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The effect of small forced symmetry breaking on the dynamics near a structurally stable heteroclinic

cycle connecting two equilibria and a periodic orbit is investigated. This type of system is known

to exhibit complicated, possibly chaotic dynamics including irregular switching of sign of various

phase space variables, but details of the mechanisms underlying the complicated dynamics have

not previously been investigated. We identify global bifurcations that induce the onset of chaotic

dynamics and switching near a heteroclinic cycle of this type, and by construction and analysis

of approximate return maps, locate the global bifurcations in parameter space. We find there is a

threshold in the size of certain symmetry-breaking terms below which there can be no persistent

switching. Our results are illustrated by a numerical example.

1 Introduction

It is well-established that the presence of symmetries in dynamical systems

can result in the existence of heteroclinic cycles that are structurally stable

with respect to symmetric perturbations [1, 2]. By heteroclinic cycle we mean

a collection of two or more flow invariant sets {ξ1, . . . , ξn} of some system of

ordinary differential equations together with a set of heteroclinic connections

{γ1(t), . . . , γn(t)}, where γj(t) → ξj as t→ −∞ and γj(t) → ξj+1 as t→ +∞,

and where ξn+1 ≡ ξ1. In many studies, all the ξi are equilibria, but in this
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2 Kirk and Rucklidge

paper we explicitly consider the case that one of the ξi is a periodic orbit. The

connections γi may be isolated, or there may be a continuum of connections

from ξi to ξi+1 for one or more i.

There is a large literature on structurally stable heteroclinic cycles (SSHC),

including work establishing conditions for the existence and asymptotic stabil-

ity of heteroclinic cycles [3–5], examination of the dynamics near heteroclinic

cycles and networks of heteroclinic cycles [6–9], and unfolding of bifurcations

of heteroclinic cycles [10–12]. SSHC arise naturally in mathematical models of

physical systems with symmetry or near-symmetry [13–16]. In these models,

the physical system is idealised as having perfect symmetry, leading to the

existence of invariant subspaces in the model and thus to the robustness of

heteroclinic cycles with respect to symmetric perturbations. It is natural to

ask how much of the dynamics observed in symmetric models persists under

non-symmetric perturbations. Some effects of small symmetry-breaking have

been documented [17–20], and aspects of the related question of how much

of the dynamics persists under the inclusion of small noise have also been

considered [21,22], but details are likely to vary greatly between different ex-

amples. A few cases of experimental observation of near-heteroclinic cycles

have been reported, most recently in [23], but see also the references therein.

In these cases, experimental noise and small symmetry-breaking effects pre-

vent exact heteroclinic cycles from occurring, but there is clear evidence for

near-heteroclinic structures in certain regimes.

Our interest in the particular set-up explored in this paper is motivated

by [20], which makes the observation that the addition of small symmetry-

breaking terms to a system containing a heteroclinic cycle connecting two

equilibria and a periodic orbit (as well as symmetric copies of the cycle) results

in seemingly chaotic dynamics, with orbits passing near the various equilibria

in the system repeatedly but in an irregular pattern, as illustrated in figure 1.

A main point of [20] was to show that repeated switching of orbits in this

manner could arise in a simple four-dimensional, nearly symmetric model,

but the specific mechanisms underlying the complicated dynamics were not

explored in detail.

In this paper, we examine a generalisation of the situation from [20], focusing

on the structure and origin of chaotic dynamics in the system and on how

switching dynamics is induced. Here and elsewhere in the paper, switching
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Figure 1. Irregular switching in the time series of a dynamo model studied in [20, figure 1].

Panels (a) and (b) show the evolution of different coordinates of the same trajectory, and panel (c)

shows the same coordinate as in (b) over a longer time interval.

refers to the itinerary that an orbit follows under the dynamics. Specifically,

in the fully symmetric version of our system there is a heteroclinic network

consisting of four symmetric copies of the basic heteroclinic cycle. Invariance

of various subspaces ensures that an orbit may make repeated passes near only

one cycle. Once the symmetries are broken, however, an orbit may switch, i.e.,

make traversals near more than one of the original cycles (although, of course,

the cycles themselves may not persist when the symmetry is broken).

A main result of this paper is that in the case of small symmetry breaking,

switching in one variable occurs when a complicated attractor arising from the

presence of transverse homoclinic orbits of a periodic orbit crosses the stable

manifold of one of the equilibria in the system. The existence of the transverse

homoclinic orbits depends on a broken rotation symmetry, while the proxim-

ity of the attractor to the stable manifold of the equilibrium is caused by a

broken reflection symmetry. Switching in a second variable results from the

interaction between broken reflection symmetry and complicated dynamics as-

sociated with a heteroclinic bifurcation between the equilibria. Thus, switching
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results from the right combination of a global bifurcation and small symmetry

breaking.

A second significant result of this paper is the observation that there is a

threshold for the size of symmetry breaking below which persistent switching

cannot occur. More precisely, the existence of the heteroclinic cycle requires

three separate symmetries to allow structurally stable connections within three

invariant subspaces. We control the degree to which the three symmetries are

broken by three small parameters, ǫ1, ǫ2 and ǫ3; ǫ1 controls the degree to which

the periodic orbit in the cycle deviates from a perfect circle, while ǫ2 and ǫ3

break reflection symmetries. For fixed small ǫ2 and ǫ3, we find that there is

a threshold in ǫ1 for persistent switching to occur. For sufficiently small ǫ1,

there may be a single switch from one part of phase space to another, but it

is only for ǫ1 beyond the threshold value that an orbit can repeatedly visit

different parts of the phase space. We find that it is possible to get sustained

switching in one or other or both of the variables associated with the reflection

symmetries, and that the threshold values of ǫ1 are different for switching in

the two variables. The threshold does not go to zero as ǫ2 and ǫ3 go to zero.

Sustained switching of orbits near heteroclinic cycles and networks has been

observed in a number of other settings. Clune and Knobloch [24] describe

an example in which there are two symmetrically related copies of a non-

asymptotically stable heteroclinic cycle, with nearby orbits making repeated

passes near each cycle; no mechanism for the switching is suggested in this pa-

per. Aguiar et al. [8] find switching near a hybrid heteroclinic network formed

from transverse heteroclinic connections between equilibria and connections

that are robust because of symmetry; switching seems to result from the fold-

ing and stretching caused by passage near the transversal heteroclinic connec-

tions and by mixing near an equilibrium solution with complex eigenvalues.

Kirk et al. [25] have an example of switching near a heteroclinic network that

has no transversal connections; the switching is caused entirely by passage

near an equilibrium with complex eigenvalues. Postlethwaite and Dawes [9]

describe a variant of switching near a heteroclinic network in which each cycle

in the network is unstable along a direction transverse to the cycle; orbits visit

cycles in the network in a fixed order (being pushed away from each cycle in

the transverse direction, which also happens to be the contracting direction

for the next cycle) but the number of traversals of each cycle before switch-
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ing to the next cycle can be constant or irregular. Ashwin et al. [26] describe

switching associated with a stuck-on heteroclinic cycle between two invariant

subspaces; here the switching is caused by a nonlinear mechanism that chooses

between the different possibilities in a manner that is well modelled by a ran-

dom process. Switching can also be induced by adding noise to a structurally

stable heteroclinic network [22]; noise sensitive switching has been observed

by [27,28]. None of these examples explicitly considers symmetry breaking as

a mechanism for switching.

We adopt a standard approach to analysis of the system of interest, i.e.,

we set up a simple symmetric model in which there exists a heteroclinic cycle

connecting two equilibria and a periodic orbit (Section 2), construct a return

map that approximates the dynamics near such a cycle, and then add generic

symmetry breaking terms to the return map (Section 3, with details in the Ap-

pendix). Analysis of the return map is fruitful in cases where partial symmetry

is retained, and allows us to prove the existence and asymptotic stability of

periodic orbits, quasiperiodic solutions or heteroclinic cycles in various cases

(Sections 4.1–4.3). In the completely asymmetric case, the return map is in-

tractable, but we are able to make predictions about the dynamics by assuming

there is a generic unfolding of the partially symmetric cases (Section 4.4). The

example discussed in Section 5 confirms and illustrates the analysis. Some

conclusions are presented in Section 6.

A complicating factor in the analysis presented in this paper is that the

unstable manifolds of one pair of equilibria and of the periodic orbit are two-

dimensional, and there are continua of heteroclinic connections along some

parts of the cycle in the fully symmetric case. Linearising about a single hete-

roclinic connection is not appropriate, and the usual method of analysis needs

to be adapted to keep track of orbits in a neighbourhood of all the connections.

Our approach is similar to that taken in [7, 25,29]. We note that our analysis

need not consider the issue of which connection from a continuum is selected

by the dynamics (as investigated in, for instance, [7, 26, 30, 31]) since in our

case breaking of the symmetries forces a discrete set of transversal connections

to be selected from each continuum. Note also that some results about the

dynamics near a heteroclinic cycle connecting an equilibrium and a periodic

orbit in a generic (i.e., non-symmetric) setting are described in [32, 33], but

the phenomena described in those papers will not be seen for small symmetry
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breaking in our setting, and is not the focus of our interest here.

2 Description of the problem

We consider a system of ordinary differential equations ẋ = f(x) where f :

R
4 → R

4, and x = (x1, y1, x2, x3) ∈ R
4. It is sometimes convenient to use

polar coordinates (r1, θ1) such that z1 ≡ x1 +i y1 ≡ r1e
iθ1 . Initially, we assume

the system is equivariant with respect to the action of a rotation and two

reflections: κi(f(x)) = f(κi(x)), i = 1, 2, 3, where

κ1 : (z1, x2, x3)→(z1e
iφ, x2, x3),

κ2 : (z1, x2, x3)→(z1,−x2, x3),

κ3 : (z1, x2, x3)→(z1, x2,−x3),

with 0 ≤ φ < 2π. These symmetries generate the group S1 × Z2 × Z2, and

their presence ensures the existence of some dynamically invariant subspaces.

We make the following assumptions about the dynamics in the subspaces, as

illustrated in figure 2:

• There exists a hyperbolic periodic orbit P in the invariant plane x2 = x3 = 0.

Within this plane, the periodic orbit is a sink.

• There exist hyperbolic, symmetry-related pairs of equilibria ±E2 and ±E3

on the invariant lines z1 = 0, x3 = 0 and z1 = 0, x2 = 0 respectively. Within

these lines, the equilibria are sinks.

• Within the invariant subspace x3 = 0, P is a saddle and ±E2 are sinks, and

there are two-dimensional manifolds of heteroclinic connections from P to

±E2 (figure 2a).

• Within the invariant subspace z1 = 0, ±E2 are saddles and ±E3 are sinks,

and there are one-dimensional heteroclinic connections from +E2 to ±E3,

and from −E2 to ±E3 (figure 2b).

• Within the invariant subspace x2 = 0, ±E3 are saddles and P is a sink, and

there are two-dimensional manifolds of heteroclinic connections from ±E3

to P (figure 2c).

In the presence of the rotation symmetry κ1, the coordinate θ1 decouples

from the other coordinates, leaving an equivalent three-dimensional system
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Figure 2. The heteroclinic cycle for the fully symmetric system. (a) One of the connections in the

x3 = 0 subspace, from the periodic orbit P to the equilibrium point +E2; (b) the single connection

in the x1 = y1 = 0 subspace, between the equilibria +E2 and +E3; (c) one of the connections in

the x2 = 0 subspace, from +E3 to P .

containing a SSHC connecting three saddle-type equilibria. This cycle may be

asymptotically stable, depending on the eigenvalues at the three equilibria [4].

The behaviour of trajectories near such a heteroclinic cycle is well understood,

with a typical orbit passing near each of the equilibria in a cyclic manner,

spending ever increasing periods of time near each equilibrium. The dynam-

ics in the fully symmetric, four-dimensional problem therefore has analogous

behaviour: trajectories cycle between two equilibria and a periodic orbit, with

the time spent near each equilibrium or the periodic orbit increasing with each

subsequent traversal of the cycle [20]. Moving to four dimensions does more

than replace one pair of equilibria by a periodic orbit: it also introduces dynam-

ical features that will be important once symmetry is broken. In particular, as

can be seen in figure 2, ±E2 and ±E3 are saddle-foci in the four-dimensional

problem, and P and ±E3 have two-dimensional unstable manifolds.

A detailed analysis of the effect on the dynamics of small symmetry break-

ing is performed in the following sections; here we describe some geometric

effects. Since ±E2, ±E3 and P are assumed to be hyperbolic in the fully sym-

metric case, they persist and are hyperbolic when sufficiently small symmetry

breaking terms are added. However, +E2 and −E2 will generically move off

the x2-axis and will no longer be related to each other by symmetry. Generic

symmetry breaking will have an analogous effect on +E3 and −E3, and will

also break the circular symmetry of P and move it off the plane x2 = x3 = 0.

Sufficiently small symmetry breaking will not change the dimensions of the

stable and unstable manifolds of ±E2, ±E3 and P , but it will destroy the
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invariant subspaces, and the heteroclinic connections that existed in the sub-

spaces will either cease to exist or change their nature. We consider the geomet-

ric effect of symmetry breaking on each of the former heteroclinic connections

in turn.

The heteroclinic connections from ±E2 to ±E3 require the coincidence in

R
4 of one-dimensional and two-dimensional manifolds; these connections will

be destroyed by a generic symmetry-breaking perturbation.

The heteroclinic connections from ±E3 to P occur when the two-dimensional

unstable manifolds of ±E3 intersect the three-dimensional stable manifold of

P . Depending on the perturbation, we generically expect to see either transver-

sal intersections between these manifolds (in which case there are, for example,

at least two robust heteroclinic connections from +E3 to P ) or no intersec-

tions of the manifolds. The special case where the manifolds are tangent can

also occur in a codimension-one way. In the case of transversal intersections

of manifolds, we might expect to see heteroclinic tangles and the associated

complicated dynamics, depending on whether the dynamics elsewhere in the

phase space permits reinjection of trajectories into the neighbourhood of the

transversal intersections.

The heteroclinic connections from P to ±E2 occur when the two-dimensional

unstable manifold of P intersects the three-dimensional stable manifolds of

±E2. There is a clear analogy with the case of connections from ±E3 to P

and the comments about that case apply equally here.

While small symmetry-breaking terms generically destroy the heteroclinic

cycle, there will still be an attractor lying close to the original heteroclinic

cycle (Melbourne [17] shows this in a closely related case). We show below

that the form of this attractor (e.g., periodic, quasiperiodic, chaotic) depends

on the nature of the symmetry-breaking perturbations included. In the fully

symmetric case, the invariant subspaces defined by x2 = 0 and by x3 = 0

restrict each trajectory to one quarter of the phase space, but once the re-

flection symmetries are broken, a single trajectory may explore more of the

phase space. We are interested in determining the circumstances under which

trajectories exhibit switching, i.e., make passages near two or more quarters

of the original heteroclinic attractor.
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3 Construction of return maps

We construct and analyse a return map that approximates the dynamics near

the cycle. The idea is to define local coordinates and cross-sections near ±E2,

±E3 and P , then determine local maps valid in a neighbourhood of each of

±E2, ±E3 and P , and global maps valid in a neighbourhood of each hete-

roclinic connection. Composing the local and global maps yields the desired

return map. Different forms for the return map are obtained depending on

which of the symmetries are broken. In this section we list the different cases,

but details of map construction are left to the Appendix. The techniques used

are, for the most part, standard, although modifications are required to allow

for the existence of continua of heteroclinic connections along some parts of

the cycle in the fully symmetric case.

Throughout, we use a small parameter h to control the size of the local

neighbourhoods (h≪ 1), and small parameters ǫ1, ǫ2, ǫ3 to control the extent

to which the symmetries κ1, κ2, κ3 are broken. It turns out to be convenient

to define the return map on a cross-section near +E3. Using local coordinates

(r1, θ1, x2, ξ3) near +E3, where coordinates are chosen so that +E3 is at the

origin and so that the eigenvectors of the linearised flow align with the coordi-

nate axes in the manner described in the Appendix, we define a cross-section

H in
3 = {(r1, θ1, x2, ξ3) : 0 ≤ r1 ≤ h, |x2| = h, |ξ3| ≤ h}

and then compute the return map, R : H in
3 → H in

3 . The same cross-section

works equally well near −E3 and the maps R we compute in fact approximate

the dynamics near any of the four possible paths from ±E3 to ±E3. See the

Appendix for details.

Since we are interested in trajectories that switch between positive and

negative values of x2 and x3, we introduce the notation ±2 and ±3 to indicate

whether a trajectory visits +E2 or −E2, and +E3 or −E3. In particular, the

trajectory starts at one of four possible sections specified by H in
3 , and we use

±2 to specify whether x2 = +h or x2 = −h (implying that the trajectory

recently visited +E2 or −E2). We use ±3 to specify whether the trajectory

is close to +E3 or −E3. When the trajectory next returns to H in
3 , we will be

interested in whether it visited +E2 or −E2 en route, and whether it returns

to +E3 or −E3.
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First, in the case with full symmetry (ǫ1 = ǫ2 = ǫ3 = 0), we have:

R(r1, θ1, x2 = ±2h, ξ3) =
(

r̃1 = Arδ
1, θ̃1 = θ1 + Φ −Q ln r1,

x̃2 = x2, ξ̃3 = B2

)

, (1)

where A > 0 and Φ are constants, δ = δ1δ2δ3, Q = (e1e2 + e2c3 + c3c1)/e1e2e3,

and the constants δi, ei and ci are defined in the Appendix. If x3 > 0 initially,

the trajectory returns to +E3 after visiting ±2E2; if x3 < 0 initially, the

trajectory returns to −E3.

Second, breaking the κ2 and κ3 symmetries (ǫ1 = 0, ǫ2 6= 0, ǫ3 6= 0) we have:

R(r1, θ1, x2 = ±2h, ξ3) =
(

r̃1 = A2

∣

∣

∣
ǫ3 ±3 A1

∣

∣ǫ2 ±2 A3r
δ3

1

∣

∣

δ1

∣

∣

∣

δ2

,

θ̃1 = θ1 + Φ1 + Φ2 + Φ3 −
1

e3
ln r1

−
1

e1
ln

∣

∣ǫ2 ±2 A3r
δ3

1

∣

∣

−
1

e2
ln

∣

∣

∣
ǫ3 ±3 A1

∣

∣ǫ2 ±2 A3r
δ3

1

∣

∣

δ1

∣

∣

∣
,

x̃2 = sgn
(

ǫ2 ±2 A3r
δ3

1

)

h, ξ̃3 = B2

)

. (2)

The trajectory visits +E2 or −E2 en route according to the sign of ǫ2±2A3r
δ3

1 ,

and it returns to +E3 or −E3 according to the sign of ǫ3 ±3A1

∣

∣ǫ2 ±2A3r
δ3

1

∣

∣

δ1 .

Third, if we break the κ1 symmetry but preserve κ2 and κ3 (ǫ1 6= 0, ǫ2 =

ǫ3 = 0) we have:

R(r1, θ1, x2 = ±2h, ξ3) =
(

x̃1 = ǫ1ar +A2|x̂3|
δ2 cos θ̂1,

ỹ1 = ǫ1ai +A2|x̂3|
δ2 sin θ̂1,

x̃2 = sgn(x̂2)h, ξ̃3 = B2

)

, (3)
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where

x̂2 = ±2

(

A3 + ǫ1f3

(

θ1 −
1

e3
ln r1

))

rδ3

1 ,

x̂3 = ±3

(

A1 + ǫ1f1

(

θ1 + Φ3 −
1

e3
ln r1 −

1

e1
ln |x̂2|

))

|x̂2|
δ1 ,

θ̂1 = θ1 + Φ1 + Φ2 + Φ3 −
1

e3
ln r1 −

1

e1
ln |x̂2| −

1

e2
ln |x̂3| .

The trajectory visits +E2 or −E2 en route according to the sign of x̂2, and it

returns to +E3 or −E3 according to the sign of x̂3. In this case, these signs are

the same as the signs of x2 and x3. The map (3) can be simplified by assuming

that A3 and A1 are order one and dropping the terms proportional to ǫ1 in

the expressions for x̂2 and x̂3. This results in an approximate map:

R(r1, θ1, x2 = ±2h, ξ3) =
(

x̃1 = ǫ1ar +Arδ
1 cos (θ1 + Φ −Q ln r1) ,

ỹ1 = ǫ1ai +Arδ
1 sin (θ1 + Φ −Q ln r1) ,

x̃2 = x2, ξ̃3 = B2

)

, (4)

where δ and Q were defined above, and A and Φ are constants as in equa-

tion (1).

Finally, when all symmetries are broken the return map is similar to the

map (3) above, though with definitions of x̂2 and x̂3 that include terms pro-

portional to ǫ2 and ǫ3:

x̂2 = ±2

(

A3 + ǫ1f3

(

θ1 −
1

e3
ln r1

))

rδ3

1

+ ǫ2

(

1 + ǫ1g3

(

θ1 −
1

e3
ln r1

))

,

x̂3 = ±3

(

A1 + ǫ1f1

(

θ1 + Φ3 −
1

e3
ln r1 −

1

e1
ln |x̂2|

))

|x̂2|
δ1

+ ǫ3

(

1 + ǫ1g1

(

θ1 + Φ3 −
1

e3
ln r1 −

1

e1
ln |x̂2|

))

,

θ̂1 = θ1 + Φ1 + Φ2 + Φ3 −
1

e3
ln r1 −

1

e1
ln |x̂2| −

1

e2
ln |x̂3| . (5)
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The trajectory visits +E2 or −E2 en route according to the sign of x̂2, and it

returns to +E3 or −E3 according to the sign of x̂3. It might seem that terms

proportional to ǫ1 in x̂2 and x̂3 could be dropped, as they were above. However,

the terms ±2A3r
δ3

1 and ǫ2 could nearly cancel and likewise ±3A1|x̂2|
δ1 and ǫ3,

so we do not drop the ǫ1 terms. In fact, it turns out that retaining the ǫ1 terms

is essential for understanding the switching mechanisms.

It is possible to write down equivalent maps fromH in
1 → H in

1 andH in
2 → H in

2 .

Note that the radial coordinates (as defined in the Appendix) play no role in

the return maps, at the order to which we are working.

4 Analysis of return maps

Behaviour in the case without symmetry breaking is well understood and sim-

ple: whenever δ > 1 and r is small, iteration of map (1) results in progressively

smaller values of r and so there is an asymptotically stable heteroclinic cycle.

The signs of x2 and x3 cannot change, owing to the presence of invariant sub-

spaces, so each trajectory is confined to one quarter of the phase space. For

the remainder of this section, we will assume δ > 1.

4.1 Global bifurcations

Global bifurcations are a key ingredient for understanding the dynamics of

the non-symmetric system. In this section, we describe the global bifurcations

that are most important for our analysis.

4.1.1 Homoclinic bifurcation of P . The periodic orbit P has stable and un-

stable manifolds of dimension three and two, respectively, meaning that trans-

verse intersections of the manifolds, when they occur, do so in a codimension-

zero way, while tangencies between the manifolds will be of codimension one.

Transverse homoclinic orbits can only occur when all symmetries are broken,

as the following argument shows. If ǫ2 = 0, the subspace x2 = 0 is invari-

ant; since Ws(P ) lies in that subspace it cannot intersect Wu(P ). Similarly,

if ǫ3 = 0, the subspace x3 = 0 is invariant; since Wu(P ) lies in that subspace

it cannot intersect Ws(P ). If ǫ1 = 0 then the rotation symmetry ensures that
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any intersection of Wu(P ) and Ws(P ) will not be transverse.

In the case ǫ1 = 0, ǫ2 6= 0, ǫ3 6= 0, non-transversal homoclinic orbits of

P occur when one branch of the stable manifold of P is coincident with one

branch of the unstable manifold of P . This event can be located by calculating

the image of Wu(P ) under Ψ31◦φ3◦Ψ23◦φ2◦Ψ12 (see Appendix for definitions

of the maps φi and Ψij) and setting the x2 component of the image to zero; we

find that for small symmetry-breaking, non-transversal homoclinic bifurcations

of P occur at

ǫ2 = −±2 A3A
δ3

2 |ǫ3|
δ2δ3 , ǫ1 = 0. (6)

Homoclinic orbits can be formed by coincidence of either of the two branches

of Wu(P ) with either of the two branches of Ws(P ), resulting in four possible

homoclinic bifurcations corresponding to the four separate curves implicit in

the expression above. These curves are shown as dashed lines in figure 3. The

homoclinic orbit corresponding to the curve in the second quadrant of the

(ǫ2, ǫ3) plane arises from the choice ±2 = + and ǫ3 > 0, and passes close to

+E2 and +E3; the three other bifurcation curves correspond to homoclinic

orbits with the three other routes past the equilibria, in the obvious way.

As ǫ1 changes from zero, each curve of non-transversal homoclinic bifur-

cations will generically split into two curves of homoclinic tangencies, with

the region between the tangencies being parameter values for which there are

transverse homoclinic orbits of P . Four curves of homoclinic tangencies and

two regions of homoclinic tangles are shown schematically in figure 4.

Inspection of the expression for the x2 component of the image of Wu(P )

under Ψ31◦φ3◦Ψ23◦φ2◦Ψ12 gives more information about loci of the homoclinic

bifurcations of P when ǫ1 6= 0. This component can be written as:

x̃2 = ±2R
δ3

1 (A3 + ǫ1f3(Θ1)) + ǫ2 (1 + ǫ1g3(Θ1)) , (7)

where R1 and Θ1 are complicated functions of the coefficients and parameters.

In this expression, A3 + ǫ1f3(Θ1) must remain positive, as explained in the

Appendix, and R1 is positive. Expressions for the positions of the homoclinic

tangencies in parameter space can be calculated by setting x̃2 = 0; these

expressions are not included here due to their extreme ugliness. Nonetheless,

we note that for ǫ1 small, when ±2 = +, there are only solutions with ǫ2 < 0;
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Figure 3. Schematic bifurcation set for the case ǫ1 = 0, ǫ2 and ǫ3 small. Regions of asymptotically

stable quasiperiodic solutions are bounded by codimension-one curves of global bifurcations, i.e.,

non-transverse homoclinic bifurcations of P (dashed curves) and heteroclinic bifurcations of the

cycles ±E2 → ±E3 → ±E2 (solid curves). The shapes of the global bifurcation curves correspond

to the choice δ1 > 1, δ2 > 1 and δ3 > 1, but similar figures could be drawn for the other cases. As

explained in Section 4.2, the various shading styles indicate the regions in which four different

quasiperiodic solutions occur. Close to the ǫ2 and ǫ3 axes, two different quasiperiodic solutions

coexist.

this is consistent with figures 3 and 4, in which each bifurcation curve is

confined to a single quadrant. However, if ǫ1 is large enough that 1+ ǫ1g3(Θ1)

can change sign as Θ1 varies, the loci of the homoclinic bifurcations of P can

change quadrants. Of course, this effect is outside the range of validity of the

return maps we have constructed, but the principle is worth bearing in mind

as it appears to influence the dynamics observed in the numerical example

discussed in Section 5.

4.1.2 Heteroclinic bifurcation ±E2 → ±E3 → ±E2. In the case that

all symmetries are broken, consideration of the dimensions of the stable and

unstable manifolds of the equilibrium points shows that the heteroclinic cy-

cle +E2 → +E3 → +E2 will occur in a codimension-two manner. However, if

ǫ1 = 0, the connection +E2 → +E3 is robust and the intersection of Wu(+E3)

and Ws(+E2) is a codimension-one phenomenon, meaning that the hetero-

clinic cycle as a whole occurs with codimension one. This latter case is of

interest since, as we will see, the heteroclinic bifurcation unfolds when ǫ1 6= 0
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Figure 4. Schematic diagram showing part of the bifurcation set for the case ǫ1 fixed and non-zero

but small (compare with figure 3). Dashed curves correspond to homoclinic tangencies of P , solid

curves in the first (resp. fourth) quadrant correspond to heteroclinic tangencies between Wu(−E3)

(resp. Wu(+E3)) and Ws(+E2), and the shading shows regions in which the corresponding

homoclinic or heteroclinic tangles exist. The dotted horizontal line indicates a path through

parameter space discussed in Section 4.4; the labels A – D indicate schematically parameter values

used in section 5.

into homoclinic bifurcations of +E2 and +E3 and heteroclinic tangencies be-

tween Wu(+E3) and Ws(+E2) similar to the way each non-transverse homo-

clinic bifurcation of P splits into two homoclinic tangencies when ǫ1 is varied

from zero (see above). An analogous argument works for heteroclinic cycles

involving −E2 and/or −E3.

Calculations with the local and global maps yields an expression for the

parameter values at which these heteroclinic bifurcations occur:

ǫ3 = −±3 A1|ǫ2|
δ1 , ǫ1 = 0.

See figure 3. This expression is valid for all four cycles ±E2 → ±E3 → ±E2

so long as ±3 and the sign of ǫ2 are chosen appropriately.

4.1.3 Homoclinic bifurcations of ±E2 and ±E3. The dimensions of the

stable and unstable manifolds of ±E2 and ±E3 are such that if homoclinic

bifurcations of these equilibria occur, they are of codimension one.

An argument similar to that used in subsection 4.1.1 shows that we require
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ǫ1 6= 0 and ǫ3 6= 0 if a homoclinic bifurcation of ±E2 is to occur, although ǫ2

could be zero. Similarly, existence of a homoclinic bifurcation of ±E3 requires

ǫ1 6= 0 and ǫ2 6= 0, although ǫ3 could be zero. The homoclinic bifurcations

of ±E2 (resp. ±E3) will be of Shil’nikov type if δ2 < 1 (resp. δ3 < 1) and if

c2 < 2 (resp. c3 < 2) [34].

We can in principle calculate parameter values at which these homoclinic

bifurcations occur, but the expressions are too nasty to be useful. Instead, we

note that there can be two homoclinic bifurcations of +E2, one for each branch

of the unstable manifold of +E2, and a further two homoclinic bifurcations of

−E2. Similarly, there can be two homoclinic bifurcations of +E3 and two ho-

moclinic bifurcations of −E3. These eight homoclinic bifurcations will in gen-

eral occur at different parameter values, but in the limit ǫ1 → 0, will converge

pairwise on the loci of the four heteroclinic bifurcations involving ±E2 and

±E3 discussed in the previous subsection. For instance, as ǫ1 → 0, a homoclinic

orbit of +E2 passing near −E3 and a homoclinic orbit of −E3 passing near +E2

will converge in phase space on the heteroclinic cycle +E2 → −E3 → +E2, and

the parameter values at which the homoclinic bifurcations occur will converge

in parameter space on the locus of the heteroclinic bifurcation. For clarity,

these bifurcation curves are not shown in figure 4.

The dynamics associated with these bifurcations will be discussed further

below.

4.2 Breaking the two reflection symmetries

Here we show that, for ǫ1 = 0 and for sufficiently small ǫ2 and ǫ3, map (2)

generically has at least one asymptotically stable closed invariant curve and

the corresponding flow has quasiperiodic solutions. This is not a surprising re-

sult, since the coordinate θ1 decouples from the other coordinates when ǫ1 = 0,

in which case our system can be reduced to a three-dimensional system with

a SSHC between equilibria; earlier work on a system related to our reduced

system showed that breaking the reflection symmetries can give rise to asymp-

totically stable periodic solutions [19]. Our main aim in this section is to locate

the regions in parameter space in which the quasiperiodic solutions exist, for

comparison with the location of some of the global bifurcations described in

section 4.1.
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Figure 5. Schematic graphs of F (r1) (equation (8)) for the choice ±2 = ±3 = 1 when δ1 > 1,

δ2 > 1, δ3 > 1, and A1 = A2 = A3 = 1. The solid (resp. dotted) curve indicates values of r1 for

which the next values of ±2 and ±3 are (resp. are not) both positive; we seek values of r1 for which

the solid curve intersects the diagonal. For small positive ǫ2 and ǫ3, a stable fixed point exists (see

panel (b)). This fixed point ceases to exist in the second quadrant when ǫ2 = −A3A
δ2
2 ǫ

δ2δ3
3 , when

there is a non-transversal homoclinic bifurcation of P (limiting case shown in panel (a)). The fixed

point is destroyed in the fourth quadrant when ǫ3 = −A1ǫ
δ1
2 , when there is a non-transversal

heteroclinic connection from +E3 to +E2 (limiting case shown in panel (c)).

The r1 component of map (2) is independent of the other variables, and so

we first seek values of r1 for which F (r1) = r1, where

F (r1) = A2

∣

∣

∣
ǫ3 ±3 A1

∣

∣ǫ2 ±2 A3r
δ3

1

∣

∣

δ1

∣

∣

∣

δ2

. (8)

For each choice of ǫ2 and ǫ3, there are two possible signs of each of ±2 and ±3,

but the case (±2 = +, ǫ2 > 0) is equivalent to (±2 = −, ǫ2 < 0), and the case

(±3 = +, ǫ3 > 0) is equivalent to (±3 = −, ǫ3 < 0). Without loss of generality,

we focus on the case ±2 = +, ±3 = +, and seek values of ǫ2 and ǫ3 for which

there exist fixed points of map (8). Fixed points of this type have positive

values within the absolute value signs in (8), since the signs of ǫ2 +A3r
δ3

1 and

ǫ3 +A1|ǫ2 +A3r
δ3

1 |δ1 determine the next values of ±2 and ±3.

For sufficiently small, positive ǫ2 and ǫ3, F (0) = A2(ǫ3 + A1ǫ
δ1

2 )δ2 > 0. For

r1 larger than ǫ2 and ǫ3 but still smaller than one, we have F (r1) ∼ rδ
1, which

is less than r1 since δ > 1. Thus, by continuity, the map has a fixed point (see

figure 5(b)). Since F (r1) is monotonically increasing, the slope of F at the

fixed point is less than one, so a stable fixed point exists for ǫ2 > 0, ǫ3 > 0.

This fixed point (i.e., a fixed point with ±2 = ±3 = +) also exists in parts of

the second and fourth quadrants of the (ǫ2, ǫ3) parameter plane. To determine
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the region of existence in the fourth quadrant, we fix ǫ2 at some small positive

value and decrease ǫ3. This shifts the graph of F (r1) down, from which it is

found that a stable fixed point exists until F (0) = 0, i.e., until ǫ3 = −A1ǫ
δ1

2

(figure 5(c)). Thus the fixed point ceases to exist in the fourth quadrant at

the locus of the heteroclinic bifurcation from +E3 to +E2 (c.f. section 4.1.2).

To determine where the fixed point exists in the second quadrant, we fix ǫ3 at

some small positive value and decrease ǫ2. This decreases F (0) and also changes

the shape of the graph of F (r1); the graph remains monotonic increasing in

r1 while ǫ2 is positive, but develops a turning point once ǫ2 becomes negative,

with F (r1) decreasing for r1 near zero. The decreasing section is indicated by

a dotted curve in figure 5(a), and corresponds to future values of ±2 and ±3

not both being positive. For small enough negative ǫ2 the dotted section of the

graph lies to the left of fixed point, but when ǫ2 = −A3A
δ2

2 ǫ
δ2δ3

3 , the dotted

curve reaches to the diagonal and the fixed point ceases to exist (figure 5(a)).

Thus the fixed point ceases to exist in the second quadrant on the locus of the

homoclinic bifurcation of P (c.f. section 4.1.1).

The region of existence of this stable fixed point is indicated by the left-

leaning close hatching in figure 3. Calculations with the other combinations of

signs of ±2 and ±3 are analogous, and yield different regions of existence for

the corresponding fixed points. Fixed points may coexist as shown in figure 3.

Since for fixed r1 the θ1 component of map (2) is a rigid rotation, a fixed

point of equation (8) generically corresponds to a closed invariant curve in

(2) and to a quasiperiodic solution in the full flow. The angle θ1 decouples

from the rest of the dynamics, and so the full flow will have an invariant torus

foliated by periodic orbits for a dense set of parameter values. Stability of

these solutions follows from the stability of the fixed point of (8).

The calculations above were for the case δ1 > 1, δ2 > 1, δ3 > 1. Similar

calculations done when one or more of the δi is smaller than one lead to

similar regions of existence of quasiperiodic solutions, except that there are

additional saddle-node bifurcations of the tori close to the relevant global

bifurcations; these saddle-node bifurcations arise since the global bifurcations

destroy solutions of different stabilities depending on the sign of δi − 1.

The special case that precisely one of ǫ2 and ǫ3 is zero (i.e., only one reflection

symmetry is broken) is covered by the analysis above; there will be two fixed

points of the map with corresponding (foliated) tori in the flow.
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In summary, when the two reflection symmetries are broken but the ro-

tation symmetry is preserved, the flow generically has asymptotically stable

quasiperiodic solutions that do not exhibit switching. Different quasiperiodic

solutions coexist in regions bounded by global bifurcations that will play an

important role in generating complex dynamics when ǫ1 6= 0.

4.3 Breaking the rotation symmetry

In this subsection we show that for sufficiently small values of ǫ1, with ǫ2 =

ǫ3 = 0, the map (4) has a stable fixed point.

By rescaling r1 and ǫ1 by order one amounts and moving the origin of the θ1

coordinate, we can without loss of generality set A = 1, ar = 1 and ai = 0 in

(4). Ignoring for now the x2 and ξ3 components of the map and working with

polar coordinates (ρ, φ) centred at (x1, y1) = (ǫ1, 0) (so that x1 = ǫ1 + ρ cos φ

and y1 = ρ sinφ), map (4) reduces to







x̃1 = ǫ1 + ρ̃ cos φ̃

ỹ1 = ρ̃ sin φ̃
where







ρ̃ = rδ
1

φ̃ = θ1 + Φ −Q ln r1.
(9)

The constant Φ may take a different value here than in equations (4). Fixed

points of (9) satisfy r1 =
√

x̃2
1 + ỹ2

1 and θ1 = arctan (ỹ1/x̃1). To find solutions

of the first of these equations, note that circles of radius r about (x1, y1) =

(0, 0) map under (9) to circles of radius rδ about (ǫ1, 0). Since δ > 1 and for

small r, these circles will intersect if r ≥ ǫ1−r
δ and r ≤ ǫ1+rδ; the intersection

points are candidate fixed points of the map. For each small fixed value of ǫ1,

there will be some non-zero interval a ≤ r ≤ b on which the inequalities are

both satisfied. See figure 6(a–c).

The second equation, θ1 = arctan (ỹ1/x̃1), is satisfied for at least one value

of r in [a, b], as the following argument shows. When r = a, the circles

(r1, θ1) = (r, θ1) and (ρ, φ) = (rδ, φ) intersect at a single point, (r1, θ1) = (a, 0),

alternatively (ρ, φ) = (aδ, π). As r is increased beyond a, the intersection

point splits into two (with corresponding φ values just below π and just

above −π). The intersection points come together again at (r1, θ1) = (b, 0) or

(ρ, φ) = (bδ, 0), in the manner shown in figure 7(a). The corresponding value

of φ̃ for each intersection point can be calculated from (9) (see figure 7(b))
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Figure 6. Finding fixed points of equations (9). Panels (a–c) show schematically the relative

positions of the circle of radius r around (x1, y1) = (0, 0) (large circle in each panel) and its image

under map (9) for various sizes of r: (a) r < ǫ1 − rδ, no intersection; (b) r ≥ ǫ1 − rδ and

r ≤ ǫ1 + rδ, one or two intersections; (c) r > ǫ1 + rδ, no intersections.
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Figure 7. (a) Schematic φ values for intersections of the two circles (r1, θ1) = (r, θ1) and

(ρ, φ) = (rδ, φ), in the situation shown in figure 6(b), plotted as a function of r; (b) Schematic

showing θ1 (solid and dashed curves) and −Q ln r1 (dotted curve) for points of intersection of the

two circles, plotted as a function of r at the intersection points; (c) φ and φ̃ values at points of

intersection of the two circles. Solid curves correspond to the upper intersection points and their

images, dashed curves correspond to the lower intersection points and their images.

from which it is seen that the two branches of φ̃, arising from the upper and

lower intersections of the two circles, start and end at the same point as each

other, as shown in figure 7(c). At least one of the two branches of the graph

of φ̃ vs r therefore intersects the graph of φ vs r for that same branch for at

least one r in [a, b]. Thus, there is at least one fixed point of the map (9).

It is straightforward to show that the determinant of the Jacobian of map (9)

is δr2(δ−1) and that the absolute value of the trace of the Jacobian is bounded

above by
√

(δ + 1)2 +Q2 rδ−1. For each choice of ǫ1, the value of r at the

corresponding fixed point lies in [a, b], where a and b depend on ǫ1 with a > 0

and a and b tending to zero as ǫ1 → 0. Thus, for sufficiently small ǫ1, the
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determinant and trace of the linearised map are small enough to ensure that

the relevant fixed point is stable. It follows that the corresponding fixed point

of equations (4) is also stable, since orbits of that map collapse onto a constant

value of the third (radial) coordinate after one iteration of the map.

In summary, for sufficiently small ǫ1 when ǫ2 = ǫ3 = 0, the heteroclinic cycle

that occurred in the fully symmetric case is replaced by a stable periodic orbit.

Using the reflection symmetries κ2 and κ3, we find four stable periodic orbits

co-exist, one in each quarter of the phase space.

4.4 Breaking all symmetries

Direct analysis of the return map valid for the case that all symmetries are

broken is not feasible because of the extremely complicated form of that map.

Instead, in this section we use our knowledge of the dynamics in the case

ǫ1 = 0 and arguments about generic unfoldings of this special case to deduce

what types of dynamics will be seen in the fully asymmetric case for ǫ1 near

zero, and to (approximately) locate each type of behaviour in parameter space.

This procedure allows us to make specific predictions about the mechanisms

underlying the complicated dynamics observed in numerical examples, such

as the example described in section 5. We are especially interested in finding

mechanisms that cause repeated, non-periodic switching in our system.

The dynamics associated with the case ǫ1 = 0 is summarised in figure 3,

which shows eight curves of global bifurcations bounding regions in which

there are asymptotically stable quasiperiodic solutions. In this case the rota-

tion symmetry prevents coupling of the two frequencies associated with each

quasiperiodic solution and the dynamics is simple. Once ǫ1 moves away from

zero, we will generically see locking of the frequencies. For instance, if we were

to fix ǫ1 sufficiently small but non-zero and pick ǫ2 and ǫ3 positive and with

values midway between the two pairs of global bifurcation curves in the first

quadrant of figure 4, then along a one-dimensional path through the parameter

space such as the dotted line in figure 4 there will be intervals of quasiperiod-

icity interspersed with intervals of locked, periodic behaviour. Associated with

the frequency locking there may be complicated dynamics such as period-

doubling cascades and chaotic dynamics. However, this behaviour will mostly

be confined to regions of phase space near the original quasiperiodic solutions,
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and is not the main mechanism for switching in our system.

As shown in section 4.1.1 and in figure 4, each curve of non-transverse ho-

moclinic bifurcations of P seen in figure 3 turns into a wedge in parameter

space of transverse homoclinic orbits of P when ǫ1 changes from zero. There

will be horseshoes and chaotic dynamics associated with the transverse homo-

clinic orbits, although the chaos may not be attracting. In numerical examples

we might expect to see a mixture of stable periodic orbits and stable chaotic

dynamics, in overlapping regions of parameter space.

An interesting consequence of the occurrence of homoclinic tangles is that it

provides a mechanism for switching of orbits with respect to the x2 variable.

For instance, for sufficiently small ǫ1, and with ǫ2 > 0, ǫ3 > 0 and both

small, solutions that make excursions near +E2 can get trapped. The trapping

region is bounded in part by one branch of Ws(P ) and trapped solutions make

excursions past +E2 but cannot cross Ws(P ) so cannot get close to −E2. If

ǫ2 is decreased, say by moving along the dotted path shown in Figure 4 into

the homoclinic wedge in the second quadrant, the trapping region develops a

leak when a homoclinic tangency forms between that branch of Ws(P ) and

a branch of Wu(P ); solutions are then able to cross Ws(P ), and may visit a

neighbourhood of −E2. We call this ‘switching in x2’. Switching of this type

(from positive to negative x2) can occur for parameter values to the left of the

right boundary of the homoclinic wedge in the second quadrant. A numerical

example of this leaking process is given below in figure 9.

Once a switching solution arrives in the region with x2 < 0, it may then

get captured by an attractor lying solely in the negative x2 region of phase

space, in which case no more switching will be observed. Alternatively, if there

is a mechanism for orbits to leak back to the original region of phase space

then there could be sustained switching in x2. This latter case cannot occur

for arbitrarily small ǫ1 as the following argument shows. For the case ǫ1 = 0,

results from section 4.2 show that orbits which make repeated excursions near

−E2 and +E3 occur in the second quadrant of figure 4 and in the first quadrant

as far as the locus of homoclinic bifurcations of P . (This homoclinic bifurcation

involves a different branch of Wu(P ) than the homoclinic bifurcation occurring

for ǫ2 < 0 discussed in the last paragraph.) For small ǫ1, there will be a wedge

of homoclinic tangencies of the relevant branches of Wu(P ) and Ws(P ), with

the wedge lying entirely within the region ǫ2 > 0, ǫ3 > 0; orbits that make
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a number of excursions past −E2 before switching and passing close to +E2

can only occur for values of ǫ2 and ǫ3 lying to the right of the left boundary

of the wedge. Thus, for sufficiently small ǫ1, there is no overlap between the

region of parameter space where there is switching from positive to negative

x2 and the region where there is switching from negative to positive x2, with

the consequence that there can be no sustained switching in x2.

However, as argued in section 4.1.1, for large enough ǫ1 the curves of ho-

moclinic tangency may change quadrants in the (ǫ2, ǫ3) parameter plane, and

then the switching regions can overlap, making sustained switching in x2 pos-

sible. As pointed out in section 4.1.1, our return map construction is not valid

for ‘large’ ǫ1, so we have not proved the existence of sustained switching, just

shown how it might feasibly occur. It is not possible to determine a priori

how big ǫ1 would have to be to get sustained switching, but we have shown

that there is a threshold in ǫ1 below which sustained switching in x2 is not

possible. The value of this threshold does not go to zero as ǫ2 and ǫ3 go to

zero, as it comes from the requirement that 1 + ǫ1g3(Θ1) changes sign (as a

function of Θ1) in equation (7). Another way of understanding this is to note

that in (7), if ±2 = + and ǫ2 > 0, then the only way of having x̃2 negative

is to have 1 + ǫ1g3(Θ1) < 0 for some value of Θ1. This is a necessary but not

sufficient condition, as the attractor may not explore the required range of Θ1.

The four curves of heteroclinic bifurcations of the cycles ±E2 → ±E3 →

±E2 shown in figure 3 also split when ǫ1 becomes non-zero, being replaced by

eight curves of homoclinic bifurcations and eight curves of heteroclinic tangen-

cies between Wu(±E3) and Ws(±E2), as described in section 4.1.2. If they are

of Shil’nikov type, the homoclinic bifurcations can complicate the dynamics by

inducing chaotic dynamics. The heteroclinic bifurcations are associated with

switching in the x3 coordinate similarly to the way switching in x2 is associ-

ated with homoclinic bifurcations of P , described above. More precisely, the

eight curves of heteroclinic tangencies between Wu(±E3) and Ws(±E2) come

in pairs, with each pair bounding a wedge in parameter space. At parameter

values within each wedge there is a heteroclinic tangle of one pair of manifold

branches. For instance, for sufficiently small ǫ1 there will be a heteroclinic

wedge involving one branch of Wu(+E3) and one branch of Ws(+E2) occur-

ring in the fourth quadrant in the (ǫ2, ǫ3) plane. Above this wedge, Ws(+E2)

bounds in part a trapping region; orbits in the trapping region make excur-
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sions past +E3 but cannot cross Ws(+E2) to get close to −E3. The trapping

region develops a leak when a heteroclinic tangency forms between the appro-

priate branches of Wu(+E3) and Ws(+E2) thus allowing solutions to cross

Ws(+E2). We call this ‘switching in x3’. An argument analogous to that used

for switching in x2 can be used here to show that there is a (generically dif-

ferent) threshold in ǫ1 below which there can be no persistent switching in x3.

This threshold does not go to zero when ǫ2 and ǫ3 go to zero.

The mechanisms inducing switching in x2 and in x3 are distinct, but or-

bits that switch persistently in both x2 and x3 are possible for ǫ1 above the

thresholds for both mechanisms. Switching in each variable requires the rota-

tion and appropriate reflection symmetry to be broken. It is possible to have

persistent switching in x2 with ǫ3 = 0, or switching in x3 with ǫ2 = 0, though

we will not explore this possibility in detail. The example in section 5 shows

that persistent switching is easily observed in numerical examples.

Both of the global bifurcations we have identified as inducing switching, i.e.,

homoclinic tangencies of Wu(P ) and Ws(P ) and heteroclinic tangencies of

Wu(±E3) and Ws(±E2), will produce horseshoes in the dynamics. In the case

of homoclinic tangencies, this is a standard result and in the case of the hetero-

clinic tangencies, reinjection into the neighbourhood of the heteroclinic tangle

is provided by proximity in phase and parameter space to the heteroclinic cy-

cle ±E2 → ±E3 → ±E2. In either case, we expect the onset of switching to

be commonly associated with nearby chaotic dynamics; chaotic orbits before

the onset of switching, chaotic transients for switching orbits and orbits that

switch chaotically might all be seen. However, other types of switching are

also possible, such as periodic switching where the attractor is a periodic orbit

that crosses the (non-invariant) hyperplanes x2 = 0 and x3 = 0 or periodic

switching where the attractor is a ‘noisy periodic orbit’ such as results from a

cascade of period doubling. In the latter case the itinerary of visits to ±E2 or

±E3 will be periodic even though the actual orbits are not.
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5 Example

We consider the following system of equations to illustrate the dynamics of

interest in this paper:

ż1 = (1 + i)z1 − |z1|
2z1 − (c2 + 1)x2

2z1 + (e3 − 1)x2
3z1 + ǫ1d11 + ǫ1d12x1 ,

(10)

ẋ2 = x2 − x3
2 − (c3 + 1)x2

3x2 + (e1 − 1)|z1|
2x2 + ǫ2d21 + ǫ1d22x1x2 + ǫ1ǫ2d23x1 ,

(11)

ẋ3 = x3 − x3
3 − (c1 + 1)|z1|

2x3 + (e2 − 1)x2
2x3 + ǫ3d31 + ǫ1d32x1x3 + ǫ1ǫ3d33x1 ,

(12)

These equations were derived by starting with the structurally stable hete-

roclinic cycle considered in [2], turning a pair of equilibria of that cycle into

a periodic orbit by adding a trivial phase variable, and adding the simplest

possible terms that break the symmetries in generic ways. The parameters ǫ1,

ǫ2 and ǫ3 in equations (10–12) play the same role as in the maps derived earlier

in this paper.

The model used in [20] is similar, but differs in two respects. First, the

symmetry-breaking terms in [20] were fifth-order in the x and z variables,

rather than constant, linear and quadratic here. Second, the model in [20]

respects the symmetry (z1, x2, x3) → (−z1,−x2,−x3), as appropriate for a

model of a dynamo instability: the invariant subspace z1 = x2 = x3 = 0

corresponds to the absence of any magnetic field. We do not expect the first

difference between models to alter the qualitative behaviour, but the enforced

symmetry may have a significant effect, as discussed briefly in the next section.

The coefficients in the equations were chosen to be: c1 = 1.2, e1 = 1.0, c2 =

1.1, e2 = 1.0, c3 = 1.1, e3 = 1.0 for the contracting and expanding eigenvalues,

and d11 = d12 = 10−4, d21 = 10−1, d22 = 10−1, d23 = 103, d31 = 10−3,

d32 = 10−4, d33 = 1 for the symmetry-breaking coefficients. The eigenvalues

were chosen to be of order one, with contraction dominating expansion at each

point (δ1 = 1.2, δ2 = 1.1, δ3 = 1.1, and an overall δ = 1.452). The symmetry

breaking coefficients are notionally small, but those coefficients (d23 and d33)

that are multiplied by two ǫ’s were chosen to be larger to compensate for this.

The exact numbers are not important, though they will affect the details of
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what is observed. However, choosing d23 and d33 to be reasonably large means

that the switching dynamics is easier to obtain for small values of ǫ1: in order

to get persistent switching, the ǫ1ǫ2d23x1 and ǫ1ǫ3d33x1 terms in (10–12) need

to be reasonably important.

We integrated the equations numerically using the Bulirsch–Stoer adaptive

integrator [35], with a tolerance for the relative error set to 10−12 for each

step. Poincaré sections were computed using algorithms from [36].

By varying ǫ1, ǫ2 and ǫ3, we are able to find examples of the important

symmetry-breaking effects discussed in the previous sections of this paper.

The cases with full or partial symmetry preserved give straightforward results,

which we describe only briefly; more details are provided of the case of fully

broken symmetry.

If all symmetries are preserved (all ǫi = 0) then each solution starting off the

invariant subspaces is attracted to one of four symmetry-related structurally

stable heteroclinic cycles. If ǫ1 6= 0, ǫ2 = ǫ3 = 0 (rotation symmetry broken,

reflections preserved), numerics confirm the predictions of section 4.3, and a

single attracting periodic orbit is found in each quarter of the phase space.

If rotation symmetry is preserved as well as one reflection, and the other

reflection is broken, then solutions are attracted to a foliated torus, as discussed

in section 4.2. In the case that both reflections are broken but the rotation

symmetry is preserved, numerics confirm the predictions of section 4.2; we

find that there exist attracting quasiperiodic solutions in regions bounded by

curves of global bifurcations, as shown schematically in figure 3. Analysis of

the maps derived earlier allows us to predict scaling of the loci of various global

bifurcations in the limit of small symmetry breaking. For instance, equation

(6) tells us that for ǫ1 = 0 and ǫ3 → 0, homoclinic bifurcations of P associated

with equations (10–12) occur for ǫ2 = constant × |ǫ3|
δ2δ3 but the value of

the constant is not determined by the map analysis. Numerical simulations of

equations (10–12) confirm the scalings for the various global bifurcations.

To illustrate the phenomena associated with breaking all symmetries, it is

helpful to consider the changes in dynamics seen along a one-dimensional path

such as that shown as the dotted line in figure 4. We first chose a value of ǫ1

below the thresholds for persistent switching in x2 and x3. For instance, fixing

ǫ1 = 10−4 and ǫ3 = 0.001 and allowing ǫ2 to vary, we see the following types

of dynamics.
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Figure 8. Onset of switching in x2 for equations (10–12), associated with crossing into the wedge

of homoclinic bifurcations of P in the second quadrant of (ǫ2, ǫ3)-space. Parameters ǫ1 = 10−4,

ǫ3 = 0.001 are fixed and ǫ2 is decreased: (a) ǫ2 = −5.67× 10−7 gives a chaotic attractor confined to

the region x2 > 0; (b) ǫ2 = −5.68 × 10−7 gives a chaotic transient with x2 > 0, then the sign of x2

changes and the orbit is attracted to a quasiperiodic solution with x2 < 0. Other coefficients as

described in text. The chaotic nature of the orbit in (a) and the transient in (b) is not apparent on

the timescale used to plot the time series.

Picking ǫ2 = 3 × 10−5 yields a point (labelled A) lying to the right of the

homoclinic wedge and to left of the heteroclinic wedge in the first quadrant

of figure 4. For these ǫ2 and ǫ3 values but for ǫ1 = 0, there exists an attract-

ing quasiperiodic solution with x2 and x3 both positive. With ǫ1 = 10−4 the

same type of quasiperiodic solution exists. As ǫ2 is decreased while ǫ1 is fixed

at 10−4 we find, as expected, intervals of ǫ2 in which there are quasiperiodic

attractors interspersed with intervals on which there is locking of the two fre-

quencies associated with the quasiperiodic solution (periodic orbits). In some

intervals, period doubling cascades are observed, as is normal near quasiperi-

odic behaviour. The interchange between locking and quasiperiodic behaviour

persists until we approach the homoclinic wedge at negative values of ǫ2.

As this homoclinic wedge is approached, apparently chaotic dynamics is ob-

served, consistent with the appearance of horseshoes associated with the im-
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Figure 9. Illustration of how leaking develops as the attractor crosses Ws(P ) (approximately

x2 = 0 in this figure). (a) Poincaré map for the orbit shown in figure 8(a); (b) Poincaré map for the

orbit in figure 8(b). In each case the Poincaré section is Hin
1 with |x3| = h = 0.005. In each panel, a

dot (resp. cross) indicates that the orbit next crosses the Poincaré section with x2 > 0

(resp. x2 < 0). In (b), the upper collection of dots corresponds to the chaotic transient, which ends

in a single cross, after which the orbit switches to a quasiperiodic attractor, represented by the

lower collection of crosses.

pending homoclinic tangency. Before the first tangency is reached (labelled B

in figure 4), orbits are trapped in the region with x2 > 0, x3 > 0 (figure 8a).

If ǫ2 is decreased past the tangency value (labelled C), the attractor crosses

Ws(P ) and so a typical orbit will display a chaotic transient with x2 > 0,

x3 > 0, and then switch to x2 < 0, x3 > 0, after which the orbit is attracted

to a quasiperiodic solution in that quarter of phase space (figure 8b). Cor-

responding Poincaré maps are shown in figure 9. With negative values of ǫ2,

once the trajectory has switched to x2 < 0, the behaviour is analogous to

that observed with ǫ2 > 0 and x2 > 0: quasiperiodic attractors interspersed

with frequency locking. Note there is no persistent switching in x2, and no

switching in x3, for these parameter values.

If ǫ2 is now increased from ǫ2 = 3 × 10−5 while ǫ1 and ǫ3 are kept fixed as

before, we approach the wedge of heteroclinic connections from −E3 to +E2
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(following the dotted line in figure 4). Once the left edge of the heteroclinic

wedge has been crossed, orbits can switch from x3 < 0 to x3 > 0 (but not from

x3 > 0 to x3 < 0). For example, at ǫ2 = 1.1 × 10−4 (labelled D in figure 4),

we find a chaotic transient with x3 < 0 that has a single switch to a locked

periodic orbit with x3 > 0, in a manner similar to the single x2 switch in

figure 8(b). For larger ǫ2, we find other examples of quasiperiodicity, locked

periodic orbits, chaos, chaotic transients and single switches from x3 < 0 to

x3 > 0, consistent with the analysis presented above. We did not find any

examples of persistent switching.

The behaviour for negative values of ǫ2 and/or ǫ3 is analogous: single

switches can be found, but there is no persistent switching for ǫ1 = 10−4.

However, persistent switching in one or both of x2 and x3 is observed if we

increase ǫ1. Figures 10 and 11 show an example of persistent switching in x2

(but not x3) for ǫ1 = 3 × 10−4, ǫ2 = 2 × 10−4 and ǫ3 = 0.001. The trajectory

crosses the Poincaré section in a curve that appears reasonably smooth at

the largest scale (figure 11), but the magnified inset shows that the curve has

structure, and that parts of the curve lie below Ws(P ), leading to switches

from x2 > 0 to x2 < 0. For these parameter values, there appears to be no

attractor with x2 < 0, and after a short transient, the trajectory switches back

to x2 > 0. Dynamics with a larger value of ǫ1 = 0.005 is shown in figures 12

and 13: here we have persistent switching in x2 and x3.

Our understanding of the mechanism behind persistent switching in x2 or

x3 requires that ǫ1 be large enough that 1 + ǫ1g3(θ) or 1 + ǫ1g1(θ) can take on

positive and negative values, as a function of θ. In order to illustrate this effect,

we have fitted these functions using the trajectories in figures 10 (ǫ1 = 3×10−4)

and 12 (ǫ1 = 0.005). We have concentrated on switching in x3, so the fact that

these trajectories are for different values of ǫ2 does not affect our conclusions.

We took the coordinates (x3, θ1) on the section Hout
1 and x̃3 from the next

intersection with H in
2 , and used these data to fit a map of the form of Ψ12:

x̃3 = x3 (A1 + ǫ1f1(θ1)) + ǫ3 (1 + ǫ1g1(θ1)) ,

see equation (18). We represented the two functions f1 and g1 by a finite

Fourier series, and were able to fit the data to within one part in 1000 for all

points with the smaller value of ǫ1, and to within one part in 100 for all but
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Figure 10. Time series showing persistent switching in x2 alone, for equations (10–12) with

ǫ1 = 3 × 10−4, ǫ2 = 2 × 10−4, ǫ3 = 0.001. The other coefficients are as defined in text.
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Figure 11. Poincaré section corresponding to the time series shown in figure 10. The inset shows

an enlargement of the region in the box marked in the main picture. The Poincaré section is Hin
1

with |x3| = h = 0.01. A dot (resp. cross) indicates that the orbit next crosses the Poincaré section

with x2 > 0 (resp. x2 < 0). The inset shows that crosses (indicating a switch) occur where the

trajectory lies below Ws(P ) (approximately x2 = 0).
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Figure 12. Time series showing persistent switching in x2 and x3, for (10–12) with ǫ1 = 0.005,

ǫ2 = 3 × 10−5, ǫ3 = 0.001. Other coefficients as defined in text.
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Figure 13. Poincaré section corresponding to the time series shown in figure 12. The inset shows

an enlargement of the region in the box marked in the main picture. The Poincaré section is Hin
1

with |x3| = h = 0.01. Four symbols are used: a dot (resp. cross) indicates that the orbit next

crosses the Poincaré section with x2 > 0 (resp. x2 < 0) and with x3 > 0. A + (resp. square)

indicates that the orbit next crosses the Poincaré section with x2 > 0 (resp. x2 < 0) and with

x3 < 0. The division between orbits falling either side of Ws(P ) is clearly visible. Orbits falling on

opposite sides of Ws(±E2) are reasonably well mixed with this choice of cross-section.
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Figure 14. The function 1 + ǫ1g1(θ) fitted to the data in figures 10 (ǫ1 = 3 × 10−4) and 12

(ǫ1 = 0.005). This function must be both positive and negative as a function of θ in order to allow

persistent switching in x3.

a handful of the points for the larger value of ǫ1. As expected, the A1 + ǫ1f1

part of the map remains positive, but 1 + ǫ1g1 can change sign for the larger

value of ǫ1, as shown in figure 14. Indeed, the numerical ratio of the amplitudes

of the two fitted functions is 16.663 while the ratio of the two values of ǫ1 is

16.667. Our understanding requires the change in sign of 1+ǫ1g1 as a necessary

condition for persistent switching in x3, which is confirmed by this illustration

and by our other calculations. A similar transition occurs (at a smaller value

of ǫ1) at the onset of persistent switching in x2, and in that case, the data can

be fitted to within 1 part in 10,000 or better.

We note that we were able to find parameter values associated with persis-

tent switching in x2 alone but were unable to get persistent switching in x3

without also having switching in x2. This is a consequence of the particular

choice of symmetry-breaking coefficients we use: the threshold in ǫ1 for per-

sistent switching in x3 is higher than the threshold for persistent switching in

x2 for the chosen coefficients (since we have d23 > d33). For other parameter

choices, the thresholds could be the other way around.

In the numerical simulations described above, the quantities δ1, δ2, δ3 and

δ were all greater than one. This choice was made to ensure that that the

heteroclinic cycle was attracting in the fully symmetric case and to remove

any possible complications due to chaotic dynamics associated with homoclinic

bifurcations of ±E2 and ±E3. Much of the same switching dynamics will still
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occur if one or both of δ2 and δ3 is less than one while δ > 1, since the

mechanism for switching we have found does not depend on the size of the

individual δi. However, in this case there may be additional complications in

the dynamics associated with the homoclinic bifurcations of the equilibria.

6 Conclusions

This paper has investigated the effect of small symmetry-breaking on the dy-

namics near a structurally stable heteroclinic cycle connecting two equilibria

and a periodic orbit. The heteroclinic cycle is structurally stable in the case

that there are two reflection symmetries and a rotation symmetry in the un-

derlying system; we were interested in the dynamics seen when one or more of

the symmetries is broken. It was reported in [20] that this type of system can

exhibit seemingly chaotic dynamics along with repeated but irregular switch-

ing of sign of various variables, but details of the mechanisms underlying the

onset of complicated dynamics were not explored there. In this paper, we have

identified global bifurcations that induce the onset of chaotic dynamics and

switching near a heteroclinic cycle of this type. These turn out to be homo-

clinic tangencies between the stable and unstable manifolds of the periodic

orbit, and specific heteroclinic tangencies between stable and unstable mani-

folds of the two equilibria. By construction and analysis of approximate return

maps, we were able to locate (approximately) the global bifurcations in pa-

rameter space and hence to isolate instances of the different types of switching

and chaotic dynamics in a specific numerical example.

In addition to identification of the mechanisms underlying the onset of

switching, two important insights have been gained from this study. First, we

found that interaction of the different symmetry-breaking terms is required

for switching; partial symmetry breaking (where one or two of the three sym-

metries are retained) did not result in switching. Switching results from the

right combination of a global bifurcation (which results in turn from breaking

of the rotation symmetry) and small breaking of at least one of the reflection

symmetries. Second, we found there is a threshold in ǫ1 below which there can

be single switches in the signs of certain variables but no persistent switching.

The important point here is that persistent switching does not result from ar-

bitrarily small symmetry breaking, but is a ‘large’ symmetry-breaking effect.
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Of course, ‘small’ and ‘large’ are relative terms, and addition of seemingly

tiny symmetry-breaking effects might actually result in persistent switching,

as was the case in the numerical example we investigated in section 5.

One aspect of this problem which has not yet been investigated is whether it

is possible to make a priori predictions about switching rates or derive scaling

laws for switching times. It is plausible that switching rates and times might

depend on the ‘distance’ from the global bifurcation that induces the switching,

but no detailed attempts have yet been made to quantify such a relationship.

The statistics of switching intervals were measured in the related model of [20],

who report an exponential distribution of intervals between switches.

Finally, we note that the dynamo model in [20] has a symmetry that is never

broken (this is the symmetry (z1, x2, x3) → (−z1,−x2,−x3) in the notation

of [20]). Retention of this symmetry while breaking all others amounts to

retaining invariance of the z1 = x2 = x3 = 0 subspace, and will have a

consequence of relating the dynamics in different parts of the phase space. For

example, if it is possible to switch from (x2 > 0, x3 > 0) to (x2 > 0, x3 < 0), it

will also be possible to switch from (x2 < 0, x3 < 0) to (x2 < 0, x3 > 0). Our

results do not include this effect, and retaining this symmetry may well have

profound effects on the switching properties. Nevertheless we expect our basic

ideas about switching being induced by a balance between a global bifurcation

and symmetry-breaking terms and the existence of a threshold for persistent

switching to apply quite generally, and to the example in [20] in particular,

even if the details turn out not to be directly relevant.

7 Appendix: Details of return map construction

7.1 Coordinates and cross-sections

Following [4], we distinguish radial, contracting, and expanding directions near

the equilibria in the fully symmetric case. If P1 = {(z1, x2, x3) : x3 = 0},

P2 = {(z1, x2, x3) : z1 = 0}, P3 = {(z1, x2, x3) : x2 = 0}, with P0 ≡ P3,

then the radial eigenvalues at ±Ej (j = 2, 3) are the eigenvalues of the lin-

earised vector field at ±Ej (i.e., eigenvalues of (df)±Ej
) restricted to Pj∩Pj−1.

The contracting eigenvalues are the remaining eigenvalues of (df)±Ej
in Pj−1,

and the expanding eigenvalues are the remaining eigenvalues in Pj . The ra-
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dial direction is then the span of the eigenvectors corresponding to the radial

eigenvalues, and similarly for the contracting and expanding directions. Near

P we define the radial direction to be the direction of P1 ∩ P3 (i.e., the plane

x2 = x3 = 0), the contracting direction is parallel to the x3-axis, and the

expanding direction is parallel to the x2-axis. These definitions are consistent

with those in [4] but are adapted for the case where there is a periodic orbit

in the heteroclinic cycle.

We choose local coordinates near each of P , ±E2, and ±E3 to make the

linearised dynamics as simple as possible. Near +E2 in the fully symmetric

case, we define ξ2 = x2 − x̄2, where x̄2 is the value of x2 at +E2, and then

use local coordinates (z1, ξ2, x3); z1, ξ2 and x3 correspond to the contract-

ing, radial and expanding directions, respectively. Under symmetry breaking,

+E2 moves in proportion to the magnitude of the symmetry breaking, and

the local coordinates are measured from the new position of the equilibrium

point. The eigenvalues and eigenvectors change similarly, but since the eigen-

values are generically distinct and non-zero, small symmetry-breaking will not

change the nature of the local structure and we can use the slightly altered

eigenvectors to define a slightly altered local coordinate system. We continue

to identify radial, contracting and expanding directions once weak symmetry

breaking is introduced, in the obvious way, and retain the notation (z1, ξ2, x3),

for the altered coordinates, although z1 and x3 may no longer coincide with

the corresponding global coordinates.

A similar construction is used near −E2 except that ξ2 = −x2+x̄2, where x̄2

is the value of x2 at −E2. The point of defining ξ2 in this way is that positive

values of ξ2 near +E2 are mapped under the reflection κ2 to positive values

of ξ2 near −E2, and this simplifies the maps we derive below. An analogous

procedure is used to define local coordinates near ±E3.

To construct local coordinates near P , we select a cross-section transverse

to P , say θ1 = 0. Near P , the flow induces a map from that section to itself,

with P corresponding to a fixed point of the map. We define ξ1 = r1 − r̄1,

where r̄1 is the value of r1 at the fixed point; ξ1 is the analogue in the map to

the radial coordinate for the flow near P . The remaining local coordinates on

the cross-section are defined by restricting the expanding and contracting di-

rections at P , as defined above, to the cross-section. Local coordinates can be

extended to a neighbourhood of the whole of P in the fully symmetric case by
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applying equivariance under κ1. Finally, small symmetry-breaking perturba-

tions will not change the local structure near P , and we can extend to slightly

altered local coordinates (ξ1, θ1, x2, x3) in a neighbourhood of P so long as we

remember that symmetry-breaking terms may have a different effect at each

value of θ1, so for instance, z1 = r̄1e
iθ1 where r̄1 ≡ r1(θ1) is a function of θ1.

Note that the global polar coordinates (r1, θ1) are well-defined near P even in

the presence of small symmetry breaking since P is far from the origin.

Cross-sections in R
4 are defined in terms of local coordinates as follows:

H in
1 = {(ξ1, θ1, x2, x3) : |ξ1| ≤ h, 0 ≤ θ1 < 2π, |x2| ≤ h, |x3| = h} ,

Hout
1 = {(ξ1, θ1, x2, x3) : |ξ1| ≤ h, 0 ≤ θ1 < 2π, |x2| = h, |x3| ≤ h} ,

H in
2 = {(z1, ξ2, x3) : |z1| = h, |ξ2| ≤ h, |x3| ≤ h} ,

Hout
2 = {(z1, ξ2, x3) : |z1| ≤ h, |ξ2| ≤ h, |x3| = h} ,

H in
3 = {(z1, x2, ξ3) : |z1| ≤ h, |x2| = h, |ξ3| ≤ h} ,

Hout
3 = {(z1, x2, ξ3) : |z1| = h, |x2| ≤ h, |ξ3| ≤ h} .

The cross-sections H in
2 and Hout

2 (resp. H in
3 and Hout

3 ) work equally well near

±E2 (resp. ±E3) so long as the local coordinate ξ2 (resp. ξ3) is interpreted

correctly, as described above.

We also define a Poincaré section for the periodic orbit P :

HP
1 = {(ξ1, θ1, x2, x3) : |ξ1| ≤ h, θ1 = 0, |x2| ≤ h, |x3| ≤ h} .

Trajectories visiting P first cross H in
1 , may then cross HP

1 several times, and

eventually leave the neighbourhood of P on crossing Hout
1 .

7.2 Local maps

Within a neighbourhood of each of ±E2, ±E3 and P , so long as certain non-

resonance conditions on the eigenvalues are satisfied, the dynamics can be

linearised using the Hartman–Grobman theorem [37]. In the fully symmetric

case, the dynamics near P can be approximated by:

ξ̇1 = −2ξ, θ̇1 = 1, ẋ2 = e1x2, ẋ3 = −c1x3,
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where e1 and c1 are positive constants. Without loss of generality, we have

assumed that the radial eigenvalue is −2, and that the angular speed is 1.

Solving these equations, we find the local map φ1 : H in
1 → Hout

1 is given by:

φ1(ξ1, θ1, x2, x3) =

(

ξ1

∣

∣

∣

x2

h

∣

∣

∣

γ1

, θ1 −
1

e1
ln

∣

∣

∣

x2

h

∣

∣

∣
, h sgn(x2), h sgn(x3)

∣

∣

∣

x2

h

∣

∣

∣

δ1

)

,

(13)

where the initial value of x3 satisfies |x3| = h, where sgn(x) = +1 if x > 0,

sgn(x) = −1 if x < 0, and sgn(0) = 0, and where δ1 = c1/e1, γ1 = 2/e1.

The argument that symmetry-breaking does not affect this local map goes

as follows. The transition from H in
1 → Hout

1 has three parts. First, the trajec-

tory travels from H in
1 → HP

1 in less than one circuit around P . The trajectory

does not get very close to P in this time, having started at least a distance h

from it. Since the ǫi’s, which control the symmetry breaking, are assumed to

be much smaller than h, the fully symmetric flow yields an adequate approx-

imation of the true flow. Second, the trajectory makes n1 circuits around the

periodic orbit from HP
1 to HP

1 , where n1 is a non-negative integer no greater

than T1/2π. These circuits are governed by the linearised Poincaré map and its

Floquet multipliers: e−4π, e2πe1 and e−2πc1 in the radial, expanding and con-

tracting directions, respectively, where, to leading order in the ǫi’s, the period

of P is 2π. The number n1 is unchanged by the weakly broken symmetry, and

so, to leading order, this part of the map is unchanged. Third, the trajectory

travels from HP
1 → Hout

1 in less than one circuit around P and again is not

too close to P , so the fully symmetric flow yields an adequate approximate of

the true flow. Composing these three parts yields (13), to leading order.

Local maps φ2 : H in
2 → Hout

2 and φ3 : H in
3 → Hout

3 are obtained similarly:

φ2(r1 = h, θ1, ξ2, x3) =

(

h
∣

∣

∣

x3

h

∣

∣

∣

δ2

, θ1 −
1

e2
ln

∣

∣

∣

x3

h

∣

∣

∣
, ξ2

∣

∣

∣

x3

h

∣

∣

∣

γ2

, h sgn(x3)

)

,

(14)

φ3(r1, θ1, x2, ξ3) =

(

h, θ1 −
1

e3
ln

(r1
h

)

, h sgn(x2)
(r1
h

)δ3

, ξ3

(r1
h

)γ3

)

, (15)

where ci and ei are the absolute values of the real part of the contracting and

expanding eigenvalues at +Ei, δi = ci/ei, γi = 2/ei, and |x2| = h. As for φ1,

the radial eigenvalues and the angular speeds are chosen to be −2 and 1.



38 Kirk and Rucklidge

7.3 Global maps

The global map Ψ12 : Hout
1 → H in

2 takes orbits from a neighbourhood of P to

a neighbourhood of +E2. We write

Ψ12(ξ1, θ1, x2 = h, x3) = (r̃1 = h, θ̃1, ξ̃2, x̃3)

and initially do not include symmetry-breaking effects. The unstable manifold

of P is two-dimensional and, locally, intersects Hout
1 at

Wu(P )∩Hout
1 = {(ξ1, θ1, x2, x3) : ξ1 = 0, 0 ≤ θ1 < 2π, x2 = ±h, x3 = 0} (16)

The manifold Wu(P ) has two branches: the positive branch intersects Hout
1

with x2 = h and the negative branch intersects Hout
1 with x2 = −h. The

positive branch forms a connection from P to +E2 and is the solution we now

linearise about, while the negative branch forms a connection from P to −E2

and will be discussed later. The positive branch of Wu(P ) intersects H in
2 at

{

(r1, θ1, ξ2, x3) : r1 = h, 0 ≤ θ1 < 2π, ξ2 = ξ̄2, x3 = 0
}

(17)

where ξ̄2 is a small constant. The κ1 symmetry forces the heteroclinic orbit

corresponding to the choice θ1 in (16) to have an angular component in H in
2

of θ1 + θ̄1 for some constant θ̄1, i.e., the global map acts on the angle as a

rigid rotation. Furthermore, trajectories that are near but not on the unstable

manifold of Wu(P ) have ξ̃2 and x̃3 depending on the initial ξ1 and x3 but

not on θ1, while θ̃1 = θ1 + θ̄1 where θ̄1 is a function of the initial ξ1 and x3.

Equivariance under κ3 ensures that the subspace x3 = 0 is invariant, that x̃3

is an odd function of x3, and that θ̄1 and ξ̃2 are even functions of x3. (The

κ2 symmetry has no role in determining the form of Ψ12 although it can be

used to construct a map from P to −E2 once Ψ12 is known.) Writing a Taylor

series in the small quantities ξ1 and x3 therefore yields

θ̃1(ξ1, θ1, x3) = θ1 + θ̄1(ξ1, x3) = θ1 + θ̄1(0, 0) + h.o.t.,

ξ̃2(ξ1, x3) = ξ̃2(0, 0) + h.o.t.,

x̃3(ξ1, x3) =
∂x̃3

∂x3
(0, 0)x3 + h.o.t.,
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where h.o.t. denotes higher order terms. Effectively, so long as θ̄1 and ξ̃2 are

non-zero, they can be replaced by constants, while x̃3 depends linearly on x3.

We write A1 = ∂x̃3

∂x3

(0, 0) and B1 = ξ̃2(0, 0), and note that A1 > 0 since the

region of phase space with x3 > 0 is dynamically invariant.

The effect of weak symmetry breaking on these expressions is as follows.

First, the symmetry x3 → −x3 is broken by including terms that are odd

in x3 in the expressions for θ̃1 and ξ̃2, and terms that are even in x3 in the

expression for x̃3. We multiply all such terms by an overall factor of ǫ3, which is

a real constant that controls the magnitude of the breaking of the κ3 symmetry.

Then the lowest order contribution to θ̃1 and ξ̃2 will be a term in ǫ3x3 while

x̃3 will pick up a term linear in ǫ3. At leading order all quadratic terms can

be dropped, so the only new term is one linear in ǫ3 in the expression for x̃3.

Second, breaking the κ1 symmetry will result in a weak dependence of all the

coefficients on θ1, with the dependence being periodic in that variable. We

introduce the parameter ǫ1, which is a real constant that multiplies all terms

that break the κ1 symmetry and that controls the magnitude of the symmetry-

breaking terms. For example, A1 will become A1 + ǫ1f1(θ), with the caveat

that this term must remain positive, for all θ and ǫ1. Third, weakly breaking

the symmetry x2 → −x2 will not affect the form of this map.

Putting all this together results in a map Ψ12 : Hout
1 → H in

2 :

Ψ12(ξ1, θ1, x2 = h, x3) =
(

r̃1 = h, θ̃1 = θ1 + Φ1, ξ̃2 = B1,

x̃3 = A1x3 + ǫ3 + ǫ1x3f1(θ1) + ǫ1ǫ3g1(θ1)
)

, (18)

where Φ1, A1, B1 are constants, and f1, g1 are 2π-periodic functions of θ1.

The θ1 dependence cannot be treated using Taylor series expansions, as θ1 is

not a small quantity. We explain below why some quadratic terms (ǫ1x3 and

ǫ1ǫ3) need to be kept.

Similarly, a map from P to −E2 can be constructed. This has precisely the

form of (18), except that it starts from x2 = −h. Breaking of the κ2 sym-

metry means coefficients in the map will be slightly different but the map is

unchanged at leading order.

The map Ψ23 : Hout
2 → H in

3 is calculated in a similar way. In the fully

symmetric case, we linearise about Wu(+E2), which intersects Hout
2 at (z1 =

0, ξ2 = 0, x3 = h) and H in
3 at (z1 = 0, ξ2 = h, ξ3 = ξ̄3) where ξ̄3 is a small
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constant. For orbits near Wu(+E2), the value of ξ2 at Hout
2 does not influence

the final position to leading order and z1 at H in
3 depends linearly on the values

of z1 at Hout
2 : z̃1 = A2e

iΦ2z1 for real constants A2 > 0, Φ2. If the κ1 symmetry

is broken, Wu(+E2) leaves Hout
2 with z1 = 0 and arrives at H in

3 with z1 = ǫ̃1,

where ǫ̃1 = ǫ1(ar + iai) for ar and ai real constants and ǫ1 as defined earlier.

Writing the resulting map in terms of the real and imaginary parts of z̃1:

Ψ23(r1, θ1, ξ2, x3 = h) =
(

x̃1 = ǫ1ar +A2r1 cos(θ1 + Φ2),

ỹ1 = ǫ1ai +A2r1 sin(θ1 + Φ2),

x̃2 = h, ξ̃3 = B2

)

, (19)

where ar, ai, A2, B2 and Φ2 are real constants determined by the global flow,

and A2 > 0. As in Ψ12, there are 2π-periodic functions of θ1 in the map,

but here the functions are known explicitly because the z1 variable is small

throughout the transition from +E2 to +E3, and the dynamics of z1 is well-

approximated by a scaled rotation. Similar maps can be obtained for the three

connections −E2 → +E3 and ±E2 → −E3; although the coefficients will be

slightly different in each case, to lowest order we obtain the same map for each

of the other connections so long as the signs of the x3 (resp. x̃2) components

are chosen appropriately on the incoming (resp. outgoing) cross-sections (for

example, the map from −E2 to −E3 will have x3 = −h and x̃2 = −h).

The global map Ψ31 : Hout
3 → H in

1 is calculated in a similar way:

Ψ31(r1 = h, θ1, x2, ξ3) =
(

ξ̃1 = B3, θ̃1 = θ1 + Φ3,

x̃2 = A3x2 + ǫ2 + ǫ1x2f3(θ1) + ǫ1ǫ2g3(θ1),

x̃3 = h
)

, (20)

where A3, B3 and Φ3 are real constants, f3 and g3 are 2π-periodic functions

of θ1, and ǫ1 controls the size of the terms that break the κ1 symmetry. The

parameter ǫ2 introduced in (20) is analogous to ǫ3, and is a real quantity that

controls the size of all terms that break the κ2 symmetry. Similarly to the case

for A1 argued above, we take A3 + ǫ1f3(θ1) to be positive for all values of ǫ1.

A similar map can be defined near the connections from −E3 to P , and will,

to leading order, be identical to (20) so long as x̃3 = h is replaced by x̃3 = −h.
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The effect of each of the global maps defined above is, at leading order, to

rotate the angular variable by an order one amount that is independent of

other variables, to set the radial variable to a constant, and, in the absence

of symmetry-breaking, to scale the variable that measures proximity to the

cycle. Symmetry-breaking enters in two ways. First, it destroys the invariant

subspaces thus destroying some of the heteroclinic connections that made up

the cycle. Second, breaking the κ1 rotation symmetry allows θ1 dependence to

enter into the maps, most importantly through the variables x3 in the Ψ12 map

and x2 in the Ψ31 map. It is this θ1 dependence that allows the heteroclinic

tangencies discussed in Section 2.

7.4 Return maps

Return maps approximating the dynamics near the heteroclinic cycle can now

be computed by composing the local and global maps in an appropriate order.

For instance, to obtain the various forms of the map R : H in
3 → H in

3 given by

equations (1–5) we calculate R ≡ ψ23 ◦φ2 ◦ψ12 ◦φ1 ◦ψ31 ◦φ3 in the usual way.
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