
This is a repository copy of Characterizing the Existence of Optimal Proof Systems and
Complete Sets for Promise Classes..

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/74777/

Proceedings Paper:
Beyersdorff, O and Sadowski, Z (2009) Characterizing the Existence of Optimal Proof
Systems and Complete Sets for Promise Classes. In: Frid, AE, Morozov, A, Rybalchenko,
A and Wagner, KW, (eds.) CSR. Springer , 47 - 58 . ISBN 978-3-642-03350-6

https://doi.org/10.1007/978-3-642-03351-3_7

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
See Attached

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Characterizing the Existence of Optimal Proof

Systems and Complete Sets for Promise Classes

Olaf Beyersdorff1 and Zenon Sadowski2

1 Institute of Theoretical Computer Science, Leibniz University Hannover, Germany
beyersdorff@thi.uni-hannover.de

2 Institute of Mathematics, University of BiaÃlystok, Poland
sadowski@math.uwb.edu.pl

Abstract. In this paper we investigate the following two questions:

Q1: Do there exist optimal proof systems for a given language L?
Q2: Do there exist complete problems for a given promise class C?

For concrete languages L (such as TAUT or SAT) and concrete promise
classes C (such as NP∩coNP, UP, BPP, disjoint NP-pairs etc.), these ques-
tions have been intensively studied during the last years, and a number
of characterizations have been obtained. Here we provide new character-
izations for Q1 and Q2 that apply to almost all promise classes C and
languages L, thus creating a unifying framework for the study of these
practically relevant questions.
While questions Q1 and Q2 are left open by our results, we show that
they receive affirmative answers when a small amount on advice is avail-
able in the underlying machine model. This continues a recent line of
research on proof systems with advice started by Cook and Kraj́ıček [6].

1 Introduction

A general proof system in the sense of Cook and Reckhow [7] can be understood
as a nondeterministic guess-and-verify algorithm. The question whether there
exist optimal or p-optimal proof systems essentially asks whether there exists
the best such verification procedure. For practical purposes, such an optimal
proof system would be extremely useful, as both the search for good verification
algorithms as well as the quest for lower bounds to the proof size could concen-
trate on the optimal system. Thus the following question is of great significance:

Q1: Do there exist (p-)optimal proof systems for a given language L?

Posed by Kraj́ıček and Pudlák [15], this question has remained unresolved for al-
most twenty years. Sufficient conditions were established by Kraj́ıček and Pudlák
[15] by NE = coNE for the existence of optimal and E = NE for p-optimal
propositional proof systems, and these conditions were subsequently weakened
by Köbler, Messner, and Torán [13]. Necessary conditions for a positive answer
to Q1 are tightly linked to the following analogue of Q1 for promise complexity
classes lacking an easy syntactic machine model:

2 O. Beyersdorff and Z. Sadowski

Q2: Do there exist complete problems for a given promise class C?

Like the first question also Q2 has a long research record, dating back to the
80’s when Kowalczyk [14] and Hartmanis and Hemachandra [12] considered this
question for NP ∩ coNP and UP. This research agenda continues to recent days
where, due to cryptographic and proof-theoretic applications, disjoint NP-pairs
have been intensively studied (cf. [8, 9, 11, 2] and [10] for a survey).

As many computational tasks are formulated as function problems [20], it is
also interesting to extend Q2 to function classes. In this formulation Q1 becomes
a special case of Q2 because all proof systems for a given language can be
understood as a promise function class in which complete functions correspond
to p-optimal proof systems. In fact, Köbler, Messner, and Torán [13] have shown
that, with respect to Q2, proof systems provide the most difficult instances
among all promise classes, i.e., a positive answer to Q1 implies a positive answer
for Q2 for many choices of L and C.

In the present paper we continue this line of research. While Köbler, Messner,
and Torán [13] focused on the implication Q1 ⇒ Q2, we provide new character-
izations for both Q1 and Q2. In fact, from these characterizations we can also
easily read off the implication Q1 ⇒ Q2 (under suitable assumptions), thus in
addition, we provide alternative proofs for some results of [13]. Köbler, Messner,
and Torán used the notion of a test set to measure the complexity of the promise.
Here we pursue a different but related approach by representing the promise in
a language L and then using a proof system for L to verify the promise. On the
propositional level, such representations have been successfully used to express
the consistency of propositional proof systems (known as the reflection principle,
cf. [5, 15]) or the disjointness of NP-pairs [16, 2]. We create a unifying framework
which generalizes these methods to arbitrary languages.

We will now describe in more detail our results and the organization of the
paper. After developing the notion of representations in Sects. 2 and 3 we exam-
ine Q1 in Sect. 4 where we prove that a language L has a p-optimal proof system
if and only if all polynomial-time computable subsets of L are recursively enu-
merable. A similar characterization also holds for the existence of optimal proof
systems. This widely generalizes previous results from [18] for propositional proof
systems and provides interesting characterizations for a number of applications
like the graph isomorphism and automorphism problems.

In Sect. 5 we proceed with question Q2 where we discuss a characterization
of Q2 in terms of uniform enumerations of promise obeying machines. Section 6
then contains our results on the connections between Q1 and Q2. We show that,
under suitable assumptions, a promise class C has complete problems if and only
if there exists a proof system for some language L in which C is representable.
This also yields a general method to show the equivalence of reductions of varying
strength with respect to Q2. In addition, we obtain that L has a p-optimal proof
system if and only if every promise class expressible in L has a complete set
or function. Different versions of these results hold for both optimality and p-
optimality. We also apply these general theorems to concrete promise classes like
UP, NP ∩ coNP, and disjoint NP-pairs.

Optimal Proof Systems and Complete Sets for Promise Classes 3

Finally, in Sect. 7 we show that the relation between proof systems and
promise classes also holds in the presence of advice. Employing recent advances
of Cook and Kraj́ıček [6] who show that optimal propositional proof systems exist
which use only one bit of advice, we obtain complete sets for a large number of
promise classes when advice is available.

Due to space restrictions we sketch or omit proofs in this extended abstract.

2 Preliminaries

We assume basic familiarity with complexity classes (cf. [1]). Our basic model of
computation are polynomial-time Turing machines and transducers. Tacitly we
assume these machines to be suitably encoded by strings. We also assume that
they always have a polynomial-time clock attached bounding their running time
such that this running time is easy to detect from the code of the machine.

For a language L and a complexity class C, the set of all C-easy subsets of
L consists of all sets A ⊆ L with A ∈ C. A class C of languages has a recursive
P-presentation (resp. NP-presentation) if there exists a recursively enumerable
list N1, N2, . . . of (non-)deterministic polynomial-time clocked Turing machines
such that L(Ni) ∈ C for i ∈ N, and, conversely, for each A ∈ C there exists an
index i with A ⊆ L(Ni). In this definition, it would also be natural to replace
A ⊆ L(Ni) by the stronger requirement A = L(Ni), but the weaker concept
suffices for our purpose.

Proof Systems. Cook and Reckhow [7] defined the notion of a proof system for
a language L quite generally as a polynomial-time computable function f with
range L. A string w with f(w) = x is called an f -proof for x ∈ L. By f ⊢≤m x
we indicate that x has an f -proof of size ≤ m. For a subset A ⊆ L we write
f ⊢∗ A if there is a polynomial p such that f ⊢≤p(|x|) x for all x ∈ A.

Proof systems are compared by simulations [7, 15]. If f and g are proof sys-
tems for L, we say that g simulates f (denoted f ≤ g), if there exists a polynomial
p such that for all x ∈ L and f -proofs w of x there is a g-proof w′ of x with
|w′| ≤ p (|w|). If such a proof w′ can even be computed from w in polynomial
time, we say that g p-simulates f (denoted f ≤p g). A proof system for L is
called (p-)optimal if it (p-)simulates all proof systems for L.

Promise Classes. Following the approach of Köbler, Messner, and Torán [13],
we define promise classes in a very general way. A promise R is described as a
binary predicate between nondeterministic polynomial-time Turing machines N
and strings x, i.e., R(N, x) means that N obeys promise R on input x. A machine
N is called an R-machine if N obeys R on any input x ∈ Σ∗. Given a promise
predicate R, we define the language class CR = {L(N) | N is an R-machine }
and call it the promise class generated by R. Instead of R-machines we will also
speak of CR-machines. Similarly, we define function promise classes by replacing
L(N) by the function computed by N (cf. [13]). For functions we use the following

4 O. Beyersdorff and Z. Sadowski

variant of many-one reductions (cf. [13]): f ≤ g if there exists a polynomial-time
computable function t such that f(x) = g(t(x)) for all x in the domain of f .

In this general framework it is natural to impose further restrictions on
promise classes. One assumption which we will make throughout the paper is
the presence of universal machines, i.e., we only consider promise conditions R
such that there exists a universal machine UR which, given an R-machine N ,
input x, and time bound 0m, efficiently simulates N(x) for m steps such that
UR obeys promise R on 〈N, x, 0m〉.

Occasionally, we will need that C-machines can perform nondeterministic
polynomial-time computations without violating the promise. We make this pre-
cise via the following notion from [13]: for a complexity class A and a promise
class C defined via promise R, we say that A-assertions are useful for C if for
any language A ∈ A and any nondeterministic polynomial-time Turing machine
N the following holds: if N obeys promise R on any x ∈ A, then there exists a
language C ∈ C such that C ∩ A = L(N) ∩ A. A similar definition also applies
for function classes. Throughout this paper we will only consider promise classes
C for which P-assertions are useful. If also NP-assertions are useful for C, then
we say that C can use nondeterminism.

The set of all proof systems for a language L is an example for a promise
function class, where the promise for a given function f is rng(f) = L. We
define a larger class PS (L) where we only concentrate on correctness but not on
completeness of proof systems. This is made precise in the following definition.

Definition 1. For a language L, the promise function class PS (L) contains all
polynomial-time computable functions f with rng(f) ⊆ L.

3 Representations

In order to verify a promise, we need appropriate encodings of promise condi-
tions. In the next definition we explain how a promise condition for a machine
can be expressed in an arbitrary language.

Definition 2. A promise R is expressible in a language L if there exists a
polynomial-time computable function corr : Σ∗ × Σ∗ × 0∗ → Σ∗ such that the
following conditions hold:

1. Correctness: For every Turing machine N , for every x ∈ Σ∗ and m ∈ N, if
corr(x,N, 0m) ∈ L, then N obeys promise R on input x.

2. Completeness: For every R-machine N with polynomial time bound p, the
set Correct(N) = {corr(x,N, 0p(|x|)) | x ∈ Σ∗ } is a subset of L.

3. Local recognizability: For every Turing machine N , the set Correct(N) is
polynomial-time decidable.

We say that the promise class C generated by R is expressible in L if R is
expressible in L. If the elements corr(x,N, 0m) only depend on |x|, N , and m,
but not on x, we say that C is expressible in L by a length-depending promise.

Optimal Proof Systems and Complete Sets for Promise Classes 5

This definition applies to both language and function promise classes. One of
the most important applications for the above concept of expressibility is to use
L = TAUT. Expressing promise conditions by propositional tautologies is a well
known approach with a long history. For propositional proof systems, leading to
the promise function class PS (TAUT), propositional expressions are constructed
via the reflection principle of the proof system (cf. [5, 15]). Propositional expres-
sions have also been used for other promise classes like disjoint NP-pairs and
its generalizations [2, 3]. Typically, these expressions are even length depending.
We remark that Köbler, Messner, and Torán [13] have used a related approach,
namely the notion of a test set, to measure the complexity of promise conditions.

As a first example, consider the set of all P-easy subsets of a language L. The
next lemma shows that this promise class is always expressible in L.

Lemma 3. For every language L, the P-easy subsets of L are expressible in L.

Using expressibility of a promise class in a language L, we can verify the
promise for a given machine with the help of short proofs in some proof system
for L. This leads to the following concept:

Definition 4. Let C be a promise class which is expressible in a language L.
Let further A be a language from C and P be a proof system for L. We say
that A is representable in P if there exists a C-machine N for A such that
P ⊢∗ Correct(N). If these P -proofs of corr(x,N, 0p(|x|)) can even be constructed
from input x in polynomial time, then we say that A is p-representable in P .

Furthermore, if every language A ∈ C is (p-)representable in P , then we say
that C is (p-)representable in P .

Intuitively, representability of A in P means that we have short P -proofs of
the promise condition of A (with respect to some C-machine for A). Given a
proof system P for L and a promise class C which is expressible in L, it makes
sense to consider the subclass of all languages or functions from C which are
representable in P . This leads to the following definition:

Definition 5. For a promise class C expressible in a language L and a proof
system P for L, let C(P) denote the class of all A ∈ C which are representable
in P .

Note that for each A ∈ C there exists some proof system P for L such that
A ∈ C(P), but in general C(P) will be a strict subclass of C which enlarges for
stronger proof systems. It is, of course, interesting to ask whether these subclasses
C(P) have sufficiently good properties. In particular, it is desirable that C(P) is
closed under reductions. Therefore, we make the following definition:

Definition 6. A promise class C is provably closed under a reduction ≤R in L
if C is expressible in L and for each proof system P for L there exists a proof
system P ′ for L such that P ≤ P ′ and for all A ∈ C and B ∈ C(P ′), A ≤R B
implies A ∈ C(P ′).

We remark that provable closure of C under ≤R is a rather weak notion as it
does not even imply closure of C under ≤R in the ordinary sense (because of the

6 O. Beyersdorff and Z. Sadowski

restriction A ∈ C). Also we do not require each subclass C(P) to be closed under
≤R, but that for each proof system P this holds for some stronger system P ′.
This is a sensible requirement, because proof systems for L can be defined quite
arbitrarily, and closure of C(P) typically requires additional assumptions on P
(cf. [2] where provable closure of the class of disjoint NP-pairs under different
reductions is shown). In fact, it is not difficult to construct counterexamples:

Proposition 7. Let C be a promise class which is expressible in a language L
and let ≤R be a reduction for C. Let further P be a proof system for L such
that there exist A,B ∈ C \ C(P) with A ≤R B. Then there exists a proof system
P ′ ≥ P such that C(P ′) is not closed under ≤R.

4 Optimal Proof Systems and Easy Subsets

In this section we search for characterizations for the existence of optimal or even
p-optimal proof systems for arbitrary languages L (Question Q1) and apply these
results to concrete choices for L. We start with a criterion for the existence of
p-optimal proof systems.

Theorem 8. Let L be a language such that PS (L) is expressible in L. Then
L has a p-optimal proof system if and only if the P-easy subsets of L have a
recursive P-presentation.

Proof (Idea). For the forward direction, we observe that every P-easy subset
of L has short proofs in some proof system for L. These proofs are translated
into short proofs in the p-optimal proof system by some polynomial-time Turing
transducer. Thus, by enumerating all polynomial-time clocked Turing transduc-
ers, we can construct a recursive P-presentation of all P-easy subsets of L.

Conversely, we construct a p-optimal proof system Popt in the following way.
A Popt -proof of a is of the form 〈π, P, certificate〉, where P is a polynomial-time
clocked transducer such that P (π) = a. The certificate assures that P (π) ∈ L.
It follows from expressibility of PS (L) in L that Correct(P) is a P-easy subset
of L if and only if P produces only elements from L (for any input). Hence, we
can use P-presentability of the P-easy subsets of L to produce certificates. ⊓⊔

By a similar argument we can provide two characterizations for the existence
of optimal proof systems.

Theorem 9. Let L be a language such that PS (L) is expressible in L. Then the
following conditions are equivalent:

1. There exists an optimal proof system for L.
2. The NP-easy subsets of L have a recursive NP-presentation.
3. The P-easy subsets of L have a recursive NP-presentation.

Given these general results, it is interesting to ask for which languages L the
set PS (L) is expressible in L. Our next lemma provides sufficient conditions:

Optimal Proof Systems and Complete Sets for Promise Classes 7

Lemma 10. Let L be a language fulfilling the following two conditions:

1. Natural numbers can be encoded by elements of L, i.e., there exists an in-
jective function Num : N → L which is both computable and invertible in
polynomial time.

2. L possesses an AND-function, i.e., there exists a function AND : Σ∗×Σ∗ →
Σ∗ which is both polynomial-time computable and polynomial-time invertible
such that for all x, y ∈ Σ∗, AND(x, y) ∈ L if and only if x ∈ L and y ∈ L.

Then PS (L) is expressible in L.

Using this lemma we can show L-expressibility of PS (L) for many interesting
choices of L:

Proposition 11. For any of the following languages L, the set PS (L) is ex-
pressible in L:

– SATi for i ∈ N (the satisfiability problem for quantified propositional formu-
las with i quantifier alternations, starting with existential quantifiers),

– TAUTi for i ∈ N (quantified propositional tautologies with i quantifier alter-
nations, starting with universal quantifiers),

– QBF (quantified propositional tautologies),
– the graph isomorphism problem GI, its complement GI, and the complement

GA of the graph automorphism problem.

For GI, which like any problem in NP has an optimal proof system, we obtain
the following characterization on the existence of a p-optimal proof system.

Corollary 12. GI has a p-optimal proof system if and only if there exists a
recursive P-presentation of all polynomial-time computable subsets of GI.

Let us remark that in Lemma 10, instead of an AND-function we could
also use a padding function for L. In this way we obtain a similar result as
Corollary 12 for GA (which is not known to possess an AND-function).

5 Complete Sets and Enumerations

In this section we consider the question Q2, asking whether language or func-
tion promise classes have complete sets or functions. There is a long history of
equating complete sets and recursive enumerations of machines. The following
result essentially stems from [13], but particular cases of the theorem have been
been previously obtained, namely for NP ∩ coNP by Kowalczyk [14], for UP by
Hartmanis and Hemachandra [12], and, more recently, for disjoint NP-pairs by
Glaßer, Selman, and Sengupta [8]. We just formulate the theorem for language
classes, but a similar result also holds for promise function classes.

Theorem 13 (Köbler, Messner, Torán [13]). Let C be a promise class which
is closed under many-one reductions. Then C has a many-one complete problem
if and only if there exists a recursive enumeration (Ni)i≥0 of C-machines such
that C = {L(Ni) | i ≥ 0}.

8 O. Beyersdorff and Z. Sadowski

Let us note that in the proof of the forward implication of Theorem 13, the
hypothesis that C is closed under many-one reductions seems indeed crucial.
Namely, if C consists of all P-easy subsets of TAUT, then C trivially contains
a many-one complete set. On the other hand, a recursive enumeration of C-
machines as in Theorem 13 is rather unlikely to exist, as this would imply the
existence of a p-optimal propositional proof system by Theorem 8. But of course,
the P-easy subsets of TAUT are not closed under many-one reductions.

6 Optimal Proof Systems and Complete Sets

Now we are ready to analyse the relations between our central questions Q1 and
Q2 on the existence of optimal proof systems for languages L and the existence of
complete sets for promise classes C. While Köbler, Messner, and Torán [13] have
shown that for many natural choices of L and C, a positive answer to Q1 implies
a positive answer to Q2, we will provide here a number of characterizations
involving both questions. In particular, these characterizations will also yield
the above mentioned relation between Q1 and Q2 for concrete applications.

Our first result characterizes the existence of complete sets for a promise
class C by the representability of C in a proof system.

Theorem 14. Let C be a promise language (or function) class which can use
nondeterminism and let L be a language such that C is provably closed under
many-one reductions in L. Then C has a many-one complete language (or func-
tion) if and only if there exists a proof system for L in which C is representable.

Proof (Idea). For the forward implication, we code a many-one complete lan-
guage A for C into some proof system P for L. By provable closure under reduc-
tions, L has a proof system P ′ ≥ P such that C(P ′) is closed under many-one
reductions. As A ∈ C(P ′) and A is many-one complete for C, we get C(P ′) = C.

Conversely, let P be a proof system for L in which C is representable. Using
the universal machine for C, we construct a complete set for C by simulating
C-machines N on their inputs. But before we start such a simulation, we check
the promise of N by guessing short P -proofs for Correct(N). For this last step
we need that C can use nondeterminism. ⊓⊔

For promise classes not using nondeterminism we obtain the following result:

Theorem 15. Let C be a promise language (or function) class which is closed
under many-one reductions and let L be a language such that C is expressible in
L. Then C has a many-one complete language (or function) if and only if L has
a proof system in which C is p-representable.

Let us mention some applications of this result. The promise class DisjNP

of disjoint NP-pairs and the class UP are expressible in TAUT, and the class
NP∩coNP is expressible in QBF (cf. [2, 13, 17, 19]). Hence we obtain the following
corollary exemplifying our theorem.

Optimal Proof Systems and Complete Sets for Promise Classes 9

Corollary 16.

1. Complete disjoint NP-pairs exist if and only if TAUT has a proof system in
which DisjNP is p-representable (if and only if TAUT has a proof system in
which DisjNP is representable).

2. UP has a complete language if and only if TAUT has a proof system in which
UP is p-representable.

3. NP ∩ coNP has a complete language if and only if QBF has a proof system
in which NP ∩ coNP is p-representable.

Theorem 14 also allows to derive results which show that the question of the
existence of complete problems for C does not depend on the strength of the
underlying reduction. This can be done as in the following corollary:

Corollary 17. Let ≤ and ≤′ be two reductions which are refined by many-one
reductions. Assume further that C can use nondeterminism and is both provably
closed under ≤ and ≤′ in some language L. Then C has a ≤-complete problem
if and only if C has a ≤′-complete problem.

In this way it can be shown, for example, that the question of the existence
of complete disjoint NP-pairs is equivalent for reductions ranging from strong
many-one reductions to smart Turing reductions (cf. [8, 2]).

Our next result shows that question Q1 on the existence of p-optimal proof
systems for a language L can be characterized by a “universally quantified”
version of the condition from Theorem 15. Further, Q1 is even equivalent to the
existence of complete sets for all promise classes representable in L:

Theorem 18. Let L be a language such that PS (L) is expressible in L. Then
the following conditions are equivalent:

1. There exists a p-optimal proof system for L.
2. There exists a proof system for L in which any promise class which is ex-

pressible in L is p-representable.
3. There exists a proof system for L in which the class of all P-easy subsets of

L is p-representable.
4. Every promise language and function class which is expressible in L has a

many-one complete language or function.

Proof (Sketch). The proof is structured into the implications 1 ⇒ 2 ⇒ 3 ⇒ 1
and 2 ⇒ 4 ⇒ 1. For 1 ⇒ 2, let P be a p-optimal proof system for L and let
C be a promise class expressible in L. For each A ∈ C and each C-machine N
for A we can construct a proof system P ′ with short P ′-proofs of Correct(N).
Translating these proofs into the p-optimal system P , we obtain A ∈ C(P).

Implication 2 ⇒ 3 follows from Lemma 3. For the direction 3 ⇒ 1, we need
to construct from item 3 a recursive P-presentation of all P-easy subsets of L as
in Theorem 8. This in turn yields a p-optimal proof system for L.

The equivalence between items 2 and 4 is the mentioned “universally quan-
tified” version of Theorem 15. Finally, for 4 ⇒ 1 we use the assumption of

10 O. Beyersdorff and Z. Sadowski

expressibility of PS (L) in L. As PS (L) is a promise function class, item 4 guar-
antees the existence of a many-one complete function for PS (L), which coincides
with the notion of a p-optimal proof system for L. ⊓⊔

The next theorem contains a similar statement for optimal proof systems.

Theorem 19. Let L be a language such that PS (L) is expressible in L. Then
the following conditions are equivalent:

1. There exists an optimal proof system for L.
2. L has a proof system P such that every promise class which is expressible in

L is representable in the system P .
3. L has a proof system in which all P-easy subsets of L are representable.

Combining Theorems 14 and 19 we obtain the following corollary which is
essentially contained in [13].

Corollary 20. Let L be a language. If L has an optimal proof system, then any
promise language or function class C which is expressible in L and which can
use nondeterminism has a complete language or function.

As the proof of the backward implication of Theorem 14 does not use provable
closure of C under reductions in L, we can formulate Corollary 20 without this
assumption.

Comparing Theorem 18 and Corollary 20, it is apparent that while we could
prove the equivalence of the existence of p-optimal proof systems for L and
complete problems for all promise classes expressible in L (Theorem 18), we did
not obtain this equivalence for optimal proof systems (cf. Corollary 20). The
reason is that PS (L), considered as a promise function class, does not seem to
have the property to use nondeterminism, because otherwise, the existence of
an optimal proof system for L would already imply the existence of a p-optimal
proof system for L. We can even obtain a slightly stronger result:

Proposition 21. If PS (SAT) can use nondeterminism, then every language
with an optimal proof system also has a p-optimal proof system.

Proof. Assume that PS (SAT) can use nondeterminism. By Proposition 11, the
class PS (SAT) is expressible in SAT. As SAT has an optimal proof system,
Corollary 20 now yields a complete function for PS (SAT) which coincides with
the notion of a p-optimal proof system for SAT. From this we conclude that
every language with an optimal proof system also has a p-optimal proof system
by a result from [3]. ⊓⊔

7 Optimal Proof Systems with Advice

Whether or not there exist optimal proof systems or complete sets for promise
classes remains unanswered by our results above. Hence, our central questions
Q1 and Q2 remain open. As these problems have been open for more than twenty

Optimal Proof Systems and Complete Sets for Promise Classes 11

years by now, many researchers tend to believe in a negative answer (of course,
this is arguable, but in the algorithmic world negative results are usually harder
to obtain than positive ones).

Recently, Cook and Kraj́ıček [6] have introduced the concept of propositional
proof systems with advice which seems to yield a strictly more powerful model
than the classical Cook-Reckhow setting. Surprisingly, Cook and Kraj́ıček [6]
have shown that in the presence of advice, optimal propositional proof systems
exist (cf. also [4] for a generalization to arbitrary languages). Our next result
shows that the relation between optimal proof systems and complete sets for
promise classes can be transferred to the advice setting. Thus we derive from
Cook and Kraj́ıček’s results the following strong information on complete prob-
lems in the presence of advice.

Theorem 22. Let C be a promise complexity class and let L be a language such
that C is expressible in L by a length-depending promise. Then C/1 contains a
problem (or function) using one bit of advice which is many-one hard for C.

Proof (Sketch). Let 〈·, . . . , ·〉 be a polynomial-time computable length-injective
tupling function. We now define the problem (or function) AC with one advice
bit which will be many-one hard for C. Inputs are of the form 〈x, 0N , 0m〉 where
x is the input, 0N is the unary encoding of a Turing machine N , and 0m is the
time bound for N . At such an input, AC first computes the string corr(x,N, 0m).
Then AC uses its advice bit to verify whether or not corr(x,N, 0m) is in L (for
this step we could have also used the optimal proof system for L with one bit
of advice, cf. [6, 4]). If corr(x,N, 0m) ∈ L, then AC simulates N on input x for
at most m steps and produces the corresponding output (in case the simulation
does not terminate it rejects or outputs some fixed element). As 〈·, . . . , ·〉 is length
injective and corr is length depending, the element corr(x,N, 0m) is uniquely
determined by |〈x, 0N , 0m〉| and therefore the advice bit of AC can in fact refer
to corr(x,N, 0m).

If A is a problem (or function) from C and N is a C-machine for A with poly-
nomial running time p, then A many-one reduces to AC via x 7→ 〈x, 0N , 0p(|x|)〉.
Hence AC is many-one hard for C. ⊓⊔

Let us state a concrete application of this general result. As disjoint NP-pairs
are expressible in TAUT by a length-depending promise [2], we obtain:

Corollary 23. There exist a disjoint pair (A, B) and a sequence (an)n∈N with
the following properties:

1. A and B are computable in nondeterministic polynomial time with advice an

for inputs of length n.
2. The set {〈an, 0n〉 | n ∈ N } is computable in coNP.
3. Every disjoint NP-pair is polynomial-time many-one reducible to (A, B).

Acknowledgements. We thank the anonymous referees for helpful comments
and detailed suggestions on how to improve this paper.

12 O. Beyersdorff and Z. Sadowski

References

1. J. L. Balcázar, J. Dı́az, and J. Gabarró. Structural Complexity I. Springer-Verlag,
Berlin Heidelberg, 1988.

2. O. Beyersdorff. Classes of representable disjoint NP-pairs. Theoretical Computer

Science, 377(1–3):93–109, 2007.
3. O. Beyersdorff, J. Köbler, and J. Messner. Nondeterministic functions and the

existence of optimal proof systems. Submitted to Theoretical Computer Science.
4. O. Beyersdorff, J. Köbler, and S. Müller. Nondeterministic instance complexity

and proof systems with advice. In Proc. 3rd International Conference on Language

and Automata Theory and Applications, volume 5457 of Lecture Notes in Computer

Science, pages 164 – 175. Springer-Verlag, Berlin Heidelberg, 2009.
5. S. A. Cook. Feasibly constructive proofs and the propositional calculus. In Proc.

7th Annual ACM Symposium on Theory of Computing, pages 83–97, 1975.
6. S. A. Cook and J. Kraj́ıček. Consequences of the provability of NP ⊆ P/poly. The

Journal of Symbolic Logic, 72(4):1353–1371, 2007.
7. S. A. Cook and R. A. Reckhow. The relative efficiency of propositional proof

systems. The Journal of Symbolic Logic, 44(1):36–50, 1979.
8. C. Glaßer, A. L. Selman, and S. Sengupta. Reductions between disjoint NP-pairs.

Information and Computation, 200(2):247–267, 2005.
9. C. Glaßer, A. L. Selman, S. Sengupta, and L. Zhang. Disjoint NP-pairs. SIAM

Journal on Computing, 33(6):1369–1416, 2004.
10. C. Glaßer, A. L. Selman, and L. Zhang. Survey of disjoint NP-pairs and relations to

propositional proof systems. In O. Goldreich, A. L. Rosenberg, and A. L. Selman,
editors, Essays in Theoretical Computer Science in Memory of Shimon Even, pages
241–253. Springer-Verlag, Berlin Heidelberg, 2006.

11. C. Glaßer, A. L. Selman, and L. Zhang. Canonical disjoint NP-pairs of proposi-
tional proof systems. Theoretical Computer Science, 370(1–3):60–73, 2007.

12. J. Hartmanis and L. A. Hemachandra. Complexity classes without machines: On
complete languages for UP. Theoretical Computer Science, 58:129–142, 1988.

13. J. Köbler, J. Messner, and J. Torán. Optimal proof systems imply complete sets
for promise classes. Information and Computation, 184(1):71–92, 2003.

14. W. Kowalczyk. Some connections between representability of complexity classes
and the power of formal systems of reasoning. In Proc. 11th Symposium on Math-

ematical Foundations of Computer Science, volume 176 of Lecture Notes in Com-

puter Science, pages 364–369. Springer-Verlag, Berlin Heidelberg, 1984.
15. J. Kraj́ıček and P. Pudlák. Propositional proof systems, the consistency of first

order theories and the complexity of computations. The Journal of Symbolic Logic,
54(3):1063–1079, 1989.

16. J. Kraj́ıček and P. Pudlák. Some consequences of cryptographical conjectures for
S

1

2 and EF . Information and Computation, 140(1):82–94, 1998.
17. Z. Sadowski. On an optimal quantified propositional proof system and a complete

language for NP ∩ co-NP. In Proc. 11th International Symposium on Fundamentals

of Computing Theory, volume 1279 of Lecture Notes in Computer Science, pages
423–428. Springer-Verlag, Berlin Heidelberg, 1997.

18. Z. Sadowski. On an optimal propositional proof system and the structure of easy
subsets of TAUT. Theoretical Computer Science, 288(1):181–193, 2002.

19. Z. Sadowski. Optimal proof systems and complete languages. In Local Proc. 4th

Conference on Computability in Europe, pages 407–414. University of Athens, 2008.
20. A. L. Selman. Much ado about functions. In Proc. 11th Annual IEEE Conference

on Computational Complexity, pages 198–212, 1996.

