγ(ȳ
γ)) ηγ(dȳγ)

)
µ(dγ)

=

∫
ΓX(X)

F (q(γ̂))µ̂(dγ̂),

which proves formula (3.15).
Remark 3.1. In the case where X = Rd, ηx(dȳ) = η0(dȳ − x) and µ(dγ) is a Poisson mea-
sure πθ(dγ) with intensity θ, the measure $ coincides with the auxiliary Poisson measure
πσ considered in [10], with intensity measure σ(B̄) =

∫
X
ηx(B̄) θ(dx), B̄ ∈ B(X).

The relationships between various measure spaces introduced above are succinctly illus-
trated by the following commutative diagrams,

(ΓX(X), µ̂)
id−−−→ (Γ ]

X × Xγ, µ⊗ ηγ) (ΓX(X), µ̂)
id⊗rγ−−−−→ (Γ ]

X × Γ
]
X, µ⊗$γ)

q

y yid⊗pγ q

y y∫ dµ

(Γ ]
X , µcl)

∫
dµ

←−−− (Γ ]
X × Γ

]
X, µ⊗ µγ) (Γ ]

X , µcl)
p←−−−− (Γ ]

X, $)

3.2. Conditions for absence of accumulation and multiple points

Let us now give sufficient conditions for the cluster point process to be proper, so that
µcl(ΓX) = 1. For any Borel subset B ⊂ X , consider the set

XB := {ȳ ∈ X : p(ȳ) ∩B 6= ∅} ∈ B(X), (3.17)
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where the projection map p is defined in (2.3). That is to say, the set XB consists of all points
ȳ ∈ X with at least one coordinate yi ∈ ȳ belonging to B.

Condition 3.1. For any compact set B ⊂ X ,∫
ΓX

∑
x∈γ

ηx(XB)µ(dγ) <∞. (3.18)

Remark 3.2. In view of the definition (3.17), the left-hand side of (3.18) equals the expected
number (under the measure µcl) of clusters that contribute at least one point to the set B.

We introduce the set

X̃ := {ȳ ∈ X : ∀ yi, yj ∈ ȳ, yi 6= yj}.

Condition 3.2. For µ-a.a. configurations γ ∈ ΓX , the probability measure ηγ on Xγ (see (2.16))
is concentrated on the set

X̃γ := {ȳγ ∈ (X̃)γ : ∀ {x1, x2} ⊂ γ, p(ȳx1) ∩ p(ȳx2) = ∅}, (3.19)

that is, ηγ(X̃γ) = 1.

Remark 3.3. The set X̃γ ensures that different clusters attached to the ground configuration
γ do not have common points.
Remark 3.4. A sufficient condition for (3.19) is that for any x ∈ X the measure ηx is abso-
lutely continuous with respect to the volume measure in X.

Theorem 3.4. Let µcl be a cluster measure on the generalised configuration space Γ ]
X . Then

(a) under Condition 3.1, µcl-a.a configurations γ ∈ Γ ]
X are locally finite;

(b) under Condition 3.2, µcl-a.a configurations γ ∈ Γ ]
X are simple.

Therefore, if both Conditions 3.1 and 3.2 are met then the cluster measure µcl is concentrated
on the proper configuration space ΓX .

Proof. (a) Let B ⊂ X be a compact set. From formula (3.15) and the definition (3.17) of
the set XB, it is clear that γ(B) <∞ for µcl-a.a. configurations γ ∈ Γ ]

X if and only if

γ̄(XB) <∞ for $-a.a. γ̄ ∈ Γ ]
X, (3.20)

where the measure $ is defined in (3.16). Let f(ȳ) := 1XB
(ȳ), ȳ ∈ X. Recalling the

definitions (2.16), (3.14), (3.15) and using Condition 3.1, we obtain∫
Γ ]

X

〈f, γ̄〉$(dγ̄) =

∫
ΓX

(∫
Γ ]

X

〈f, γ̄〉$γ(dγ̄)

)
µ(dγ)

=

∫
ΓX

(∫
Xγ

∑
ȳ∈ȳγ

f(ȳ) ηγ(dȳγ)

)
µ(dγ)

=

∫
ΓX

(∑
x∈γ

∫
XB

ηx(dȳ)

)
µ(dγ)

=

∫
ΓX

(∑
x∈γ

ηx(XB)

)
µ(dγ) <∞,
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which implies (3.20). Thus, the absence of accumulation points is proved.
(b) Let Γ ‡

X be the set of all generalised configurations in X that have multiple points. By
the definition (3.9) of the map pγ , there is the inclusion

p−1
γ (Γ ‡

X) ⊂ Xγ \ X̃γ,

where the set X̃γ is introduced in (3.19). Hence, from (3.13) we get, for µ-a.a. γ ∈ ΓX ,

µγ(Γ ‡
X) = ηγ(p−1

γ (Γ ‡
X)) ≤ 1− ηγ(X̃γ) = 0

according to Condition 3.2, and by formula (3.14) this implies that µcl(Γ
‡
X) = 0.

3.3. Existence of moments

Definition 3.1. For r ≥ 1 and a Borel measure θ on X , a measure µ on the configuration
space ΓX is said to be in the moment classMr

θ =Mr
θ(ΓX) if for any measurable function f

on X the following holds:
(i) if f(x) = 0 for θ-a.a. x ∈ X then 〈f, γ〉 = 0 for µ-a.a. γ ∈ ΓX ;

(ii) if
∫
X
|f(x)|κ θ(dx) <∞ for all 1 ≤ κ ≤ r then∫

ΓX

|〈f, γ〉|r µ(dγ) <∞. (3.21)

Remark 3.5. Equivalently, µ ∈Mr
θ if and only if for any f ∈

⋂
1≤κ≤r L

κ(X, θ) it holds that
〈f, · 〉 ∈ Lr(ΓX , µ). Note that due to condition (i) of Definition 3.1, the function g(γ) :=
〈f, γ〉 on ΓX is well defined up to a set of µ-measure zero (i.e., is independent of the choice
of a representative of the equivalence class f ).

Lemma 3.5. The family of the classes {Mr
θ, r ≥ 1} is nested, that is,Mr+δ

θ ⊂ Mr
θ for all

r ≥ 1 and any δ > 0.

Proof. Indeed, let µ ∈ Mr+δ
θ , then for any f ∈

⋂
1≤q≤r+δ L

q(X, θ) ⊂
⋂

1≤q≤r L
q(X, θ) we

have, by the Lyapunov inequality,∫
ΓX

|〈f, γ〉|r µ(dγ) ≤
(∫

ΓX

|〈f, γ〉|r+δ µ(dγ)

)r/(r+δ)
<∞,

hence µ ∈Mr
θ, as claimed.

Condition 3.3. There is a locally finite measure θ on X (i.e., θ(B) < ∞ for any compact
B ⊂ X), referred to as the reference measure, such that µ ∈M1

θ(ΓX).

Remark 3.6. The condition µ ∈ M1
θ(ΓX) implies that γ(B) < ∞ (µ-a.s.) for any Borel set

B such that θ(B) <∞. Indeed, choose f(x) = 1B(x) ∈ L1(X, θ), then 〈f, γ〉 = γ(B) and
Definition 3.1 yields

∫
ΓX
γ(B)µ(dγ) <∞, hence the integrand is µ-a.s. finite.

Example 3.1. Condition 3.3 holds for a Poisson measure πθ with a locally finite intensity θ,
as well as for a wide class of Gibbs perturbations of πθ (see, e.g., [3, 4]). More generally,
any measure µ with bounded correlation functions up to order n (with respect to θ) belongs
toMn

θ (ΓX) (see Appendix B).
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Example 3.2. Example of a different type is given by µ = δγ0 , the Dirac measure on ΓX
concentrated on a given configuration γ0 ∈ ΓX (e.g., if X = Rd then we can set γ0 = Zd).
Here we have ∫

ΓX

|〈f, γ〉|n µ(dγ) = |〈f, γ0〉|n,

which implies that µ ∈Mn
θ (ΓX) with θ =

∑
x∈γ0 δx.

Definition 3.2. Introduce the measures σ̂ on Z = X × X and σ̄ on X as follows

σ̂(dx× dȳ) := ηx(dȳ) θ(dx), (3.22)

σ̄(dȳ) :=

∫
X

ηx(dȳ) θ(dx). (3.23)

Lemma 3.6. Suppose that µ ∈Mn
θ (ΓX) for some integer n ≥ 1. Then µ̂ ∈Mn

σ̂(ΓZ).

Proof. We need to check the two conditions in Definition 3.1.
(i) Let f be a measurable function on Z such that f(x, ȳ) = 0 for σ̂-a.a. (x, ȳ) ∈ Z. It

follows that, for θ-a.a. x ∈ X ,

f̄(x) :=

∫
X

|f(x, ȳ)| ηx(dȳ) = 0, (3.24)

which implies that 〈f̄ , γ〉 = 0 for µ-a.a. γ ∈ ΓX . Then, by formula (3.23), the definition of
the measure µ̂ (see (2.17) and (2.18)) and the inclusion µ ∈Mn

θ (ΓX), we have∫
ΓZ

|〈f, γ̂〉| µ̂(dγ̂) ≤
∫
ΓX

|〈f̄ , γ〉|µ(dγ) = 0,

so that 〈f, γ̂〉 = 0 for µ̂-a.a. γ̂ ∈ ΓZ , as required by condition (i) of Definition 3.1.
(ii) Let us show that, for any measurable function f on Z such that

∫
Z
|f(z)|κ σ̂(dz) <∞

for all 1 ≤ κ ≤ r, we have ∫
ΓZ

|〈f, γ̂〉|n µ̂(dγ̂) <∞. (3.25)

To this end, let us first observe using the definition (3.22) that∫
X

(∫
X

|f(x, ȳ)|κ ηx(dȳ)
)
θ(dx) =

∫
Z

|f(z)|κ σ̂(dz) <∞,

which means that the function

f̄κ(x) :=

∫
X

|f(x, ȳ)|κ ηx(dȳ), x ∈ X, (3.26)

belongs to L1(X, θ). Moreover, by the Lyapunov inequality we have, for q ≥ 1,∫
X

f̄κ(x)
q θ(dx) =

∫
X

(∫
X

|f(x, ȳ)|κ ηx(dȳ)
)q

θ(dx)

≤
∫
X

(∫
X

|f(x, ȳ)|κq ηx(dȳ)
)
θ(dx)

=

∫
Z

|f(z)|κq σ̂(dz) <∞,
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as long as 1 ≤ κq ≤ n. In other words,

f̄κ(x) ∈ Lq(X, θ), 1 ≤ q ≤ n/κ. (3.27)

Now, using the multinomial expansion we can write for an integer n ≥ 1∫
ΓZ

|〈f, γ̂〉|n µ̂(dγ̂) ≤
∫
ΓZ

(∑
z∈γ̂

|f(z)|

)n

µ̂(dγ̂)

=
n∑

m=1

∫
ΓZ

∑
{z1,...,zm}⊂γ̂

φn(z1, . . . , zm) µ̂(dγ̂), (3.28)

where φn(z1, . . . , zm) is a symmetric function given by

φn(z1, . . . , zm) :=
∑

i1,...,im≥1
i1+···+im=n

n!

i1! · · · im!
|f(z1)|i1 · · · |f(zm)|im . (3.29)

By definition of the measure µ̂ (see (2.17) and (2.18)), the integral on the right-hand side of
(3.28) is reduced to∫

ΓX

∑
{x1,...,xm}⊂γ

(∫
Xγ

φn(x1, ȳ1; . . . ;xm, ȳm) ηγ(dγ̄)

)
µ(dγ)

=
∑

i1,...,im≥1
i1+···+im=n

n!

i1! · · · im!

∫
ΓX

∑
{x1,...,xm}⊂γ

m∏
j=1

f̄ij(xj)µ(dγ), (3.30)

where we used the notation (3.26). Furthermore, with the help of the Jensen inequality the
integral on the right-hand side of (3.30) may be estimated from above by∫

ΓX

m∏
j=1

∑
xj∈γ

f̄ij(xj)µ(dγ) =

∫
ΓX

m∏
j=1

〈f̄ij , γ〉µ(dγ)

≤
m∏
j=1

(∫
ΓX

〈f̄ij , γ〉n/ij µ(dγ)

)ij/n
. (3.31)

To summarise, by inspection of the relations (3.28), (3.29), (3.30) and (3.31) we see that
in order to verify (3.25) it suffices to check that, for any k = 1, . . . , n,∫

ΓX

〈f̄k, γ〉n/k µ(dγ) <∞. (3.32)

But we already know (see (3.27)) that f̄k ∈ Lq(X, θ) for 1 ≤ q ≤ n/k. On the other hand,
by the hypothesis of the lemma we have µ ∈ Mn

θ (ΓX) ⊂Mn/k
θ (ΓX) (see Lemma 3.5), and

now the required bound (3.32) follows by the condition (3.21) with r = n/k.
The next condition on the measure σ̄ will play an important part in our analysis.
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Condition 3.4. For any compact set B ⊂ X , it holds that

σ̄(XB) <∞, (3.33)

where the set XB is defined in (3.17).

Remark 3.7. Conditions 3.3 and 3.4 taken together imply Condition 3.1. Indeed, from (3.23)
and (3.33) it follows that ηx(XB) as a function of x ∈ X belongs to the space L1(X, θ).
Thus, according to Definition 3.1 we can apply Condition 3.3 to obtain∑

x∈γ

ηx(XB) ∈ L1(ΓX , µ),

which is nothing else but the condition (3.18). Hence, by Theorem 3.4(a), the measure µcl is
concentrated on configurations without accumulation points.

Denote by NX(ȳ) the “dimension” of vector ȳ ∈ X, that is, the total number of its
components

NX(ȳ) :=
∑
n∈Z+

n1Xn(ȳ), ȳ ∈ X =
⊔

n∈Z+

Xn. (3.34)

Lemma 3.7. Suppose that, in addition to Conditions 3.3 and 3.4, the function NX(ȳ) satis-
fies, for any compact set B ⊂ X , an integrability condition∫

X

∫
XB

NX(ȳ)n ηx(dȳ) θ(dx) <∞, (3.35)

Then the cluster measure µcl belongs to the classMn
θ (ΓX).

Proof. Using the change of measure (3.8), for any φ ∈ C0(X) we obtain∫
ΓX

|〈φ, γ〉|n µcl(dγ) =

∫
ΓZ

|〈φ, q(γ̂)〉|n µ̂(dγ̂) =

∫
ΓZ

|〈q∗φ, γ̂〉|n µ̂(dγ̂),

where
q∗φ(x, ȳ) :=

∑
yi∈ȳ

φ(yi), (x, ȳ) ∈ Z. (3.36)

It suffices to show that q∗φ ∈ Lm(Z, σ̂) for any m = 1, . . . , n. By the elementary inequality
(a1 + · · ·+ ak)

m ≤ km−1(am1 + · · ·+ amk ), from (3.36) we have∫
Z

|q∗φ(z)|m σ̂(dz) ≤
∫
Z

NX(ȳ)m−1
∑
yi∈ȳ

|φ(yi)|m σ̂(dx× dȳ). (3.37)

Recalling that σ̂(dx × dȳ) = ηx(dȳ) θ(dx) and denoting Cφ := supx∈X |φ(x)| < ∞ and
Kφ := suppφ ⊂ X , the right-hand side of (3.37) is dominated by

(Cφ)
m

∫
X

∫
XKφ

NX(ȳ)m ηx(dȳ) θ(dx),

which proves the result.
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3.4. “Translations” and the droplet cluster

Let us describe a general setting that may be used to construct the family of measures
{ηx(dȳ)}x∈X on X via suitable push-forwards (“translations”) of a pattern measure Q de-
fined on some auxiliary space. Examples of application of such an approach will be given in
Section 5 below.

More precisely, let W be a topological space, with a Borel σ-algebra B(W ) generated by
the open subsets of W . Consider the corresponding space (cf. (2.1))

W :=
∞⊔
n=0

W n, (3.38)

and let Q be a probability measure on B(W). For any map ϕ : W → X , define as usual its
diagonal lifting ϕ̄ : W→ X by

W 3 w̄ 7→ ϕ̄(w̄) := (ϕ(wi))wi∈w̄ ∈ X. (3.39)

Like in Condition 3.3, it is assumed that the reference measure θ on X is locally finite.
The main assumption in this section is as follows.

Condition 3.5. Suppose there is a measurable map

W ×X 3 (w, x) 7→ ϕx(w) ∈ X

such that the measures ηx on X are representable as ηx = ϕ̄∗xQ; that is, for all x ∈ X ,

ηx(B̄) = Q(ϕ̄−1
x (B̄)), B̄ ∈ B(X). (3.40)

Remark 3.8. In view of formula (3.40), we shall often consider {ϕx(·)}x∈X as a family of
the maps W 3 w 7→ ϕx(w) ∈ X (indexed by x ∈ X).
Remark 3.9. Fubini’s theorem implies that, for each x ∈ X , the map W 3 w̄ 7→ ϕ̄x(w̄) ∈ X

is measurable and hence ϕ̄−1
x (B̄) is a Borel subset of W, so that the right-hand side of

formula (3.40) is well defined. We also have that, for any fixed Borel set B̄ ⊂ X, the
function ηx(B̄) : X → [0, 1] is measurable.

Definition 3.3. Given a map ϕx(w) as above, the set

DB(w) := {x ∈ X : ϕx(w) ∈ B} ⊂ X, w ∈ W, B ∈ B(X), (3.41)

is called a droplet of shape B anchored at w. Furthermore, the set

D̄B(w̄) :=
{
x ∈ X : ϕ̄x(w̄) ∈ XB

}
⊂ X, w̄ ∈W, (3.42)

is referred to as the droplet cluster (of shape B) anchored at w̄.

Note that the droplet DB(w) is a Borel subset of X for each w ∈ W ; moreover, by
Remark 3.9 the same is true for the droplet cluster D̄B(w̄). On account of the definition
(3.17), formula (3.42) can be rewritten in the form

D̄B(w̄) =
⋃

wi∈w̄
DB(wi), w̄ ∈W. (3.43)

The following identity enlightens the geometric meaning of Condition 3.4 stated above.
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Lemma 3.8. For any Borel set B ⊂ X , there is the equality

σ̄(XB) =

∫
W

θ(D̄B(w̄))Q(dw̄). (3.44)

In particular, σ̄(XB) <∞ if and only if the right-hand side of equation (3.44) is finite.

Proof. According to (3.23), (3.40) and (3.41), we have

σ̄(XB) =

∫
X

∫
XB

ηx(dȳ) θ(dx)

=

∫
X

(∫
W

1XB
(ϕ̄x(w̄))Q(dw̄)

)
θ(dx)

=

∫
W

(∫
X

1D̄B(w̄)(x) θ(dx)

)
Q(dw̄)

=

∫
W

θ(D̄B(w̄))Q(dw̄),

as claimed.
Due to formula (3.44), Condition 3.4 can be rewritten as follows.

Condition 3.4 ′. For any compact set B ∈ B(X), the mean θ-measure of the droplet cluster
D̄B(w̄) ⊂ X is finite, ∫

W

θ(D̄B(w̄))Q(dw̄) <∞. (3.45)

Building on Lemma 3.8, let us give two simple criteria, either of which is sufficient
for Condition 3.4 ′ and hence for Condition 3.4. The first criterion below (Proposition 3.9)
bounds the growth of the droplet volume and also assumes a finite mean number of points in
the cluster, while the second criterion (Proposition 3.10) requires the continuity and separa-
bility of the maps ϕx(w) and puts a restriction on the range of the parent cluster.

Proposition 3.9. Suppose that the following two conditions hold:
(i) (finite range of “translations”) for any compact set B ⊂ X , the map ϕx(w) and the

measure θ satisfy the bound

CB := sup
w∈W

θ(DB(w)) <∞; (3.46)

(ii) (finite mean of the cluster size) the total number of components in w̄ ∈W (cf. (3.34))
satisfies the integrability condition (cf. (3.35))∫

W

NW (w̄)Q(dw̄) <∞. (3.47)

Then Condition 3.4 ′ is satisfied.

Proof. By Lemma 3.8, it suffices to show that the integral on the right-hand side of (3.44) is
finite. From (3.43) and (3.46) we readily obtain

θ(D̄B(w̄)) ≤
∑
wi∈w̄

θ(DB(wi)) ≤ CBNW (w̄), w̄ ∈W, (3.48)
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and by the condition (3.47) it follows∫
W

θ(D̄B(w̄))Q(dw̄) ≤ CB

∫
W

NW (w̄)Q(dw̄) <∞,

as required.
Remark 3.10. The bound (3.46) holds, for example, if for every w ∈ W the map X 3 x 7→
ϕx(w) ∈ X is an isometry and the measure θ is absolutely continuous with respect to the
volume measure on X , with a bounded Radon–Nikodym density.

Proposition 3.10. Suppose that the family of measurable maps ϕx(w) described above sat-
isfies in addition the following two conditions:

(i) (continuity in x) the map ϕx(w) is continuous in x ∈ X; that is, for any open subset
U ⊂ X and each w ∈ W , the set {x ∈ X : ϕx(w) ∈ U} is open in X;

(ii) (separability) for any compact set B ⊂ X and each w ∈ W , there exists a compact
Bw ⊂ X such that for any x /∈ Bw we have ϕx(w) /∈ B.

Assume also that there is a compact set E0 ∈ B(W ) such that Q(E0) = 1, where E0 :=⊔∞
n=0E

n
0 (cf. (3.38)); that is, all components of Q-a.a. vectors w̄ ∈W lie in E0 ⊂ W . Then

Condition 3.4 ′ is satisfied.

Proof. Let B ⊂ X be an arbitrary compact set. Using formula (3.43) and the definition
(3.41), for any w̄ ∈ E0 we have the inclusion

D̄B(w̄) =
⋃

wi∈w̄
DB(wi) ⊂

⋃
w∈E0

DB(w)

≡ {x : ϕx(E0) ∩B 6= ∅} =: D̃B ⊂ X. (3.49)

To complete the proof, it suffices to show that θ(D̃B) <∞, since then, by Lemma 3.8, it will
follow

σ̄(XB) =

∫
W

θ(D̄B(w̄))Q(dw̄) =

∫
E0

θ(D̄B(w̄))Q(dw̄)

≤ θ(D̃B)

∫
E0

Q(dw̄) = θ(D̃B) <∞.

To this end, for each w ∈ E0 consider the set

Aw := {w′ ∈ E0 : ϕx(w
′) /∈ B for all x /∈ Bw} ⊂ E0, (3.50)

where Bw ⊂ X is a compact defined in property (ii); in particular, it follows that w ∈ Aw
and hence E0 ⊂

⋃
w∈W Aw. Furthermore, using property (i) it can be shown that each Aw

is an open set in the topology induced from W by restriction to E0 (i.e., with open sets in
E0 defined as U ∩ E0 for all U open in W ). Since E0 is compact, there is a finite subcover;
that is, one can choose finitely many points w1, . . . , wm ∈ E0 such that E0 ⊂

⋃m
i=1Awi

.
Then, using (3.50), it is easy to see that for any x outside the set B∗ :=

⋃m
i=1Bwi

we have
ϕx(w) /∈ B for all w ∈ E0. According to the definition (3.49) of the set D̃B, this implies
that D̃B ⊂ B∗, hence θ(D̃B) ≤ θ(B∗) <∞. The proof is complete.

The next statement gives a criterion sufficient for Condition 3.2 (in turn, implying the
simplicity of the cluster measure µcl, according to Theorem 3.4).
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Proposition 3.11. Let µcl be a cluster measure on the generalised configuration space Γ ]
X .

Assume that the background measure µ of cluster centres has a locally bounded second-order
correlation function κ2

µ (see Appendix B). Assume also that

θ
(
D̄{x}(w̄)

)
= 0 for θ ⊗Q-a.a. (x, w̄) ∈ X ×W. (3.51)

Then Condition 3.2 is satisfied and hence µcl-a.a. configurations γ ∈ Γ ]
X are simple.

Proof. It suffices to prove that, for any compact set Λ ⊂ X , there are µcl-a.s. no cross-ties
between the clusters whose centres belong to Λ. In view of the projection construction of the
cluster measure µcl (see (3.8)), this means that if AΛ is the set of generalised configurations
γ̂ ∈ Γ ]

Z , each with at least two points z = (x, ȳx), z′ = (x′, ȳx′) (z, z′ ∈ γ̂, z 6= z′) such
that {x, x′} ⊂ γ ∩ Λ and p(ȳx) ∩ p(ȳx′) 6= ∅, then we must show that µ̂(AΛ) = 0. Note
that since the ground configuration γ ∈ Γ ]

X may have multiple points, the points x = px(z),
x′ = pX(z′) in the pair {x, x′} ⊂ γ are allowed to coincide.

Recalling the skew-product definition (2.17) of µ̂, we see by inspection of all pairs
{x, x′} ⊂ γ := pX(γ̂) that

µ̂(AΛ) ≤
∫
Γ ]

X

∑
{x,x′}⊂γ

1Λ2(x, x′) f(x, x′)µ(dγ), (3.52)

where

f(x, x′) := ηx ⊗ ηx′(DX) =

∫
X2

1DX
(ȳ, ȳ′) ηx(dȳ) ηx′(dȳ

′) (3.53)

and the set DX ∈ B(X2) is defined by

DX := {(ȳ, ȳ′) ∈ X2 : p(ȳ) ∩ p(ȳ′) 6= ∅}. (3.54)

By the definition (B.1) of correlation functions, the right-hand side of (3.52) is reduced to

1

2!

∫
Λ2

f(x, x′)κ2
µ(x, x

′) θ(dx) θ(dx′) ≤ const

∫
Λ2

f(x, x′) θ(dx) θ(dx′), (3.55)

since, by assumption, κ2
µ is bounded on Λ2. Furthermore, substituting (3.53) and changing

the variables ȳ = ϕx(w̄), ȳ′ = ϕx′(w̄
′) (see (3.40)), the integral on the right-hand side of

(3.55) is rewritten as∫
Λ2

(∫
X2

1DX
(ϕx(w̄), ϕx′(w̄)′)Q⊗2(dw̄ × dw̄′)

)
θ⊗2(dx× dx′)

=

∫
X2

(∫
Λ2

1DX
(ϕx(w̄), ϕx′(w̄)′) θ⊗2(dx× dx′)

)
Q⊗2(dw̄ × dw̄′)

=

∫
X2

θ⊗2
(
BΛ(w̄, w̄′)

)
Q⊗2(dw̄ × dw̄′),

where the set BΛ(w̄, w̄′) ⊂ Λ2 is given by (cf. (3.54))

BΛ(w̄, w̄′) := {(x, x′) ∈ Λ2 : ϕx(w) = ϕx′(w
′) for some w ∈ w̄, w′ ∈ w̄′}.
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It remains to note that

θ⊗2
(
BΛ(w̄, w̄′)

)
=

∫
Λ

θ
(⋃

wi∈w̄
⋃
w′j∈w̄′

{x′ : ϕx′(w′
j) = ϕx(wi)}

)
θ(dx)

≤
∑
wi∈w̄

∫
Λ

θ
(⋃

w′j∈w̄′
{x′ : ϕx′(w′

j) = ϕx(wi)}
)
θ(dx)

=
∑
wi∈w̄

∫
Λ

θ
(
D̄{ϕx(wi)}(w̄

′)
)
θ(dx) = 0 (Q⊗2-a.s.),

since, by the assumption (3.51), θ
(
D̄{ϕx(w)}(w̄

′)
)

= 0 for θ-a.a. x ∈ Λ, Q-a.a. w̄ ∈ W and
each wi ∈ w̄, and, moreover, w̄ ∈W contains at most countably many coordinates. Hence,
the right-hand side of (3.55) vanishes, and due to the estimates (3.52) and (3.55) the claim
of the proposition follows.

It is easy to give simple sufficient criteria for the condition (3.51) of Proposition 3.11.
The first criterion below is set out in terms of the reference measure θ, whereas the second
one exploits the in-cluster parent distribution Q.

Proposition 3.12. Assume that for each x ∈ X , the equation ϕy(w) = x has at most one
solution y = y(x;w) for every w ∈ w̄ and Q-a.a. w̄ ∈ W. Furthermore, let the measure θ
be non-atomic, that is, θ{y} = 0 for each y ∈ X . Then the condition (3.51) is satisfied.

Proof. Using formula (3.43) and the definition (3.41), we obtain

0 ≤ θ
(
D̄{x}(w̄)

)
≤
∑
wi∈w̄

θ
(
D{x}(wi)

)
=
∑
wi∈w̄

θ{y ∈ X : ϕy(wi) = x}

=
∑
wi∈w̄

θ{y(x;wi)} = 0,

since the measure θ is non-atomic.

Proposition 3.13. Suppose that the in-cluster configurations a.s. have no fixed points, that
is, for any x ∈ X and θ-a.a. y ∈ X ,

Q
{
w̄ ∈W : ∃wi ∈ w̄ such that ϕy(wi) = x

}
= 0. (3.56)

Then the condition (3.51) follows.

Proof. Observe that the identity (3.44) together with the change of measure (3.40) yields,
for each x ∈ X ,∫

W

θ
(
D̄{x}(w̄)

)
Q(dw̄) =

∫
X

(∫
X{x}

ηx′(dȳ)

)
θ(dx′)

=

∫
X

Q
(
ϕ̄−1
x′ (X{x})

)
θ(dx′)

=

∫
X

Q{w̄ ∈W : ϕx′(wi) = x for some wi ∈ w̄} θ(dx′) = 0,

according to (3.56). Thus, the proof is complete.
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4. Quasi-invariance and integration by parts

From now on, we restrict ourselves to the case where µcl-a.a. configurations γ ∈ Γ ]
X are

locally finite. Let us also assume that X is a Riemannian manifold (with a fixed Riemannian
structure). Our aim in this section is to prove the quasi-invariance of the measure µcl with
respect to the action of compactly supported diffeomorphisms of X (Section 4.2), and to
establish an IBP formula (Section 4.3). We begin in Section 4.1 with a brief description of
some convenient “manifold-like” concepts and notation first introduced in [3] (see also [10,
§4.1]), which furnish a suitable framework for analysis on configuration spaces.

4.1. Differentiable functions on configuration spaces

Let TxX be the tangent space of X at point x ∈ X , with the corresponding (canonical) inner
product denoted by a “fat” dot · . The gradient on X is denoted by ∇. Following [3], we
define the “tangent space” of the configuration space ΓX at γ ∈ ΓX as the Hilbert space
TγΓX := L2(X → TX; dγ), or equivalently TγΓX =

⊕
x∈γ TxX . The scalar product in

TγΓX is denoted by 〈·, ·〉γ , with the corresponding norm |·|γ . A vector field V over ΓX is a
map ΓX 3 γ 7→ V (γ) = (V (γ)x)x∈γ ∈ TγΓX . Thus, for vector fields V1, V2 over ΓX we
have

〈V1(γ), V2(γ)〉γ =
∑
x∈γ

V1(γ)x ·V2(γ)x, γ ∈ ΓX .

For γ ∈ ΓX and x ∈ γ, denote by Oγ,x an arbitrary open neighbourhood of x in X
such that Oγ,x ∩ γ = {x}. For any measurable function F : ΓX → R, define the function
Fx(γ, ·) : Oγ,x → R by Fx(γ, y) := F ((γ \ {x}) ∪ {y}), and set

∇xF (γ) := ∇Fx(γ, y)|y=x , x ∈ X,

provided that Fx(γ, ·) is differentiable at x.
Recall that for a function φ : X → R its support suppφ is defined as the closure of the

set {x ∈ X : φ(x) 6= 0}. Denote by FC(ΓX) the class of functions on ΓX of the form

F (γ) = f(〈φ1, γ〉, . . . , 〈φk, γ〉), γ ∈ ΓX , (4.1)

where k ∈ N, f ∈ C∞
b (Rk) (:= the set of C∞-functions on Rk globally bounded together

with all their derivatives), and φ1, . . . , φk ∈ C∞
0 (X) (:= the set of C∞-functions on X with

compact support). Each F ∈ FC(ΓX) is local, that is, there is a compact B ⊂ X (e.g.,
B = ∪kj=1 suppφj) such that F (γ) = F (γ ∩B) for all γ ∈ ΓX . Thus, for a fixed γ there are
finitely many non-zero derivatives ∇xF (γ).

For a function F ∈ FC(ΓX) its Γ -gradient ∇ΓF is defined as

∇ΓF (γ) := (∇xF (γ))x∈γ ∈ TγΓX , γ ∈ ΓX , (4.2)

so the directional derivative of F along a vector field V is given by

∇Γ
V F (γ) := 〈∇ΓF (γ), V (γ)〉γ =

∑
x∈γ

∇xF (γ) ·V (γ)x, γ ∈ ΓX .

Note that the sum here contains only finitely many non-zero terms.
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Further, let FV(ΓX) be the class of cylinder vector fields V on ΓX of the form

V (γ)x =
k∑
i=1

Gi(γ)vi(x) ∈ TxX, x ∈ X, (4.3)

where Gi ∈ FC(ΓX) and vi ∈ Vect0(X) (:= the space of compactly supported C∞-smooth
vector fields on X), i = 1, . . . , k (k ∈ N). Any vector field v ∈ Vect0(X) generates a
constant vector field V on ΓX defined by V (γ)x := v(x). We shall preserve the notation v
for it. Thus,

∇Γ
v F (γ) =

∑
x∈γ

∇xF (γ) · v(x), γ ∈ ΓX . (4.4)

The approach based on “lifting” the differential structure from the underlying space X
to the configuration space ΓX as described above can also be applied to the spaces X =⊔∞
n=0X

n, Z = X × X and ΓX, ΓZ , respectively. In such cases, we will use the analogous
notation as above without further explanation.

4.2. Quasi-invariance

In this section, we discuss the property of quasi-invariance of the measure µcl with respect
to diffeomorphisms of X . Let us start by describing how diffeomorphisms of X act on
configuration spaces. For a measurable map ϕ : X → X , its support suppϕ is defined as
the closure of the set {x ∈ X : ϕ(x) 6= x}. Let Diff0(X) be the group of diffeomorphisms
of X with compact support. For any ϕ ∈ Diff0(X), consider the corresponding “diagonal”
diffeomorphism ϕ̄ : X→ X acting on each constituent space Xn (n ∈ Z+) as

Xn 3 ȳ = (y1, . . . , yn) 7→ ϕ̄(ȳ) := (ϕ(y1), . . . , ϕ(yn)) ∈ Xn. (4.5)

Finally, we introduce a special class of diffeomorphisms ϕ̂ on Z acting only in the ȳ-
coordinate,

ϕ̂(z) := (x, ϕ̄(ȳ)), z = (x, ȳ) ∈ Z. (4.6)

Remark 4.1. Despite Kϕ := suppϕ is compact in X , the support of the diffeomorphism ϕ̂
(again defined as the closure of the set {z ∈ Z : ϕ̂(z) 6= z}) is given by supp ϕ̂ = X ×XKϕ

(see (3.17)), where XKϕ is not compact in the topology of X (cf. Remark 2.1).
In a standard fashion, the maps ϕ, ϕ̄ and ϕ̂ can be lifted to measurable “diagonal” trans-

formations (denoted by the same letters) of the configuration spaces ΓX , ΓX and ΓZ , respec-
tively,

ΓX 3 γ 7→ ϕ(γ) :={ϕ(x), x ∈ γ} ∈ ΓX , (4.7)

ΓX 3 γ̄ 7→ ϕ̄(γ̄) :={ϕ̄(ȳ), ȳ ∈ γ̄} ∈ ΓX, (4.8)

ΓZ 3 γ̂ 7→ ϕ̂(γ̂) :={ϕ̂(z), z ∈ γ̂} ∈ ΓZ . (4.9)

The following lemma shows that the operator q commutes with the action of the diffeo-
morphisms (4.7) and (4.9).

Lemma 4.1. For any diffeomorphism ϕ ∈ Diff0(X) and the corresponding diffeomorphism
ϕ̂, it holds

ϕ ◦ q = q ◦ ϕ̂. (4.10)
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Proof. The statement follows from the definition (3.2) of the map q in view of the structure
of diffeomorphisms ϕ and ϕ̂ (see (4.6), (4.7) and (4.9)).

From now on, let us assume that, for a.a. x ∈ X , the measure ηx is absolutely continuous
with respect to the Riemannian volume dȳ on X; moreover, the corresponding density hx =
dηx/dȳ is such that for each n ∈ Z+ either hx(ȳ) > 0 for a.a. (x, ȳ) ∈ X×Xn or hx(ȳ) = 0
for a.a. (x, ȳ) ∈ X ×Xn.

This implies that the measure ηx is quasi-invariant with respect to the action of transfor-
mations ϕ̄ : X→ X (ϕ ∈ Diff0(X)), that is, the measure ϕ̄∗ηx is absolutely continuous with
respect to ηx with the Radon–Nikodym density

ρϕ̄η (x, ȳ) :=
d(ϕ̄∗ηx)

dηx
(ȳ) =

hx(ϕ̄
−1(ȳ))

hx(ȳ)
Jϕ̄(ȳ)

−1 (4.11)

(we set ρϕ̄η (x, ȳ) = 1 if hx(ȳ) = 0 or hx(ϕ̄−1(ȳ)) = 0). Here Jϕ̄(ȳ) is the Jacobian de-
terminant of the diffeomorphism ϕ̄; due to the diagonal structure of ϕ̄ (see (4.5)) we have
Jϕ̄(ȳ) =

∏
yi∈ȳ Jϕ(yi), where Jϕ(y) is the Jacobian determinant of ϕ.

Theorem 4.2. The measure µ̂ is quasi-invariant with respect to the action of ϕ̂ on ΓZ defined
by formula (4.6), with the Radon–Nikodym density Rϕ̂

µ̂ = d(ϕ̂∗µ̂)/dµ̂ given by

Rϕ̂
µ̂(γ̂) =

∏
z∈γ̂

ρϕ̄η (z), γ̂ ∈ ΓZ . (4.12)

Moreover, Rϕ̂
µ̂ ∈ L1(ΓZ , µ̂).

Proof. First of all, note that ρϕ(z) = 1 for any z = (x, ȳ) /∈ supp ϕ̂ = X × XB =: ZKϕ ,
where Kϕ = suppϕ (see Remark 4.1), and σ̂(ZKϕ) = σ̄(XKϕ) < ∞ by Condition 3.4
(see (3.22)). Therefore, γ̂(ZKϕ) <∞ for µ̂-a.a. configurations γ̂ ∈ ΓZ , hence the product in
(4.12) contains only finitely many terms different from 1 and so the function Rϕ̂

µ̂(γ̂) is well
defined. Moreover, it satisfies the “localisation” equality

Rϕ̂
µ̂(γ̂) = Rϕ̂

µ̂(γ̂ ∩ ZKϕ) for µ̂-a.a. γ̂ ∈ ΓZ . (4.13)

Now, using the definitions (4.7), (4.8) and (2.16), we obtain∫
ΓZ

F (γ̂) ϕ̂∗µ̂(dγ̂) =

∫
ΓZ

F (ϕ̂(γ̂)) µ̂(dγ̂)

=

∫
ΓX

(∫
Xγ

F (γ, ϕ̄(ȳγ)) ηγ(dȳγ)

)
µ(dγ)

=

∫
ΓX

(∫
Xγ

F (γ, ϕ̄(ȳγ))
⊗
x∈γ

ηx(dȳx)

)
µ(dγ)

=

∫
ΓX

(∫
Xγ

F (γ, ȳγ)
⊗
x∈γ

ϕ̄∗ηx(dȳx)

)
µ(dγ). (4.14)

Furthermore, by the quasi-invariance property of the measure ηx (see formula (4.11) for the
density), the right-hand side of (4.14) is represented in the form∫

ΓX

(∫
Xγ

F (γ, ȳγ)
∏
x∈γ

ρϕ̄η (x, ȳx) η
γ(dȳγ)

)
µ(dγ) =

∫
ΓZ

F (γ̂)Rϕ̂
µ̂(γ̂) µ̂(dγ̂),
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which proves the quasi-invariance of µ̂. In particular, for F ≡ 1 this yields
∫
ΓZ
Rϕ̂
µ̂(γ̂) µ̂(dγ̂)

= 1, and hence Rϕ̂
µ̂ ∈ L1(ΓZ , µ̂), as claimed.

Let Iq : L∞(ΓX , µcl)→ L∞(ΓZ , µ̂) be the isometry defined by the map q (see (3.2)),

(IqF )(γ̂) := F ◦ q(γ̂), γ̂ ∈ ΓZ . (4.15)

The adjoint operator I∗q is a bounded operator on the corresponding dual spaces,

I∗q : L∞(ΓZ , µ̂)′ → L∞(ΓX , µcl)
′. (4.16)

Lemma 4.3. The operator I∗q defined by (4.16) can be restricted to the operator

I∗q : L1(ΓZ , µ̂)→ L1(ΓX , µcl). (4.17)

Proof. It is known (see [24]) that, for any σ-finite measure space (M,µ), the corresponding
spaceL1(M,µ) can be identified with the subspace V of the dual spaceL∞(M,µ)′ consisting
of all linear functionals on L∞(M,µ) continuous with respect to the bounded convergence
in L∞(M,µ). That is, ` ∈ V if and only if `(ψn) → 0 for any ψn ∈ L∞(M,µ) such
that |ψn| ≤ 1 and ψn(x) → 0 as n → ∞ for µ-a.a. x ∈ M . Hence, to prove the lemma it
suffices to show that, for any F ∈ L1(ΓZ , µ̂), the functional I∗qF ∈ L∞(ΓZ , µ̂)′ is continuous
with respect to bounded convergence in L∞(ΓZ , µ̂). To this end, for any sequence (ψn) in
L∞(ΓX , µcl) such that |ψn| ≤ 1 and ψn(γ) → 0 for µcl-a.a. γ ∈ ΓX , we have to prove that
I∗qF (ψn)→ 0.

Let us first show that Iqψn(γ̂) ≡ ψn(q(γ̂))→ 0 for µ̂-a.a. γ̂ ∈ ΓZ . Set

Aψ :={γ ∈ ΓX : ψn(γ)→ 0} ∈ B(ΓX),

Âψ :={γ̂ ∈ ΓZ : ψn(q(γ̂))→ 0} ∈ B(ΓZ),

and note that Âψ = q−1(Aψ); then, recalling the relation (3.8), we get

µ̂(Âψ) = µ̂
(
q−1(Aψ)

)
= µcl(Aψ) = 1,

as claimed. Now, by the dominated convergence theorem this implies

I∗qF (ψn) =

∫
ΓZ

F (γ̂) Iqψn(γ̂) µ̂(dγ̂)→ 0,

and the proof is complete.

Corollary 4.4. For any measurable functions F ∈ L∞(ΓX , µcl) and G ∈ L1(ΓZ , µ̂), we
have the identity ∫

ΓZ

G(γ̂) IqF (γ̂) µ̂(dγ̂) =

∫
ΓX

F (γ) I∗qG(γ)µcl(dγ). (4.18)

Taking advantage of Theorem 4.2 and applying the projection construction, we obtain
our main result in this section.

Theorem 4.5. The cluster measure µcl is quasi-invariant with respect to the action of the
diffeomorphism group Diff0(X) on ΓX . The corresponding Radon–Nikodym density is given
by Rϕ

µcl
= I∗qR

ϕ̂
µ̂ ∈ L1(ΓX , µcl).
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Proof. Note that, due to (3.8) and (4.10),

µcl ◦ ϕ−1 = µ̂ ◦ q−1 ◦ ϕ−1 = µ̂ ◦ ϕ̂−1 ◦ q−1.

That is, ϕ∗µcl = µcl ◦ ϕ−1 is a push-forward of the measure ϕ̂∗µ̂ = µ̂ ◦ ϕ̂−1 under the map
q, that is, ϕ∗µcl = q∗ϕ̂∗µ̂. In particular, if ϕ̂∗µ̂ is absolutely continuous with respect to µ̂
then so is ϕ∗µcl with respect to µcl. Moreover, by formula (3.8) and Theorem 4.2, for any
F ∈ L∞(ΓX , µcl) we have∫

ΓX

F (γ)ϕ∗µcl(dγ) =

∫
ΓZ

IqF (γ̂) ϕ̂∗µ̂(dγ̂) =

∫
ΓZ

IqF (γ̂)Rϕ̂
µ̂(γ̂) µ̂(dγ̂). (4.19)

By Lemma 4.3, the operator I∗q acts from L1(ΓZ , µ̂) to L1(ΓX , µcl). Therefore, again using
(3.8) the right-hand side of (4.19) can be rewritten as∫

ΓX

F (γ)(I∗qR
ϕ̂
µ̂)(γ)µcl(dγ),

which completes the proof.
Remark 4.2. Cluster measure µcl on the configuration space ΓX can be used to construct a
unitary representation U of the diffeomorphism group Diff0(X) by operators in L2(ΓX , µcl),
given by the formula

UϕF (γ) =
√
Rϕ
µcl(γ)F (ϕ−1(γ)), F ∈ L2(ΓX , µcl). (4.20)

Such representations, which can be defined for arbitrary quasi-invariant measures on ΓX ,
play a significant role in the representation theory of the group Diff0(X) [20, 31] and quan-
tum field theory [17, 18]. An important question is whether the representation (4.20) is
irreducible. According to [31], this is equivalent to the Diff0(X)-ergodicity of the measure
µcl, which in our case is equivalent to the ergodicity of the measure µ̂ with respect to the
group of transformations ϕ̂ (ϕ ∈ Diff0(X)).

4.3. Integration-by-parts (IBP) formulae

In this section, we assume that the conditions of Lemma 3.7 are satisfied with n = 1. Thus,
the measures µ, µ̂ and µcl belong to the corresponding M1-classes. It is also assumed, as
before, that for each x ∈ X the measure ηx is absolutely continuous with respect to the
Riemannian volume dȳ on X, with the Radon–Nikodym density hx(ȳ).

4.3.1. Integration by parts for the cluster distributions ηx. Let v ∈ Vect0(X) (:= the
space of compactly supported smooth vector fields on X), and define a “vertical” vector
field v̂ on Z by the formula

v̂(x, ȳ) := (v(yi))yi∈ȳ, ȳ = (yi) ∈ X. (4.21)

Observe that if the density hx(ȳ) is differentiable (dȳ-a.e.) then the measure ηx satisfies the
IBP formula (see, e.g., [6, §1.3, §2.4]; cf. [12, §5.1.3, p. 207])∫

X

∇v̂f(ȳ) ηx(dȳ) = −
∫

X

f(ȳ) β v̂η(x, ȳ) ηx(dȳ), f ∈ C∞
0 (X), (4.22)
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where ∇v̂ is the derivative along the vector field v̂ and

β v̂η(x, ȳ) := (βη(x, ȳ), v̂(x, ȳ))TȳX + div v̂(x, ȳ) (4.23)

is the logarithmic derivative of ηx(dȳ) = hx(ȳ)dȳ along v̂, expressed in terms of the vector
logarithmic derivative

βη(x, ȳ) :=
∇hx(ȳ)
hx(ȳ)

∈ TȳX, (x, ȳ) ∈ X × X. (4.24)

Denote for brevity
‖ȳ‖1 :=

∑
yi∈ȳ

|yi|, ȳ ∈ X.

Lemma 4.6. Suppose that
∫
ZB
‖βη(z)‖n1 σ̂(dz) < ∞ for any compact B ⊂ X , and assume

that the condition (3.35) is satisfied. Let v̂ be a vector field on Z defined by (4.21) with
v ∈ Vect0(X). Then β v̂η ∈ Ln(Z, σ̂).

Proof. To show that β v̂η ∈ Ln(Z, σ̂), it suffices to check that each of the two terms on the
right-hand side of (4.23) belongs to Ln(Z, σ̂). Setting bv := supx∈X |v(x)| < ∞ and noting
that Kv := supp v is a compact in X , we have∫

Z

|(βη(z), v̂(z))|n σ̂(dz) ≤
∫
X

∫
XKv

(∑
yi∈ȳ

|βη(x, ȳ)i| · |v(yi)|

)n
ηx(dȳ) θ(dx)

≤ (bv)
n

∫
X

∫
XKv

(∑
yi∈ȳ

|βη(x, ȳ)i|

)n
ηx(dȳ) θ(dx)

= (bv)
n

∫
ZKv

‖βη(z)‖n1 σ̂(dz) <∞, (4.25)

by the first hypothesis of the theorem. Similarly, denoting dv := supx∈X | div v(x)| < ∞,
we obtain∫

Z

|div v̂(x, ȳ)|n σ̂(dx× dȳ) =

∫
Z

(∑
yi∈ȳ

|div v(yi)|

)n
ηx(dȳ) θ(dx)

≤ (dv)
n

∫
X

∫
XKv

NX(ȳ)n ηx(dȳ) θ(dx) <∞, (4.26)

according to the assumption (3.35). As a result, combining the bounds (4.25) and (4.26), we
see that β v̂η ∈ Ln(Z, σ̂), as claimed.

Let us define the spaceH1,n
loc (X) (n ≥ 1) as the set of functions f ∈ Ln(X, dȳ) satisfying,

for any compact B ⊂ X , the condition

κBn (f) :=

∫
X

‖∇f(ȳ)‖n1 dȳ ≡
∫

XB

(∑
yi∈ȳ

|∇yi
f(ȳ)|

)n
dȳ <∞. (4.27)

Due to the elementary inequality (|a|+ |b|)n ≤ 2n−1
(
|a|n + |b|n

)
, H1,n(X) is a linear space.

The integrability condition in Lemma 4.6 on the vector logarithmic derivative βη(z) can
be characterised as follows.
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Lemma 4.7. Assume that, for some integer n ≥ 1, h1/n
x ∈ H1,n

loc (X) for θ-a.a. x ∈ X . Then∫
ZB
‖βη(z)‖n1 σZ(dz) <∞ if and only if for any compact B ⊂ X∫

X

κBn (h1/n
x ) θ(dx) <∞. (4.28)

Proof. Substituting formula (4.24), it is easy to see that∫
ZB

‖βη(z)‖n1 σ̂(dz) =

∫
X

∫
XB

(∑
yi∈ȳ

|∇yi
hx(ȳ)|

hx(ȳ)

)n
hx(ȳ) dȳ θ(dx)

=

∫
X

∫
XB

(∑
yi∈ȳ

|∇yi
hx(ȳ)|

hx(ȳ)1−1/n

)n
dȳ θ(dx)

= nn
∫
X

∫
XB

(∑
yi∈ȳ

∣∣∇yi

(
hx(ȳ)

1/n
)∣∣)n

dȳ θ(dx)

= nn
∫
X

κBn (h1/n
x ) θ(dx) <∞,

according to (4.27) and (4.28).
From now on, we assume the following

Condition 4.1. For any compact B ⊂ X , the vector logarithmic derivative βη defined in
(4.24) satisfies the integral bound∫

ZB

‖βη(z)‖1 σ̂(dz) <∞.

4.3.2. Integration by parts for ηx as a push-forward measure. Using the general IBP
framework outlined in Appendix B, and in particular picking up on Remark C.1, let us con-
sider the special case with W := W ≡

⊔∞
n=1W

n, where W is a Riemannian manifold,
Y := X ≡

⊔∞
n=1X

n and φ := ϕ̄x, where the maps ϕ̄x : W → X (x ∈ X) are described in
Section 3.4. We assume that ϕx ∈ C2

b (W,X) uniformly in x ∈ X (i.e., with global constants
bounding the first two derivatives, dϕx(w̄) and d2ϕx(w̄)). Furthermore, given a probability
measure Q on W, consider the family of measures {ηx}x∈X on X defined by (cf. (3.40))

ηx := ϕ̄∗xQ, x ∈ X. (4.29)

We need the following two integrability conditions on the vector logarithmic derivative
βQ(w̄) and the number of components NW (w̄) in a (random) vector w̄ ∈W, both involving
the θ-measure of the droplet cluster D̄B(w̄) for any compact B ⊂ X (see (3.42)),∫

W

‖βQ(w̄)‖n1 θ(D̄B(w̄))Q(dw̄) <∞, (4.30)∫
W

NW (w̄)n θ(D̄B(w̄))Q(dw̄) <∞. (4.31)

We can now prove the following result.
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Theorem 4.8. Suppose that the conditions (4.30) and (4.31) hold for some n ≥ 1. Then the
following statements are true:

(a) The function NX(ȳ) satisfies the integrability condition (3.35), that is, for any com-
pact set B ⊂ X ∫

X

∫
XB

NX(ȳ)n ηx(dȳ) θ(dx) <∞. (4.32)

(b) For any v ∈ Vect0(X), the measure ηx satisfies the IBP formula (4.23) with the
corresponding logarithmic derivative β v̂η ∈ Ln(Z, σ̂).

Proof. (a) By the change of measure (4.29), we obtain (cf. the proof of Lemma 3.8)∫
X

∫
XB

NX(ȳ)n ηx(dȳ) θ(dx) =

∫
X

∫
W

1XB
(ϕ̄x(w̄))NW (w̄)nQ(dw̄) θ(dx)

=

∫
W

NW (w̄)n
(∫

X

1XB
(ϕ̄x(w̄)) θ(dx)

)
Q(dw̄)

=

∫
W

NW (w̄)n θ(D̄B(w̄))Q(dw̄) <∞,

according to the condition (4.31), and so the first part of the theorem is proved.
(b) Recall that the vector field v̂ on Z = X × X is defined by

v̂(x, ȳ) := (v(yi))yi∈ȳ , ȳ = (yi) ∈ X. (4.33)

Then, owing to the component-wise structure of the map ϕ̄x (cf. (3.39)), we have

(Iϕ̄x v̂)(x, w̄) =
(
(Iϕxv)(wi)

)
wi∈w̄

, w̄ = (wi) ∈W.

It is clear that v̂ ∈ Vect1
b(X). Moreover, Iϕxv ∈ Vect1

b(W ), Iϕ̄x v̂ ∈ Vect1
b(W) uniformly in

x ∈ X , which implies that

C1 := sup
x∈X,w∈W

|Iϕxv(w)| <∞, (4.34)

C2 := sup
x∈X,w∈W

|div Iϕxv(w)| <∞. (4.35)

By Theorem C.1 and Remark C.1 in Appendix C, the measure ηx = ϕ̄∗xQ satisfies the IBP
formula (4.23) with the logarithmic derivative

β v̂η(x, ȳ) =
(
I∗ϕx

β
Iϕ̄x v̂
Q

)
(ȳ), x ∈ X, ȳ ∈ X, (4.36)

where

β
Iϕ̄x v̂
Q (x, w̄) =

(
βQ(w̄), Iϕ̄x v̂(w̄)

)
Tw̄W

+ div Iϕ̄x v̂(w̄)

=
∑
wi∈w̄

(
βQ(w̄)i, Iϕxv(wi)

)
TwiW

+
∑
wi∈w̄

div Iϕxv(wi).

Let us show that β v̂η ∈ Ln(Z, σ̂). Recall that the map I∗ϕx
: Ln(W, Q)→ Ln(X, ηx) is an

isometry. Thus, according to (4.36) and after the change of measure (4.29), we have∫
Z

∣∣β v̂η(z)∣∣n σ̂(dz) ≤
∫
X

∫
X

∥∥β v̂η(x, ȳ)∥∥n1 σ̂(dx× dȳ)

=

∫
X

∫
W

∥∥βIϕ̄x v̂
Q (x, w̄)

∥∥n
1
Q(dw̄) θ(dx).
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Observe that supp Iϕ̄x v̂ = ϕ̄−1
x (XKv), where Kv := supp v. Then, similarly to the proof of

Lemma 4.7, we obtain∫
X

∫
W

∣∣(βQ(w̄), Iϕ̄x v̂(w̄)
)
Tw̄W

∣∣nQ(dw̄) θ(dx)

≤
∫
X

∫
ϕ̄−1

x (XKv )

(∑
wi∈w̄

|βQ(w̄)i| · |Iϕxv(wi)|

)n

Q(dw̄) θ(dx)

≤ sup
x∈X,w∈W

|Iϕxv(w)|n
∫

W

(∑
wi∈w̄

|βQ(w̄)i|

)n(∫
X

1XKv
(ϕ̄x(w̄)) θ(dx)

)
Q(dw̄)

= Cn
1

∫
W

‖βQ(w̄)‖n1 θ(D̄Kv(w̄))Q(dw̄) <∞,

according to the condition (4.30). Similarly, using the bound (4.35) and making the change
of measure (4.29), we get∫

X

∫
W

| div Iϕ̄x v̂(w̄)|nQ(dw̄) θ(dx)

≤
∫
X

∫
W

(∑
wi∈w̄

| div Iϕxv(wi)|

)n

Q(dw̄) θ(dx)

≤ sup
x∈X,w∈W

| div Iϕxv(w)|n
∫
X

∫
ϕ̄−1

x (XKv )

NW (w̄)nQ(dw̄) θ(dx)

= Cn
2

∫
X

∫
XKv

NX(ȳ)n ηx(dȳ) θ(dx) <∞,

according to part (a). Thus, part (b) of the theorem is proved.
Remark 4.3. Recalling a simple bound (3.48) for the θ-measure of the droplet cluster D̄B(w̄),
we observe that, under the condition (3.46) (see Proposition 3.9), conditions (4.30) and (4.31)
of Theorem 4.8 specialise, respectively, as follows,∫

W

‖βQ(w̄)‖n1 NW (w̄)Q(dw̄) <∞,
∫

W

NW (w̄)n+1Q(dw̄) <∞.

Similarly, the assumptions of Proposition 3.10 imply that supw̄∈W θ(D̄B(w̄)) < ∞ (see the
proof), so that conditions (4.30) and (4.31) transcribe, respectively, as∫

W

‖βQ(w̄)‖n1 Q(dw̄) <∞,
∫

W

NW (w̄)nQ(dw̄) <∞.

4.3.3. Integration by parts for the cluster measure µcl. Denote by FCσ̂(ΓZ) the class of
functions on ΓZ of the form

F (γ̂) = f(〈φ1, γ̂〉, . . . , 〈φk, γ̂〉), γ̂ ∈ ΓZ , (4.37)

where k ∈ N, f ∈ C∞
b (Rk) and φ1, . . . , φk ∈ C∞

σ̂ (Z) := the set of C∞-functions on Z with
σ̂-finite support (cf. (4.1)).

For any F ∈ FC(ΓX) we introduce the function F̂ = IqF : ΓZ → R. It follows from
the condition (3.33) that

F̂ ∈ FCσ̂(ΓZ). (4.38)
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Theorem 4.9. The measure µ̂ satisfies the following IBP formula∫
ΓZ

∇Γ
v̂F (γ̂) µ̂(dγ̂) = −

∫
ΓZ

F (γ̂)Bv̂
µ̂(γ̂) µ̂(dγ̂), (4.39)

where
Bv̂
µ̂(γ̂) :=

∑
(x,ȳ)∈γ̂

β v̂η(x, ȳ) ∈ L1(ΓZ , µ̂). (4.40)

Proof. Let us first observe that the integral on the left-hand side of (4.39) is well defined
because µ̂ ∈M1

θ(ΓZ). Indeed, the inclusion (4.38) implies that the function

G(γ̂) :=
∑
z∈γ̂

∇ȳF̂ (γ̂) · v̂(ȳ), z = (x, ȳ) ∈ Z, γ̂ ∈ ΓZ ,

is bounded and has σ̂-finite support, which implies that G ∈ L1(Z, σ̂). Thus the function

ΓZ 3 γ̂ 7→ 〈G, γ〉 ≡ ∇Γ
v̂ F̂ (γ̂)

belongs to L2(ΓZ , µ̂) by the definition of the classM1
θ(ΓZ).

Using the decomposition (2.18) of the measure µ̂ and taking the notational advantage of
the one-to-one association x↔ ȳx for (x, ȳx) ∈ γ̂ = (γ, ȳγ) (see (2.14)), we obtain∫

ΓZ

∇Γ
v̂ F (γ̂) µ̂(dγ̂) =

∫
ΓX

(∫
Xγ

∑
x∈γ

∇v̂
ȳx
F (γ, ȳγ) ηγ(dȳγ)

)
µ(dγ)

=

∫
ΓX

∑
x∈γ

(∫
Xγ

∇v̂
ȳx
F (γ, ȳγ) ηγ(dȳγ)

)
µ(dγ)

=

∫
ΓX

∑
x∈γ

(∫
Xγ

∇v̂
ȳx
F (γ, ȳγ)

⊗
x′∈γ

ηx′(dȳx′)

)
µ(dγ), (4.41)

by a product structure of ηγ (see (2.16)). Furthermore, on applying the IBP formula (4.22)
the right-hand side of (4.41) is represented in the form

−
∫
ΓX

∑
x∈γ

(∫
Xγ

F (γ, ȳγ) β v̂η(x, ȳx)
⊗
x′∈γ

ηx′(dȳx′)

)
µ(dγ)

= −
∫
ΓX

(∫
Xγ

∑
x∈γ

F (γ, ȳγ) β v̂η(x, ȳx) η
γ(dȳγ)

)
µ(dγ)

= −
∫
ΓZ

F (γ̂)Bv̂
µ̂(γ̂) µ̂(dγ̂).

which proves formula (4.39).
Finally, in view of Condition 3.3, Lemma 3.6 implies that µ̂ ∈ Mn

σ̂(ΓZ), and by Defini-
tion 3.1 and Condition 4.1 it follows that Bv̂

µ̂ ∈ L1(ΓZ , µ̂).
The next two theorems are our main results in this section.
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Theorem 4.10. For any function F ∈ FC(ΓX), the cluster measure µcl satisfies the following
IBP formula ∫

ΓX

∑
x∈γ

∇xF (γ) · v(x)µcl(dγ) = −
∫
ΓX

F (γ)Bv
µcl

(γ)µcl(dγ), (4.42)

where Bv
µcl

(γ) := I∗qBv̂
µ̂ ∈ L1(ΓX , µcl) (see (4.17)) and the logarithmic derivative Bv̂

µ̂(γ̂) is
defined in (4.40).

Proof. For any function F ∈ FC(ΓX) and vector field v ∈ Vect0(X), let us denote for
brevity

H(x, γ) := ∇xF (γ) · v(x), x ∈ X, γ ∈ ΓX . (4.43)

Furthermore, setting F̂ = IqF : ΓZ → R we introduce the notation

Ĥ(z, γ̂) := ∇ȳF̂ (γ̂) · v̂(ȳ), z = (x, ȳ) ∈ Z, γ̂ ∈ ΓZ . (4.44)

From these definitions, it is clear that

Iq

(∑
x∈γ

H(x, γ)

)
(γ̂) =

∑
z∈γ̂

Ĥ(z, γ̂), γ̂ ∈ ΓZ . (4.45)

By Theorem 4.9, the measure µ̂ satisfies the IBP formula∫
ΓZ

∑
z∈γ̂

Ĥ(z, γ̂) µ̂(dγ̂) = −
∫
ΓZ

F̂ (γ̂)Bv̂
µ̂(γ̂) µ̂(dγ̂), (4.46)

where the logarithmic derivative Bv̂
µ̂(γ̂) = 〈β v̂η , γ̂〉 belongs to L1(ΓZ , µ̂) by Theorem 4.9.

Now, using formulae (4.44), (4.45) and (4.46), we obtain∫
ΓX

∑
x∈γ

H(x, γ)µcl(dγ) =

∫
ΓZ

( ∑
(x,ȳ)∈γ̂

∇ȳIqF (γ̂) · v̂(ȳ)
)
µ̂(dγ̂)

= −
∫
ΓZ

IqF (γ̂)Bv̂
µ̂(γ̂) µ̂(dγ̂)

= −
∫
ΓX

F (γ) I∗qBv̂
µ̂(γ)µcl(dγ),

where I∗qBv̂
µ̂ ∈ L1(ΓX , µcl) by Lemma 4.3. Thus, formula (4.42) is proved.

Remark 4.4. Observe that the logarithmic derivative Bv̂
µ̂(γ̂) = 〈β v̂η , γ̂〉 (see (4.46)) does not

depend on the underlying measure µ, and so it is the same as, say, in the Poisson case with
µ = πθ. Nevertheless, the logarithmic derivative Bv

µcl
does depend on µ via the mapping I∗q .

According to Theorem 4.10, Bv
µcl
∈ L1(ΓZ , µcl). However, under the conditions of

Lemma 4.6 with n ≥ 2, this statement can be enhanced.

Lemma 4.11. Assume that
∫
Z
|βη(z)|m σ̂(dz) < ∞ for m = 1, 2, . . . , n and some integer

n ≥ 2, and let the condition (3.35) hold. Then Bv
µcl
∈ Ln(ΓZ , µcl).
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Proof. By Lemmata 3.7 and 4.6, it follows that 〈β v̂η , γ̂〉 ∈ Ln(ΓZ , µ̂). Let r := n/(n − 1),
so that n−1 + r−1 = 1. Note that Iq can be treated as a bounded operator acting from
Lr(ΓX , µcl) to Lr(ΓZ , µ̂). Hence, I∗q is a bounded operator from Lr(ΓZ , µ̂)′ = Ln(ΓZ , µ̂) to
Lr(ΓX , µcl)

′ = Ln(ΓX , µcl), which implies that Bv
µcl

= I∗q 〈β v̂η , γ̂〉 ∈ Ln(ΓZ , µcl).
Formula (4.42) can be extended to more general vector fields on ΓX . Let FV(ΓX) be the

class of vector fields V of the form V (γ) = (V (γ)x)x∈γ ,

V (γ)x =
k∑
j=1

Gj(γ) vj(x) ∈ TxX,

where Gj ∈ FC(ΓX) and vj ∈ Vect0(X), j = 1, . . . , k. For any such V we set

BV
µcl

(γ) := (I∗qB
IqV
µ̂ )(γ),

where BIqV
µ̂ (γ̂) is the logarithmic derivative of µ̂ along IqV (γ̂) := V (q(γ̂)) (see [3]). Note

that IqV is a vector field on ΓZ owing to the obvious equality

Tγ̂ΓZ = Tq(γ̂)ΓX .

Clearly,

BV
µcl

(γ) =
k∑
j=1

(
Gj(γ)B

vj
µcl

(γ) +
∑
x∈γ

∇xGj(γ) · vj(x)
)
.

Theorem 4.12. For any F1, F2 ∈ FC(ΓX) and V ∈ FV(ΓX), we have∫
ΓX

∑
x∈γ

∇xF1(γ) ·V (γ)x F2(γ) µcl(dγ)

= −
∫
ΓX

F1(γ)
∑
x∈γ

∇xF2(γ) ·V (γ)x µcl(dγ)−
∫
ΓX

F1(γ)F2(γ)B
V
µcl

(γ)µcl(dγ).

Proof. The proof can be obtained by a straightforward generalisation of the arguments used
in the proof of Theorem 4.10.

We define the vector logarithmic derivative of µcl as a linear operator

Bµcl
: FV(ΓX)→ L1(ΓX , µcl)

via the formula
Bµcl

V (γ) := BV
µcl

(γ).

This notation will be used in the next section.

4.4. Dirichlet forms and equilibrium stochastic dynamics

Throughout this section, we assume that the conditions of Lemma 3.7 are satisfied with
n = 2. Thus, the measures µ, µ̂ and µcl belong to the correspondingM2-classes. Our con-
siderations will involve the Γ -gradients (see Section 4.1) on different configuration spaces,
such as ΓX , ΓX and ΓZ ; to avoid confusion, we shall denote them by ∇Γ

X , ∇Γ
X and ∇Γ

Z ,
respectively.
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Let us introduce a pre-Dirichlet form Eµcl
associated with the Gibbs cluster measure µcl,

defined on functions F1, F2 ∈ FC(ΓX) ⊂ L2(ΓX , µcl) by

Eµcl
(F1, F2) :=

∫
ΓX

〈∇Γ
XF1(γ),∇Γ

XF2(γ)〉γ µcl(dγ). (4.47)

Let us also consider the operator Hµcl
defined by

Hµcl
F := −∆ΓF +Bµcl

∇Γ
XF, F ∈ FC(ΓX), (4.48)

where ∆ΓF (γ) :=
∑

x∈γ ∆xF (γ) and ∆x denotes the Laplacian on X acting with respect
to x ∈ γ.

The next theorem readily follows from the general theory of (pre-)Dirichlet forms asso-
ciated with measures from the classM2(ΓX) which satisfy the integration-by-parts formula
(see [4, 26]).

Theorem 4.13. The pre-Dirichlet form (4.47) is well defined, i.e., Eµcl
(F1, F2) < ∞ for all

F1, F2 ∈ FC(ΓX). Furthermore, the expression (4.48) defines a symmetric operator Hµcl
in

L2(ΓX , µcl), which is the generator of Eµcl
, that is,

Eµcl
(F1, F2) =

∫
ΓX

F1(γ)Hµcl
F2(γ)µcl(dγ), F1, F2 ∈ FC(ΓX). (4.49)

Formula (4.49) implies that the form Eµcl
is closable. It follows from the properties of

the carré du champ
∑

x∈γ∇xF1(γ) ·∇xF2(γ) that the closure of Eµcl
(for which we shall

keep the same notation) is a quasi-regular local Dirichlet form on a bigger state space
..

ΓX

consisting of all integer-valued Radon measures on X (see [26, condition (Q), page 298,
and Subsection 4.5.1]). By the general theory of Dirichlet forms (see [25]), this implies the
following result (cf. [3, 4, 10]).

Theorem 4.14. There exists a conservative diffusion process X = (Xt, t ≥ 0) on
..

ΓX ,
properly associated with the Dirichlet form Eµcl

, that is, for any function F ∈ L2(
..

ΓX , µcl)
and all t ≥ 0, the map

..

ΓX 3 γ 7→ ptF (γ) :=

∫
Ω

F (Xt) dPγ

is an Eµcl
-quasi-continuous version of exp(−tHµcl

)F . HereΩ is the canonical sample space
(of

..

ΓX-valued continuous functions on R+) and (Pγ, γ ∈
..

ΓX) is the family of probability
distributions of the process X conditioned on the initial value γ = X0. The process X
is unique up to µcl-equivalence. In particular, X is µcl-symmetric (i.e.,

∫
F1 ptF2 dµcl =∫

F2 ptF1 dµcl for all measurable functions F1, F2 :
..

ΓX → R+) and µcl is its invariant
measure.

4.5. On the irreducibility of the Dirichlet form

Let Eµ̂ be the pre-Dirichlet form associated with the Gibbs measure µ̂, defined on functions
F1, F2 ∈ FCσ̂(ΓZ) ⊂ L2(ΓZ , µ̂) by

Eµ̂(F1, F2) :=

∫
ΓZ

〈∇Γ
Z F1(γ̂),∇Γ

Z F2(γ̂)〉γ̂ µ̂(dγ̂). (4.50)
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The integral on the right-hand side of (4.50) is well defined because µ̂ ∈ M2
θ(ΓZ) ⊂

M1
θ(ΓZ). Indeed, the function

G(z) := (∇zF1(γ̂),∇zF2(γ̂))

is bounded and has a σ̂-finite support, which implies that G ∈ L1(Z, σ̂). Thus the function

ΓZ 3 γ̂ 7→ 〈G, γ〉 ≡ 〈∇Γ
Z F1(γ̂),∇Γ

Z F2(γ̂)〉γ̂

belongs to L2(ΓZ , µ̂) by the definition of the class M1
θ(ΓZ). It can be shown by a direct

computation that
Eµcl

(F, F ) = Eµ̂(IqF, IqF ), F ∈ FC(ΓX). (4.51)

Note that the pre-Dirichlet form (Eµ̂,FCσ̂(ΓZ)) is not necessarily closable. A sufficient
condition of its closability is an IBP formula for the measure µ̂ with respect to all directions
in ΓZ rather then only in Xγ (cf. Theorem 4.9), which requires in turn some smoothness
conditions on the measure µ and also on the measure ηx as a function of x ∈ X . Such condi-
tions are satisfied, for instance, if X = Rd, µ is a Poisson measure or, more generally, Gibbs
measure with a smooth interaction potential, and the family {ηx} is defined by translations
of a parent measure η0 (i.e., ηx(B) := η0(B − x)). This case has been studied in great detail
in [10, 11], where formula (4.51) was extended to all functions F from the domain of Eµcl

(with the closure Ēµ̂ of the pre-Dirichlet form (Eµ̂,FCσ̂(ΓZ)) on the right-hand side). In turn,
this makes it possible to characterise the kernel of the Dirichlet form Eµcl

via the kernels of
the forms Ēµ̂ and Eµ; in particular, it has been proved in [10, 11] that Eµcl

is irreducible (that
is, its kernel consists of constants) whenever Eµ is such.

Let us remark that irreducibility is an important property closely related to the ergodicity
of stochastic dynamics and extremality of invariant measures. It seems plausible that in our
situation the irreducibility of Eµcl

is controlled by the properties of the distribution of centres
µ rather then the cluster distributions {ηx}, but this remains an open question.

5. Examples

In order to make tractable the general cluster model discussed above, one needs an efficient
method to construct the family {ηx}x∈X of cluster distributions attached to centres x lying on
a ground configuration γ. In the situation where X is a linear space, this is straightforward
by translations of a parent distribution η0 specified at the origin (see Section 5.1). For other
classes of spaces, the linear action has to be replaced by another suitable transformation (see
Sections 5.2, 5.3 and 5.4.1). More direct methods may also be applicable based on specific
properties of the space structure, for instance by confining oneself to a class of distributions
with a suitable invariance property (cf. Section 5.3) or by exploiting the space metric, leading
to “radially symmetric” distributions (see Section 5.4.2).

We discuss below a number of selected examples where this programme can be realised.
In so doing, we will mostly be using the push-forward method of Section 3.4. Specifically,
the discussion of the resulting cluster measure µcl in each example will be essentially con-
fined to the following two important aspects:

(i) verification of general sufficient conditions for the cluster process configurations to
be proper, such as Condition 3.4 ′ in Proposition 3.9 specialised to the conditions of
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Propositions 3.9 and 3.10 (local finiteness), and the conditions of Propositions 3.11
and their particular cases in Propositions 3.12 and 3.13 (simplicity); and

(ii) verification of appropriate smoothness conditions on the mapping ϕx that we imposed
as a prerequisite of an IBP formula for the cluster measure µcl (see the beginning of
Section 4.3.2).

5.1. Euclidean spaces

In the situation where X = Rd, the family {ηx}x∈X of cluster distributions can be con-
structed by translations of a parent distribution η0 specified at the origin [10, 11]. This can
be formulated in terms of the construction of Section 3.4. Take W := X and define the
family of maps ϕx : X → X (x ∈ X) as translations

ϕx(y) := y + x, y ∈ X. (5.1)

Then the definition (3.41) of the droplet DB(y) specialises to

DB(y) = B − y, y ∈ X, B ∈ B(X).

Furthermore, formula (3.43) for the droplet cluster now reads

D̄B(ȳ) =
⋃
yi∈ȳ

(B − yi), ȳ ∈ X,

which makes the notion of the droplet cluster particularly transparent as a set-theoretic union
of “droplets” of shape B shifted to the centrally reflected coordinates of the vector ȳ = (yi).
The parent measure Q on X (see (3.40)) can then be interpreted as a pattern distribution η0,
and the measures ηx are obtained by translations of η0 to points x ∈ X:

ηx(B̄) := ϕ̄∗xη0(B̄) ≡ η0(B̄ − x), B̄ ∈ B(X). (5.2)

Let us discuss in this context the criteria of properness of the corresponding cluster mea-
sure µcl laid out in Section 3.4. First of all, conditions (3.46) and (3.47) of Proposition 3.9
(which guarantee Condition 3.4 ′) are reduced, respectively, to

sup
y∈X

θ(B − y) <∞,
∫

X

NX(ȳ) η0(dȳ) <∞. (5.3)

In turn, the first condition in (5.3) is satisfied, for instance, if the measure θ(dx) is abso-
lutely continuous with respect to Lebesgue measure dx on X and the corresponding Radon–
Nikodym density is bounded (cf. Remark 3.10). Next, condition (i) of Proposition 3.10 (i.e.,
continuity of ϕx in x) is obviously satisfied for (5.1), while condition (ii) holds with a com-
pact By = B − y (y ∈ X). Finally, let us point out that the use of Propositions 3.12 and
3.13 is greatly facilitated by the fact that the equation ϕy(w) = x, reducing for (5.1) to the
equation w + y = x, has the unique solution y = x− w.

Regarding conditions for IBP formulae, note that the map (5.1) is of course smooth, with
dϕx = id (the identity operator) and d2ϕx = 0. Finally, if the probability measure η0(dx̄) is
absolutely continuous with respect to Lebesgue measure dx̄ on X, then conditions (4.30) and
(4.31) in Theorem 4.8 can be easily rewritten in terms of the corresponding Radon–Nikodym
density.
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5.2. Lie groups

Let X = G be a (non-compact) Lie group, and g the corresponding Lie algebra endowed
with a scalar product (·, ·)g (see, e.g., [19]). This scalar product generates in a standard way
a right-invariant Riemannian structure on G. The group product of elements g1, g2 ∈ G is
denoted by g1g2 ∈ G, and e ∈ G stands for the identity of the group G.

Let us show how a family of measures {ηx}x∈G on G :=
⊔∞
n=0G

n can be set out using the
push-forward construction of Section 3.4. TakeW := G and define the map ϕx(g) : G×G→
G as a translation

ϕx(g) := gx, g, x ∈ G. (5.4)

By the properties of the Lie group multiplication, the map ϕx(g) is continuous in (g, x) ∈
G×G and therefore automatically measurable. In view of (5.4), the definition (3.41) of the
droplet DB(g) specialises to

DB(g) = g−1B, B ∈ B(G), g ∈ G.

Accordingly, by formula (3.43) the corresponding droplet cluster is represented as

D̄B(ḡ) =
⋃
gi∈ḡ

g−1
i B, ḡ ∈ G :=

∞⊔
n=0

Gn.

If Q is a probability measure on G, then on substituting (5.4) into the definition (3.40) we
get

ηx(B̄) := (ϕ̄∗xQ)(B̄) ≡ Q(B̄x−1), B̄ ∈ B(G) (x ∈ G). (5.5)

Observe from (5.5) that in fact the measure Q coincides with ηe; hence the definition (5.5)
can be rewritten in a “translation” form naturally generalising formula (5.2) in the Euclidean
case, namely

ηx(B̄) = ηe(B̄x
−1), B̄ ∈ B(G) (x ∈ G). (5.6)

Specialising the general criteria of properness of µcl described in Section 3.4, we have
that conditions (3.46) and (3.47) of Proposition 3.9 are reduced, respectively, to

sup
g∈G

θ(g−1B) <∞,
∫

G

NG(ḡ)Q(dḡ) <∞. (5.7)

Similarly to the previous section, the first condition in (5.7) is satisfied proviso the reference
measure θ is absolutely continuous with respect to a left Haar measure on G and the cor-
responding Radon–Nikodym density is bounded (cf. Remark 3.10). As mentioned above,
the maps (5.4) automatically satisfy the continuity condition (i) of Proposition 3.10, whereas
condition (ii) holds with a compact Bg = Bg−1 (g ∈ G). Moreover, as a natural extension
of the Euclidean case, the equation ϕy(g) = x with (5.4) takes the form gy = x, which has
the unique solution y = g−1x. Hence, Propositions 3.12 and 3.13 can be easily applied.

In a standard fashion, the Lie algebra g of the group G can be identified with the space
of right-invariant vector fields on G; moreover, all tangent spaces TgG are identified with
TeG (and therefore with g) via right translations. Under this identification, for the map
ϕx(w) defined in (5.4) we have dϕx(g) = id for any x, g ∈ G, where id : g → g is
the identity operator. It follows that ‖dϕx(g)‖ = 1 and d2ϕx(g) = 0 for all x, g ∈ G,
which automatically implies that ϕx ∈ C2

b (G,G) uniformly in x ∈ G. Thus, one can apply
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Theorem 4.8 provided that the conditions (4.30) and (4.31) are satisfied. Finally, if the
probability measureQ is absolutely continuous with respect to a left Haar measure on G, then
conditions (4.30) and (4.31) can be easily specified in terms of the corresponding Radon–
Nikodym density.

5.3. Homogeneous manifolds

5.3.1. Construction of cluster distributions ηx. Let G be a (non-compact) Lie group and
X a G-homogeneous Riemannian manifold (see, e.g., [7, 19]). More precisely, G is a closed
subgroup of the group of isometries of X acting on X transitively, that is, for any x, y ∈ X
there exists an element g ∈ G such that g · x = y (equivalently, G · x = X for some, and
hence for all x ∈ X), and the mapping

G×X 3 (g, x) 7→ g · x ∈ X (5.8)

is differentiable. Given a fixed point x0 ∈ X , the manifoldX is diffeomorphic to the quotient
manifold G/Hx0 , where Hx0 := {g ∈ G : g · x0 = x0} is the isotropy subgroup of G at x0.
Example 5.1. Take X = Rd and the group G = Rd with the natural additive structure acting
on X by translations. In this case, Hx0 = {0} for every x0 ∈ X .
Example 5.2. Let X = Rd and consider G = E+(d), the Euclidean group of isometries of
Rd preserving orientation. In this case, H0 = SO(d) and X ∼= E+(d)/SO(d).
Example 5.3. Let X = Hd be a d-dimensional hyperbolic space. In this situation, G =
SO0(d, 1) is the connected component of the identity in the orthogonal group O(d, 1) of the
canonical quadratic form with signature (n, 1), and X ∼= SO0(d, 1)/SO(d).
Example 5.4. If G is a Lie group and H is its compact subgroup, then one can use the
quotient manifold X = G/H with the natural G-action on it.

Define a family of maps ϕx : G→ X as the group action (see (5.8))

ϕx(g) := g · x, g ∈ G, x ∈ X. (5.9)

Then the definition (3.41) of the droplet DB(g) takes the form

DB(g) = g−1 ·B, B ∈ B(X), g ∈ G,

and the droplet cluster is given by

D̄B(ḡ) =
⋃
gi∈ḡ

(g−1
i ·B), ḡ ∈ G :=

∞⊔
n=0

Gn.

According to Section 3.4, we can now use (5.9) to define the family of distributions

ηx := ϕ̄∗xQ ≡ Q ◦ ϕ̄−1
x , (5.10)

where Q is a given probability measure on G.
Conditions (3.46) and (3.47) take the form, respectively,

sup
g∈G

θ(g−1 ·B) <∞,
∫

G

NG(ḡ)Q(dḡ) <∞. (5.11)
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The first of the conditions (5.11) is satisfied, for instance, if θ is absolutely continuous with
respect to the volume measure on X and the corresponding Radon–Nikodym density is
bounded (cf. Remark 3.10).

Let us point out that a special class of measures {ηx}x∈X on G can be constructed some-
what more naturally by essentially reproducing the group translations method for Lie groups
(cf. (5.5)). More precisely, fix an arbitrary point x0 ∈ X and an Hx0-invariant measure ηx0

on X (i.e., ηx0(hB̄) = ηx0(B̄) for any B̄ ∈ B(X) and all h ∈ Hx0); such a measure always
exists due to the compactness of Hx0 . Since the group action is transitive, the group orbit of
x0 coincides with X , hence each x ∈ X can be represented in the form x = g · x0 with some
g = gx ∈ G. Let us now define the measure ηx on B(X) by the formula

ηx := g∗x ηx0 ≡ ηx0 ◦ g−1
x , x = gx · x0. (5.12)

It follows that ηx is Hx-invariant for each x ∈ X . The definition (5.12) does not depend on
the choice of a solution gx of the equation g · x0 = x; indeed, if there is another solution g̃x
then

ηx0 ◦ g̃−1
x = ηx0 ◦ (g̃−1

x gx) g
−1
x = ηx0 ◦ g−1

x ,

since g̃−1
x gx ∈ Hx0 and ηx0 is Hx0-invariant.

Remark 5.1. Choosing various subgroups G of the general group of isometries of X may
lead to different representations ofX as a homogeneous space. Consequently, formula (5.10)
will define different cluster measures. This is illustrated in the next simple example for the
Euclidean space.
Example 5.5. Let X = Rd (d ≥ 2). If G is the group of translations x 7→ x− g (x, g ∈ Rd),
then the corresponding homogeneous space is isomorphic to Rd and, as described in Section
5.1, the measures ηx are obtained by translations, ηx(·) = η0(· − x) (see Example 5.1). Let
now G = E+(d) (see Example 5.2), that is, the group of rotations g = (ξ, A) with the action
ϕx(g) := g · x = A(x− ξ) + ξ (x ∈ Rd), where ξ ∈ Rd and A ∈ SO(d). It is easy to check
that, for a given Borel set B ⊂ Rd,

ϕ−1
x (B \ {x}) =

{
g ∈ G : A 6= I and ξ ∈ (I − A)−1(B − Ax)

}
,

ϕ−1
x ({x}) =

{
g ∈ G : A 6= I, ξ = x or A = I, ξ ∈ Rd

}
,

where I is the identity matrix. Consider the simplest case where each cluster contains only
one point; in other words, the measures ηx are supported on X (i.e., ηx(Xn) = 0 for n 6= 1).
Let Q(dξ × dA) be a probability measure on G; assume for simplicity that Q{A 6= I} = 1.
Then the definition (5.10) specialises to

ηx(B) = Q(ϕ−1
x (B)) =

∫
SO(d)

Q(Rd × dA)

∫
(I−A)−1(B−Ax)

Q(dξ |A), (5.13)

whereQ(Rd×dA) is the marginal distribution of A andQ(dξ |A) is the conditional distribu-
tion of ξ given A. Conditionally on A, ηx is obtained from η0 via a translation by the vector
−(I −A)−1Ax, which is different from x. If A is truly random, then averaging with respect
to its distribution will further mix up the random shifts −(I − A)−1Ax.

40



5.3.2. Verification of smoothness. Our next goal is to show that ϕx(·) ∈ C2
b (G,X) uni-

formly in x ∈ G for a special Riemannian metric on G. Following [7, Ch. 7, pp. 181–186],
fix any x ∈ X and let, as before, Hx be the isotropy subgroup at x. Then the manifold X
can be identified with the quotient manifold G/Hx in such a way that the map ϕx : G → X
coincides with the natural projection G → G/Hx. Let hx be the Lie algebra of Hx. It is
known that the Lie algebra g of the Lie group G admits a decomposition

g = hx ⊕ xx, (5.14)

where xx is a subspace of g invariant with respect to the adjoint representation Hx 3 h 7→
Adh of Hx in g. Then the tangent space TxX can be identified with the space xx. The
Riemannian metric of X induces an Adh-invariant scalar product (·, ·)xx on xx.

Let us choose an auxiliary Adh-invariant scalar product (·, ·)hx on hx. Such a product
always exists thanks to the compactness of Hx; for instance, we can set (·, ·)hx := −B(·, ·),
where B is the Killing–Cartan form (see, e.g., [7, Ch. 7, pp. 184–185] or [19, Ch. II, §6,
p. 131]). Observe that the isotropy subgroup at g ·x has the form Hg·x = g ·Hxg

−1, therefore
the corresponding Lie algebra is given by hg·x = Adg(hx). We equip it with the scalar
product

(·, ·)hg·x := (Adg−1 ·,Adg−1 ·)hx .

Moreover, we can set xg·x = Adg(xx), so that the decomposition (5.14) at g ·x takes the form

g = Adg(hx)⊕ Adg(xx). (5.15)

Now we can define a scalar product (·, ·)g,g on g by setting for all h ∈ hg·x, r ∈ xg·x

(h+ r, h+ r)g,g = (h, h)hg·x + (r, r)xg·x .

The G-invariance of the Riemannian metric on X implies that

(·, ·)g,g = (Adg−1 ·,Adg−1 ·)g,e. (5.16)

The family of scalar products (·, ·)g,g (g ∈ G), defines a Riemannian metric on G. Note that
this metric is neither left nor right invariant.

For a fixed x ∈ X , let us compute the derivative dϕx(g) : TgG → Tg·xX of the map
G 3 g 7→ ϕx(g) = g · x ∈ X . As in the previous section, we identify the tangent space TgG
with the Lie algebra g by right translations; under this identification,

dϕx(g) = Pg·x, g ∈ G, x ∈ X. (5.17)

Observe that Pg·x : g → xg·x is an orthogonal projection (with respect to the scalar
product (·, ·)g,g on g). Therefore,

‖dϕx(g)‖ ≤ 1 (5.18)

and dϕx(g)
∗ : xg·x → g is an isometry. Moreover, it follows from (5.15) that

dϕx(g) = Adg ◦Px ◦ Adg−1 . (5.19)

Considering dϕx(·)V as a map from G to g (via the embedding xx ⊂ g), we obtain

d2ϕx(g)(U, V ) = (adU ◦Pg·x − Pg·x ◦ adU)V, (5.20)
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for any U, V ∈ g. This, together with (5.18), implies that

sup
x∈X, g∈G

‖d2ϕx(g)‖ <∞.

Thus, ϕx ∈ C2
b (G,X) uniformly in x ∈ G, so one can apply Theorem 4.8 provided that

the conditions (4.30) and (4.31) are met. Finally, if the probability measure Q is absolutely
continuous with respect to a left Haar measure on G, then (4.30) and (4.31) can be specified
in terms of the corresponding Radon–Nikodym density. Note that the norm used in the
condition (4.30) is generated in this case by the special Riemannian structure (5.16) on G.

5.4. Other examples

In this section, we briefly discuss two further examples illustrating possible ways of con-
structing cluster distributions ηx.

5.4.1. Manifolds of non-positive curvature. Let X be a complete, path-connected man-
ifold with non-positive sectional curvature (Cartan–Hadamard manifold). In this case, for
every two points x, y ∈ X there is a unique geodesic gx,y(t), t ∈ [0, 1], such that gx,y(0) = x,
gx,y(1) = y. Assume in addition that X is simply connected. It follows from the Cartan–
Hadamard theorem that the exponential map expx : TxX → X is a diffeomorphism for every
x ∈ X (see, e.g., [13, 21]).

Choose x0 ∈ X , and let
dgx0,x : Tx0X → TxX

be the parallel translation along the geodesic gx0,x. To deploy the construction of Section
3.4, we set W := Tx0X and

ϕx := expx ◦ dgx0,x : W → X.

For a given probability measureQ = Qx0 on (Tx0X)∞0 , consider the corresponding translated
(push-forward) measures on (TxX)∞0 ,

Qx = dg∗x0,x
Qx0 x ∈ X. (5.21)

According to a general formula (3.40), we can now define a family of probability distribu-
tions on the space X by

ηx := ϕ̄∗xQx0 = exp∗xQx, x ∈ X. (5.22)

Remark 5.2. In fact, X is essentially the Euclidean space Rd (d = dimX) with a non-
constant metric which defines a family of exponential maps expx : Rd → Rd (x ∈ Rd). In
this interpretation, we have W = Rd and ϕx = expx : W → X .
Remark 5.3. Consider the diffeomorphism

ix := expx ◦ dgx0,x ◦ exp−1
x0

: X→ X, (5.23)

From (5.21), (5.22) and (5.23) it follows that the family of distributions {ηx}x∈X is transla-
tion invariant in the sense that ηx = i∗xηx0 (x ∈ X).
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5.4.2. Metric spaces. Let (X, ρ) be a metric space, endowed with the natural topology
generated by the open ballsB0

r (x) := {x′ ∈ X : ρ(x, x′) < r} (x ∈ X , r > 0) and equipped
with a (locally finite) reference measure ϑ.

In this section, we construct an example of a family of probability measures {ηx(dȳ)}x∈X
on X =

⊔
nX

n, based on a different idea that avoids using any family of maps ϕx as in
Sections 5.1–5.3. To this end, note that by a radial-angular decomposition (based on Fubini’s
theorem) we can represent the ϑ-volume of a (closed) ballBr(x) := {x′ ∈ X : ρ(x, x′) ≤ r}
(x ∈ X) as

ϑ(Br(x)) =

∫ r

0

(∫
∂Bs(x)

ϑxang(dy |s)
)
ϑxrad(ds), (5.24)

where ∂Br(x) = Br(x) \ B0
r (x) is the sphere of radius r centred at x, ϑxang(dy |r) is the

uniform “surface” measure on ∂Br(x) induced by the measure ϑ(dy), and ϑxrad(dr) is the
radial component of ϑ as seen from x. According to formula (5.24), the measure ϑ can be
symbolically expressed as a skew product

ϑ(dy) = ϑxang(dy |r)ϑxrad(dr)
∣∣∣
r=ρ(x,y)

.

For x ∈ X and ȳ ∈ X, set ρ̄(x, ȳ) := (ρ(x, yi))yi∈ȳ ∈ X. As usual, the measure ϑ can be
lifted to the space X by setting

ϑ̄(dȳ) :=
⊗
yi∈ȳ

ϑ(dyi), ȳ ∈ X. (5.25)

Similarly, for each x ∈ X define

ϑ̄xrad(dr̄) :=
⊗
ri∈r̄

ϑxrad(dri), (5.26)

ϑ̄xang(dȳ |r̄) :=
⊗
yi∈ȳ

ϑxang(dyi |ri). (5.27)

Let us now fix a point x0 ∈ X , and let f : R∞
0 → R+ be such that

∫
X
f(r̄) ϑ̄x0

rad(dr̄) = 1.
Then we can construct a family of cluster distributions by setting, for each x ∈ X ,

ηx(dȳ) := f(r̄) ϑ̄x0
rad(dr̄) ·

ϑ̄xang(dȳ |r̄)
ϑ̄xang(∂B̄r̄(x)|r̄)

∣∣∣∣
r̄=ρ̄(x,ȳ)

, ȳ ∈ X. (5.28)

That is to say, under the measure ηx a random vector ȳ is sampled in two stages: first, a vector
r̄ of the distances from x to ȳ is sampled with the probability density f(r̄) (with respect to
the measure ϑ̄x0

rad), and then the components yi of ȳ are chosen, independently of each other,
with the uniform distribution over the corresponding spheres ∂Bri(x), respectively.
Remark 5.4. By the definition (5.28), the measure ηx may be considered as a “translation” of
the pattern measure ηx0 from x0 to x; however, this is not being done by a push-forward of
ηx0 under some mapping ϕx of the space X , as prescribed by the general recipe of Section
3.4; instead, we compensate the lack of such a mapping by using the same statistics of the
distances at each point x ∈ X (prescribed by the pattern distribution ϑx0

rad) and by taking
advantage of the uniform distribution on the corresponding spheres, which does not require
any further angular information.
Remark 5.5. If there is a group G of isometries of X acting transitively, then we can use the
same method as for homogeneous spaces (see Section 5.3).
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Appendix

A. On a definition of the skew-product measure µ̂

In order to verify that the measure µ̂ is well defined by the expression (2.17) (which requires
the internal integral in (2.18) to be measurable as a function of γ ∈ ΓX), we shall construct
an auxiliary measure µ̃ on ΓX ×X∞ and show that µ̂ is its image under a certain measurable
map.

Let us fix an indexation i = {iγ, γ ∈ ΓX} in ΓX , where iγ : γ → N is a bijection for each
γ ∈ ΓX . Define

ΓX,1 := {(γ, x) ∈ ΓX ×X : x ∈ γ}.

The indexation i defines a natural bijection

ΓX,1 3 (γ, x) 7→ (γ, iγ(x)) ∈ ΓX × N. (A.1)

Moreover, the indexation i can be constructed so that the bijection (A.1) is measurable
(see [31]). This ensures that the map

ΓX 3 γ 7→ jk(γ) := i−1
γ (k) ∈ X (A.2)

is measurable for each k ∈ N.
Consider a family {νγ, γ ∈ ΓX} of measures on X∞ defined by

νγ(dȳ) :=
⊗
k∈N

ηjk(γ)(dȳ), ȳ ∈ X∞.

If A ∈ B(X∞) is a cylinder set, A = A1 × · · · × An × X× · · · , then

νγ(A) =
n⊗
k=1

ηjk(γ)(Ak).

The function ΓX 3 γ 7→ νγ(A) ∈ R is measurable due to the measurability of jk(γ) and
Condition 2.1. Hence, the measure

µ̃(dγ × dȳ) := νγ(dy)µ(dγ), (γ, ȳ) ∈ ΓX × X∞,

is well defined.
Finally, a direct calculation shows that the measure µ̂ defined by (2.17) can be represented

as µ̂ = I∗µ̃, where I : ΓX×X∞ → ΓX×Xγ is a measurable map defined by (γ, (yk)k∈N) 7→
(γ, (yjk(γ))k∈N). This proves the result.

B. Correlation functions

For a more systematic exposition and further details, see the classical books [16, 28, 29];
more recent useful references include [4, 22, 23].

Definition B.1. Let µ be a probability measure on the generalised configuration space Γ ]
X ,

and let θ be a (locally finite) measure on X . Then the correlation function κnµ : Xn → R+ of
the n-th order (n ∈ N) of the measure µwith respect to θ is defined by the following property:
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for any function φ ∈ M+(Xn) symmetric with respect to permutations of its arguments, it
holds∫

Γ ]
X

∑
{x1,...,xn}⊂γ

φ(x1, . . . , xn)µ(dγ)

=
1

n!

∫
Xn

φ(x1, . . . , xn)κ
n
µ(x1, . . . , xn) θ(dx1) · · · θ(dxn). (B.1)

Remark B.1. Note that possible multiple points on the configuration γ ∈ Γ ]
X will lead cor-

respondingly to some coinciding points among {x1, . . . , xn} ⊂ γ on the left-hand side of
formula (B.1) (cf. our convention on the use of set-theoretic notation, see Section 2.1).

By a standard approximation argument, equation (B.1) can be extended to any (symmet-
ric) functions φ ∈ L1(Xn, θ⊗n).

Condition B.1. Correlation functions κmµ (x1, . . . , xm) up to the n-th order (n ∈ N) of the
measure µ with respect to θ exist and are bounded.

Remark B.2. Formula (B.1) with n = 1 and φ(x) = 1B(x) for B ∈ B(X) shows that
Condition B.1 automatically implies that µ-a.a. configurations γ are locally finite.

Lemma B.1. Assume that Condition B.1 is satisfied with some n ∈ N. Then µ ∈Mn
θ (ΓX).

Proof. Similarly as in the proof of Lemma 3.6, we obtain (cf. (3.28))∫
ΓX

|〈f, γ〉|n µ(dγ) ≤
∫
ΓX

(∑
x∈γ

|f(x)|

)n

µ(dγ)

=
n∑

m=1

∫
ΓX

∑
{x1,...,xm}⊂γ

φn(x1, . . . , xm)µ(dγ), (B.2)

where φn(x1, . . . , xm) is a (symmetric) function given by the expression (3.29). Note that,
by definition of the correlation functions (see (B.1)), the integral on the right-hand side of
(B.2) is reduced to

1

m!

∫
Xm

φn(x1, . . . , xm)κmµ (x1, . . . , xm) θ(dx1) · · · θ(dxm). (B.3)

By Condition B.1, κmµ ≤ cm (m = 1, . . . , n) with some constant cm < ∞. Hence, the
integral in (B.3) is bounded by

∑
i1,...,im≥1
i1+···+im=n

cmn!

i1! · · · im!

m∏
j=1

∫
Z

|f(xj)|ij θ(dxj) <∞, (B.4)

since each integral in (B.4) is finite owing to the assumption f ∈
⋂

1≤q≤n L
q(X, θ). As a

result, the integral on the left-hand side of (B.2) is finite, and the lemma is proved.
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C. Integration-by-parts formula for push-forward measures

For any Riemannian manifoldsW and Y , denote by C2
b (W ,Y) the space of twice differen-

tiable maps φ : W → Y with globally bounded derivatives dφ, d2φ. In particular, for any
w̄ ∈ W , the first derivative dφ(w̄) is a bounded linear operator from the tangent space Tw̄W
to the tangent space Tφ(w̄)Y . In what follows, we fix φ ∈ C2

b (W ,Y). Note that the adjoint
operator dφ(w̄)∗ : T ∗φ(w̄)Y → T ∗w̄W can be identified with a bounded operator from Tφ(w̄)Y
to Tw̄W via the scalar products in the tangent spaces Tw̄W and Tφ(w̄)Y (defined by the Rie-
mannian structure of the manifoldsW and Y , respectively). Furthermore, define Vect1

b(W)
as the space of differentiable vector fields onW with a globally bounded first derivative.

Definition C.1. We say that a probability measure Q(dw̄) onW satisfies an integration-by-
parts (IBP) formula if for any vector field V ∈ Vect1

b(W) there is a function βVQ ∈ L1(W , Q)
(logarithmic derivative of Q in the direction V ) such that, for any g ∈ C1

b (W), the following
identity holds ∫

W
(∇g(w̄), V (w̄))Tw̄W Q(dw̄) = −

∫
W
g(w̄)βVQ(w̄)Q(dw̄). (C.1)

Whenever it exists, the function βVQ can be represented in the form

βVQ(w̄) = (βQ(w̄), V (w̄))Tw̄W + div V (w̄), w̄ ∈ W , (C.2)

where βQ is a vector field onW (called the vector logarithmic derivative of Q) satisfying∫
W
|βQ(w̄)|Tw̄W Q(dw̄) <∞.

Consider the push-forward measure η := φ∗Q on Y , and denote by Iφ the operator acting
on functions f : Y → R by the formula

Iφf = f ◦ φ.

Because of the definition of the measure η, the operator Iφ is an isometry from Lr(Y , η) to
Lr(W , Q), for any r ∈ [1,∞]. Hence, the adjoint operator defines an isometry between the
corresponding dual spaces,

I∗φ : Lr(W , Q)′ → Lr(Y , η)′.

Furthermore, for any r ∈ (1,∞) we have the isomorphisms Lr(W , Q)′ ∼= Ln(W , Q) and
Lr(Y , η)′ ∼= Ln(Y , η), where n = r/(r − 1) (see, e.g., [30, Ch. II, §2, p. 43]). Since r > 1
is arbitrary, this means that I∗φ can be treated as an isometry from Ln(W , Q) to Ln(Y , η) for
any n > 1. Moreover, repeating the arguments used in the proof of Lemma 4.3, it can be
shown that the same also holds for n = 1. To summarise, for any n ≥ 1 the operator

I∗φ : Ln(W , Q)→ Ln(Y , η)

is an isometry.
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Theorem C.1. Let φ ∈ C2
b (W ,Y) be such that the operator

dφ(w̄)∗ : Tφ(w̄)Y → Tw̄W , w̄ ∈ W ,

is an isometry, and suppose that the measure Q satisfies the IBP formula (C.1). Then the
push-forward measure η = φ∗Q satisfies an IBP formula with the logarithmic derivative
βUη = I∗φβVQ , where V = VU is a vector field onW given by

V (w̄) = dφ(w̄)∗ U(φ(w̄)), U ∈ Vect1
b(Y).

Proof. Note that V ∈ Vect1
b(W). Applying the IBP formula (C.1), making the change of

measure η = φ∗Q and taking into account that dφ(w̄)dφ(w̄)∗ is the identity operator in
Tφ(w̄)Y , we see that (C.1) holds for η with the corresponding logarithmic derivative βUη =
I∗φβVQ . Finally, the η-integrability of βUη follows by the isometry of I∗.
Remark C.1. All of the above remains true in the case whereW =

⊔∞
i=0Wi andY =

⊔∞
i=0 Yi

are countable disjoint unions of Riemannian manifolds (Wi) and (Yi) respectively, and the
mapping φ acts component-wise, that is, φ : Wi → Yi. Although the spacesW and Y do not
possess a proper Riemannian manifold structure, all notions introduced above (including the
IBP formula (C.1)) can be understood component-wise, and we use the analogous notation
without further explanations.
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