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Abstract 

Cross-national comparisons of IQ have become common since the release of a large dataset of 

international IQ scores.  However, these studies have consistently failed to consider the potential lack of 

independence of these scores based on spatial proximity.  To demonstrate the importance of this 

omission, we present a re-evaluation of several hypotheses put forward to explain variation in mean IQ 

among nations namely: (i) distance from central Africa, (ii) temperature, (iii) parasites, (iv) nutrition, (v) 

education, and (vi) GDP.  We quantify the strength of spatial autocorrelation (SAC) in the predictors, 

response variables and the residuals of multiple regression models explaining national mean IQ.  We 

outline a procedure for the control of SAC in such analyses and highlight the differences in the results 

before and after control for SAC.  We find that incorporating additional terms to control for spatial 

interdependence increases the fit of models with no loss of parsimony.  Support is provided for the 

finding that a national index of parasite burden and national IQ are strongly linked and temperature also 

features strongly in the models.  However, we tentatively recommend a physiological ʹ via impacts on 

host-parasite interactions ʹ rather than evolutionary explanation for the effect of temperature.  We 

present this study primarily to highlight the danger of ignoring autocorrelation in spatially extended 

data, and outline an appropriate approach should a spatially explicit analysis be considered necessary. 

 

Keywords: IQ, intelligence, spatial autocorrelation, geography, disease, statistics 
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1. Introduction 

The measurement of intelligence is a controversial field (Gould, 1981; Jensen, 1982), particularly where 

comparisons are made among races (Hunt & Carlson, 2007) or nations (Lynn & Vanhanen, 2006).  The 

recent compilation of an international dataset of IQ results from a wide range of countries (Lynn & 

Vanhanen, 2006) has made possible broad comparisons between nations, of which a great many have 

already been published (see Wicherts, Dolan, & van der Maas, 2010 for a review of this literature).  

While criticisms have been levelled at how this IQ dataset was collated (Wicherts, Dolan, & van der 

Maas, 2010), there are statistical issues with international comparisons even with perfectly-collated 

data due to the potential lack of independence of individual data points driven by spatial proximity. We 

first highlight the general nature of this problem and explain why it matters. We then re-evaluate a set 

of hypotheses that have been put forward to explain variation in national IQ as a case study to provide 

guidance for future studies. Note that while the global variation in mean national IQ has received 

considerable recent attention, it remains debateable whether variation in national IQ is a strict 

reflection of variation in underlying cognitive abilities that they are proposed to measure, since their 

psychometric properties may also vary across space (Wicherts, Dolan, Carlson, & van der Maas, 2010) 

and time (Wicherts, et al., 2004).  For example, recent work has indicated that IQ score may vary with 

individual motivation, and that this simple phenomenon may confound relationships between individual 

IQ and late-life outcomes (Duckworth, Quinn, Lynam, Loeber, & Stouthamer-Loeber, in press).  Thus, 

while we have followed others in focusing on national mean IQ as the key dependent variable of 

interest, we recognize at the outset that it has significant limitations as a measure of latent intelligence.   

 

2. Why spatial autocorrelation matters 

Recently, Gelade (2008) used spatial autocorrelation analysis to show that nations that are geographical 

neighbors have more similar mean IQs than nations that are far apart.  One might equally find positive 

autocorrelation in candidate predictor variables of national mean IQ such as average temperature, or 

national per capita income͕ ƌĞĨůĞĐƚŝŶŐ TŽďůĞƌ͛Ɛ (1970) FŝƌƐƚ LĂǁ ŽĨ GĞŽŐƌĂƉŚǇ͗ ͟ĞǀĞƌǇƚŚŝŶŐ ŝƐ ƌĞůĂƚĞĚ ƚŽ 
everything else, but near things are more related than ĚŝƐƚĂŶƚ ƚŚŝŶŐƐ͘͟   
 

Acknowledgement of spatial autocorrelation in response variables and/or their potential predictors is 

extremely important.  As an example from the intelligence literature, nearby nations may have similar 

sized values of a response variable (e.g. national IQ) and similar sized values of any given predictor (e.g. 

mean temperature).  This association may stem from a causal relationship, i.e. the sites share a similar 

climate regime and this results in a similar national mean IQ.  However, it may be that there are one or 

more underlying factors that drive both variables, resulting in a correlation without a causal 

relationship.  One such example is local movement of peoples between countries that share similar 

temperature attributes simply through spatial proximity.  Thus, the apparent association between the 

two variables may be due to their proximity rather than independently driven causal relationships.  

Classical significance testing is based on the assumption of independence and if one cannot be confident 

that each data point represents an independent realisation of the same causal process, the significance 

values become unreliable.  It seems intuitively unreasonable, for example, to compare data for France, 

Germany and Belgium with Ghana, Togo and Benin, assuming each to be entirely independent.  We have 

illustrated precisely this problem in Figure 1.  Countries on the same continent are more similar to one 
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another than to countries on different continents both in terms of national mean IQ and any number of 

potential predictors (e.g. disease burden as shown in Figure 1 and as hypothesised by Eppig et al., 2010).  

Additional statistical controls must be taken into account to explicitly deal with the spatial relationships 

among data points.  Specifically, without controlling for autocorrelation, tests of association between 

spatially autocorrelated variables can lead to an inflated proportion of Type I errors (rejection of the null 

hypothesis when true), since the effective sample size is always smaller than the total number of 

genuinely independent data points (Clifford, Richardson, & Hemon, 1989; Legendre & Fortin, 1989; 

Legendre & Legendre, 1998).  The problem may also be more severe than simply inflating Type I error 

rate.  In particular, Lennon (2000) argued that correlations between an autocorrelated response variable 

and a set of candidate predictors will be strongly biased in favour of identifying autocorrelated 

predictors as significant over non-autocorrelated predictors.   

 

While many papers have highlighted the problems posed by spatial autocorrelation in data, far fewer 

studies have offered a solution (Dale & Fortin, 2002).  These solutions include discarding data, adjusting 

the Type I error rate, adjusting the effective sample size to control for lack of independence and 

accounting for spatial structure directly in the fitted model (Dale & Fortin, 2002).  Whatever the remedy, 

one simply cannot ignore spatial autocorrelation and hope for the best (Beale, Lennon, Yearsley, 

Brewer, & Elston, 2010).  Of course, it is quite possible for a spatially autocorrelated predictor to 

generate independent yet spatially autocorrelated responses when the response variable would not 

otherwise be autocorrelated.  Using the example above, a positive correlation between national mean 

IQ and temperature would, by virtue of the spatial structure in temperature, produce a spatial structure 

in national IQ.  Thus the two variables would be spatially autocorrelated but with an independent 

relationship.  Therefore, conservatively controlling for spatial autocorrelation in predictor and response 

can ͞throw the baby out with the bathwater͟ and leave researchers with little additional variation to 

explain other than processes operating at different (usually smaller) spatial scales. Arguably therefore, 

controlling for a lack of spatial independence is only essential when the residuals of fitted models 

continue to show significant spatial signature (Diniz-Filho, Bini, & Hawkins, 2003) above and beyond 

those accounted for by the predictor, which will arise when the response continues to show a lack of 

independence even after controlling for ƚŚĞ ƉƌĞĚŝĐƚŽƌ͛Ɛ ĞĨĨĞĐƚ͘  Here we adopt this conservative 

approach in re-evaluating competing hypotheses to explain geographical patterns in national mean IQ.  

We show that spatial autocorrelation is present not only in the predictors of national mean IQ, but also 

in the residuals of models used to describe national IQ.  The best fitting models exhibit greater 

explanatory power after control for spatial autocorrelation so, rather than obliterate any pattern, they 

remain capable of yielding insights into the question of how and why IQ varies across nations. 

 

3. Competing hypotheses to explain geographical variation in mean IQ 

Since Lynn and Vanhanen published their monographs on geographical variation in IQ (Lynn & 

Vanhanen, 2001), a number of competing hypotheses have emerged to explain variation between 

countries.  We present a subset of representative hypotheses which can be classified using three broad 

categories: 

 

Evolutionary hypotheses: 
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 Distance from the environment of evolutionary adaptedness (hereafter, "DEEA") (Kanazawa, 

2008) ʹ Kanazawa proposed that the human brain was adapted to a particular ancestral 

environment: the savannah of central Africa.  In order to exploit environments that differ from 

this habitat, the human brain would need to be able to adapt to solve new challenges.  

Kanazawa proposes that this requirement for greater intelligence is what selected for higher-IQ 

individuals in locations further from the environment of evolutionary adaptedness (EEA). 

 Temperature (Kanazawa, 2008; Templer & Arikawa, 2006) ʹ In a similar hypothesis, a variety of 

authors have suggested that cold weather and harsh winters select for higher intelligence to be 

able to cope with the extremes of climate.   

 

Physiological hypotheses: 

 Nutrition (Lynn, 1990) ʹ Lynn observed that changes in height and head size were occurring over 

time.  He hypothesised that this was the result of increasing levels of nutrition, citing evidence 

that nutritional deficiencies retard growth.  Citing correlations between head size, brain size and 

IQ, Lynn then proposes that increases in nutrition are also increasing national mean IQ.  

 Parasite burden (Eppig, Fincher, & Thornhill, 2010) ʹ Significant international variation in IQ can 

be explained by variation in the disability-adjusted life years (DALY, a measure of disease 

burden) due to parasitic and infectious disease.  The reasoning behind this hypothesis is that the 

response to parasites by the immune system requires energy which can then not be used in 

cognitive development.   

 

Socioeconomic hypotheses: 

 Education (Barber, 2005) ʹ This hypothesis assumes that the amount of time put into education 

is related to the extent of cognitive development, which then influences IQ.  Evidence for such a 

causal relationship has been presented using longitudinal studies (e.g. Richards & Sacker, 2003).  

Marks (2010) has argued that geographical variation in IQ is purely an artefact of literacy levels.  

However, literacy data are no longer collected in many high-income countries which are 

typically considered to be 99% literate (e.g. United Nations Development Programme, 2009).  

Here we assume that Marks' hypothesis based on literacy can be tested using data on 

education.   

 Gross domestic product (GDP) (Lynn & Vanhanen, 2002) ʹ GDP per capita is related to 

development which, in turn, is related to the average amount of education.  For reasons 

described in the previous hypothesis, it might be expected that a higher general level of 

education would result in higher IQ.   

 

All studies cited above have provided significant statistical results to support their hypotheses.  

However, none so far has either tested for or controlled for the spatial structure of the data in a rigorous 

way.   

 

Outline of the analysis 
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We begin by describing the sources for our data (which are provided in Appendix 1).  We then 

demonstrate the extent of the spatial autocorrelation in the raw predictor and response variables.  We 

show that strong correlations exist between all six candidate predictors and three measures of national 

mean IQ, even when spatial autocorrelation is taken into account.  We use an exhaustive model 

selection method to find the most parsimonious model to explain variation in national mean IQ.  Next, 

and most importantly, we show that the residuals of these best-fit multiple regression models exhibit 

spatial autocorrelation, which even by the least conservative standards necessitates the control of this 

autocorrelation in the analysis of the model (Diniz-Filho, et al., 2003).  Finally, we then carry out the 

model selection procedure, this time including control for SAC.   

 

Data sources 

Data sources were used mostly as specified in Eppig et al. (2010): national IQ data were taken from Lynn 

and Vanhanen (2006) with 17 alternative values from Wicherts, Dolan, & van der Maas (2010); disability 

life-adjusted year (DALY) values for infectious and parasitic diseases (hereafter "IPD") and nutritional 

deficiencies ("Nut") were generated by the World Health Organisation (2004); average years in 

education ("AVED"), % population reaching enrolment in secondary education ("Sec_E") and % 

population completing secondary education ("Sec_C") from Barro & Lee (2010) and data at 

http://www.barrolee.com/ for 2010; and GDP per capita ("GDP") from the CIA World Factbook (2007).  

Three IQ datasets were defined, as in Eppig et al: Lynn and Vanhanen's (2006) data based only on 

censuses ("LVCD"), Lynn and Vanhanen's data with estimates for missing values ("LVE") and LVE with the 

17 alternative values from Wicherts, Dolan, & van der Maas (2010) ("WEAM").  Distance from the point 

5°S, 25°E (the "environment of evolutionary adaptedness") to the centroid of each country ("DEEA") was 

calculated in ArcGIS v9.2 (ESRI, 2006).  Centroids were also used in subsequent control for SAC.  As an 

index of temperature, we calculated the mean temperature of the coldest quarter ("MTCQ") for each 

country using the WORLDCLIM dataset (Hijmans, Cameron, Parra, Jones, & Jarvis, 2005) in ArcGIS v9.2 

(ESRI, 2006).  Countries lacking any data were excluded leaving a total of 137 countries for the 

comparison (Table S1).  IPD, Nut, GDP and DEEA were log-transformed for normality.  The three education 

measures were highly collinear (Sec_E vs. Sec_C, r=0.942, p<0.001; Sec_E vs. AVED, r=0.935, p<0.001; 

Sec_C vs. AVED, r=0.892, p<0.001).  Therefore, the three education variables were entered into a 

principal components analysis to produce a single education measure ("ED") from the first principal 

component which explained 97.7% of the variance in the three measures. 

 

Data analysis 

(i) SAC in predictors and responses 

A statistical measure of spatial autocorrelation, Moran's I, was calculated for each of the three national 

IQ datasets (the response variables) and the six predictors described above and in Table 1.  An 

alternative measure of SAC is Geary's c, which is approximately inversely related, though not identical, 

to Moran's I (Sokal & Oden, 1978).  We use Moran's I as it gives a more global indicator of spatial 

autcorrelation while Geary's C is more sensitive to local differences.  Moran's I also tends to perform 

better in ecological analyses, describing patterns more cleanly and being easier to interpret (Legendre & 

Fortin, 1989).   

 

http://www.barrolee.com/
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A distance matrix was first calculate based on great circle distances between each pair of country 

centroids using the "distCosine" function in the R package geosphere (Hijmans, Williams, & Vennes, 

2011).  Great circle distances take into account the curvature of the earth when calculating distances 

between two sets of latitude-longitude coordinates.  The "Moran.I" function in the R package APE 

(Paradis, Claude, & Strimmer, 2004) was used to calculate the global Moran's I value for each of the nine 

variables.  We have attached the R code for this operation in Appendix 2.  To further illustrate the 

pattern of SAC in the data, the three IQ variables and IPD, highlighted as the most important predictor in 

a recent analysis (Eppig, et al., 2010) were analysed in SAM v4.0 (Rangel, Diniz-Filho, & Bini, 2006) over a 

range of distances.  SAM ("Spatial Analysis in Macroecology") is free software available from 

http://www.ecoevol.ufg.br/sam/.  This software provides tools to carry out a variety of analyses 

including spatial eigenvector mapping, the quantification of SAC using Moran's I, and multimodel 

inference using AŬĂŝŬĞ͛Ɛ IŶĨŽƌŵĂƚŝŽŶ CƌŝƚĞƌŝĂ ;AIC). 

 

(ii) Correlations between national mean IQ and predictors 

Correlations between each of the predictors and the three national IQ indices were assessed using 

Pearson product-moment correlations (Table 2).  Having previously demonstrated the presence of 

spatial autocorrelation in the predictors and response variables, it was clear that the degrees of freedom 

in the tests would be artificially inflated due to the lack of independence between data points.  The 

"spatial correlation" function in SAM was used to recalculate the geographically effective degrees of 

freedom according to the method of Clifford et al. (1989).  This allows a more accurate calculation of 

statistical significance. 

 

(iii) First model construction  

Having demonstrated that all predictor variables are strongly correlated with all three national IQ 

indices, even when the lack of independence is controlled for, we were left with all six predictor 

variables as viable predictors for linear regression.  Extensive collinearity exists within the predictors, 

which poses problems for using stepwise model selection to identify subsets of variables for use in 

regression models.  Wicherts, Borsboom & Dolan (2010) highlight this collinearity among socioeconomic 

and health variables ʹ and suggest that national mean IQ is simply another indicator of development ʹ 

although the same is true for most predictors of national IQ.  If left unchanged, multicollinearity (linear 

relationship between two or more variables) results in an inflation of the variance associated with 

parameter estimates within multiple regression models.  However, cases of multicollinearity can be 

identified using variance inflation factors (VIFs) to determine the extent to which the variance 

associated with each term is increased by the collinearity, where VIF>10 is considered "high" 

multicollinearity (Kutner, Nachtsheim, Neter, & Li, 2005).  However, we avoid this problem by using an 

"exhaustive search" method to compare all possible combinations of variables (Graham, 2003).  The 

relative performance of the models was then judged using AIC controlling for small sample size (AICc; 

Kutner, et al., 2005).  This measure of model performance incorporates goodness-of-fit as well as the 

number of explanatory variables to rank models relative to one another to indicate the most 

parsimonious models.  Alternative model selection methods using only goodness of fit (e.g. R2 or 

adjusted R2) neglect the principle of parsimony, while the Bayesian information criterion (BIC, also 

known as the Schwartz criterion) rests on assumptions that are rarely met with empirical data (Johnson 

http://www.ecoevol.ufg.br/sam/
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& Omland, 2004)͘  A ȴAICĐ ;ƚŚĞ ĚŝĨĨĞƌĞŶĐĞ ďĞƚǁĞĞŶ ƚŚĞ AICĐ ŽĨ Ă ŐŝǀĞŶ ŵŽĚĞů ĂŶĚ ƚŚĂƚ ŽĨ ƚŚĞ ƚŽƉ ŵŽĚĞůͿ 
of <2 indicates that there is substantial evidence for the given model above alternative candidate 

models͕ ϯ ф ȴAICĐ ф ϳ ŝŶĚŝĐĂƚĞƐ ĐŽŶƐŝĚĞƌĂďůǇ ůĞƐƐ ƐƵƉƉŽƌƚ ĂŶĚ ȴAICĐ х ϭϬ ŝŶĚŝĐĂƚĞƐ ĞƐƐĞŶƚŝĂůůǇ ŶŽ ƐƵƉƉŽƌƚ 
(Burnham & Anderson, 2002).  We also calculate R2 (the proportion of overall variance explained by the 

fitted model) as an absolute measure of goodness-of-fit to complement the relative measure provided 

by AICc.  Six predictors yield a potential 63 models including a null model (with only a floating intercept) 

and each of these was constructed in R for each of the three IQ variables.  The resulting models were 

compared using the "aictab" function in the AICcmodavg package (Mazerolle, 2010) in R.  We have 

provided the R code for this stage of the analysis in Appendix 3. 

 

(iv) SAC in model residuals 

As stated above, the presence of SAC in model residuals indicates a need to account for SAC in the 

model itself.  We tested for evidence of spatial autocorrelation in the best fitting models (for which 

ȴAICĐфϮͿ ĨŽƌ ĞĂĐŚ ŽĨ ƚŚĞ ƚŚƌĞĞ IQ ǀĂƌŝĂďůĞƐ͘  TŚŝƐ ǁĂƐ ĚŽŶĞ ďǇ ĐĂůĐƵůĂƚŝŶŐ ŐůŽďĂů MŽƌĂŶΖƐ I ŝŶ R͕ ĂƐ 
described above, for the residuals of each of the models. 

 

(v) Control for SAC 

Having demonstrated that the residuals of the best fitting models exhibited spatial autocorrelation, the 

model selection procedure was carried out a second time with a control for SAC.  The incorporation of 

SAC into these models was through a technique called "spatial eigenvector mapping" (SEVM) and was 

carried out in SAM.  This method decomposes the spatial relationships between data into explanatory 

variables which capture spatial effects at different spatial resolutions.  The method can be viewed as 

equivalent to a principal components analysis carried out on the distance matrix of the data (Dormann, 

et al., 2007).  Whereas selection of relevant components in PCA hinges on their eigenvalues, we based 

selection of eigenvectors on the minimisation of Moran's I (to a threshold of 0.05) in the model 

residuals.  The resulting eigenvectors are then included in all models during the model selection 

procedure.  Global Moran's I was calculated for the residuals of each of the best fitting (ȴAICĐфϮͿ ŵŽĚĞůƐ 
to evaluate the success of the method. 

 

4. Results 

(i) SAC in predictors and responses 

LVE and WEAM data showed a positive autocorrelation that was significantly (p<0.001) different from 

zero at each distance up to 3500km then a significant (p<0.01) negative autocorrelation up to 16000km.  

LVCD showed a significant (p<0.001) positive autocorrelation up to 3500km and a significant (p<0.001) 

negative autocorrelation to 10000km after which there was no significant spatial structure (Fig. 1).  

Comparing predictors and response variables, we find that SAC is higher in national IQ than in national 

temperature (Table 1), as shown by Gelade (2008).  As Gelade points out, there is an intuitive spatial 

autocorrelation involving temperature where two neighbouring nations tend to have a more similar 

climate than two more-distant nations.  That national IQ exhibits stronger SAC than temperature 

emphasises the strength of the pattern.  In fact, the only variable with higher SAC than national IQ was 

the distance from the environment of evolutionary adaptedness (DEEA), which is itself a distance 

measure.  What this SAC in DEEA tells us is that two points that are closer together are a more-similar 
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distance from another given point.  This near-tautological example of SAC is instructive in demonstrating 

the importance of accounting for lack of independence in analyses. 

 

(ii) Correlations between national IQ and predictors 

Before control for SAC, there were strong, significant (p<0.001 in all cases) correlations between all six 

predictor variables and the three national IQ measures (Table 2).  The proportion of variance in the 

national IQ measures that was explained by the individual predictors range from 28% to 73%, with the 

strongest correlations between national IQ and IPD and the weakest between IQ and DEEA.  When SAC 

was controlled for in these pairwise correlations there were still significant correlations at the reduced 

degrees of freedom.  It is worth noting that the variables with higher SAC in Table 1 (IPD, DEEA and 

MTCQ) are those which have the greatest reduction in degrees of freedom in Table 2.  However, this 

method still gives us no reason to choose between the competing hypotheses as all terms remain 

significant. 

 

(iii) First model construction  

An exhaustive search of models prior to control for SAC yielded very similar models for each of the three 

national IQ measures (Table 3).  In each of the LVE, WEAM and LVCD measures, IPD, MTCQ and DEEA 

formed the top model and ǁĞƌĞ ĐŽŶƚĂŝŶĞĚ ŝŶ Ăůů ŵŽĚĞůƐ ǁŚĞƌĞ ȴAICĐфϮ͘  NƵƚ ĂůƐŽ ĨĞĂƚƵƌĞĚ ŝŶ ƚŚĞ 
second-ranking models in each case, and GDP featured in the third- and fourth-ranking models for LVCD.  

All models explain a large proportion of the variance in the response variables (between 72.3 and 

81.1%). 

 

(iv) SAC in model residuals 

Examining the residuals for SAC we see that there is highly significant autocorrelation in the residuals of 

all the top models (Table 3).  While this SAC is not as strong as that present in the raw data (Table 1), it 

provides strong evidence for a continuing effect of spatial interdependence in the models.   

 

(v) Control for SAC 

The inclusion of spatial eigenvectors in the model selection procedure, results in a change in our 

interpretation of the results.  The first is that the explanatory power of all models increases (note the 

adjusted R2 values in Table 3).  The lower AICc values demonstrate that this increase in goodness-of-fit 

does not come at a cost of decreased parsimony.  In fact, the model fit according to AIC is substantially 

better after control for SAC, with ȴAICĐ values comparing best-fit models before and after SAC of 

44.875, 31.286 and 24.185 for LVE, WEAM and LVCD, respectively. 

 

Second, the SAC of the model residuals of two of the three measures was non-significant after control 

for SAC.  SAC in the residuals of LVE was particularly high in the original models (Table 3) and, although 

the SEVM approach reduced SAC considerably, it was still significant.  It is worth noting that the SEVM 

approach was designed not to render SAC non-significant, but to reduce it below a certain threshold 

(Moran's I < 0.05) where it has a negligible effect.  Using this criterion, the procedure was successful. 
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Third, the composition of the models changes.  There is consistent evidence for an effect of IPD and 

MTCQ in the top models before controlling for SAC and this remains after the control is applied (Table 

3).  The most noticeable difference in model composition is the omission of DEEA (distance from the 

environment of evolutionary adaptedness) from most of the models after control for SAC.  Having been 

present in all top models prior to control for SAC, DEEA occurs only once in the second-best fit model for 

the WEAM IQ measure.  Nut also seems to increase in importance but only in the LVCD IQ measure, 

where GDP also remains in the best-fit models. 

 

5. Discussion 

We have highlighted the importance of dealing with spatial autocorrelation when analysing spatial 

patterns, and re-examined competing hypotheses explaining geographical variation in national IQ to 

illustrate our case.  Cross-national research in mean IQ is a relatively new field but has already produced 

a number of studies which have sought predictors of variation in IQ.  Such putative predictors have 

included temperature and skin colour (Templer & Arikawa, 2006), evolutionary novelty (Kanazawa, 

2008), irreligion (Lynn, Harvey, & Nyborg, 2009), inbreeding (Woodley, 2009) and a range of economic 

factors (e.g. Dickerson, 2006).  While these studies may provide interesting results, none have explicitly 

considered spatial autocorrelation.  It has long been appreciated (e.g. Clifford, et al., 1989) that not 

accounting for spatial  autocorrelation in the response variable results in inflated significance due to 

overestimation of the true sample size of data.  While this is true for any spatial analysis, different fields 

have taken different lengths of time to address the problem.  Geography was among the first (Cliff & 

Ord, 1970), with ecology following later (Legendre, 1993) and other subdisciplines of biology only now 

incorporating the issues into their paradigms (Valcu & Kempenaers, 2010).  In this paper we highlight 

the issue of spatial autocorrelation in the context of spatial variation in intelligence. 

 

Correcting for SAC in conjunction with exhaustive model selection enables us to circumvent the twin 

problems of spatial autocorrelation and collinearity among variables.  This permits the most 

comprehensive and statistically rigorous assessment of six potential hypotheses explaining variation in 

geographical patterns in IQ that has yet been conducted.  When a comprehensive model comparison 

was conducted to analyse national variation in IQ scores, then infectious and parasitic diseases (IPD) and 

temperature (mean temperature of the coldest quarter) were the only two variables consistently 

included in models.  Mortality and morbidity resulting from nutritional deficiencies (Nut), GDP, and 

distance from the environment of evolutionary adaptedness (DEEA) also feature in some of the best 

fitting models.  However, it is worth noting that DEEA becomes far less important in models after 

controlling for SAC.  This is not surprising given that the variable itself is, by definition, autocorrelated 

across space.  It seems likely that the distance from the environment of evolutionary adaptedness has 

no causal link with national mean IQ. 

 

The case for an effect of infectious and parasitic disease burdens influencing national IQ has been made 

elsewhere (Eppig, et al., 2010).  Previously, the relationship between temperature and national mean IQ 

has been explained in terms of the greater cognitive demands of surviving in colder environments 

(Templer & Arikawa, 2006).  Given the strength of evidence for the physiological effects of disease, it 

may be that temperature is acting not through an impact on the environment but through an impact on 
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the interaction between humans and their diseases.  Temperature influences a number of disease-

related parameters such as disease distribution (Guernier, Hochberg, & Guégan, 2004), transmission 

seasons (e.g. malaria, Hay, Guerra, Tatem, Noor, & Snow, 2004), the ability of insect vectors to transmit 

diseases (Cornel, Jupp, & Blackburn, 1993) and the development and survival of parasites and host 

susceptibility (Harvell, et al., 2002).  It may be that temperature is having an effect on national mean IQ 

by mediating the response to infectious diseases rather than via environmental complexity. 

 

We have highlighted SAC as a cause for concern in these analyses of geographic variation in IQ and 

briefly mentioned multicollinearity in the predictor variables as a second issue.  While we use exhaustive 

(or "all-subsets") modelling to avoid issues with collinear predictor variables and model construction, an 

alternative method would be structural equation modelling (SEM, or "path analysis") (Graham, 2003);  

(van der Maas, et al., 2006).  SEM involves the explicit, a priori statement of causal and correlative 

relationships between variables and provides estimates of the relative strengths of interactions.  Where, 

for example, changes in sanitation are thought to cause changes in disease, or changes in nutrition 

cause changes in infant mortality, these effects can be stated and the direct and indirect effects on 

national IQ can be assessed.  While this approach shows promise for testing hypotheses of national IQ 

variation, there are cases in which the nature of relationships are unclear.  For example, does GDP exert 

a causal relationship on other factors?  Does education improve nutrition and/or disease incidence? 

  

Socioeconomic factors do not feature strongly in the analysis when other factors are taken into account.  

GDP is present in some of the best-fitting models but it is unclear as to how this variable is acting.  There 

has been debate in the literature over the competence of IQ tests to accurately measure intelligence 

over a range of education or literacy levels (Barber, 2005), with some researchers claiming that global 

variation in IQ is entirely an artefact of varying literacy (Marks, 2010).  We find no evidence to support 

this.  However, we stress that our measure of education, despite being a composite statistic will not 

have captured all aspects of educational experience, so as always, alternative measures could have 

given different results. Intriguingly, cross-fostering studies have demonstrated that socio-economic 

factors can influence IQ, with children from high socioeconomic status (SES) parents who were 

subsequently fostered by low SES parents having lower IQ scores than those children from high SES 

families who were then fostered by other high SES parents.  Conversely, children from low SES parents 

who were fostered by high SES foster parents exhibited higher IQ scores than did children from low SES 

parents who were fostered by low SES foster parents (Capron & Duyme, 1989).  It is worth noting that 

this study was conducted only in France, and so the results may not be applicable to a global study with 

far greater variations in SES.  It may be that SES acts at a smaller scale that is dwarfed by other factors 

on a global level. 

 

Like all correlative studies, we cannot ascribe causality on the basis of statistical significance and so all 

potential relationships identified require further investigation.  Here is not the place to present any 

alternative hypotheses in depth, especially on the basis of automated searches for candidate models 

rather than directed tests. However, it is possible that reduced parasite prevalence may play a role in 

the generation of the Flynn Effect, the apparent increase in mean IQ over time (but c.f. Wicherts, et al., 

2004).  Other studies have shown that generational increases in intelligence are focused at the lower 
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end of the IQ distribution (Colom, Lluis-Font, & Andrés-Pueyo, 2005).  Parasites in host populations 

commonly exhibit aggregation, with a few individuals carrying large numbers of parasites and most 

individuals carrying few (Anderson & Gordon, 1982).  It could be reasoned that either improved hygiene 

or clinical intervention for diseases and parasites is benefitting those few heavily infected individuals 

disproportionately and, if those individuals also exhibit low IQ as a result of their disease burden, IQ 

would also increase to the greatest extent at the lower end of the scale.  Thus, a parasite-induced 

depression in IQ with subsequent improvement due to hygiene and medicine could provide an 

explanation for the Flynn Effect (Eppig, et al., 2010). 

 

Controlling for autocorrelation may remove real biological patterns and this has been offered as an 

argument against controlling for both spatial (Legendre, 1993) and phylogenetic (Ricklefs & Starck, 1996) 

autocorrelation.  However, any statistical analysis with an inherent spatial component should consider 

spatial autocorrelation, if only to demonstrate that its control is not necessary.  Failure to account for 

this lack of independence in data violates statistical assumptions and renders statistical inference 

invalid.  The initial dogmatism with which controls for spatial and phylogenetic autocorrelation were 

enforced has now given way to an acceptance that such controls are not always necessary.  However, 

with the advent of numerous tools and techniques (such as those presented here) for assessing this 

need, we encourage researchers to at least give the topic due consideration as it can substantially 

influence results.  

 

Acknowledgements 

We would like to thank the Carleton University ECO-EVO Group for discussion.  Conor Dolan, Douglas 

Detterman, Jelte Wicherts and an anonymous referee provided comments which greatly improved the 

manuscript.  CH was supported by an Ontario Ministry of Research and Innovation Postdoctoral 

Fellowship and TNS is funded by NSERC. 

 

References 

Anderson, R. M., & Gordon, D. M. (1982). Processes influencing the distribution of parasite numbers 

within host populations with special emphasis on parasite-induced host mortalities. 

Parasitology, 85, 373-398. 

Barber, N. (2005). Educational and ecological correlates of IQ: A cross-national investigation. 

Intelligence, 33, 273-284. 

Barro, R. J., & Lee, J.-W. (2010). A new data set of educational attainment in the world, 1950-2010 (Vol. 

15902). Cambridge, USA: National Bureau of Economic Research. 

Beale, C. M., Lennon, J. J., Yearsley, J. M., Brewer, M. J., & Elston, D. A. (2010). Regression analysis of 

spatial data. Ecology Letters, 13, 246-264. 

Burnham, K. P., & Anderson, D. R. (2002). Model Selection and Multimodel Inference: A Practical 

Information-Theoretic Approach (2nd ed.). New York: Springer-Verlag. 

Capron, C., & Duyme, M. (1989). Assessment of effects of socio-economic status on IQ in a full cross-

fostering study. Nature, 340, 552-553. 

CIA. (2007). CIA 2007 World factbook. See https://www.cia.gov/library/publications/the-world-factbook. 

http://www.cia.gov/library/publications/the-world-factbook


14 

 

Cliff, A. D., & Ord, K. (1970). Spatial autocorrelation: a review of existing and new measures with 

applications. Economic Geography, 46, 269-292. 

Clifford, P., Richardson, S., & Hemon, D. (1989). Assessing the significance of the correlation between 

two spatial processes. Biometrics, 45, 123-134. 

Colom, R., Lluis-Font, J. M., & Andrés-Pueyo, A. (2005). The generational intelligence gains are caused by 

decreasing variance in the lower half of the distribution: Supporting evidence for the nutrition 

hypothesis. Intelligence, 33, 83-91. 

Cornel, A. J., Jupp, P. G., & Blackburn, N. K. (1993). Environmental temperature on the vector 

competence of Culex univittatus (Diptera: Culicidae) for West Nile Virus. Journal of Medical 

Entomology, 30, 449-456. 

Dale, M. R. T., & Fortin, M.-J. (2002). Spatial autocorrelation and statistical tests in ecology. Ecoscience, 

9, 162-167. 

Dickerson, R. E. (2006). Exponential correlation of IQ and the wealth of nations. Intelligence, 34, 291-

295. 

Diniz-Filho, J. A. F., Bini, L. M., & Hawkins, B. A. (2003). Spatial autocorrelation and red herrings in 

geographical ecology. Global Ecology and Biogeography, 12, 53-64. 

Dormann, C. F., McPherson, J. M., Araújo, M. B., Bivand, R., Bolliger, J., Carl, G., Davies, R. G., Hirzel, A., 

Jetz, W., Daniel Kissling, W., Kühn, I., Ohlemüller, R., Peres-Neto, P. R., Reineking, B., Schröder, 

B., Schurr, F. M., & Wilson, R. (2007). Methods to account for spatial autocorrelation in the 

analysis of species distributional data: a review. Ecography, 30, 609-628. 

Duckworth, A. L., Quinn, P. D., Lynam, D. R., Loeber, R., & Stouthamer-Loeber, M. (in press). Role of test 

motivation in intelligence testing. Proceedings of the National Academy of Sciences. 

Eppig, C., Fincher, C. L., & Thornhill, R. (2010). Parasite prevalence and the worldwide distribution of 

cognitive ability. Proceedings of the Royal Society: Series B (Biological Sciences), First cite, 

doi:10.1098/rspb.2010.0973. 

ESRI. (2006). ArcGIS v.9.2. Redlands: Environmental Systems Research Institute, Inc. 

Gelade, G. A. (2008). The geography of IQ. Intelligence, 36, 495-501. 

Gould, S. J. (1981). The Mismeasure of Man. New York: W.W. Norton & Co. 

Graham, M. (2003). Confronting multicollinearity in ecological multiple regression. Ecology, 84, 2809-

2815. 

Guernier, V., Hochberg, M. E., & Guégan, J.-F. (2004). Ecology drives the worldwide distribution of 

human diseases. PLoS Biology, 2, e141. 

Harvell, C. D., Mitchell, C. E., Ward, J. R., Altizer, S., Dobson, A. P., Ostfeld, R. S., & Samuel, M. D. (2002). 

Climate warming and disease risks for terrestrial and marine biota. Science, 296, 2158-2162. 

Hay, S. I., Guerra, C. A., Tatem, A. J., Noor, A. M., & Snow, R. W. (2004). The global distribution and 

population at risk of malaria: past, present and future. Lancet Infectious Diseases, 4, 327-336. 

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution 

interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 

1965-1978. 

Hijmans, R. J., Williams, E., & Vennes, C. (2011). geosphere: Spherical Trigonometry. R package version 

1.2-19: http://CRAN.R-project.org/package=geosphere. 

http://cran.r-project.org/package=geosphere


15 

 

Hunt, E., & Carlson, J. (2007). Considerations relating to the study of group differences in intelligence. 

Perspectives on Psychological Science, 2, 194-213. 

Jensen, A. R. (1982). The debunking of scientific fossils and straw persons. Contemporary Education 

Review, 1, 121-135. 

Johnson, J. B., & Omland, K. S. (2004). Model selection in ecology and evolution. Trends in Ecology & 

Evolution, 19, 101-108. 

Kanazawa, S. (2008). Temperature and evolutionary novelty as forces behind the evolution of general 

intelligence. Intelligence, 36, 99-108. 

Kutner, M., Nachtsheim, C., Neter, J., & Li, W. (2005). Applied Linear Statistical Models (5th ed.). Irwin, 

CA: McGraw-Hill. 

Legendre, P. (1993). Spatial autocorrelation: trouble or new paradigm? Ecology, 74, 1659-1673. 

Legendre, P., & Fortin, M.-J. (1989). Spatial pattern and ecological analysis. Vegetatio, 80, 107-138. 

Legendre, P., & Legendre, L. (1998). Numerical Ecology. Amsterdam: Elsevier Science. 

Lynn, R. (1990). The role of nutrition in secular increases in intelligence. Personality and Individual 

Differences, 11, 273-285. 

Lynn, R., Harvey, J., & Nyborg, H. (2009). Average intelligence predicts atheism rates across 137 

countries. Intelligence, 37, 11-15. 

Lynn, R., & Vanhanen, T. (2001). National IQ and economic development: a study of eighty-one nations. 

Mankind Quarterly, 41, 415-435. 

Lynn, R., & Vanhanen, T. (2002). IQ and the Wealth of Nations. Westport, CT: Praeger. 

Lynn, R., & Vanhanen, T. (2006). IQ and global inequality. Augusta, GA: Washington Summit. 

Marks, D. F. (2010). IQ variations across time, race and nationality: an artifact of differences in literary 

skills. Psychological Reports, 106, 643-664. 

Mazerolle, M. J. (2010). AICcmodavg: model selection and multimodel inference based on (Q)AIC(c). R 

package version 1.13: http://CRAN.R-project.org/package=AICcmodavg. 

Paradis, E., Claude, J., & Strimmer, K. (2004). APE: analyses of phylogenetics and evolution in R language. 

Bioinformatics, 20, 289-290. 

Rangel, T. F. L. V. B., Diniz-Filho, J. A. F., & Bini, L. M. (2006). Towards an intergrated computational tool 

for spatial analysis in macroecology and biogeography. Global Ecology and Biogeography, 15, 

321-327. 

Richards, M., & Sacker, A. (2003). Life course antecedents of cognitive reserve. Journal of Clinical 

Experimental Neuropsychology, 25, 614-624. 

Ricklefs, R. E., & Starck, J. M. (1996). Applications of phylogenetically independent contrasts: a mixed 

progress report. Oikos, 77, 167-172. 

Sokal, R. R., & Oden, N. L. (1978). Spatial autocorrelation in biology  1. Methodology. Biological Journal 

of the Linnaean Society, 10, 199-228. 

Templer, D. I., & Arikawa, H. (2006). Temperature, skin color, per capita income, and IQ: An international 

perspective. Intelligence, 34, 121-139. 

Tobler, W. (1970). A computer movie simulating urban growth in the Detroit region. Economic 

Geography, 46, 234-240. 

United Nations Development Programme. (2009). Human Development Report 2009: Overcoming 

Barriers - Human Mobility and Development. New York: Palgrave Macmillan. 

http://cran.r-project.org/package=AICcmodavg


16 

 

Valcu, M., & Kempenaers, B. (2010). Spatial autocorrelation: an overlooked concept in behavioral 

ecology. Behavioral Ecology, 21, 902-905. 

van der Maas, H. L. J., Dolan, C. V., Grasman, R. P. P. P., Wicherts, J. M., Huizenga, H. M., & Raijmakers, 

M. E. J. (2006). A dynamical model of general intelligence: the positive manifold of intelligence 

by mutualism. Psychological Review, 113, 842-861. 

WHO. (2004). Global burden of disease: 2004 update. Geneva, Switzerland: World Health Organisation. 

Wicherts, J. M., Borsboom, D., & Dolan, C. V. (2010). Why national IQs do not support evolutionary 

theories of intelligence. Personality and Individual Differences, 48, 91-96. 

Wicherts, J. M., Dolan, C. V., Carlson, J. S., & van der Maas, H. L. J. (2010). Raven's test performance of 

sub-Saharan Africans: mean level, psychometric propoerties and the Flynn Effect. Learning and 

Individual Differences, 20, 135-151. 

Wicherts, J. M., Dolan, C. V., Hessen, D. J., Oosterveld, P., van Baal, G. C. M., Boomsma, D. I., & Span, M. 

M. (2004). Are intelligence tests measurement invariant over time? Investigating the nature of 

the Flynn effect. Intelligence, 32, 509-537. 

Wicherts, J. M., Dolan, C. V., & van der Maas, H. L. J. (2010). A systematic literature review of the 

average IQ of sub-Saharan Africans. Intelligence, 38, 1-20. 

Woodley, M. A. (2009). Inbreeding depression and IQ in a study of 72 countries. Intelligence, 37, 268-

276. 

 

  



17 

 

Tables 

Table 1 ʹ Three measures of national IQ and six predictor variables with the extent of spatial 

autocorrelation (global Moran's I).  Each of these variables exhibit highly significant (denoted ***) spatial 

structuring, in that we can readily reject the null hypothesis of no spatial structure (p<0.001).  N=137, 

except for LVCD where N=88. 

Variable Abbreviation Moran's I 

National IQ (Lynn and Vanhanen including estimates) LVE 0.312*** 

National IQ (Lynn and Vanhanen with Wicherts et al. (2010) 

alternative values) 

WEAM 0.286*** 

National IQ (Lynn and Vanhanen's census data) LVCD 0.253*** 

Infectious and parasitic disease burden IPD 0.321*** 

Nutritional deficiency burden Nut 0.199*** 

Mean temperature of the coldest quarter MTCQ 0.275*** 

Education Ed 0.205*** 

Gross domestic product (per capita) GDP 0.221*** 

Distance from the environment of evolutionary adaptedness DEEA 0.359*** 
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Table 2 ʹ Product moment coefficients and significance of correlations between three national IQ 

measures (see text for details) and eight putative predictors (see text for definitions) before (r and p) 

and after (p*=corrected p-value, df*=estimated corrected degrees of freedom) control for spatial 

autocorrelation.  Degrees of freedom prior to correlation for autocorrelation are 135 for LVE and WEAM 

and 85 for LVCD.  

 

 LVE (n=137) WEAM (n=137) LVCD (n=88) 

 r p p* df* r p p* df* r p p* df* 

IPD -0.854 <0.001 0.002 7.65 -0.812 <0.001 0.003 8.60 -0.855 <0.001 0.003 7.17 

Nut -0.748 <0.001 0.002 12.76 -0.718 <0.001 0.002 14.09 -0.753 <0.001 0.003 10.95 

MTCQ -0.642 <0.001 0.026 9.73 -0.630 <0.001 0.022 10.87 -0.671 <0.001 0.018 9.83 

Ed 0.638 <0.001 0.008 13.81 0.606 <0.001 0.009 15.32 0.707 <0.001 0.005 11.96 

GDP 0.717 <0.001 0.003 12.76 0.680 <0.001 0.004 14.18 0.795 <0.001 0.002 10.32 

DEEA 0.605 <0.001 0.031 10.74 0.531 <0.001 0.049 12.15 0.594 <0.001 0.011 15.29 
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Table 3 ʹ Model selection table for exploratory analysis before (SAC is "no") and after (SAC is "yes") 

control for spatial autocorrelation.  For definitions of model terms see text and Table 1.  Significance of 

Moran's I is indicated by: ***=p<0.001, NS=p>0.05.  Note that after control for SAC, Moran's I for the 

model explaining LVE is still significant.  This is due to the SEVM routine acting to reduce the magnitude 

of SAC below a specific threshold (0.05), rather than reducing the significance of the pattern. 

Response SAC Model K AICc ȴAICĐ wi R2 (adj) Moran's I 

LVE No IPD + MTCQ + DEEA 5 836.695 0.000 0.368 0.811 0.161*** 

  IPD + MTCQ + DEEA + Nut 6 838.194 1.499 0.174 0.811 0.164*** 

         

 Yes IPD + MTCQ + SEVM 8 791.820 0.000 0.312 0.868 0.047*** 

         

WEAM No IPD + MTCQ + DEEA 5 869.189 0.000 0.378 0.724 0.105*** 

  IPD + MTCQ + DEEA + Nut 6 870.694 1.505 0.178 0.723 0.106*** 

         

 Yes IPD + MTCQ + SEVM 8 837.903 0.000 0.271 0.786 0.012NS 

  IPD + MTCQ + DEEA + SEVM 9 838.751 0.848 0.177 0.787 0.006NS 

         

LVCD No IPD + MTCQ + DEEA 5 545.176 0.000 0.254 0.787 0.099*** 

  IPD + MTCQ + Nut + DEEA 6 545.278 0.102 0.241 0.790 0.101*** 

  IPD + MTCQ + GDP + DEEA 6 545.616 0.441 0.204 0.789 0.100*** 

  IPD + MTCQ + Nut + GDP + DEEA 7 547.079 1.903 0.098 0.789 0.101*** 

         

 Yes IPD + MTCQ + Nut + SEVM 8 520.991 0.000 0.194 0.845 -0.003NS 

  IPD + MTCQ + GDP + SEVM 8 521.294 0.303 0.167 0.845 0.004NS 

  IPD + MTCQ + SEVM 7 521.906 0.914 0.123 0.841 0.002NS 

  IPD + MTCQ + Nut + GDP + SEVM 9 522.342 1.350 0.099 0.845 -0.001NS 
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Figure legends 

 
Figure 1 ʹ The relationship between national mean IQ (LVE) and IPD (daily-adjusted life years due to 

infectious and parasitic diseases) for 137 countries grouped by continent.  Note the clear lack of 

independence of the data, with African countries consistently exhibiting high IPD and low mean IQ, 

while European countries consistently exhibit low IPD and high mean IQ.  It is unlikely that these 

spatially dependent relationships arise as independent realisations of the same causal process. 
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Figure 2 ʹ Spatial autocorrelation in (A) three measures of national IQ, and (B) a proposed explanatory 

variable, namely the incidence of infectious and parasitic diseases (IPD, see text for details).  Moran's I is 

a measure of spatial clustering.  A positive Moran's I indicates that values are more similar at a given 

distance than would be expected by chance, while a negative Moran's I indicates that values are less 

similar than would be expected. 
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Appendix 1 ʹ Raw data 

 

Country/Region LVE LVCD WEAM IPD Nut WMH MTCQ Sec_E Sec_C AVED GDP DEEA Long (°E) Lat (°N) 

Afghanistan 84 -- 84 12010.86 1515.57 8 -0.22 32 20 3.33 1000 6099.23 66.024 33.841 

Albania 90 -- 90 488.65 620.97 13 3.60 121.7 43.2 10.38 6400 5155.07 20.081 41.141 

Algeria 83 -- 83 1974.29 439.38 17 13.14 81.5 47.2 7.04 7100 4397.88 2.630 28.159 

Andorra 98 -- 98 274.39 76.91 -- -2.40 -- -- -- 44900 5790.11 1.578 42.533 

Angola 68 -- 68 19078.39 2142.56 23 18.79 -- -- -- 8400 1154.33 17.541 -12.312 

Antigua and Barbuda 70 -- 70 953.56 196.59 -- 24.85 -- -- -- 17800 9833.34 -61.788 17.316 

Argentina 93 93 93 836.38 175.63 -- 8.00 90.1 45 9.28 13400 9702.72 -65.188 -35.401 

Armenia 94 -- 94 1003.55 171.94 о 2 -4.49 171.8 97.2 10.79 5500 5433.52 44.939 40.301 

Australia 98 98 98 155.27 36.39 -- 14.72 157 94.7 12.04 40000 11693.66 134.493 -25.744 

Austria 100 100 100 188.31 78.77 0 -3.20 131.6 69.6 9.77 39200 5943.62 14.151 47.591 

Azerbaijan 87 -- 87 1993.68 509.98 3 1.51 -- -- -- 10400 5535.39 47.540 40.269 

Bahrain 83 -- 83 546.60 247.13 20 17.90 129.8 63.5 9.42 38800 4415.61 50.574 26.020 

Bangladesh 82 -- 82 4959.85 716.59 26 19.84 56.4 25.7 4.77 1500 7757.80 90.263 23.895 

Barbados 80 80 80 1371.81 122.77 -- 24.20 114 27.6 9.34 17700 9544.84 -59.531 13.184 

Belarus 97 -- 97 664.02 354.60 о 5 -5.34 -- -- -- 12500 6515.06 28.051 53.535 

Belgium 99 99 99 173.03 76.16 4 2.34 131.4 79.6 10.57 36800 6485.28 4.669 50.633 

Belize 84 -- 84 1615.56 404.98 -- 22.60 53.1 27.6 9.18 8300 12687.09 -88.699 17.169 

Benin 70 -- 70 10870.93 1143.10 27 25.21 33.2 17.5 3.25 1500 2991.75 2.338 9.628 

Bermuda 90 90 90 -- -- -- 3.11 -- -- -- 69900 10281.90 -64.760 32.305 

Bhutan 80 -- 80 4542.08 861.62 10 17.50 -- -- -- 4700 7882.89 90.443 27.425 

Bolivia 87 87 87 3401.17 796.83 -- 0.25 106.2 62.4 9.20 4700 9812.51 -64.667 -16.713 

Bosnia and Herzegovina 90 -- 90 286.73 358.41 -- 14.64 -- -- -- 6400 5514.50 17.789 44.167 

Botswana 70 -- 70 32483.12 532.08 24 3.90 107 35.7 8.90 12800 1915.18 23.806 -22.185 

Brazil 87 87 87 1575.02 363.48 -- 22.95 77.9 37.6 7.18 10100 8606.73 -53.100 -10.784 

Brunei 91 -- 91 655.77 146.07 30 26.52 99.1 45.1 8.57 51200 10018.49 114.702 4.534 

Bulgaria 93 93 93 300.30 352.63 4 0.43 109.5 57.4 9.95 12500 5310.37 25.249 42.757 

Burkina Faso 68 -- 68 15706.29 1405.28 33 25.61 -- -- -- 1200 3526.84 -1.765 12.265 

Burundi 69 -- 69 18706.93 1439.56 29 18.92 11.1 4.9 2.69 300 578.49 29.942 -3.336 

Cambodia 91 -- 91 8687.43 1238.76 31 24.85 24.1 9.3 5.77 1900 9045.27 104.946 12.718 

Cameroon 64 64 64 16696.47 821.09 30 23.07 43.2 17.7 5.91 2300 1805.84 12.759 5.693 

Canada 99 99 99 183.10 62.08 -- -23.33 147.3 83.6 11.49 38200 12214.43 -98.348 61.290 

Cape Verde 76 -- 76 3558.65 520.18 -- 19.38 -- -- -- 3600 5868.58 -23.931 16.039 

Central African Republic 64 64 71 20453.29 922.71 32 23.66 27.7 11.7 3.54 700 1380.58 20.491 6.571 

Chad 68 -- 68 18199.74 1104.79 32 21.97 -- -- -- 1900 2366.71 18.672 15.341 

Chile 90 90 90 491.35 122.76 -- 4.80 109.8 66.8 9.74 14600 10224.69 -71.293 -37.287 

China 105 105 105 985.88 252.96 7 -7.02 106.9 50.4 7.55 6600 9350.61 103.841 36.567 

Colombia 84 84 84 1167.21 228.23 -- 23.79 88.1 49.7 7.34 9200 10937.90 -73.073 3.903 

Comoros 77 -- 77 5218.65 868.15 -- 20.50 -- -- -- 1000 2206.53 43.801 -11.965 

Cook Islands 89 89 89 1613.48 272.12 -- 21.80 -- -- -- 9100 17127.24 -158.998 -20.673 

Costa Rica 89 -- 89 511.05 131.06 -- 22.73 86.2 49.9 8.35 10900 12201.29 -84.188 9.970 
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Côte d'Ivoire 69 -- 69 21244.21 900.05 31 24.81 30.4 12.8 3.31 1700 3669.27 -5.557 7.628 

Croatia 90 90 90 167.40 102.71 12 1.62 99.3 42.5 8.98 17500 5633.15 16.413 45.073 

Cuba 85 85 85 454.12 201.51 -- 22.35 120 51.8 10.20 9700 11654.51 -78.967 21.587 

Cyprus 91 -- 91 385.54 88.89 16 10.57 119 75.2 9.75 21000 4541.20 33.277 35.090 

Czech Republic 98 98 98 131.48 104.19 1 -1.85 157.3 81.3 12.32 24900 6156.59 15.377 49.734 

Democratic Republic of the Congo 64 64 75.9 18840.98 1151.02 27 23.01 35.7 13.7 3.47 300 279.35 23.657 -2.875 

Denmark 98 98 98 162.10 70.94 3 0.37 101.3 58.1 10.27 36000 6919.03 10.010 55.989 

Djibouti 68 -- 68 10816.33 705.65 29 23.32 -- -- -- 2700 2688.32 42.551 11.726 

Dominica 67 67 67 950.01 149.43 -- 22.80 -- -- -- 10200 9766.43 -61.356 15.430 

Dominican Republic 82 82 82 2897.34 347.07 -- 22.09 58.5 30.2 6.91 8300 10764.20 -70.493 18.933 

East Timor 87 -- 87 8065.04 746.23 -- -- -- -- -- 2400 -- -- -- 

Ecuador 88 88 88 1764.69 355.49 -- 20.16 71.6 43.7 7.59 7500 11510.93 -78.706 -1.432 

Egypt 81 81 81 1208.84 378.90 20 13.89 79.7 37.9 6.40 6000 3542.55 29.868 26.508 

El Salvador 80 -- 80 2044.62 457.71 -- 23.24 69.1 36.8 7.54 7200 12711.49 -88.837 13.733 

Equatorial Guinea 59 59 59 17396.06 972.55 31 21.93 -- -- -- 37500 1788.14 10.366 1.699 

Eritrea 68 -- 85 7081.69 730.49 26 22.98 -- -- -- 700 2728.59 38.856 15.342 

Estonia 99 99 99 537.88 178.28 о 4 -5.45 160.7 93.9 12.01 18500 7082.46 25.585 58.692 

Ethiopia 64 64 69.4 14752.42 1487.59 24 21.21 -- -- -- 900 2219.29 39.632 8.618 

Federated States of Micronesia 84 -- 84 1801.25 341.85 -- 26.10 -- -- -- 2200 14946.08 159.192 6.568 

Fiji 85 85 85 1766.66 1212.72 -- 22.35 155.9 80.7 11.04 3900 15803.90 174.124 -17.474 

Finland 99 99 99 124.36 71.95 о 5 -10.33 109.6 66.9 10.29 34100 7731.33 26.268 64.523 

France 98 98 98 224.51 64.15 8 3.35 132.7 72 10.43 32600 6145.07 2.542 46.556 

Gabon 64 -- 64 12506.99 440.29 28 22.91 69.5 37.3 7.50 14000 1545.46 11.796 -0.604 

Georgia 94 -- 94 1099.73 341.79 7 -1.57 -- -- -- 4400 5570.18 43.535 42.170 

Germany 99 99 99 173.31 70.47 2 0.14 160.2 87.5 12.21 34100 6391.60 10.401 51.098 

Ghana 71 71 73.3 11517.62 554.42 33 25.24 76.2 19.3 7.09 1500 3245.01 -1.224 7.937 

Greece 92 92 92 153.65 74.16 11 5.75 122.8 78.9 10.50 31000 4905.96 22.867 39.076 

Grenada 71 -- 71 1347.46 313.44 -- -- -- -- -- 10300 9762.71 -61.659 12.145 

Guatemala 79 79 79 2383.29 712.70 -- 21.05 30 14.8 4.07 5100 12870.04 -90.359 15.684 

Guinea 67 67 67 11303.92 943.06 31 23.92 -- -- -- 1000 4331.22 -10.924 10.412 

Guinea-Bissau 67 -- 67 15144.15 1411.63 29 24.70 -- -- -- 1100 4802.78 -14.914 12.051 

Guyana 87 -- 87 4231.33 588.69 -- 25.31 66.8 29.6 7.96 6500 9390.28 -58.986 4.790 

Haiti 67 -- 67 10121.21 1808.30 -- 22.18 52.3 24.2 4.90 1300 10995.20 -72.691 18.947 

Honduras 81 81 81 2503.42 646.62 -- 21.72 51.5 23.7 6.50 4100 12472.03 -86.628 14.824 

Hong Kong 108 108 108 -- -- 18 -- 111.6 58.7 10.02 42800 -- -- -- 

Hungary 98 98 98 234.23 191.62 1 -0.11 159.6 78.6 11.67 18800 5826.80 19.426 47.170 

Iceland 101 101 101 156.63 65.13 2 -3.22 101.6 67.3 10.41 39600 8553.61 -18.565 64.986 

India 86 86 86 4753.22 798.66 19 17.66 43.4 10.6 4.40 3100 6689.39 79.606 22.901 

Indonesia 87 87 87 3099.10 534.30 30 24.44 51.3 26.2 5.82 4000 10240.12 117.299 -2.262 

Iran 84 84 84 945.47 412.24 13 6.26 92.6 55.6 7.25 12500 5197.54 54.305 32.559 

Iraq 87 87 87 3589.48 1247.97 17 9.90 50.8 28.1 5.56 3800 4672.31 43.765 33.066 

Ireland 92 92 92 154.21 80.40 8 4.87 134.3 83 11.61 41000 7174.64 -8.144 53.178 

Israel 95 95 95 206.55 91.07 -- 12.84 128.3 86.9 11.91 28400 4183.25 34.958 31.402 
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Italy 102 102 102 193.46 93.81 11 4.42 112.2 49.1 9.30 29900 5469.60 12.100 42.777 

Jamaica 71 71 71 2009.08 235.95 -- 22.59 113 55.4 9.63 8400 11479.68 -77.313 18.155 

Japan 105 105 105 164.38 121.96 5 -0.17 135.2 90.2 11.48 32700 12371.04 138.082 37.630 

Jordan 84 84 84 659.38 414.30 12 9.17 110.5 63 8.65 5200 4217.21 36.754 31.229 

Kazakhstan 94 -- 94 1773.43 447.08 о 7 -11.24 145.4 70.2 10.37 11800 7198.73 67.283 48.156 

Kenya 72 72 80.4 20742.34 648.00 25 22.81 32 5.8 6.95 1600 1553.54 37.853 0.511 

Kiribati 85 -- 85 2831.69 958.37 -- -- -- -- -- 6100 19575.96 -157.381 1.846 

Kuwait 86 86 86 347.74 147.28 16 13.32 70.2 30.6 6.10 52800 4514.29 47.571 29.329 

Kyrgyzstan 90 -- 90 1919.37 395.93 о 1 -13.14 125.9 57.8 9.27 2200 7203.28 74.597 41.473 

Laos 89 89 89 5878.70 1335.93 28 19.01 38.6 13.7 4.58 2100 9007.13 103.767 18.494 

Latvia 98 -- 98 484.91 185.92 о 4 -4.89 148.2 71.2 10.42 14400 6875.93 24.933 56.837 

Lebanon 82 82 82 845.15 232.97 14 7.40 -- -- -- 13200 4474.79 35.876 33.907 

Lesotho 67 -- 67 32692.74 791.27 16 5.83 34.9 13.5 5.78 1600 2754.93 28.225 -29.587 

Liberia 67 -- 67 18575.71 1592.94 30 24.54 38.4 20 3.93 400 4014.22 -9.304 6.428 

Libya 83 -- 83 974.18 329.67 17 13.02 76.1 43 7.26 13400 3640.01 18.021 27.032 

Lithuania 91 91 91 394.24 403.27 о 5 -4.28 165.6 97.4 10.91 15500 6708.79 23.890 55.327 

Luxembourg 100 -- 100 194.83 84.20 3 1.38 114.2 60.7 10.09 79600 6355.57 6.120 49.763 

Madagascar 82 82 82 7071.54 1010.55 -- 19.70 -- -- -- 1000 2843.71 46.712 -19.372 

Malawi 69 -- 69 28720.38 1490.11 23 18.64 23.6 8.6 4.24 800 1367.06 34.288 -13.197 

Malaysia 92 92 92 1754.50 348.67 29 24.93 108.2 52.7 9.53 14900 9461.21 109.723 3.800 

Maldives 81 -- 81 2096.54 560.42 -- -- 47.5 14.4 4.74 4300 5450.07 73.298 3.629 

Mali 69 -- 74.1 16123.99 1824.26 32 22.10 8.9 4.8 1.38 1200 3998.16 -3.525 17.348 

Malta 97 97 97 203.19 79.23 -- 12.40 89.9 31.6 9.93 24300 4676.29 14.455 35.875 

Marshall Islands 84 84 84 3032.30 517.28 -- -- -- -- -- 2500 15945.34 168.291 8.364 

Mauritania 76 -- 76 8766.12 841.17 29 20.75 22.1 10.2 3.74 2000 4772.86 -10.332 20.257 

Mauritius 89 89 89 1027.27 247.19 -- 19.40 73.8 28.1 7.18 13000 3931.62 57.819 -20.265 

Mexico 90 90 90 787.46 240.87 -- 15.31 90.3 48.4 8.52 13200 14026.68 -102.516 23.943 

Moldova 96 -- 96 803.91 514.09 о 1 -2.10 137.4 60.1 9.68 2300 5812.95 28.494 47.186 

Monaco -- -- -- 240.78 57.01 -- 6.60 -- -- -- 30000 5700.06 7.419 43.748 

Mongolia 101 -- 101 1955.47 250.38 о 19 -18.35 130 60.1 8.31 3100 9513.05 103.051 46.831 

Morocco 84 84 84 1336.15 553.12 18 9.75 44 25.3 4.37 4700 5274.83 -6.326 31.900 

Mozambique 64 64 64 20148.13 1075.78 26 20.49 5.5 2.4 1.21 900 1782.92 35.529 -17.282 

Myanmar 87 -- 87 6649.77 939.78 28 18.70 30.8 19.5 3.97 1100 8312.78 96.520 21.197 

Namibia 70 -- 74 19094.46 664.94 21 14.78 74 29.9 7.37 6600 2082.17 17.236 -22.152 

Nauru -- -- -- 3216.93 400.25 -- -- -- -- -- 5000 15741.83 166.924 -0.527 

Nepal 78 78 78 5467.80 1219.41 18 7.28 36.7 11.5 3.24 1200 7305.85 83.942 28.252 

Netherlands 100 100 100 174.44 78.51 5 2.46 144.7 81.8 11.17 39500 6625.59 5.635 52.265 

New Caledonia 85 85 85 -- -- -- 18.81 -- -- -- 15000 14821.87 165.624 -21.305 

New Zealand 99 99 99 144.22 28.92 -- 5.46 112.8 89.4 12.51 27400 13827.31 171.916 -41.788 

Nicaragua 81 -- 81 1498.59 476.38 -- 23.87 59.3 37.6 5.77 2800 12300.08 -85.035 12.837 

Niger 69 -- 69 19113.87 1612.52 34 20.36 7.9 3.9 1.44 700 3024.05 9.412 17.421 

Nigeria 69 69 83.8 17976.10 835.71 31 24.21 -- -- -- 2300 2478.12 8.107 9.605 

Niue -- -- -- 1992.25 339.56 -- -- -- -- -- 5800 16883.69 -169.856 -19.063 
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North Korea 106 -- 106 2859.10 653.64 о 1 -9.21 -- -- -- 1900 11402.46 127.206 40.140 

Northern Mariana Islands 81 81 81 -- -- -- -- -- -- -- 12500 13443.99 145.691 15.097 

Norway 100 100 100 138.12 59.58 о 2 -7.36 159.5 88.4 12.63 57400 7766.91 14.041 64.369 

Oman 83 -- 83 556.23 284.78 25 20.51 -- -- -- 25000 4432.51 56.109 20.621 

Pakistan 84 84 84 4503.59 575.07 20 9.82 59.7 30.6 4.87 2500 6117.79 69.384 29.957 

Palau -- -- -- 1975.90 334.69 -- -- -- -- -- 8100 12238.51 134.619 7.579 

Panama 84 -- 84 1445.01 316.40 -- 24.40 103.1 63.7 9.39 12100 11750.23 -80.134 8.528 

Papua New Guinea 83 83 83 6463.42 1380.44 -- 22.83 28.5 11.1 4.34 2300 13254.52 145.184 -6.465 

Paraguay 84 84 84 1468.57 691.77 -- 18.91 81.4 37.5 7.70 4600 9114.62 -58.394 -23.231 

Peru 85 85 85 2052.19 513.03 -- 17.88 112.1 65.9 8.66 8500 10943.62 -74.380 -9.173 

Philippines 86 86 86 2904.62 523.09 30 24.30 107 71.8 8.66 3300 10973.38 122.849 11.832 

Poland 99 99 99 220.21 182.96 0 -2.98 102.2 34.3 9.95 17900 6373.77 19.409 52.122 

Portugal 95 95 95 465.84 78.35 13 9.16 58.5 28.6 7.73 21700 6018.33 -8.307 39.592 

Puerto Rico 84 84 84 -- -- -- 22.33 -- -- -- 17100 10340.89 -66.516 18.237 

Qatar 78 78 78 605.09 180.21 22 18.24 87.8 49.4 7.28 119500 4399.42 51.183 25.310 

Republic of Macedonia 91 -- 91 304.20 140.93 5 0.44 -- -- -- 9100 5192.36 21.724 41.600 

Republic of the Congo 65 65 77.8 15033.42 716.28 28 23.32 56.4 12.5 5.88 3900 1181.33 15.213 -0.831 

Romania 94 94 94 520.16 256.40 2 -1.60 134.3 57.3 10.44 11500 5654.86 24.967 45.855 

Russia 97 97 97 1228.54 537.08 о 13 -24.70 143.6 63.1 9.83 15100 9562.15 96.743 61.948 

Rwanda 70 -- 70 19857.85 1615.08 26 18.60 11.8 5.5 3.35 1000 639.10 29.918 -2.009 

Saint Kitts and Nevis 67 -- 67 1188.24 278.12 -- -- -- -- -- 14700 9930.25 -62.709 17.278 

Saint Lucia 62 62 62 692.67 204.73 -- -- -- -- -- 10900 9709.89 -60.989 13.898 

Saint Vincent and the Grenadines 71 71 71 2113.27 356.88 -- 23.20 -- -- -- 10200 9724.08 -61.190 13.237 

Samoa 88 88 88 2072.92 357.89 -- 23.50 -- -- -- 5400 17192.59 -172.279 -13.713 

San Marino -- -- -- 215.92 74.43 -- -- -- -- -- 41900 5584.15 12.466 43.933 

São Tomé and Príncipe 67 -- 67 7931.82 2425.99 -- -- -- -- -- 1700 2118.33 6.713 0.412 

Saudi Arabia 84 -- 84 825.48 234.02 25 15.84 87.4 46.5 7.78 20600 3862.39 44.581 24.024 

Senegal 66 -- 66.3 9251.88 768.96 26 24.68 23.3 12 4.45 1600 4854.92 -14.461 14.368 

Serbia and Montenegro -- -- -- 254.77 217.62 -- -- 102.6 48.3 9.55 10600 -- -- -- 

Seychelles 86 -- 86 1295.18 284.13 -- 24.40 -- -- -- 20800 3069.10 52.712 -6.131 

Sierra Leone 64 64 91.3 21162.37 2296.15 29 24.84 16.9 3.4 2.88 900 4348.60 -11.791 8.548 

Singapore 108 108 108 488.58 133.34 -- 26.40 89.1 46.9 8.83 52200 8779.08 103.784 1.372 

Slovakia 96 96 96 177.55 198.34 1 -2.45 126.6 55.2 11.56 21100 5996.59 19.492 48.713 

Slovenia -- -- -- 129.35 108.48 2 -0.39 84.9 43.1 9.03 27700 5774.44 14.838 46.138 

Solomon Islands 84 -- 84 2733.19 581.55 -- 24.75 -- -- -- 2500 14760.47 159.692 -8.891 

Somalia 68 -- 68 14369.42 1057.82 30 24.25 -- -- -- 600 2619.56 45.840 6.048 

South Africa 72 72 77.1 22646.43 875.85 19 11.26 89.9 30.9 8.21 10300 2668.49 25.073 -28.998 

South Korea 106 106 106 401.67 141.20 3 -1.29 140.5 92.2 11.64 28100 11487.36 127.862 36.412 

Spain 98 98 98 276.88 81.33 12 6.06 111.6 63.4 10.35 33600 5820.38 -3.621 40.267 

Sri Lanka 79 79 79 1143.63 372.36 25 24.92 87.3 32.6 8.21 4500 6338.37 80.715 7.637 

Sudan 71 71 71 9923.59 741.00 32 22.52 21.3 8.4 3.14 2300 2167.53 30.058 13.836 

Suriname 89 89 89 2388.03 283.57 -- 25.56 -- -- -- 9500 9044.15 -55.915 4.118 

Swaziland 68 -- 68 33428.76 1051.19 19 15.66 67.7 23.3 7.12 4400 2494.89 31.505 -26.560 
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Sweden 99 99 99 151.96 63.59 о 2 -7.99 156.5 94.3 11.62 36600 7570.07 16.741 62.787 

Switzerland 101 101 101 181.55 56.70 1 -2.39 122.3 72.3 10.26 41400 5992.56 8.225 46.806 

Syria 83 83 83 769.13 505.19 11 7.55 31.9 11.1 4.88 4600 4668.41 38.498 35.016 

Taiwan 105 105 105 -- -- 21 14.09 122.7 76.5 11.03 32000 10837.73 120.970 23.754 

Tajikistan 87 -- 87 3981.91 540.31 о 1 -9.77 138.5 54.7 9.82 1900 6771.82 71.062 38.544 

Tanzania 72 72 72 20028.42 1215.46 28 20.66 9.1 2.4 5.11 1400 1096.22 34.822 -6.286 

Thailand 91 91 91 4471.42 265.20 30 23.34 48.4 28 6.56 8200 8663.04 101.027 15.123 

The Bahamas 84 -- 84 3329.15 138.35 -- 22.11 -- -- -- 29700 11392.89 -76.426 24.129 

The Gambia 66 -- 66 8692.63 746.76 31 24.71 29.1 7 2.79 1400 4914.07 -15.460 13.430 

Togo 70 -- 70 14131.60 658.83 31 24.94 43.8 16.5 5.27 900 3062.99 0.958 8.566 

Tonga 86 86 86 1873.64 285.87 30 -- 132.5 54.4 10.46 6300 16387.41 -175.100 -20.990 

Trinidad and Tobago 85 -- 85 2048.20 208.02 -- 24.83 85.9 22.7 9.24 21300 9702.29 -61.270 10.464 

Tunisia 83 -- 83 1425.32 292.50 15 10.48 62 30.9 6.48 8200 4641.30 9.561 34.110 

Turkey 90 90 90 821.97 474.91 6 0.88 60.4 32.3 6.47 11400 5010.85 35.186 39.068 

Turkmenistan 87 -- 87 2761.55 415.64 3 2.42 -- -- -- 6700 6043.43 59.361 39.138 

Tuvalu -- -- -- 3629.01 487.39 -- -- -- -- -- 1600 16724.66 178.081 -7.417 

Uganda 73 73 83.9 22335.54 944.69 26 21.53 20.5 9.6 4.72 1200 1079.04 32.391 1.297 

Ukraine 97 -- 97 1545.08 526.50 о 1 -3.62 160.3 106 11.28 6300 6039.92 31.398 49.031 

United Arab Emirates 84 -- 84 554.56 288.02 23 19.67 120.7 63.7 9.27 38900 4524.57 54.353 23.939 

United Kingdom 100 100 100 187.20 47.90 6 2.94 84 37.4 9.27 34800 7062.37 -2.878 54.082 

United States of America 98 -- 98 330.23 44.89 -- -5.38 166.1 105.4 12.45 46000 13912.35 -112.463 45.674 

Uruguay 96 96 96 1006.51 147.61 -- 12.07 79.3 33.8 8.41 12600 8868.06 -56.021 -32.793 

Uzbekistan 87 -- 87 2131.58 448.21 3 -1.56 -- -- -- 2800 6476.53 63.192 41.730 

Vanuatu 84 -- 84 2692.56 575.30 -- 22.06 -- -- -- 5300 15279.06 167.634 -16.164 

Venezuela 84 84 84 917.00 252.18 -- 24.87 40.3 24.2 6.19 13000 10207.67 -66.194 7.120 

Vietnam 94 -- 94 2365.26 536.21 25 19.46 40.8 19 5.49 2900 9244.92 106.292 16.699 

Yemen 85 85 85 3488.33 1069.67 28 18.52 24.3 10.8 2.50 2500 3401.07 47.643 15.814 

Zambia 71 71 78.5 34593.00 1106.03 24 17.47 48.1 14.7 6.54 1600 989.47 27.789 -13.463 

Zimbabwe 66 66 81.5 57454.07 971.45 21 15.89 65.4 11.1 7.25 -- 1645.59 29.864 -19.018 
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Appendix 2 ʹ GůŽďĂů MŽƌĂŶ͛Ɛ I 
 

# This code allows the calculation of global Moran's I for a given variable in R  

 

# Install and load the "ape" and "geosphere" packages  

install.packages("ape")  

install.packages("geosphere")  

library(ape)  

library(geosphere)  

 

# Load data with the (i) variable of interest, (ii) latitude and (iii) longitude in different columns  

data<-read.table("data.txt",header=T)  

 

# Define a pairwise matrix with a row and column for each location  

dists<-matrix(ncol=nrow(data),nrow=nrow(data))  

 

# These two loops take each pair of latitude-longitude coordinates and calculate the distance to every 

other pair of coordinates  

for(x in 1:nrow(data)){  

for(y in 1:nrow(data)){  

 

# For each location, calculate the great circle distance to each other location, assuming a radius of the  

# earth at 6378137m  

dists[x,y]<-

distCosine(c(data$Longitude[x],data$Latitude[x]),c(data$Longitude[y],data$Latitude[y]),r=6378137)  

}  

}  

 

# invert the matrix  

dists.inv <- 1/dists  

 

# define the diagonal as zero  

diag(dists.inv) <- 0  

 

# calculate Moran's I along with the associated p-value  

Moran.I(data$variable, dists.inv) 
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Appendix 3 ʹ Multi-model inference 

 
# This code performs multimodel inference on all possible subsets models of six variables (63 models  

# including a null model) for a single response variable (LVE) without control for SAC. This code was run  

# six times in total: once for each of three IQ variables without control for SAC and once for each IQ  

# variable with control for SAC. SAC was controlled for by including selected spatial eigenvectors as  

# variables in all models (see main text for details).  

 

# Install and load library "AICcmodavg"  

install.packages("AICcmodavg")  

library(AICcmodavg)  

 

# Load and attach data  

data<-read.table("data.txt",header=T)  

attach(data)  

 

# Define the model set. This may be easier to carry out in a spreadsheet before copying to a text editor  

mod1<-lm(LVE~IPD_log)  

mod2<-lm(LVE~Nut_log)  

mod3<-lm(LVE~MTCQ)  

mod4<-lm(LVE~GDP_log)  

mod5<-lm(LVE~DEEA_log)  

mod6<-lm(LVE~Ed)  

mod7<-lm(LVE~IPD_log+Nut_log)  

mod8<-lm(LVE~IPD_log+MTCQ)  

mod9<-lm(LVE~IPD_log+GDP_log)  

mod10<-lm(LVE~IPD_log+DEEA_log)  

mod11<-lm(LVE~IPD_log+Ed)  

mod12<-lm(LVE~Nut_log+MTCQ)  

mod13<-lm(LVE~Nut_log+GDP_log)  

mod14<-lm(LVE~Nut_log+DEEA_log)  

mod15<-lm(LVE~Nut_log+Ed)  

mod16<-lm(LVE~MTCQ+GDP_log)  

mod17<-lm(LVE~MTCQ+DEEA_log)  

mod18<-lm(LVE~MTCQ+Ed)  

mod19<-lm(LVE~GDP_log+DEEA_log)  

mod20<-lm(LVE~GDP_log+Ed)  

mod21<-lm(LVE~DEEA_log+Ed)  

mod22<-lm(LVE~IPD_log+Nut_log+MTCQ)  

mod23<-lm(LVE~IPD_log+Nut_log+GDP_log)  

mod24<-lm(LVE~IPD_log+Nut_log+DEEA_log)  

mod25<-lm(LVE~IPD_log+Nut_log+Ed)  

mod26<-lm(LVE~IPD_log+MTCQ+GDP_log)  

mod27<-lm(LVE~IPD_log+MTCQ+DEEA_log)  

mod28<-lm(LVE~IPD_log+MTCQ+Ed)  

mod29<-lm(LVE~IPD_log+GDP_log+DEEA_log)  

mod30<-lm(LVE~IPD_log+GDP_log+Ed)  

mod31<-lm(LVE~IPD_log+DEEA_log+Ed)  
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mod32<-lm(LVE~Nut_log+MTCQ+GDP_log)  

mod33<-lm(LVE~Nut_log+MTCQ+DEEA_log) 

mod34<-lm(LVE~Nut_log+MTCQ+Ed)  

mod35<-lm(LVE~Nut_log+GDP_log+DEEA_log)  

mod36<-lm(LVE~Nut_log+GDP_log+Ed)  

mod37<-lm(LVE~Nut_log+DEEA_log+Ed)  

mod38<-lm(LVE~MTCQ+GDP_log+DEEA_log)  

mod39<-lm(LVE~MTCQ+GDP_log+Ed)  

mod40<-lm(LVE~MTCQ+DEEA_log+Ed)  

mod41<-lm(LVE~GDP_log+DEEA_log+Ed)  

mod42<-lm(LVE~IPD_log+Nut_log+MTCQ+GDP_log)  

mod43<-lm(LVE~IPD_log+Nut_log+MTCQ+DEEA_log)  

mod44<-lm(LVE~IPD_log+Nut_log+MTCQ+Ed)  

mod45<-lm(LVE~IPD_log+Nut_log+GDP_log+DEEA_log)  

mod46<-lm(LVE~IPD_log+Nut_log+GDP_log+Ed)  

mod47<-lm(LVE~IPD_log+Nut_log+DEEA_log+Ed)  

mod48<-lm(LVE~IPD_log+MTCQ+GDP_log+DEEA_log)  

mod49<-lm(LVE~IPD_log+MTCQ+GDP_log+Ed)  

mod50<-lm(LVE~IPD_log+GDP_log+DEEA_log+Ed)  

mod51<-lm(LVE~Nut_log+MTCQ+GDP_log+DEEA_log)  

mod52<-lm(LVE~Nut_log+MTCQ+GDP_log+Ed)  

mod53<-lm(LVE~Nut_log+MTCQ+DEEA_log+Ed)  

mod54<-lm(LVE~Nut_log+GDP_log+DEEA_log+Ed)  

mod55<-lm(LVE~MTCQ+GDP_log+DEEA_log+Ed)  

mod56<-lm(LVE~IPD_log+Nut_log+MTCQ+GDP_log+DEEA_log)  

mod57<-lm(LVE~IPD_log+Nut_log+MTCQ+GDP_log+Ed)  

mod58<-lm(LVE~IPD_log+Nut_log+MTCQ+DEEA_log+Ed)  

mod59<-lm(LVE~IPD_log+Nut_log+GDP_log+DEEA_log+Ed)  

mod60<-lm(LVE~IPD_log+MTCQ+GDP_log+DEEA_log+Ed)  

mod61<-lm(LVE~Nut_log+MTCQ+GDP_log+DEEA_log+Ed)  

mod62<-lm(LVE~IPD_log+Nut_log+MTCQ+GDP_log+DEEA_log+Ed)  

mod63<-lm(LVE~1)  

 

# Define the names of the models  

model.names<-c("IPD_log" , "Nut_log" , "MTCQ" , "GDP_log" , "DEEA_log" , "Ed" , "IPD_log+Nut_log" , 

"IPD_log+MTCQ" , "IPD_log+GDP_log" , "IPD_log+DEEA_log" , "IPD_log+Ed" , "Nut_log+MTCQ" , 

"Nut_log+GDP_log" , "Nut_log+DEEA_log" , "Nut_log+Ed" , "MTCQ+GDP_log" , "MTCQ+DEEA_log" , 

"MTCQ+Ed" , "GDP_log+DEEA_log" , "GDP_log+Ed" , "DEEA_log+Ed" , "IPD_log+Nut_log+MTCQ" , 

"IPD_log+Nut_log+GDP_log" , "IPD_log+Nut_log+DEEA_log" , "IPD_log+Nut_log+Ed" , 

"IPD_log+MTCQ+GDP_log" , "IPD_log+MTCQ+DEEA_log" , "IPD_log+MTCQ+Ed" , 

"IPD_log+GDP_log+DEEA_log" , "IPD_log+GDP_log+Ed" , "IPD_log+DEEA_log+Ed" , 

"Nut_log+MTCQ+GDP_log" , "Nut_log+MTCQ+DEEA_log" , "Nut_log+MTCQ+Ed" , 

"Nut_log+GDP_log+DEEA_log" , "Nut_log+GDP_log+Ed" , "Nut_log+DEEA_log+Ed" , 

"MTCQ+GDP_log+DEEA_log" , "MTCQ+GDP_log+Ed" , "MTCQ+DEEA_log+Ed" , "GDP_log+DEEA_log+Ed" 

, "IPD_log+Nut_log+MTCQ+GDP_log" , "IPD_log+Nut_log+MTCQ+DEEA_log" , 

"IPD_log+Nut_log+MTCQ+Ed" , "IPD_log+Nut_log+GDP_log+DEEA_log" , 
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"IPD_log+Nut_log+GDP_log+Ed" , "IPD_log+Nut_log+DEEA_log+Ed" , 

"IPD_log+MTCQ+GDP_log+DEEA_log" , "IPD_log+MTCQ+GDP_log+Ed" , 

"IPD_log+GDP_log+DEEA_log+Ed" , "Nut_log+MTCQ+GDP_log+DEEA_log" , 

"Nut_log+MTCQ+GDP_log+Ed" , "Nut_log+MTCQ+DEEA_log+Ed" , "Nut_log+GDP_log+DEEA_log+Ed" , 

"MTCQ+GDP_log+DEEA_log+Ed" , "IPD_log+Nut_log+MTCQ+GDP_log+DEEA_log" , 

"IPD_log+Nut_log+MTCQ+GDP_log+Ed" , "IPD_log+Nut_log+MTCQ+DEEA_log+Ed" , 

"IPD_log+Nut_log+GDP_log+DEEA_log+Ed" , "IPD_log+MTCQ+GDP_log+DEEA_log+Ed" , 

"Nut_log+MTCQ+GDP_log+DEEA_log+Ed" , "IPD_log+Nut_log+MTCQ+GDP_log+DEEA_log+Ed" , "1")  

 

# Create a list of the models defined above  

model.set<-list(mod1 , mod2 , mod3 , mod4 , mod5 , mod6 , mod7 , mod8 , mod9 , mod10 , mod11 , 

mod12 , mod13 , mod14 , mod15 , mod16 , mod17 , mod18 , mod19 , mod20 , mod21 , mod22 , mod23 

, mod24 , mod25 , mod26 , mod27 , mod28 , mod29 , mod30 , mod31 , mod32 , mod33 , mod34 , 

mod35 , mod36 , mod37 , mod38 , mod39 , mod40 , mod41 , mod42 , mod43 , mod44 , mod45 , mod46 

, mod47 , mod48 , mod49 , mod50 , mod51 , mod52 , mod53 , mod54 , mod55 , mod56 , mod57 , 

mod58 , mod59 , mod60 , mod61 , mod62 , mod63)  

 

# The function "aictab" produces a table which compares the AICc values for each of the models  

Model.table<-aictab(model.set,model.names)  

 

# Save that table to file  

write.table(Model.table,"Model.table.txt") 


