
This is a repository copy of Model Checking CTL is Almost Always Inherently Sequential.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/74808/

Proceedings Paper:
Beyersdorff, O, Meier, A, Thomas, M et al. (3 more authors) (2009) Model Checking CTL is
Almost Always Inherently Sequential. In: Lutz, C and Raskin, J-F, (eds.) 16th International
Symposium on Temporal Representation and Reasoning 2009. International Symposium
on Temporal Representation and Reasoning, 23-25 Jul 2009, Bressanone, Brixen, Italy.
IEEE , 21 - 28 . ISBN 978-0-7695-3727-6

https://doi.org/10.1109/TIME.2009.12

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
See Attached

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Model Checking CTL is Almost Always Inherently Sequential∗

Olaf Beyersdorff Arne Meier Michael Thomas Heribert Vollmer

Theoretical Computer Science, University of Hannover, Germany

{beyersdorff, meier, thomas, vollmer}@thi.uni-hannover.de

Martin Mundhenk

Computer Science, University of Jena, Germany

mundhenk@cs.uni-jena.de

Thomas Schneider

Computer Science, University of Manchester, UK

schneider@cs.man.ac.uk

Abstract

The model checking problem for CTL is known to be

P-complete (Clarke, Emerson, and Sistla (1986), see Schnoe-

belen (2002)). We consider fragments of CTL obtained

by restricting the use of temporal modalities or the use of

negations—restrictions already studied for LTL by Sistla and

Clarke (1985) and Markey (2004). For all these fragments,

except for the trivial case without any temporal operator, we

systematically prove model checking to be either inherently

sequential (P-complete) or very efficiently parallelizable

(LOGCFL-complete). For most fragments, however, model

checking for CTL is already P-complete. Hence our results

indicate that in most applications, approaching CTL model

checking by parallelism will not result in the desired speed

up.

We also completely determine the complexity of the model

checking problem for all fragments of the extensions ECTL,

CTL+, and ECTL+.

1. Introduction

Temporal logic was introduced by Pnueli [12] as a formal-

ism to specify and verify properties of concurrent programs.

Computation Tree Logic (CTL), the logic of branching time,

goes back to Emerson and Clarke [4] and contains tempo-

ral operators for expressing that an event occurs at some

time in the future (F), always in the future (G), in the next

point of time (X), always in the future until another event

holds (U), or as long as it is not released by the occurrence

∗Supported in part by grants DFG VO 630/6-1 and DAAD-ARC

D/08/08881.

of another event (R), as well as path quantifiers (E,A) for

speaking about computation paths. The full language ob-

tained by these operators and quantifiers is called CTL⋆ [5].

In CTL, the interaction between the temporal operators and

path quantifiers is restricted. The temporal operators in CTL

are obtained by path quantifiers followed directly by any

temporal operator, e.g., AF and AU are CTL-operators. Be-

cause they start with the universal path quantifier, they are

called universal CTL-operators. Accordingly, EX and EG

are examples for existential CTL-operators.

Since properties are largely verified automatically, the

computational complexity of reasoning tasks is of great in-

terest. Model checking (MC)—the problem of verifying

whether a given formula holds in a state of a given model—

is one of the most important reasoning tasks [15]. It is in-

tractable for CTL⋆ (PSPACE-complete [6, 15]), but tractable

for CTL (solvable in, and even hard for, polynomial time

[3, 15]).

Although model checking for CTL is tractable, its P-

hardness means that it is presumably not efficiently paral-

lelizable. We therefore search for fragments of CTL with

a model checking problem of lower complexity. We will

consider all subsets of CTL-operators, and examine the com-

plexity of the model checking problems for all resulting

fragments of CTL. Further, we consider three additional

restrictions affecting the use of negation and study the exten-

sions ECTL, CTL+, and their combination ECTL+.

The complexity of model checking for fragments of tem-

poral logics has been examined in the literature: Markey [9]

considered satisfiability and model checking for fragments of

Linear Temporal Logic (LTL). Under systematic restrictions

to the temporal operators, the use of negation, and the inter-

action of future and past operators, Markey classified the two

1

decision problems into NP-complete, coNP-complete, and

PSPACE-complete. Further, [1] examined model checking

for all fragments of LTL obtained by restricting the set of

temporal and propositional operators. The resulting classi-

fication separated cases where model checking is tractable

from those where it is intractable.

Concerning CTL and its extension ECTL, our results in

this paper show that most restricted versions of the model

checking problem exhibit the same hardness as the general

problem. More precisely, we show that apart from the trivial

case where CTL-operators are completely absent, the com-

plexity of CTL model checking is a dichotomy: it is either

P-complete or LOGCFL-complete. Unfortunately, the latter

case only occurs for a few rather weak fragments and hence

there is not much hope that in practice, model checking can

be sped up by using parallelism—it is inherently sequential.

Put as a simple rule, model checking for CTL is P-

complete for every fragment that allows to express a uni-

versal and an existential CTL-operator. Only for fragments

involving the operators EX and EF (or alternatively AX and

AG) model checking is LOGCFL-complete. This is visual-

ized in Fig. 2 in Sect. 5. Recall that LOGCFL is defined

as the class of problems logspace-reducible to context-free

languages, and NL ⊆ LOGCFL ⊆ NC2 ⊆ P. Hence, in

contrast to inherently sequential P-hard tasks, problems in

LOGCFL have very efficient parallel algorithms.

For the extensions CTL+ and ECTL+, the situation is

more complex. In general, model checking CTL+ and

ECTL+ is ∆p
2-complete [8]. We show that for T ⊆

{A,E,X}, both model checking problems remain tractable,

while for T * {A,E,X}, both problems become ∆p
2-

complete. Yet, for negation restricted fragments with only

existential or only universal path quantifiers, we observe a

complexity decrease to NP- resp. coNP-completeness.

This paper is organized as follows: Section 2 introduces

CTL, its model checking problems, and the non-basics of

complexity theory we use. Section 3 contains our main

results, separated into upper and lower bounds. We also

provide a refined analysis of the reductions between different

model checking problems with restricted use of negation.

The results are then generalized to extensions of CTL in

Section 4. Finally, Section 5 concludes with a graphical

overview of the results. For brevity, some proofs are omitted

and will be included in the full version of this paper.

2. Preliminaries

2.1. Temporal Logic

We inductively define CTL⋆-formulae as follows. Let Φ
be a finite set of atomic propositions. The symbols used are

the atomic propositions in Φ, the constant symbols ⊤ and

⊥, the Boolean connectives ¬, ∧, and ∨, and the temporal

operator symbols A, E, X, F, G, U, and R.

A and E are called a path quantifiers, temporal operators

aside from A and E are pure temporal operators. The atomic

propositions and the constants ⊤ and ⊥ are atomic formulae.

There are two kinds of formulae, state formulae and path

formulae. Each atomic formula is a state formula, and each

state formula is a path formula. If ϕ,ψ are state formulae

and χ, π are path formulae, then ¬ϕ, (ϕ ∧ ψ), (ϕ ∨ ψ),
Aχ, Eχ are state formulae, and ¬χ, (χ ∧ π), (χ ∨ π), Xχ,

Fχ, Gχ, [χUπ], and [χRπ] are path formulae. The set of

CTL⋆-formulae (or formulae) consists of all state formulae.

A Kripke structure is a triple K = (W,R, η), where W

is a finite set of states, R ⊆W ×W a total relation (i. e., for

each w ∈W , there exists a w′ such that (w,w′) ∈ R), and

η : W → P(Φ) is a labelling function. A path x is an infinite

sequence x = (x1, x2, . . .) ∈W
ω such that (xi, xi+1) ∈ R,

for all i ≥ 1. For a path x = (x1, x2, . . .) we denote by xi

the path (xi, xi+1, . . .).
Let K = (W,R, η) be a Kripke structure, w ∈ W be a

state, and x = (x1, x2, . . .) ∈ W
ω be a path. Further, let

ϕ,ψ be state formulae and χ, π be path formulae. The truth

of a CTL⋆-formula w. r. t. K is inductively defined as:

K,w |= ⊤ always,

K,w |= ⊥ never,

K,w |= p iff p ∈ Φ and p ∈ η(w),
K,w |= ¬ϕ iff K,w 6|= ϕ,

K,w |= (ϕ ∧ ψ) iff K,w |= ϕ and K,w |= ψ,

K,w |= (ϕ ∨ ψ) iff K,w |= ϕ or K,w |= ψ,

K,w |= Aχ iff K,x |= χ for all paths

x = (x1, x2, . . .) with x1 = w,

K,x |= ϕ iff K,x1|= ϕ,

K,x |= ¬χ iff K,x 6|= χ,

K,x |= (χ ∧ π) iff K,x |= χ and K,x |= π,

K,x |= (χ ∨ π) iff K,x |= χ or K,x |= π,

K,x |= Xχ iff K,x2|= χ

K, x |= [χUπ] iff there exists k ∈ N such that

K,xi |= χ for 1 ≤ i < k and

K,xk |= π.

The semantics of the remaining temporal operators is

defined via the equivalences: Eχ ≡ ¬A¬χ, Fχ ≡ [⊤Uχ],
Gχ ≡ ¬F¬χ, and [χRπ] ≡ ¬[¬χU¬π]. A state formula ϕ

is satisfied by a Kripke structure K if there exists w ∈ W
such that K,w |= ϕ. We will also denoted this by K |= ϕ.

A CTL-formula is a CTL⋆-formula in which each path

quantifier is followed by exactly one pure temporal operator

and each pure temporal operator is preceded by exactly one

path quantifier. The set of CTL-formulae forms a strict sub-

set of the set of all CTL⋆-formulae. For example, AGEFp is

a CTL-formula, but A(GFp ∧ Fq) is not. Pairs of path quan-

tifiers and pure temporal operators are called CTL-operators.

The operators AX, AF, AG, AU, and AR are universal CTL-

2

∅

AU

AF AX AG

AR

AX,AF AF,AG AX,AG

AX,AU

AX,AF,AG

AX,AR

AG,AU

AF,AR

AX,AF,AR

Figure 1. The expressive power of CTL(T).

operators, and EX, EF, EG, EU, and ER are existential CTL-

operators. Let ALL denote the set of all CTL-operators.

Note that A[ψUχ] ≡ AFχ ∧ ¬E[¬χU(¬ψ ∧ ¬χ)], and thus

E[ψRχ] ≡ EGχ∨ E[χU(ψ ∧ χ)]. Hence {AX,AF,AR} is a

minimal set of CTL-operators for CTL (in presence of all

Boolean connectives), whereas {AX, AG, AU} is not com-

plete for CTL [7].

By CTL(T) we denote the set of CTL-formulae using

the connectives {∧,∨,¬} and the CTL-operators in T only.

Figure 1 shows the structure of sets of CTL-operators with

respect to their expressive power. Moreover, we define the

following fragments of CTL(T):

• CTLpos(T) (positive): CTL-operators may not occur

in the scope of a negation,

• CTLa.n.(T) (atomic negation): negation signs appear

only directly in front of atomic propositions,

• CTLmon(T) (monotone): no negation signs allowed.

This restricted use of negation was introduced and studied

in the context of linear temporal logic, LTL, by Sistla and

Clarke [17] and Markey [9]. Their original notation was

L̃(T) for CTLa.n.(T) and L+(T) for CTLpos(T).

2.2. Model Checking

Now we define the model checking problems for the

above mentioned fragments of CTL. Let L be CTL, CTLmon,

CTLa.n., or CTLpos.

Problem: L-MC(T)
Input: A Kripke structure K = (W,R, η),

a state w ∈W , and an L(T)-formula ϕ.

Question: Does K,w |= ϕ hold?

2.3. Complexity Theory

We assume familiarity with standard notions of complex-

ity theory (cf. [11]). Next we will introduce the notions from

circuit complexity that we use for our results. All reductions

in this paper are ≤cd-reductions defined as follows: A lan-

guage A is constant-depth reducible to B, A ≤cd B, if there

is a logtime-uniform AC0-circuit family with oracle gates for

B that decides membership in A. That is, there is a circuit

family C = (C1, C2, C3, . . .) such that

• for every n, Cn computes the characteristic function of

A for inputs of length n,

• there is a polynomial p and a constant d such that for

all input lengths n, the size of Cn is bounded by p(n)
and the depth of Cn is bounded by d,

• each circuit Cn consists of unbounded fan-in AND and

OR gates, negation gates, and gates that compute the

characteristic function of B (the oracle gates),

• there is a linear-time Turing machine M that can check

the structure of the circuit family, i.e., given a tu-

ple 〈n, g, t, h〉 where n, g, h are binary numbers and

t ∈ {AND,OR,NOT,ORACLE}, M accepts if Cn

contains a gate g of type t with predecessor h.

Circuit families C with this last property are called logtime-

uniform (the name stems from the fact that the time needed

by M is linear in the length of its input tuple, hence logarith-

mic in n). For background information we refer to [13, 18].

We easily obtain the following relations between model

checking for fragments of CTL with restricted negation:

Lemma 2.1. For every set T of CTL-operators, we have

CTLmon-MC(T) ≤cd CTLa.n.-MC(T) ≤cd CTLpos-MC(T).
Further, for model checking, atomic negation can be eluded,

i. e., CTLa.n.-MC(T) ≤cd CTLmon-MC(T).

In Sect. 3.3 we complete the picture by showing that also

CTLpos-MC(T) ≤cd CTLmon-MC(T).
The class P consists of all languages that have a

polynomial-time decision algorithm. A problem is P-

complete if it is in P and every other problem in P reduces to

it. P-complete problems are sometimes referred to as inher-

ently sequential, because P-complete problems most likely

(formally: if P 6= NC) do not possess NC-algorithms, that

is, algorithms running in polylogarithmic time on a paral-

lel computer with a polynomial number of processors. For-

mally, NC contains all problems solvable by polynomial-size

polylogarithmic-depth logtime-uniform families of circuits

with bounded fan-in AND, OR, NOT gates.

There is an NC-algorithm for parsing context-free lan-

guages, that is, CFL ⊆ NC. Therefore, complexity theo-

rists have studied the class LOGCFL of all problems re-

ducible to context-free languages (the name “LOGCFL”

3

refers to the original definition of the class in terms of

logspace-reductions, however it is known that the class

does not change if instead, as everywhere else in this paper,

≤cd-reductions are used). Hence, LOGCFL ⊆ NC (even

LOGCFL ⊆ NC2, the second level of the NC-hierarchy,

where the depth of the occurring circuits is restricted to

O(log2 n)). The class LOGCFL has a number of different

maybe even somewhat surprising characterizations, e. g.,

languages in LOGCFL are those that can be decided by non-

deterministic Turing machines operating in polynomial time

that have a worktape of logarithmic size and additionally a

stack whose size is not bounded.

More important for this paper is the characterization of

LOGCFL as those problems computable by SAC1 circuit

families, that is families of circuits that

• have polynomial size and logarithmic depth,

• consist of unbounded fan-in OR gates and bounded fan-

in AND gates and negation gates, but the latter are only

allowed at the input-level,

• are logtime-uniform (as defined above).

Since the class LOGCFL is known to be closed under com-

plementation, the second condition can equivalently be re-

placed to allow unbounded fan-in AND gates and restrict the

fan-in of OR gates to be bounded.

To summarize:

NC1 ⊆ L ⊆ NL ⊆ LOGCFL = SAC1 ⊆ NC2;
and problems in these classes possess very efficient paral-

lel algorithms: they can be solved in time O(log2 n) on a

parallel machine with a tractable number of processors. For

more background on these and related complexity classes,

we refer the reader to [18].

3. Model Checking CTL and CTLpos

This section contains our main results on the complex-

ity of model checking for CTL and CTLpos. We defer the

analysis of the fragments CTLa.n. and CTLmon to Sect. 3.3

where we will see that their model-checking problems are

computationally equivalent to model checking for CTLpos.

While model checking for CTL in general is known to be

polynomial time solvable and in fact P-complete [3, 15], we

improve the lower bound by showing that only one temporal

operator is sufficient to obtain hardness for P.

Theorem 3.1. For each nonempty set T of CTL-operators,

CTL-MC(T) is P-complete. If T = ∅, then CTL-MC(T) is

NC1-complete.

If we consider only formulae from CTLpos, where no

CTL-operators are allowed inside the scope of a negation,

the situation changes and the complexity of model checking

exhibits a dichotomous behavior. As long as EG or AF are

expressible the model checking problem remains P-complete.

Otherwise, its complexity drops to LOGCFL.

Theorem 3.2. Let T be any set of CTL-operators. Then

CTLpos-MC(T) is

• NC1-complete if T = ∅,

• LOGCFL-complete if ∅ 6= T ⊆ {EX,EF} or ∅ 6= T ⊆
{AX,AG}, and

• P-complete otherwise.

We split the proofs of Theorems 3.1 and 3.2 into the upper

and lower bounds in the following two subsections.

3.1. Upper Bounds

In general, model checking for CTL is known to be

solvable in P [3]. While this upper bound also applies to

CTLpos-MC(T) (for every T), we improve it for positive

CTL-formulae using only EX and EF, or only AX and AG.

Proposition 3.3. Let T be a set of CTL-operators such that

T ⊆ {EX,EF} or T ⊆ {AX,AG}. Then CTLpos-MC(T) is

in LOGCFL.

Proof. First consider the case T ⊆ {EX,EF}. We claim

that Algorithm 1 recursively decides whether the Kripke

structure K = (W,R, η) satisfies the CTLpos(T)-formula

ϕ in state w0 ∈ W . There, S is a stack that stores pairs

(ϕ,w) ∈ CTLpos(T) × W and R⋆ denotes the transitive

closure of R.

Algorithm 1 always terminates because each subformula

of ϕ is pushed to the stack S at most once. For correct-

ness, an induction on the structure of formulae shows that

Algorithm 1 returns false if and only if for the most recently

popped pair (ψ,w) from S, we have K,w 6|= ψ. Thence, in

particular, Algorithm 1 returns true iff K,w |= ϕ.

Algorithm 1 can be implemented on a nondeterminis-

tic polynomial-time Turing machine that besides its (un-

bounded) stack uses only logarithmic memory for the local

variables. Thus CTLpos-MC(T) is in LOGCFL.

The case T ⊆ {AX,AG} is analogous and follows from

closure of LOGCFL under complementation.

Finally, for the trivial case where no CTL-operators are

present, model checking CTL(∅)-formulae is equivalent to

the problem of evaluating a propositional formula. This

problem is known to be solvable in NC1 [2].

3.2. Lower Bounds

The P-hardness of model checking for CTL is folklore

in the model checking community (cf. [15]), but we could

not find a formal proof.1 We improve this lower bound and

1In [15], an informal proof sketch is given.

4

Algorithm 1 Determine whether K,w0 |= ϕ.

Require: a Kripke structure K = (W,R, η), w0 ∈ W ,

ϕ ∈ CTLpos(T)
1: push(S, (ϕ,w0))
2: while S is not empty do

3: (ϕ,w)← pop(S)
4: if ϕ is a propositional formula then

5: if ϕ evaluates to false in w under η then

6: return false

7: end if

8: else if ϕ = α ∧ β then

9: push(S, (β,w))
10: push(S, (α,w))
11: else if ϕ = α ∨ β then

12: nondet. push(S, (α,w)) or push(S, (β,w))
13: else if ϕ = EXα then

14: nondet. choose w′ ∈ {w′ | (w,w′) ∈ R}
15: push(S, (α,w′))
16: else if ϕ = EFα then

17: nondet. choose w′ ∈ {w′ | (w,w′) ∈ R⋆}
18: push(S, (α,w′))
19: end if

20: end while

21: return true

concentrate on the smallest fragments of monotone CTL—

w. r. t. CTL-operators—with P-hard model checking.

Proposition 3.4. Let T denote a set of CTL-operators. Then

CTLmon-MC(T) is P-hard if T contains an existential and a

universal CTL-operator.

Proof. First, assume that T = {AX,EX}. We give a generic

reduction from alternating Turing machines working in log-

arithmic space. Let M be such a machine and let x be an

input to M . We may assume w. l. o. g. that each transition of

M leads from an existential to a universal configuration and

vice versa. Further we may assume that each computation of

M ends after the same number p(n) of steps, where p is a

polynomial and n is the length of M ’s input.

Let c1, . . . , cq(n) be an enumeration of all possible con-

figurations of M on input x, starting with the initial configu-

ration c1 and polynomial q. We construct a Kripke structure

K := (W,R, η) by defining the set W := {cji | 1 ≤ i ≤
q(n), 0 ≤ j ≤ p(n)} and the relation R ⊆W ×W as

R :=

{
(cji , c

j+1
k)

∣∣∣∣
M reaches configuration ck from

ci in one step, 0 ≤ j < p(n)

}

∪ {(c
p(n)
i , c

p(n)
i)

1 ≤ i ≤ q(n)}.

The labelling function η is defined as η(w) := {t} iff w is

an accepting configuration, and η(w) = ∅ otherwise. Then

it holds that

M accepts x ⇐⇒ K, c01 |= ψ1

(
ψ2

(
· · ·ψp(n)(t)

)
· · ·

)
,

where ψi(x) := AX(x) if M ’s configurations after the ith

step are universal, and ψi(x) := EX(x) otherwise. No-

tice that the constructed CTL-formula does not contain any

propositional operator. Since p(n) and q(n) are polynomi-

als, the size of K and ϕ is polynomial in the size of (M,x).
Moreover, K and ϕ can be constructed from M and x using

AC0-circuits. Thus, A ≤cd CTLmon-MC({AX,EX}) for all

A ∈ ALOGSPACE = P.

For T = {AF,EG} we take new atomic propositions

d0, . . . , dp(n) and modify the above reduction by defining

the formulas η and ψi as follows:

η(w) := {dj | w = c
j
i , 1 ≤ i ≤ q(n)} ∪

{t | w is an accepting configuration}

ψi(x) :=





AF(di+1 ∧ x), if M ’s configurations in

step i are universal,

EG(Di+1 ∨ x), otherwise,

(1)

where Di =
∨

i 6=j∈{0,...,p(n)} dj .

For the combinations of T being one of {AF,EF},
{AF,EX}, {AG,EG}, {AG, EX}, {AX,EF}, and {AX,EG},
the P-hardness of CTLmon-MC(T) is obtained using analo-

gous modifications to η and the ψi’s.

For the remaining combinations involving the until or the

release operator, observe that w. r. t. the Kripke structure K

as defined in (1), AF(di ∧ x) and EG(Di ∨ x) are equivalent

to A[di−1Ux] and E[di−1Ux], and R and U are duals.

In the presence of arbitrary negation, universal operators

are definable by existential operators and vice versa. Hence,

from Proposition 3.4 we obtain the following corollary.

Corollary 3.5. The model checking problem CTL-MC(T)
is P-hard for each nonempty set T of CTL-operators.

Returning to monotone CTL, in most cases even one

operator suffices to make model checking P-hard:

Proposition 3.6. Let T denote a set of CTL-operators. Then

CTLmon-MC(T) is P-hard if T contains at least one of the

operators EG, EU, ER, AF, AU, or AR.

The proof of this proposition proceeds similarly as the

proof of Proposition 3.4, but is technically more involved.

In essence, it shows that both AX and EX can be simulated

by using only EG.

By Lemma 2.1, CTLmon-MC(T) ≤cd CTLpos-MC(T)
and hence the above results directly translate to model

checking for CTLpos: for any set T of temporal opera-

tors, CTLpos-MC(T) is P-hard if T * {EX,EF} or if

T * {AX,AG}. These results cannot be improved w. r. t.

T , as for T ⊆ {EX,EF} and T ⊆ {AX,AG} we obtain a

LOGCFL upper bound for model checking from Proposi-

tion 3.3. In the following proposition we prove the matching

LOGCFL lower bound.

5

Proposition 3.7. For every nonempty set T of CTL-

operators, the model checking problem CTLmon-MC(T) is

LOGCFL-hard.

Proof. As explained in Sect. 2.3, LOGCFL can be character-

ized as the set of languages recognizable by logtime-uniform

SAC1 circuits, i. e., circuits of logarithmic depth and poly-

nomial size consisting of ∨-gates with unbounded fan-in

and ∧-gates with fan-in 2. For every single CTL-operator

O, we will show that CTLmon-MC(T) is LOGCFL-hard for

all T ⊇ {O} by giving a generic ≤cd-reduction f from the

word problem for SAC1 circuits to CTLmon-MC(T).
First, consider EX ∈ T . Let C be a logtime-uniform

SAC1 circuit of depth ℓ with n inputs and let x =
x1 . . . xn ∈ {0, 1}

n. Assume w. l. o. g. that C is layered

into alternating layers of ∧-gates and ∨-gates and that the

output gate of C is an ∨-gate. We number the layers bottom-

up, that is, the layer containing (only) the output gate has

level 0, whereas the input-gates and negations of the input-

gates are situated in layer ℓ. Denote the graph of C by

G := (V,E), where V := Vin ⊎ V∧ ⊎ V∨ is partitioned

into the sets corresponding to the (possibly negated) input-

gates, the ∧-gates, and the ∨-gates, respectively. G is acyclic

and directed with paths leading from the input to the output

gates. From (V,E), we construct a Kripke structure that

allows to distinguish the two predecessors of an ∧-gate from

each other. This will be required to model proof trees using

CTLmon({EX})-formulae.

For i ∈ {1, 2}, let V i
in := {vi | v ∈ Vin}, V

i
∨ := {vi |

v ∈ V∨} and define V i
in,∨ := V i

in ∪ V
i
∨. Further define

E′ :=
{
(v, ui) ∈ V∧ × V

i
in,∨ | (u, v) ∈ E and u is the ith

predecessor of v
}
∪

{
(v, v) | v ∈ V 1

in ∪ V
2
in

}
∪

⋃

i∈{1,2}

{
(vi, u) ∈ V i

in,∨ × V∧ | (u, v) ∈ E
}
,

where the ordering of the predecessors is implicitly given

in the encoding of C. We now define a Kripke structure

K := (V ′, E′, η) with states V ′ := V 1
in,∨ ∪ V

2
in,∨ ∪ V∧,

relation E′, and labelling function η : V ′ → P({1, 2, t}),

η(v) :=





{i, t}, if v = vinj
∈ V i

in and xj = 1,

{i, t}, if v = vinj
∈ V i

in and xj = 0,

{i}, if v = vinj
∈ V i

in and xj = 0,

{i}, if v = vinj
∈ V i

in and xj = 1,

{i}, if v ∈ V i
∨,

∅, otherwise,

where i = 1, 2, j = 1, . . . , n and vin1
, . . . , vinn

,

vin1
, . . . , vinn

enumerate the input gates and their negations.

The formula ϕ that is to be evaluated on K will consist of

atomic propositions 1, 2 and t, Boolean connectives ∧ and

∨, and the CTL-operator EX. To construct ϕ we recursively

define formulae (ϕi)0≤i≤ℓ by

ϕi :=





t, if i = ℓ,

EXϕi+1, if i is even (∨-layers),∧
i=1,2 EX(i ∧ ϕi+1), if i is odd (∧-layers).

We define the reduction function f as the mapping (C, x) 7→
(K, v0, ϕ), where v0 is the node corresponding to the output

gate of C and ϕ := ϕ0. We stress that the size of ϕ is

polynomial, for the depth of C is logarithmic only. Clearly,

each minimal accepting subtree (cf. [14] or [18, Definition

4.15]) of C on input x translates into a sub-structure K ′ of

K such that K ′, v0 |= ϕ where

1. K ′ includes v0,

2. K ′ includes one successor for every node correspond-

ing to an ∨-gate, and

3. K ′ includes the two successors of every node corre-

sponding to an ∧-gate.

As C(x) = 1 iff there exists a minimal accepting subtree

of C on x, the LOGCFL-hardness of CTLmon-MC(T) for

EX ∈ T follows.

Second, consider EF ∈ T . We have to extend our Kripke

structure to contain information about the depth of the corre-

sponding gate. We may assume w. l. o. g. that C is encoded

such that each gate contains an additional counter holding

the distance to the output gate (which is equal to the number

of the layer it is contained in, cf. [18]). We extend η to

include this distance i, 1 ≤ i ≤ ℓ into “depth-propositions”

di as in the proof of Proposition 3.4. Denote this modified

Kripke structure by K ′. Further, we define (ϕ′
i)0≤i≤ℓ as

ϕ′
i :=





dℓ ∧ t, if i = ℓ,

EF(di+1 ∧ ϕ
′
i+1), if i is even,∧

i=1,2 EF(di+1 ∧ i ∧ ϕ
′
i+1), if i is odd.

Redefining the reduction f as (C, x) 7→ (K ′, v0, ϕ
′
0) yields

the LOGCFL-hardness of CTLmon-MC(T) for EF ∈ T .

Third, let AX ∈ T . Consider the reduction in case 1 for

CTLmon({EX})-formulae, and let f(C, x) = (K, v0, ϕ) be

the output of the reduction function. It holds that C(x) = 1
iff K, v0 |= ϕ, and equivalently C(x) = 0 iff K, v0 |= ¬ϕ.

Let ϕ′ be the formula obtained from ¬ϕ by multiplying the

negation into the formula. Then ϕ′ is a CTLa.n.({AX})-
formula. Since LOGCFL is closed under complement,

it follows that CTLa.n.-MC({AX}) is LOGCFL-hard. Us-

ing Lemma 2.1, we obtain that CTLmon-MC({AX}) is

LOGCFL-hard, too.

An analogous argument can be used for the case AG ∈ T .

The remaining fragments are even P-complete by Proposi-

tion 3.6.

6

Using Lemma 2.1 we obtain LOGCFL-hardness of

CTLpos-MC(T) for all nonempty sets T of CTL-operators.

In the absence of CTL-operators, the lower bound for

the model checking problem again follows from the lower

bound for evaluating monotone propositional formulae. This

problem is known to be hard for NC1 [2, 16].

3.3. The Power of Negation

We will now show that model checking for the fragments

CTLa.n. and CTLpos is computationally equivalent to model

checking for CTLmon, for any set T of CTL-operators. Since

we consider cd-reductions, this is not immediate.

From Lemma 2.1 it follows that the hardness re-

sults for CTLmon-MC(T) also hold for CTLa.n.-MC(T)
and CTLpos-MC(T). Moreover, the algorithms for

CTLpos-MC(T) also work for CTLmon-MC(T) and

CTLa.n.-MC(T) without using more computation resources.

Both observations together yield the same completeness re-

sults for all CTL-fragments with restricted negations.

Theorem 3.8. Let T be any set of CTL-operators. Then

CTLmon-MC(T), CTLa.n.-MC(T), and CTLpos-MC(T) are

• NC1-complete if T is empty,

• LOGCFL-complete if ∅ 6= T ⊆ {EX,EF} or ∅ 6= T ⊆
{AX,AG},

• P-complete otherwise.

As all complete sets for a class are equivalent, we ob-

tain reductions between the model checking problems for

all negation-restricted fragments of CTL. This extends

Lemma 2.1.

Corollary 3.9. For every set T of CTL-operators, the prob-

lems CTLmon-MC(T), CTLa.n.-MC(T), and CTLpos-MC(T)
are equivalent w.r.t. cd-reducibility.

We remark that this equivalence is not straightforward.

Simply applying de Morgan’s laws to transform one prob-

lem into another requires counting the number of negations

on top of ∧- and ∨-connectives. This counting cannot be

achieved by an AC0-circuit and does not lead to the aspired

reduction. Here we obtain equivalence of the problems as a

consequence of our generic hardness proofs in Sect. 3.2.

4. Model Checking Extensions of CTL

What CTL lacks in practice is the ability to express fair-

ness properties. To address this shortcoming, Emerson and

Halpern introduced ECTL in [5]. ECTL extends CTL with

the F
∞

-operator, which states that for every moment in the fu-

ture, the enclosed formula will eventually be satisfied again:

for a Kripke structure K, a path x = (x1, x2, . . .), and a

path formula χ

K, x |= F
∞

χ iff K,xi |= Fχ for all i ∈ N.

The dual operator G
∞

is defined analogously. As for CTL,

model checking for ECTL is known to be tractable. More-

over, our next result shows that even for all fragments, model

checking for ECTL is not harder than for CTL.

Theorem 4.1. Let T be a set of temporal opera-

tors. Then ECTL-MC(T) ≡cd CTL-MC(T ′) and

ECTLpos-MC(T) ≡cd CTLpos-MC(T ′), where T ′ is ob-

tained from T by substituting F
∞

,G
∞

with F,G.

Another extension of CTL is CTL+ where Boolean com-

binations of pure temporal operators are allowed in the scope

of path quantifiers. In contrast to CTL, model checking for

CTL+ is not tractable, but ∆p
2-complete [8]. Below we clas-

sify the complexity of model checking for both full and

positive fragments of CTL+.

Theorem 4.2. Let T be a set of temporal operators. Then

CTL+-MC(T) is

• NC1-complete if T ⊆ {A,E} or T = {X},

• P-complete if {X} (T ⊆ {A,E,X}, and

• ∆p
2-complete otherwise.

Theorem 4.3. Let T be a set of temporal operators. Then

CTL+
pos-MC(T) is

• NC1-complete if T ⊆ {A,E} or T = {X},

• LOGCFL-complete if T = {A,X} or T = {E,X},

• P-complete if T = {A,E,X},

• NP-complete if E ∈ T , A 6∈ T , and T contains a pure

temporal operator aside from X,

• coNP-complete if A ∈ T , E 6∈ T , and T contains a

pure temporal operator aside from X, and

• ∆p
2-complete otherwise.

Finally, ECTL+ is the combination of ECTL and CTL+.

For its model checking problem we obtain:

Corollary 4.4. Let T be a set of temporal opera-

tors. Then ECTL+-MC(T) ≡cd CTL+-MC(T ′) and

ECTL+
pos-MC(T) ≡cd CTL+

pos-MC(T), where T ′ is ob-

tained from T by substituting F
∞

,G
∞

with F,G.

5. Conclusion

We have shown (Theorem 3.2) that model checking for

CTLpos(T) is already P-complete for most fragments of

7

NC1-c.

LOGCFL-c.

LOGCFL-c.

P-c.

EX, EF

AX, AG

EX, EF

AX, AG

O

AX, AG,O

EX, EF,O

ALL

O = AF, AU, AR, EG, EU, ER

Figure 2. The complexity of CTLpos-MC(T) for

all sets T of CTL-operators (depicted as a “fi-

nite automaton” where states indicate com-

pleteness results and arrows indicate an in-

crease of the set of CTL-operators).

CTL. Only for some weak fragments, model checking be-

comes easier: if T ⊆ {EX,EF} or T ⊆ {AX,AG}, then

CTLpos-MC(T) is LOGCFL-complete. In the case that no

CTL-operators are used, NC1-completeness of evaluating

propositional formulae applies. As a direct consequence

(Theorem 3.1), model checking for CTL(T) is P-complete

for every nonempty T . This shows that for the majority of

interesting fragments, model checking CTL(T) is inherently

sequential and cannot be sped up by using parallelism.

While all the results above can be transferred to ECTL

(Theorem 4.1), CTL+ and ECTL+ exhibit different proper-

ties. For both logics, the general model checking problem

was shown to be complete for ∆p
2 in [8]. Here we proved

that model checking fragments of CTL+(T) and ECTL+(T)
for T ⊆ {A,E,X} remains tractable, while the existential

and the universal fragments of CTL+
pos(T) and ECTL+

pos(T)
containing temporal operators other than X are complete for

NP and coNP, respectively.

Instead of restricting only the use of negation as done

in this paper, one might go one step further and restrict

the allowed Boolean connectives in an arbitrary way. One

might, e. g., allow the exclusive-OR as the only proposi-

tional connective. This has been done for the case of lin-

ear temporal logic LTL in [1], where the complexity of

LTL-MC(T,B) for an arbitrary set T of temporal operators

and B of propositional connectives was studied. We think

that a corresponding study for CTL (or CTL⋆) is an interest-

ing topic for further research. For example, restricting the

Boolean connectives to only one of the functions AND or

OR leads to many NL-complete fragments, but a full classi-

fication is still open. The computational complexity of the

corresponding satisfiability problems CTL-SAT(T,B) and

CTL⋆-SAT(T,B) has been completely determined in [10].

References

[1] M. Bauland, M. Mundhenk, T. Schneider, H. Schnoor,

I. Schnoor, and H. Vollmer. The tractability of model check-

ing for LTL: the good, the bad, and the ugly fragments. In

Proc. Methods for Modalities 5, pages 125–140. ENS Cachan,

2007. Also at CoRR http://arxiv.org/abs/0805.0498.

[2] S. R. Buss. The Boolean formula value problem is in ALOG-

TIME. In Proc. 19th Symposium on Theory of Computing,

pages 123–131. ACM Press, 1987.

[3] E. Clarke, E. A. Emerson, and A. Sistla. Automatic ver-

ification of finite-state concurrent systems using temporal

logic specifications. ACM Transactions on Programming

Languages and Systems, 8(2):244–263, 1986.

[4] E. A. Emerson and E. M. Clarke. Using branching time tem-

poral logic to synthesize synchronization skeletons. Science

of Computer Programming, 2(3):241–266, 1982.

[5] E. A. Emerson and J. Y. Halpern. “Sometimes” and “not

never” revisited: on branching versus linear time temporal

logic. Journal of the ACM, 33(1):151–178, 1986.

[6] E. A. Emerson and C.-L. Lei. Modalities for model checking:

Branching time logic strikes back. Science of Computer

Programming, 8(3):275–306, 1987.

[7] F. Laroussinie. About the expressive power of CTL com-

binators. Information Processing Letters, 54(6):343–345,

1995.

[8] F. Laroussinie, N. Markey, and P. Schnoebelen. Model Check-

ing CTL+ and FCTL is Hard. In Proc. Foundations of Soft-

ware Science and Computation Structure (FOSSACS’2001),

pages 318–331. Springer, 2001.

[9] N. Markey. Past is for free: on the complexity of verifying

linear temporal properties with past. Acta Informatica, 40(6-

7):431–458, 2004.

[10] A. Meier, M. Mundhenk, M. Thomas, and H. Vollmer. The

complexity of satisfiability for fragments of CTL and CTL⋆.

In Proc. 2nd Workshop on Reachability Problems in Compu-

tational Models (RP 2008), pages 201–213, 2008.

[11] C. H. Papadimitriou. Computational Complexity. Addison-

Wesley, Reading, MA, 1994.

[12] A. Pnueli. The temporal logic of programs. In Proc. 18th

Symposium on Foundations of Computer Science, pages 46–

57. IEEE Computer Society Press, 1977.

[13] K. Regan and H. Vollmer. Gap-languages and log-time com-

plexity classes. Theoretical Computer Science, 188:101–116,

1997.

[14] W. L. Ruzzo. Tree-size bounded alternation. Journal of

Computer and System Sciences, 21:218–235, 1980.

[15] P. Schnoebelen. The complexity of temporal logic model

checking. In Advances in Modal Logic, pages 393–436, 2002.

[16] H. Schnoor. The complexity of the Boolean formula value

problem. Technical report, Theoretical Computer Science,

University of Hannover, 2005.

[17] A. Sistla and E. Clarke. The complexity of propositional

linear temporal logics. Journal of the ACM, 32(3):733–749,

1985.

[18] H. Vollmer. Introduction to Circuit Complexity – A Uniform

Approach. Texts in Theoretical Computer Science. Springer

Verlag, Berlin Heidelberg, 1999.

8

