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When does cyclic dominance lead to stable spiral waves?

Bartosz Szczesny,∗ Mauro Mobilia,† and Alastair M. Rucklidge‡

Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, U.K.

Species diversity in ecosystems is often accompanied by characteristic spatio-temporal patterns.
Here, we consider a generic two-dimensional population model and study the spiraling patterns
arising from the combined effects of cyclic dominance of three species, mutation, pair-exchange and
individual hopping. The dynamics is characterized by nonlinear mobility and a Hopf bifurcation
around which the system’s four-phase state diagram is inferred from a complex Ginzburg-Landau
equation derived using a perturbative multiscale expansion. While the dynamics is generally char-
acterized by spiraling patterns, we show that spiral waves are stable in only one of the four phases.
Furthermore, we characterize a phase where nonlinearity leads to the annihilation of spirals and to
the spatially uniform dominance of each species in turn. Away from the Hopf bifurcation, when the
coexistence fixed point is unstable, the spiraling patterns are also affected by the nonlinear diffusion.

PACS numbers: 87.23.Cc, 05.45.-a, 02.50.Ey, 87.18.Hf

In nature, organisms live in areas much larger than the
distances they typically travel and thus interact with a
finite number of individuals in their neighborhood. Space
and mobility are therefore crucial ingredients to under-
stand how populations evolve, and how ecosystems self-
organize. They are often responsible for pattern forma-
tion, whose origin in ecosystems has been a subject of
intense research for decades [1, 2]. In his pioneering
work, Turing showed that pattern-forming instabilities
can be caused by diffusion [3]. While Turing patterns
have been found in ecology and biology [1], the require-
ments of Turing’s theory (e.g. separation of scales in
diffusivities) appear to be too restrictive to explain the
formation of patterns in many ecosystems, see e.g. [4].

Another important problem concerns the mechanisms
promoting the maintenance of biodiversity [5]. In this
context, cyclic dominance has recently been proposed
as an intriguing motif facilitating the coexistence of di-
verse species in ecosystems. Examples of cyclic compe-
tition between three species can be found in coral reef
invertebrates, Californian lizards, and communities of
E.coli [2, 6, 7]. In the experiments of Ref. [6], the cyclic
competition of three bacterial strains on two-dimensional
plates was shown to yield intricate patterns sustaining
species coexistence. Such competition is metaphorically
described by rock-paper-scissors (RPS) games, where
“rock crushes scissors, scissors cut paper, and paper
wraps rock” [8]. While non-spatial RPS-like models often
evolve toward extinction of all but one species in finite
time [9], their spatial counterparts are generally charac-
terized by the long coexistence of species and by the for-
mation of complex spatio-temporal patterns [10–14]. Re-
cently, two-dimensional versions of a model introduced by
May and Leonard [15] have received much attention [11–
14]. When mobility is implemented by pair-exchange
among neighbors, species coexistence is long-lived and
populations form non-Turing spiraling patterns below a
certain mobility threshold, whereas biodiversity is lost
when that threshold is exceeded [11].

In this Letter, we characterize the intricate patterns
emerging from the dynamics of a genericmodel of a cycli-
cally competing three-species population, and study how
these patterns affect the maintenance of biodiversity in
two dimensions. The basic evolutionary processes con-
sidered are the most general form of cyclic dominance
obtained by combining and unifying the interactions of
Refs. [11, 12, 14, 16]. Inspired by the experiments of [7],
the model is formulated at the metapopulation level [17],
and is characterized by a Hopf bifurcation as well as by
nonlinear mobility. While spiraling patterns have often
been observed numerically in related models [11–14], we
here demonstrate that nonlinearity and mobility can dis-
rupt the stability of the ensuing spiral waves. Our main
result is the state diagram derived from a controlled mul-
tiscale expansion around the Hopf bifurcation’s onset and
characterized by three phases in which spiral waves are
unstable, and by one phase where spiraling patterns are
stable. This implies the existence of a region of the pa-
rameter space where spiral waves annihilate and each
species dominates the system in turn.
The generic model of cyclic competition is defined as a

periodic square lattice of L2 patches (L being the linear
size) labeled by a vector l = (l1, l2) [18]. Each patch
has a limited carrying capacity, accommodating at most
N individuals, and consists of a well-mixed population
of species S1, S2, S3 and empty spaces Ø. Within each
patch l, the population composition evolves according to

Si + Si+1
σ−→ Si +Ø Si + Si+1

ζ−→ 2Si (1)

Si +Ø
β−→ 2Si Si

µ−→ Si±1, (2)

where the species index i ∈ {1, 2, 3} is ordered cycli-

cally such that S3+1 ≡ S1 and S1−1 ≡ S3. The
reactions (1) describe the cyclic competition between
the species: Si dominates over Si+1 while being dom-
inated by Si−1. Here, we consider a generic form of
cyclic competition by separating the zero-sum process of
dominance-replacement (rate ζ), as studied in Ref. [12],
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from the dominance-removal selection process (rate σ)
of Refs. [11, 14]. With reactions (2), we assume that
births (rate β) occur independently of the cyclic compe-
tition provided that space (Ø) is available, and that each
species can mutate into another (rate µ).
As biological movement is often nonlinear and driven

by local population density [19], we here divorce hopping
(rate δD) from pair-exchanges (rate δE) between nearest-
neighbor patches l and l

′, according to

[

Si

]

l

[

Ø
]

l′

δD−−→
[

Ø
]

l

[

Si

]

l′

[

Si

]

l

[

Si±1

]

l′

δE−−→
[

Si±1

]

l

[

Si

]

l′
, (3)

where l and l
′ lie in 4-neighborhood. The processes (3)

lead to nonlinear mobility (see (5) below) and allow us to
distinguish the movement in crowded regions, where pair-
exchange dominates, from mobility in dilute systems,
where hopping is more likely. The metapopulation model
(1)-(3) is well-suited to capture stochastic effects via size
expansion in the carrying capacity and allows a natural
connection with its deterministic description [4, 20, 21].
It has to be noted that most previous works considered

lattice models withN = 1 and nearest-neighbor reactions
(1)-(2), while here these interactions occur on-site. Apart
from these differences, the processes that we consider are
similar to those of [11] when ζ = µ = 0 and δD = δE ,
while some aspects of the system’s properties with ζ 6= 0,
µ 6= 0 and δD 6= δE have been investigated in [12], [16]
and [14], respectively.
When N → ∞, the leading-order term in the size ex-

pansion yields mean field rate equations for the contin-
uous species densities si = NSi

/N . Here, NSi
is the

number of Si’s in one patch. With s ≡ (s1, s2, s3),

dsi
dt

= si[β(1− r)− σsi−1 + ζ(si+1 − si−1)]

+µ(si−1 + si+1 − 2si) ≡ Fi(s), (4)

where r ≡ s1 + s2 + s3 is the total density. Eqs. (4)
admit a coexistence fixed point s

∗ = β
3β+σ

(1, 1, 1). In
the presence of mutations, s∗ is an asymptotically stable
focus when µ > µH = βσ

6(3β+σ) , while there is a supercrit-

ical Hopf bifurcation (HB) [16] at µ = µH and a stable

limit cycle of frequency ωH ≈
√
3β(σ+2ζ)
2(3β+σ) when µ < µH .

For later convenience, the departure from the HB point
is measured by a parameter ǫ defined by µ = µH − 1

3ǫ
2.

In stark contrast, when µ = 0 (no mutations), the coex-
istence state s

∗ is never asymptotically stable. Instead,
solutions of (4) are either heteroclinic cycles (µ = 0 and
σ > 0) [15] or nested neutrally stable periodic orbits
(µ = σ = 0) [8]. In either case, finite-size fluctuations
cause the rapid extinction of two of the three species in
a non-spatial setting [9].
When spatial dependence is taken into account in the

limit L → ∞ and lattice spacing → 0, the spatial coordi-
nate x ≡ l/L becomes continuous. The densities depend

FIG. 1: Reactive steady states in stochastic simulations of
reactions (1)-(3). Here, L2 = 1282, N = 64, β = σ = δD =
δE = 1, µ = 0.02 < µH = 0.042 (ǫ = 0.25) and, from left to
right, ζ = (1.8, 1.2, 0.6, 0). Each pixel describes a patch with
normalized RGB representation (red, green, blue) = (s1, s2, s3)
of its state. The right-most panel shows an oscillatory ho-
mogeneous state in which each of the species dominates the
whole population in turn (see Fig. 3 for time evolution). Ini-
tially s ≈ s

∗ with small random perturbations, see [18].

on space and time, si ≡ si(x, t), and obey

∂tsi = Fi(s) + δD∆si + (δD − δE) (si∆r − r∆si) , (5)

where ∆ = ∂2
x1

+ ∂2
x2

and the nonlinear diffusive
terms (si∆r − r∆si) arise from the divorce between
pair-exchange and hopping. With our metapopulation
approach, these partial differential equation (PDEs) can
be derived in the continuum limit at the lowest order
of a size expansion in N of the Markov chain associated
with the processes (1)-(3) [4, 20].
We aim to unravel the combined influence of nonlin-

earity, mobility and noise on the system’s dynamics and
the formation and stability of coherent patterns. To
gain some insight, we report some typical lattice sim-
ulations obtained in the regime where there is a limit
cycle (µ < µH). As shown in Fig. 1, this regime is
characterized by spiraling patterns found in four different
phases, whereas we have found no patterns when µ > µH

(see [18]). We have checked that the PDEs (5) faithfully
reproduce the behaviors obtained with lattice simulations
as shown in Fig. 1. Our analysis is therefore based on (5),
whose properties are conveniently discussed by perform-
ing the linear transformation s − s

∗ → (u, v, w), with
u = −(r + s3)/

√
6, v = (s2 − s1)/

√
2 and w = r/

√
3. In

these variables, the linear part of (4) can be written in
the Jordan normal form ∂t(u+ iv) = (ǫ2 + iωH)(u+ iv)
and ∂tw = −βw.
To make analytical progress, we perform a space and

time perturbation expansion in the parameter ǫ around
the onset of the HB [22]. For this, we introduce multiple
scale coordinates T = ǫ2t and X = ǫx with ∆X ≡ ∂2

X1
+

∂2
X2

, and expand the densities in powers of ǫ. This yields

u(x, t) =

3
∑

n=1

ǫnU (n)(t, T,X) (6)

and, similarly, v =
∑3

n=1 ǫ
nV (n) and w =

∑3
n=1 ǫ

nW (n),
where the functions U (n), V (n),W (n) are of order O(1).
Substituting (6) into (5) and, using the definition of



3

FIG. 2: Upper: System’s state diagram around the HB’s on-
set with contours of c = (cAI , cEI , cBS) for β = 1. We dis-
tinguish four phases: spiral waves are unstable in AI, EI and
SA, whereas they are stable in BS (see text). Lower: Typical
snapshots from the PDE (5) in phases AI, EI, BS, SA from
left to right (compare with Fig. 1, same parameters used).

(u, v, w), we obtain a hierarchy of PDEs and analyze
them at each order of ǫ. To obtain a sensible expan-
sion all secular terms are removed. Since the variables u
and v are decoupled from w at linear order, one writes
U (1) + iV (1) = A(T,X)eiωHt, where A is the complex
modulation amplitude. The decoupled equations for w
give W (1) = 0 and W (2) ∝ |A|2, which is the lead-
ing term in the equation for the center manifold [23].
The first secular terms arise at order O(ǫ3) and their
removal yields the complex Ginzburg–Landau equation
(CGLE) [24] with a real diffusion coefficient δ

∂TA = δ∆XA+A− (1 + ic)|A|2A, (7)

where δ = 3βδE+σδD
3β+σ

and A has been rescaled by a con-
stant to give

c =
12ζ(6β − σ)(σ + ζ) + σ2(24β − σ)

3
√
3σ(6β + σ)(σ + 2ζ)

. (8)

We emphasize that the CGLE (7) has here been derived

perturbatively and describes the system’s dynamics to or-
der ǫ near the HB’s onset. This treatment, therefore,
differs from that of Refs. [11–13, 16], where a CGLE is
obtained by treating heteroclinic cycles as limit cycles.
According to the CGLE (7), the movement in the vicin-

ity of the HB is described by linear diffusion, with an ef-
fective diffusion constant δ depending on δD and δE (3).
When reproduction dominates over selection (β ≫ σ),
the lack of empty spaces leads to prevalence of pair-
exchanges (δ → δE), while in the opposite case (β ≪ σ),

FIG. 3: Typical time evolution of the stochastic system in the
SA phase. Same parameters and initial conditions as in Fig. 1
with ζ = 0. Upper: spiral annihilation at different stages, for
time t = (234, 310, 386) from left to right. Lower: the oscil-
latory dominance of each species at t = (955, 967, 980) after
relaxation into the homogeneous state (no species extinction).

movement occurs mostly via hopping (δ → δD). As the
effective linear diffusive term in (7) affects only the pat-
tern’s size, δ can always be rescaled to 1 via x → x/

√
δ.

The system state diagram (near the HB) can be in-
ferred from (7) and (8) by referring to the well-known
properties of the two-dimensional CGLE [24] and is char-
acterized by four phases with three critical values of c,
as illustrated in Fig. 2. In the “spiral annihilation” (SA)
phase, when 0 < c < cBS , the dynamics is characterized
by unstable spiraling patterns that collide and vanish. In
the “bound state” (BS) regime cBS < c < cEI , pairs of
stable spirals are formed and coevolve, with their prop-
erties described by the CGLE (7). When cEI < c < cAI ,
the spirals become convectively unstable due to the Eck-
haus instability (EI) which limits their size and distorts
their shape. It is noteworthy that EI has been reported
in [12] for a model without mutations (µ = 0). Finally,
there is the “absolute instability” (AI) of spiral waves
when cAI < c, where there are no coherent patterns as
the cores are not able to sustain spiral arms. With the ex-
plicit values cBS ≈ 0.845, cEI ≈ 1.25 and cAI ≈ 1.75 [24],
one obtains the system’s state diagram in the σ−ζ plane
as shown in Fig. 2. This state diagram sheds light on
the results of Fig. 1 where the values ζ = (1.8, 1.2, 0.6, 0)
correspond to c = (1.9, 1.5, 1.0, 0.6), which lie in the four
phases AI, EI, BS and SA respectively. A description of
the evolution in each phase can be found in the accom-
panying movies [18]. The phase SA (see Fig. 3), char-
acterized by the annihilation of all spiraling patterns is
particularly interesting since it is the only possible phase
near the HB’s onset when ζ = 0, i.e. for the models
of [11, 14] supplemented by mutations. In this phase,
spiral annihilation leads to a spatially-homogeneous os-
cillating state dominated in turn by each species, with-
out any of them going extinct, as described by (4). This
deterministic phenomenon is driven by nonlinearity (dif-
ferent from the EI) and not by demographic noise. In
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FIG. 4: Influence of mobility on spiraling patterns:
typical snapshots in lattice simulations for (δD, δE) =
(0.05, 0.05), (0.20, 0.05) from left to right respectively. Other
parameters are: L2 = 1282, N = 1024, β = σ = 1, ζ = 0.1
and µ = 10−6

≪ µH = 0.042. Geometrically ordered initial
conditions, see movies [18] for full details.

the regime c ≪ cBS , it typically occurs on a short time
scale, as illustrated in Fig. 3. This is markedly different
from the loss of spiraling patterns driven by noise after a
time growing exponentially with the system size as found
in [11, 14].

Our analysis in terms of the CGLE (7) relies on a per-
turbative treatment around the onset of HB where ǫ ≪ 1,
but is found to faithfully describe the system’s properties
far from the HB. For instance, when β = σ = 1 and ζ = 0
(µH = 0.042), the system is still in the SA phase even
for µ = 0.02 (ǫ = 0.25) as predicted by our theory (see
Figs. 1 and 3). We have also checked that our analysis
is robust against simultaneous random perturbations (up
to ±5%) of all the reaction rates (1)-(3) [20]. As shown
in Figs. 1 and 2, the PDEs (5) describe perfectly the
stochastic metapopulation model when N ≫ 1 and, in
practice, are still accurate when N & 16 for any nonzero
mobility. Furthermore, when N = 2 and the mobility
rates are sufficiently high, as discussed in [11], the state
diagram of Fig. 2 is still valid [18].

Away from the HB’s onset (e.g. for µ = 10−6) and
when δD 6= δE , the stability of spirals is affected by the
nonlinear diffusive terms of (5). In fact, when noise is
negligible (N ≫ 1), one observes a far-field break-up of
the spiraling patterns caused by nonlinear mobility, as
shown in Fig. 4 and [18].

In summary, we have investigated the stability of spi-
raling patterns in a generic three-species model whose
evolution results from the combined effects of cyclic dom-
inance, mutation and biologically-motivated nonlinear
mobility. Inspired by recent experiments [7], we have de-
veloped a metapopulation description and analyzed the
dynamics in terms of a CGLE derived via a multiscale
expansion around the Hopf bifurcation’s onset. We have
thus obtained the system’s state diagram, which is char-
acterized by four phases, with only one capable of sup-
porting stable spiraling patterns. The instabilities in the
three other phases are not driven by noise. In particular,
we have identified a phase (SA) where spirals annihilate,
leading to spatially uniform dominance of each species
in turn. Importantly, these behaviors, which arise in
a wide region of the parameter space around the Hopf

bifurcation, are robust and independent of the mobil-
ity rates. This is in stark contrast with the results of
Refs. [11, 12, 14], where spiraling patterns and spatial
uniformity were respectively found at low and high mo-
bility, and may explain why spiraling patterns turn out to
be elusive in the microbial experiments of Refs. [6, 7]. Ad-
ditionally, regardless of internal noise, we show that non-
linear diffusion causes far-field break-up of spiral waves
away from the Hopf bifurcation’s onset.
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G. Szabó and A. Szolnoki, Phys. Rev. E 65, 036115
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