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Abstract

A general framework for parameterized proof complexity was introduced by Dantchev,
Martin, and Szeider [11]. There the authors show important results on tree-like Pa-
rameterized Resolution—a parameterized version of classical Resolution—and their gap
complexity theorem implies lower bounds for that system.

The main result of the present paper significantly improves upon this by showing
optimal lower bounds for a parameterized version of bounded-depth Frege. More pre-
cisely, we prove that the pigeonhole principle requires proofs of size nΩ(k) in parameter-
ized bounded-depth Frege, and, as a special case, in dag-like Parameterized Resolution.
This answers an open question posed in [11]. In the opposite direction, we interpret
a well-known technique for FPT algorithms as a DPLL procedure for Parameterized
Resolution. Its generalization leads to a proof search algorithm for Parameterized Res-
olution that in particular shows that tree-like Parameterized Resolution allows short
refutations of all parameterized contradictions given as bounded-width CNF’s.
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1 Introduction

Recently, Dantchev, Martin, and Szeider [11] introduced the framework of parameterized
proof complexity, an extension of the proof complexity approach of Cook and Reckhow to
parameterized complexity. One motivation for this is the quest for efficient algorithms solving
fragments of classically hard problems [12, 14, 19]. Since Resolution is very important for
SAT solving, its analogue in this context, Parameterized Resolution, combines these two
approaches, and its investigation might provide new insights into proof search for tractable
fragments of classically hard problems. Some results in this direction are already outlined
in the work of Gao [16] where he analyzes the effect of the standard DPLL algorithm on the
problem of weighted satisfiability for random d-CNF. However, the study of Parameterized
Resolution and our understanding of the possible implications for SAT-solving algorithms
are still at a very early stage.

More generally, parameterized complexity is a branch of complexity theory where prob-
lems are analyzed in a different way than in the classical approach: we say that a problem
is fixed-parameter tractable (FPT) with parameter k if any instance of size n can be solved
in time f(k)nO(1) for some computable function f of arbitrary growth. In this setting, clas-
sically intractable problems may have efficient solutions for small choices of the parameter,
even if the total size of the input is large. Consider e.g. the classical satisfiability problem
of finding a truth assignment that satisfies all clauses of a formula in conjunctive normal
form. Bounded CNF Sat and Weighted CNF Sat are parameterized variants of CNF

satisfiability in which the satisfying assignment is required to have Hamming weight at most
k or exactly k, respectively. Many parameterized combinatorial problems can be naturally
encoded in Bounded CNF Sat or Weighted CNF Sat: finding a vertex cover of size
at most k, finding a clique of size k, or finding a dominating set of size at most k. In the
theory of parameterized complexity, the hardness of all three problems is reflected by their
W[2]-completeness.

Parameterized complexity is a very well-developed and deep theory and, as for the clas-
sical case, there are many open problems concerning the separation of parameterized com-
plexity classes, such as FPT and W[P] (see [12, 15, 19] for a comprehensive treatment of the
field).

In [11], Dantchev, Martin, and Szeider laid the foundations to study complexity of proofs
in a parameterized setting. The complementary problem of Bounded CNF Sat is that
of deciding parameterized contradictions PCon: it consists of all pairs (F, k) where F is a
propositional formula F which has no satisfying assignment of weight ≤ k. After considering
this notion of propositional parameterized tautologies, Dantchev et al. [11] introduced the
concepts of parameterized proof systems and of fpt-bounded proof systems (see Section 2
for a discussion). The main motivation behind the work of [11] was that of generalizing the
classical approach of Cook and Reckhow to the parameterized case and working towards a
separation of parameterized complexity classes as FPT and W[2] by techniques developed in
proof complexity. In fact, we obtain an analogous result to the well-known Cook-Reckhow
theorem from [10]: a parameterized language L has an fpt-bounded proof system if and only
if L ∈ para-NP (Theorem 1).
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In [11] (tree-like) Parameterized Resolution was defined as a refutation system for the
set of parameterized contradictions. If (F, k) ∈ PCon is defined on variables x1, . . . , xn
then a (tree-like) Parameterized Resolution refutation of (F, k) is a (tree-like) Resolution
refutation of F ∪ {¬xi1 ∨ · · · ∨ ¬xik+1

| 1 ≤ i1 < · · · < ik+1 ≤ n}. Thus, in (tree-like)
Parameterized Resolution we have built-in access to all parameterized clauses of the form
¬xi1 ∨· · ·∨¬xik+1

. All these clauses are available in the system, but when measuring the size
of a derivation we only count those which actually appear in the derivation. This concept can
be straightforwardly generalized to an arbitrary proof system P , be it dag-like or tree-like,
that understands clauses and works with lines.

Dantchev et al. [11] prove an extension of Riis’ gap theorem [25] and obtain a model
theoretic classification for the complexity of tree-like Parameterized Resolution refutations
for parameterized contradictions originating as propositional encodings of first-order formu-
las. In particular, their main result implies that tree-like Parameterized Resolution is not
fpt-bounded. A similar question for dag-like Parameterized Resolution was left open in [11].
More specifically, they asked if (the parameterized version of) the pigeonhole principle is
hard for dag-like Parameterized Resolution.

1.1 Our Contributions

We answer this question by proving that PHPn+1
n requires proofs of size nΩ(k) not only in

Parameterized Resolution but in the much stronger system of bounded-depth Frege. Our
result is in sharp contrast with [11, Proposition 17] that gives efficient proofs of PHPn+1

n in
Parameterized Resolution using a more sophisticated encoding with auxiliary variables. We
discuss these augmented proof systems in the final Section 5.

As our second contribution we investigate classes of parameterized contradictions that
have short refutations in tree-like Parameterized Resolution. The notion of kernelization
plays an important role in the theory of parameterized complexity to design fpt-algorithms.
Here we propose a notion of core for parameterized proof complexity: the core of a parame-
terized contradiction (F, k) is a subset of clauses F ′ ⊆ F whose size is bounded by a function
of k only, and such that (F ′, k) is still a parameterized contradiction. We observe that if
a formula has a core, then it can be efficiently refuted in tree-like Parameterized Resolu-
tion with a refutation of size independent of the size of F . As an immediate consequence,
several examples of formulas hard for tree-like Resolution are instead efficiently refutable in
the parameterized case: pebbling contradictions, linear ordering principles, graph pigeonhole
principles, and colorability principles. But sometimes a core of a formula is not explicit or
immediate to find. In Theorem 4 we prove that contradictions of bounded width have a core
and thus very efficient tree-like Parameterized Resolution refutations.

Is the existence of a core a necessary condition for a parameterized contradiction to have
an fpt-bounded refutation in tree-like Parameterized Resolution? A trivial counterexample
to this conjecture is made by the CNF (x1 ∨ x2 ∨ . . . ∨ xn) ∧ ¬x1 ∧ . . . ∧ ¬xn, but this is
a bit of a cheating since the CNF itself has a poly-size tree-like refutation. We include a
much more interesting example (Proposition 2) of a parameterized contradiction, a version
of the linear ordering principle, that has fpt-refutations in tree-like Parameterized Resolution
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without having a core.

1.2 Techniques and Proof Methods

Our lower bound for the pigeonhole principle is a rather simple application of the method of
random restrictions introduced in proof complexity by Haken in his seminal paper [17]. But
our choice of parameters is totally different and allows us to kill with the restriction any small
prescribed set of parameterized axioms. While the technique is routine, it nonetheless seems
to be its first application in the context of parameterized complexity, be it computational or
proof complexity.

Gao [16] suggested to use a standard DPLL algorithm to find refutations of certain
random parameterized d-CNF’s. Here we prove that bounded width CNF’s have a core and
hence are efficiently refutable in tree-like Parameterized Resolution (Theorem 4). The core
of our argument is the interpretation of a classical parameterized algorithm for vertex cover
as a DPLL procedure. This results in a very simple algorithm.

1.3 Organization of the Paper

The remaining part of the paper is organized as follows. Section 2 contains all preliminary
notions and definitions concerning fixed-parameter tractability, parameterized proof systems,
and Parameterized Resolution. In Section 3 we show that Parameterized Bounded-depth
Frege has no fpt-bounded refutations for the pigeonhole principle. Section 4 concentrates on
upper bounds: we introduce the notion of a core and prove that parameterized contradictions
of bounded width have efficient tree-like refutations. We also present a variant of the linear
ordering principle that possesses an efficient tree-like refutation but does not have a core.
We conclude in Section 5 with a brief discussion, an outline of future directions and some
open problems.

2 Parameterized Proof Complexity

2.1 Fixed-Parameter Tractability

A parameterized language is a language L ⊆ Σ∗ × N, where Σ is a finite alphabet. For
an instance (x, k), we call k the parameter of (x, k). A parameterized language L is fixed-
parameter tractable if L has a deterministic decision algorithm running in time f(k)|x|O(1) for
some computable function f . The class of all fixed-parameter tractable languages is denoted
by FPT.

Besides FPT there is a wealth of complexity classes containing problems which are not
believed to be fixed-parameter tractable. The most prominent classes lie in the weft hierarchy
forming a chain

FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[P] ⊆ para-NP .
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The classes of the weft hierarchy are usually defined as the closure of a canonical problem
under fpt-reductions. For W[2] this canonical problem is Weighted CNF Sat containing
instances (F, k) with a propositional formula F in CNF and a parameter k ∈ N. Weighted

CNF Sat asks whether F has a satisfying assignment of weight exactly k, where the weight
of an assignment α, denoted as w(α), is the number of variables that α assigns to 1. Instead
of asking for an assignment α with w(α) = k we can also ask for α with w(α) ≤ k and still
get the W[2]-complete problem Bounded CNF Sat (cf. [11]). We include the full proof for
this claim.

Proposition 1. ([11]) Bounded CNF Sat is W[2]-complete.

Proof. We first prove that Bounded CNF Sat is in W[2] and then that it is W[2]-hard.
One direction is obvious: consider a CNF F (x1, . . . , xn) and a parameter k. Introduce new
(dummy) variables y1, . . . , yk. Then the formula F (x1, . . . , xn, y1, . . . , yk) has a satisfying
assignment of weight k if and only if F (x1, . . . , xn) has a satisfying assignment of weight at
most k. This yields an fpt-reduction from Bounded CNF Sat to Weighted CNF Sat,
which implies that Bounded CNF Sat is in W[2].

W[2]-hardness of Bounded CNF Sat is shown via the converse reduction. Let (F, k)
be the input, where F is a CNF in variables x1, . . . , xn. Consider the following CNF ψ which
in addition to x1, . . . , xn uses new variables yi,j for i ∈ [n] and j ∈ [k]:

∨

i

yi,j for any j ∈ [k]

¬yi,j ∨ ¬yi′,j for any i 6= i′ ∈ [n] and j ∈ [k]

¬yi,j ∨ ¬yi,j′ for any i ∈ [n] and j 6= j′ ∈ [k]

yi,1 ∨ yi,2 ∨ . . . ∨ yi,k ∨ ¬xi for any i ∈ [n]

¬yi,j ∨ xi for any i ∈ [n] and j ∈ [k].

Formula ψ is satisfiable if and only if there is a set of k indices in [n] matched with [k].
Variable xi is true if and only if i is in this set. Thus any satisfying assignment for ψ has
weight 2k. The fpt-reduction from Weighted CNF Sat to Bounded CNF Sat is given
by (F, k) 7→ (F ∧ ψ, 2k). This proves that Bounded CNF Sat is W[2]-hard.

Like in the classical duality between tautologies and satisfiability, the complement of
Bounded CNF Sat is a complete problem for coW[2]:

Definition 1 (Dantchev, Martin, Szeider [11]). A parameterized contradiction is a pair
(F, k) consisting of a propositional formula F , given as a CNF, and k ∈ N such that F has
no satisfying assignment of weight ≤ k. We denote the set of all parameterized contradictions
by PCon.

For an in-depth treatment of notions from parameterized complexity we refer to the
monographs [12, 15, 19].
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2.2 Parameterized Proof Systems

We start with discussing the general definition of a parameterized proof system given by
Dantchev, Martin, and Szeider in [11].

Definition 2 (Dantchev, Martin, Szeider [11]). A parameterized proof system for a param-
eterized language L ⊆ Σ∗ ×N is a function P : Σ∗ ×N → Σ∗ ×N such that rng(P ) = L and
P (x, k) can be computed in time f(k)|x|O(1) with some computable function f .

The purpose of the second argument in P remains a little bit unclear to us since all
natural proof systems we can think of do not have this feature. Thus, we propose the
following simplification.

Definition 3. A proof system for a parameterized language L ⊆ Σ∗×N is a polynomial-time
computable function P : Σ∗ → Σ∗ × N such that rng(P ) = L.

Now we would like to show that both versions are even formally equivalent in the sense
that a parameterized language has a proof system in which all strings possess “short” proofs
if and only if it has a parameterized proof system with this property. First we have to
formalize the notion of “short”. In the framework of [11] it goes as follows:

Definition 4 (Dantchev, Martin, Szeider [11]). A parameterized proof system P for a
parameterized language L is fpt-bounded if there exist computable functions f and g such
that every (x, k) ∈ L has a P -proof (y, k′) with |y| ≤ f(k)|x|O(1) and k′ ≤ g(k).

Again, our analogue is simpler.

Definition 5. A proof system P for a parameterized language L is fpt-bounded if there
exists a computable function f such that every (x, k) ∈ L has a P -proof of size at most
f(k)|x|O(1).

Recall that by the theorem of Cook and Reckhow [10], the class of all languages with
polynomially bounded proof systems coincides with NP. To obtain a similar result in the
parameterized world, we use the following parameterized version of NP.

Definition 6 (Flum, Grohe [14]). The class para-NP contains all parameterized languages
which can be decided by a nondeterministic Turing machine in time f(k)|x|O(1) for a com-
putable function f .

Theorem 1. Let L ⊆ Σ∗ × N be a parameterized language. Then the following statements
are equivalent:

1. There exists an fpt-bounded proof system for L.

2. There exists an fpt-bounded parameterized proof system for L.

3. L ∈ para-NP.
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Proof. For the implication 1 ⇒ 2, let P be an fpt-bounded proof system for L. Then the
system P ′ defined by P ′(y, k) = P (y) is an fpt-bounded parameterized proof system for L.

For the implication 2 ⇒ 3, let P be an fpt-bounded parameterized proof system for L
such that every (x, k) ∈ L has a P -proof (y, k′) with |y| ≤ f(k)p(|x|) and k′ ≤ g(k) for some
computable functions f, g and some polynomial p. LetM be a Turing machine computing P
in time h(k)q(n) with computable h and a polynomial q. Then L ∈ para-NP by the following
algorithm: on input (x, k) we guess a proof (y, k′) with |y| ≤ f(k)p(|x|) and k′ ≤ g(k). Then
we verify that P (y, k′) = (x, k) in time h(k′)q(|y|) which by the choice of (y, k′) yields an fpt
running time. If the test is true, then we accept the input (x, k), otherwise we reject.

For the implication 3 ⇒ 1, let L ∈ para-NP and let M be a nondeterministic Turing
machine for L running in time f(k)p(n) where f is computable and p is a polynomial. Then
we define the following proof system P for L:

P (x, k, w) =

{
(x, k) if w is an accepting computation of M on input (x, k)

(x0, k0) otherwise

where (x0, k0) ∈ L is some fixed instance. Clearly, P can be computed in polynomial time.
Moreover, P is fpt-bounded as every (x, k) ∈ L has a P -proof of size O(f(k)p(|x|)).

We remark that the resulting transformation of an fpt-bounded parameterized proof
system into an fpt-bounded proof system for the same language is constructive.

2.3 Parameterized Versions of Ordinary Proof Systems

A literal is a propositional variable or a negated variable; a clause is a set of literals. The
width of a clause is the number of its literals. A clause is interpreted as the disjunction of its
literals and a set of clauses as the conjunction of the clauses. Hence clause sets correspond
to formulas in CNF.

The system of Parameterized Resolution was introduced by Dantchev, Martin, and Szei-
der [11]. Parameterized Resolution is a refutation system for the set PCon of parameter-
ized contradictions (cf. Definition 1). Given a set of clauses F in variables x1, . . . , xn with
(F, k) ∈ PCon, a Parameterized Resolution refutation of (F, k) is a Resolution refutation of

F ∪ {¬xi1 ∨ · · · ∨ ¬xik+1
| 1 ≤ i1 < · · · < ik+1 ≤ n}. (1)

Thus, in Parameterized Resolution we have built-in access to all clauses of the form ¬xi1 ∨
· · · ∨ ¬xik+1

. We call these clauses parameterized axioms. All parameterized axioms are
available in the system, but when measuring the size of a derivation we only count those
which appear in the derivation. Note that Parameterized Resolution is actually a proof
system for PCon in the sense of Definition 3, i. e., verification proceeds in polynomial time.
This definition allows the following straightforward generalization.

Definition 7. Let P : Σ∗ → Con be an ordinary proof system for the language Con of
all (ordinary) CNF contradictions. We define the parameterized version P̂ of P by letting
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P̂ (F, k, x) = (F, k) whenever P (x) is an arbitrary subset of the set of axioms (1). If P (x)

does not have this form, P̂ (F, k, x) outputs something trivial.

The only specific proof system we would like to comment on is tree-like Parameterized
Resolution (as it will be needed in Section 4). As explained in [11], a tree-like Parameterized
refutation of (F, k) can equivalently be described as a boolean decision tree. A boolean
decision tree for (F, k) is a binary tree where inner nodes are labeled with variables from
F and leafs are labeled with clauses from F or parameterized clauses ¬xi1 ∨ · · · ∨ ¬xik+1

.
Each path in the tree corresponds to a partial assignment where a variable x gets value 0
or 1 according to whether the path branches left or right at the node labeled with x. The
condition on the decision tree is that each path α must lead to a clause which is falsified
by the assignment corresponding to α. Therefore, a boolean decision tree solves the search
problem for (F, k) which, given an assignment α, asks for a clause falsified by α. It is easy
to verify that each tree-like Parameterized Resolution refutation of (F, k) yields a boolean
decision tree for (F, k) and vice versa, where the size of the Resolution proof equals the
number of nodes in the decision tree.

An embarrassing fact about Parameterized Proof Complexity (brought to our attention
by an anonymous referee of a previous version of this paper) is that, as defined in Definition 7,

P̂ is never bounded for some dull reasons.

Example 1. Let (F, k) be the parameterized contradiction in which F is the set of positive
clauses {x1,1 ∨ . . . ∨ x1,n, . . . , xk+1,1 ∨ . . . ∨ xk+1,n}. Then in order to make this set even
semantically invalid, one has to append to it all nk+1 parameterized axioms of the form
¬x1,j1 ∨ . . . ∨ ¬xk+1,jk+1

.

Obviously, this is not the kind of phenomena we want to study (and not the kind of
methods we want to develop) so we have to try to somehow isolate such pathological ex-
amples. One approach (borrowed from circuit complexity) would be simply to declare some
parameterized contradictions “natural”, “interesting” or “explicit” without giving precise
definitions or even revealing exact reasons for this classification. Another possibility (that
we adopt in this paper) is to formally restrict the set of contradictions we are interested in.

Definition 8. A parameterized contradiction (F, k) is strong if F itself is a contradiction. A
proof system P for the set PCon is weakly fpt-bounded if there exists a computable function
f such that every strong (F, k) ∈ PCon has a P -proof of size at most f(k)|F |O(1).

One reason to introduce this restriction is that many “interesting” contradictions are
strong. In fact, the only exception we are aware of (even if it is the one that inspired almost
all material in Section 4) is the vertex cover problem.

On a more philosophical level, the concept of a strong parameterized contradiction intends
to capture the idea that the new knowledge provided by parameterized axioms should be
rather thought of as a helper or an additional feature made available to already existing
DPLL algorithms rather than being the prime source of the validity of the statement.

Finally, we are not aware of any analogue of Example 1 for strong parameterized contra-
dictions.
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Yet another possibility to get rid of this example is to try to encode parameterized
axioms in (1) in a more economical way (so that their number stays small), possibly using
some auxiliary variables. For Parameterized Resolution this possibility was discussed already
in [11], and we continue this discussion in a broader context in Section 5.

3 Parameterized Bounded-Depth Frege is Not Weakly

fpt-Bounded

The pigeonhole principle PHPn+1
n uses variables xi,j with i ∈ [n+ 1] and j ∈ [n], indicating

that pigeon i goes into hole j. PHPn+1
n consists of the clauses

∨

j∈[n]
xi,j for all pigeons i ∈ [n+ 1]

and ¬xi1,j ∨ ¬xi2,j for all choices of two distinct pigeons i1, i2 ∈ [n+ 1] and a hole j ∈ [n].
Let Fd be the fragment of the Frege system over de Morgan basis {¬,∧,∨} that operates

with formulas of logical depth at most d.

Theorem 2. For any fixed d, k ≥ 0 and all sufficiently large n, any refutation of (PHPn+1
n , k)

in F̂d, the parameterized version of Fd, requires size ≥ nk/5.

Note that d does not appear in the final bound at all (although it implicitly appears in
the bound assumed in the “sufficiently large” premise).

Proof. Choose uniformly at random a set I of n − √
n pigeons and match them with a set

J of n−√
n uniformly chosen holes. Such partial matching f induces the following natural

partial assignment of the variables of PHPn+1
n :

xi,j = 1 whenever i ∈ I and f(i) = j,
xi,j = 0 whenever i ∈ I and f(i) 6= j,
xi,j = 0 whenever j ∈ J and there exist i′ 6= i such that f(i′) = j, and
xi,j = ⋆ otherwise.

We claim that with non-zero probability such partial assignment satisfies all parameterized
axioms used in the refutation, as long as there are at most nk/5 of them. (Notice that we
do not care if such assignment falsifies unused parameterized axioms.) Before proving this
claim, we show how the theorem follows.

The refutation, restricted with such assignment, does not contain parameterized axioms
anymore. Thus it is a classical Fd-refutation for the restricted formula, which in turn is

equivalent (up to a re-indexing of pigeons and holes) to PHP
√
n+1√
n

. Such refutation must be

of size at least 2n
cd [20, 18] for some cd > 0, thus bigger than nk/5 if n is sufficiently large.

This concludes the proof.
The missing part is to show that the probabilistic choice of the partial matching realizes

the desired properties with positive probability. Consider a parameterized axiom ¬xi1,j1 ∨
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. . . ∨ ¬xik+1,jk+1
. If there are two equal indexes ja and jb for a 6= b, then such axiom is just

a weakening of a standard clause of the pigeonhole principle and does not need any special
treatment.

We can now focus on a parameterized axiom in which exactly k+1 holes are represented:
the probability that such axiom fails to be satisfied is the probability that all xil,jl are either
true or unassigned for 1 ≤ l ≤ k+1. Let J0 = {j1, . . . , jk+1} be the set of all holes represented
in our axiom. The probability that the support J of our random restriction contains at most
k/2 of them (and hence the complement to J that has size

√
n contains at least k/2 of them)

is bounded by
(
k+1
k/2

)
· (

n−k/2√
n−k/2)
( n√

n)
≤ 2k+1n−k/4. And, conditioned by the event |J ∩ J0| ≥ k/2,

the probability that every hole ja ∈ J ∩ J0 is sent by the matching f to the right pigeon ia
(so that xia,ja is not set to 0) is at most (n− k/2)−k/2. Thus, the overall probability that our
random partial assignment does not satisfy an individual parameterized axiom is bounded
by

2k+1n−k/4 + (n− k/2)−k/2 < n−k/5 (2)

for sufficiently large n. By the union bound, if our refutation has size ≤ nk/5, then for at least
one particular choice of f the corresponding assignment satisfies all parameterized axioms
actually used in the refutation. As we already observed, this concludes the proof.

The same proof works for weaker versions of the pigeonhole principle, like functional or
onto, and it works for non-constant depth d up to Ω(log log n) (cf. [20, Corollary 11]). If we
consider Parameterized Resolution instead of parameterized bounded-depth Frege, our proof
applies also to the pigeonhole principle with arbitrarily many pigeons.

Theorem 3. For any fixed k ≥ 0 and all sufficiently large n and any m > n, any parame-
terized Resolution refutation of (PHPm

n , k) requires size ≥ nk/5.

Proof. As in the proof of Theorem 2, we uniformly choose at random a set I of n−√
n pigeons

and match them with a set J of n − √
n uniformly chosen holes. This partial matching is

naturally associated with a partial assignment which restricts the formula PHPm
n to a formula

PHPm−n+
√
n√

n
. This formula requires Resolution refutations of size 2n

Ω(1)
[22, 23], which is

asymptotically bigger than nk/5.
The rest of the proof is identical to that of Theorem 2, with the only difference that

now the bound (2) becomes 2k+1n−k/4 + (m− k/2)−k/2. But this is less than 2k+1n−k/4 +

(n− k/2)−k/2 as m > n.

It is remarkable that this lower bound does not depend on the number of pigeons. This
contrasts with classical Resolution, where we have the following anti-monotonicity: for n+1
pigeons there is a lower bound of 2Ω(n), as shown in [17], while for the case of infinitely
many pigeons1 the smallest Resolution refutation has length between 2Ω( 3√n) and 2O(

√
n logn)

(see [8, 24, 22, 23]).

1This formula has infinite length, but its smallest refutation has finite length since it uses a finite number
of initial clauses. Notice that any PHP

m

n
with refutation length L mentions at most L pigeons, thus the

Resolution complexity of PHP∞
n

is equal to that of PHPm

n
for some value of m.
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4 Cores and Small Refutations

The notion of kernelization plays an important role in the theory of parameterized com-
plexity. A kernelization for a parameterized language L is a polynomial-time procedure
A : Σ∗ × N → Σ∗ × N such that for each (x, k)

1. (x, k) ∈ L if and only if A(x, k) ∈ L and

2. if A(x, k) = (x′, k′), then k′ ≤ k and |x′| ≤ f(k) for some computable function f
independent of |x|.

It is clear that if a parameterized language admits a kernelization then it is fixed-
parameter tractable. The converse is also true for decidable languages (cf. [15]). For parame-
terized proof complexity we suggest a similar notion of core for parameterized contradictions:

Definition 9. A core for a set Γ ⊆ PCon of parameterized contradictions is a mapping which
maps every (F, k) ∈ Γ to a subset F ′ ⊆ F of clauses satisfying the following conditions:

1. F ′ contains at most f(k) variables and

2. (F ′, k) is a parameterized contradiction,

where f is a computable function depending only on the mapping.

Note that we do not impose any a priori restrictions on the complexity of the mapping
itself.

We will sometimes abuse terminology by saying that a set of clauses F ′ ⊆ F is a core
of F when it is clear from the context that F is a member of a family of parameterized
contradictions and that F ′ can be chosen for any k and any F in that family.

Clearly, any k+1 positive clauses of width f(k) and with pairwise disjoint sets of variables
make a core that we will call a trivial core (cf. Example 1). It is very easy to come up with
many parameterized contradictions (pebbling contradictions, colorability, sparse pigeonhole
principle etc.) that possess trivial cores.

The interesting questions here seem to be the following:

1. Do there exist “natural” parameterized contradictions that possess only non-trivial
cores? And do we have a “parameterized automatizability”, i.e. , is it easy to find a
core once we know that it exists?

2. Do there exist “natural” parameterized contradictions that, contrary to the situation
in computational complexity, have fpt-bounded refutations despite the fact that they
do not have any core at all?

In the following we are trying to address both questions.
For Question 1, our motivating example is the vertex cover problem. A vertex cover for

a graph G is a set C ⊆ V (G) such that for any {u, v} ∈ E(G) either u ∈ C or v ∈ C or
both. To determine whether G has a vertex cover of size at most k there is a well-known [12,

11



Chapter 3] fixed parameter tractable algorithm (here the parameter is k). This algorithm is
based on the following observation: if a vertex is not in C, then all its neighbors must be
in C. The algorithm is a simple recursive procedure which focuses on an arbitrary vertex
u, and on its neighbors v1, . . . , vl: if neither G \ {u} has a vertex cover of size k − 1 nor
G \ {u, v1, . . . , vl} has a vertex cover of size k − l, then G has no vertex cover of size k.

This is interpretable as a parameterized DPLL procedure on the 2-CNF FG =
∧

{u,v}∈E(G)(xu∨
xv) where xu indicates whether u ∈ C. The DPLL procedure fixes an arbitrary variable xu
and branches on it. When xu = 1, then the DPLL algorithm proceeds with analyzing
FG ↾xu=1 which is equal to FG\{u}. When xu = 0, then xv1 = 1, . . . , xvl = 1 by unit propa-
gation. Thus the DPLL proceeds on formula FG ↾{xu=0,xv1=1,...,xvl

=1}= FG\{u,v1,...,vl}. If at any
point the DPLL has more than k variables set to one, it stops and backtracks.

And now we establish a far-reaching generalization of this example.

Theorem 4. If F is a CNF of width d and (F, k) is a parameterized contradiction, then
(F, k) has a tree-like Parameterized Resolution refutation of size O(dk+1). Moreover, there
is an algorithm that for any (F, k) either finds such tree-like refutation or finds a satisfying
assignment for F of weight ≤ k. The algorithm runs in time O(|F | · k · dk+1).

Proof. Assume (F, k) is a parameterized contradiction. We want to find a refutation for F
with parameter k (i.e. , at most k variables can be set to true). We first consider a clause
C = x1 ∨ x2 ∨ . . . ∨ xl where l ≤ d with all positive literals. Such clause exists because
otherwise the full zero assignment would satisfy F .

By induction on k we will prove that (F, k) has a parameterized tree-like refutation of
size at most 2 ·∑k+1

i=0 d
i − 1. For k = 0 the clauses {¬xi}li=1 are parameterized axioms of the

system, thus C is refutable in size at most 1 + 2l ≤ 1 + 2d.
Now consider k > 0. For any 1 ≤ i ≤ l, let Fi be the restriction of F obtained by setting

xi = 1. Each (Fi, k− 1) is a parameterized contradiction, otherwise (F, k) would not be. By
inductive hypothesis (Fi, k − 1) has a tree-like refutation of size at most s = 2

∑k
i=0 d

i − 1.
This refutation can be turned into a tree-like derivation of ¬xi from (F, k) (by appending
this literal to every clause in the derivation). Now we can derive all ¬xi for 1 ≤ i ≤ l and
refute clause C. Such refutation has length 1 + l + ls ≤ 1 + d+ ds = 2 ·∑k+1

i=0 d
i − 1.

By inspection of the proof, it is clear that the refutation can be computed by a simple
procedure which at each step looks for a clause C with only positive literals, and builds a
refutation of (F, k) recursively by: building l refutations of (Fi, k − 1); turning them in l
derivations (F, k) ⊢ ¬xi; and resolving against C. This procedure can be easily implemented
in the claimed running time.

So far we considered (F, k) to be a parameterized contradiction. If that is not the case,
then the algorithm fails. It can fail in two ways: (a) it does not find a clause with only
positive literals; (b) one of (Fi, k − 1) is not a parameterized contradiction. The algorithm
will output the full zero assignment in case (a) and {xi = 1} ∪ α in case (b), where α is an
assignment witnessing (Fi, k − 1) 6∈ PCon. By induction we can show that on input (F, k)
this procedure returns a satisfying assignment of weight ≤ k.

12



A related result was obtained in [9, Theorem 12]. Notice that while Bounded CNF

Sat and Weighted CNF Sat are both W[2]-complete, Bounded d-CNF Sat is in FPT

and Weighted d-CNF Sat is known to be W[1]-complete. This means that reducing the
case of exact weight to bounded weight (see the proof of Proposition 1) requires large clauses
unless FPT = W[1]. We state two interesting consequences of Theorem 4.

Corollary 1. For each d ∈ N, the set of all parameterized contradictions in d-CNF has a
core.

Proof. The refutations constructed in Theorem 4 contain O(dk) initial clauses in O(dk+1)
variables. These clauses form a core.

The following corollary expresses some restricted form of automatizability (cf. also the
discussion in Section 5).

Corollary 2. If Γ ⊆ PCon has a core, then there exists an fpt-algorithm which on input
(F, k) ∈ Γ returns both a core and a refutation of (F, k).

Proof. Let Γ have a core of size f(k). Then the core only contains clauses of width ≤ f(k).
On input (F, k) we run the algorithm of Theorem 4 on the CNF formula consisting of all
clauses of F with width ≤ f(k). This yields a core together with its refutation.

4.1 The Linear Ordering Principle

Let us now turn to Question 2, that is whether the existence of a core is a necessary condition
for a parameterized contradiction to have an fpt-bounded refutation in tree-like Parameter-
ized Resolution.

A trivial counterexample to this conjecture is made by the CNF (x1 ∨ x2 ∨ . . . ∨ xn) ∧
¬x1 ∧ . . . ∧ ¬xn. A more interesting example—a version of the linear ordering principle—is
discussed here.

The linear ordering principle LOP claims that any linearly ordered set has a minimal
element. Its propositional formulation can be described as follows. It has the variables
(xi,j | i, j ∈ [n], i 6= j) with the intended meaning that xi,j is false if i precedes j in the
ordering and is true if j precedes i. The axioms are given by:

LOP:

¬xi,j ∨ ¬xj,i for every i, j (Antisymmetry)

¬xi,j ∨ ¬xj,k ∨ xi,k for every i, j, k (Transitivity)
∨

j∈[n]\{i}
xi,j for every i (Predecessor)

xi,j ∨ xj,i for every i, j (Totality)

Totality axioms provide a trivial core: take two disjoint sets A,B ⊆ [n], |A| = |B| = k+1.
Then the totality axioms xi,j ∨ xj,i for i ∈ A, j ∈ B form a core over 2k+2 variables. Thus
this principle is not good for our purposes.

13



We, however, can modify it to the following version LOP∗ by restricting to the variables
xi,j for i < j. In particular the full true assignment represents the linear order (n, n −
1, n − 2, . . . , 2, 1) while the full false assignment represents (1, 2, . . . , n − 2, n − 1, n). This
representation will help in the proof of Proposition 2.

LOP∗
n is obtained by substituting in LOPn any occurrence of xj,i for j > i with ¬xi,j. In

this way all totality and antisymmetry clauses vanish, and transitivity translates according
to relative ranks of the involved indexes. Thus we obtain the clauses

¬xi,j ∨ ¬xj,k ∨ xi,k for all i < j < k (Transitivity 1)

xi,j ∨ xj,k ∨ ¬xi,k for all i < j < k (Transitivity 2)
∨

j<i

¬xj,i ∨
∨

i<j

xi,j for all i (Predecessor)

The alternative formulation LOP∗ does not have a core because all clauses of bounded
width are satisfiable by the all zero assignment which represents a total order. Also, nei-
ther LOPn nor LOP∗

n have a poly-size tree-like resolution refutation (that can be seen e.g.
by inspecting the proof from [5] that established this in the absence of totality axioms).
Nevertheless LOP∗ admits fpt-bounded tree-like refutations.

Proposition 2. LOP∗
n has fpt-bounded tree-like refutations in Parameterized Resolution.

Proof. The idea of the refutation is that for any total order either the least element is among
1, . . . , k + 1 or there is an element less than all of them. In the latter case there are at least
k+1 inversions with respect to the canonical order (i. e., k+1 variables are set to 1). In the
language of decision trees the proof boils down to querying all the variables which deal with
the first k + 1 elements, and then to compare any other element with the smallest among
the first k + 1.

Let (LOP∗
n, k) be the given instance and assume w. l. o. g. that k ≤ n. We are going

to derive LOP∗
k+1 from (LOP∗

n, k) in polynomial length. This concludes the proof of the
theorem because LOP∗

k+1 has O(k2) variables and consequently has a tree-like refutation of

length 2O(k2).
To obtain LOP∗

k+1 we have to derive

∨

1≤j<i

¬xj,i ∨
∨

i<j≤k+1

xi,j

for any 1 ≤ i ≤ k + 1. W. l. o. g. we discuss the case i = 1 which requires simpler notation,
the other k cases are analogous.

Our goal then is to derive
∨

1<j≤k+1 x1,j. For any l > k+1 consider the following clauses:
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the first is an axiom of Parameterized Resolution, the others are transitivity axioms.

¬x1,l ∨ ¬x2,l ∨ . . . ∨ ¬xk+1,l (3)

x1,2 ∨ x2,l ∨ ¬x1,l (4)

x1,3 ∨ x3,l ∨ ¬x1,l (5)

...

x1,k+1 ∨ xk+1,l ∨ ¬x1,l (6)

By applying Resolution between clause (3) and the transitivity clauses we obtain

x1,2 ∨ x1,3 ∨ . . . ∨ x1,k+1 ∨ ¬x1,l (7)

We just proved that if 1 is the least index among the first k + 1, then no index above k + 1
can be less than 1, otherwise there would be at least k + 1 true variables. The predecessor
constraint for 1 contains the literal x1,l for every l; thus applying Resolution between that
and clause (7) for every l > k + 1 yields

∨
1<j≤k+1 x1,j.

We obtained the predecessor axiom for index 1 in LOP∗
k+1 by a derivation of size O(kn).

With k+1 such deductions we obtain LOP∗
k+1. As the whole refutation of LOP∗

n has length

O(k2n) + 2O(k2), it is fpt-bounded.

5 Discussion and Open Problems

Is the parameterized proof system P̂ from Definition 7 the most natural way to define the
parameterized analogue of P? The answer depends on the original proof system P , of course.
The main (unspoken) reason why [11] defined it in this way is simply because weak proof
systems cannot directly talk about the weight of the input. Let us first discuss two familiar
systems that are strong enough to overcome this limitation: Frege and Cutting Planes.

The problem of getting super-polynomial lower bounds for the Frege proof system F is one
of the biggest open problems in Logic and Theoretical Computer Science. Lower bounds for
its parameterized version F̂ seem even harder to achieve for strong contradictions (as we just
add new axioms). A similar conclusion remains true if we combine all parameterized axioms
into one (using e.g. [7]) but allow arbitrary parameterized contradictions, not necessarily
strong.

The case of Cutting Planes (CP) is way more interesting. First of all, we do not seem to

know lower bounds even for the “canonical” version ĈP :

Question 1. Is ĈP weakly fpt-bounded?

This, of course, is yet another reflection of the mysterious status of this proof system: the
only known lower bounds for it are based on very indirect methods (interpolation, see [6, 21])
and no direct, combinatorial proof is currently known. And if we try to generalize the
methods from [6, 21] (at least in a straightforward way) then we immediately arrive at a
problem in parameterized circuit complexity that seems to be widely open (at least, we do
not see how known methods can be applied to it).
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Question 2. Find an explicit partial monotone function (a.k.a. a monotone promise prob-
lem) f : [n]≤k → {0, 1} defined on inputs of Hamming weight ≤ k that does not possess
monotone circuits of size f(k)nO(1).

Note that the problem of finding (say) a
√
k-clique does become easy in this context.

For weaker proof systems, [11, Section 4] proposed to use auxiliary variables. Their
suggestion was to add new “pigeonhole variables” pi,j (i ∈ [n], j ∈ [k]) and “pigeonhole
clauses”

¬xi ∨
∨

j∈[k]
pi,j for all i ∈ [n] (Pigeon clauses)

¬pi1,j ∨ ¬pi2,j for all i1 6= i2 ∈ [n], j ∈ [k], (Hole clauses)

where x1, . . . , xn are the original variables. Remarkably, they proved that the pigeonhole
principle has fpt-bounded refutations in this version of Parameterized Resolution.

The disturbing Example 1 turns into an instance of PHPk+1
k with large “metapigeons”

that has an fpt-bounded proof (e.g., the straightforward adaption of the rectangular proof
from [24, Example 1]). Thus, following [11], we ask:

Question 3. Is Parameterized Resolution with auxiliary variables fpt-bounded?

Let us now point out that there is an interesting and well-studied class of contradictions
for which the difference between these two encodings disappears, and these are independent
set principles. Following [2], let G be a graph [n] in which vertices are split into k subsets
V1, . . . , Vk of size n/k each called blocks. The principle αblock(G, k) encodes the fact that G
has a block-respecting independent set of size k; it has the variables xv (v ∈ [n]) and the
axioms

¬xu ∨ ¬xv for all (u, v) ∈ E(G) (Edge clauses)
∨

v∈ Vi

xv for all i ∈ [k] (Block clauses)

(¬xu ∨ ¬xv) for all u 6= v in the same block (1–1 clauses).

The fact that all satisfying assignments have at most k ones is already built in this
principle: all parameterized axioms are subsumed by the 1–1 clauses above. Auxiliary clauses
in the sense of [11] (both pigeon and holes) also do not help to reduce the refutation size, as
witnessed by the following substitution of the pigeonhole variables:

pv,j 7→
{
0 if v 6∈ Vj

xv if v ∈ Vj.

Thus, we are also asking the following specific form of Question 3:
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Question 4. Do the principles αblock(G, k) always have fpt-bounded Resolution refutations
as long as the graph G does not contain block-respecting independent sets of size k?

One good candidate for a lower bound here would be Erdős-Rényi random graphs G(n, p)
for an appropriately chosen value of p. A lower bound for these formulas has been recently
proved for tree-like Resolution in [4].

Let us recall that a proof system P is automatizable if there exists an algorithm which for
a tautology F with a P -proof of size S finds a P -proof for F of size at most SO(1) and runs
in time SO(1). Alekhnovich and Razborov [1] proved that if (classical) Resolution or tree-like
Resolution were automatizable, then W[P] would coincide with FPR, the randomized version
of FPT. Eventually the derandomization in [13] improved the result so that under the same
automatizability assumptions W[P] would coincide with FPT. On the other hand, tree-like
Resolution is quasi-polynomially automatizable (see e.g. [3]).

We point out that the concept of quasi-polynomial automatizability is meaningless in
the context of Parameterized Resolution, because every (F, k) ∈ PCon with |F | = n has
a refutation of size c ·

(
n

k+1

)
for some constant c. If k ≤ log n this is smaller than nlogn;

otherwise
(

n
k+1

)
≤ 2(k+1)2 which is fpt with respect to k.

On the contrary, the concept of polynomial automatizability can be extended to param-
eterized proof systems in an obvious way. Thus, we ask:

Question 5. Is (tree-like) Parameterized Resolution, with or without auxiliary variables,
fpt-automatizable or fpt-automatizable w.r.t. strong contradictions? That is, does there exist
an algorithm that for any (strong) parameterized contradiction (F, k) ∈ PCon outputs its
refutation within time f(k)SO(1), where S is the minimal possible size of a parameterized
refutation of (F, k)?

Naturally, unconditional results of this sort are completely out of reach for the moment,
so we are willing to allow here any reasonable complexity assumption (that will most likely
reside in the realm of parameterized complexity itself).
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