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Abstract—The set of available multi-objective optimization evenly. Although, this objective can easily become unman-
algorithms continues to grow. This fact can be partially attibuted  ageable for problems with more thah objectives. This is
to their widespread use and applicability. However this incease because for increasing number of dimensions in objective

also suggests several issues remain to be addressed satisfaly. th b f soluti ired dover th i
One such issue is the diversity and the number of solutions Space the number of solutions require eérthe entre

available to the decision maker (DM). Even for algorithms vey ~ front increases exponentially [6] and tissveet spotof the
well suited for a particular problem, it is difficult - mainly due evolutionary algorithm parameters that produce good &oiat
to the computational cost - to use a population large enough is reduced in size [7]. A potential solution to this problem
to ensure the ||keI|hoc_>d of obtaining a solution close to the could be to restrict the search space by enforcing consgrain
DMs preferences. In this paper we present a novel methodolgg . L -
that produces additional Pareto optimal solutions from a Paeto in objective spaf:e, see for |nst_anc_e [1]. In the presen_t i@k
optimal set obtained at the end run of any multi-objective fOCUS our attention t@ and3-objective problems to avoid such
optimization algorithm. This method, which we refer to as Paeto complications and better illustrate the presented coscept
estimation, is tested against a set oR and 3-objective test However, if the decision maker (DM) is not completely
problems and a 3-objective portfolio optimization problem 10 gatisfied with the obtained PS, he/she can either recourse
illustrate its’ utility for a real-world problem. - . ' .
to, a different algorithm or restart the preferred algarith
Index Terms—Pareto Estimation, Evolutionary Algorithms, ith different parameters in the hope that the new PS will
L\illoitaheunstlcs, Multi-Objective Optimization, Nonlinear Estima- more closely satisfy the requirements. Progressive-eate
articulation algorithms [1], [5], offer an alternative appch -
however the drawback is that the DM mustibhethe-loopfor
. INTRODUCTION the algorithm execution [5] and this can be rather demanding

UCH research effort has been dedicated to finding th_eThe proposed method in this paper alleviates these difficul-

Pareto optimal set (PS) of multi-objective optimizatiodi€S for continuous MOPs by producing more and, usually,
problems (MOPs). Many algorithms have been developed QStter distributed Par(.e'go optimal _squt|ons along therenti
solve MOPs. Broadly speaking, these can be categorisedpi"f‘lreto front (PF). Additionally, an important feature thay

two groups, based on their approach to fitness assignmenk&e_helpful to both the analyst and the decision maker is that i
aere is a specific region of interest on the PF, the generafio

(i) algorithms based on Pareto dominance relations and (i) - , )
decomposition based approaches. Most algorithms detlo lutions can be focused on that region. This can be helpful
iph situations where there is a set of solutions about a part

during the 1990s and early 2000s were Pareto-based [1]-[4], T ; ) :
unng y W [1] f the PF that the DM is interested in; but no solution is

and to this day the majority of the methodologies rely on so ) i 1
;‘.lc_)und by the algorithm in that region. The method we propose

variant of this type of fithess assignment. Decompositio hi hi th imating th ) ¢
based optimization techniques draw upon the fact that earéfhievest 1S result by estimating t € mapping of a conve>_< S€
to the decision vectors corresponding to the Pareto optimal

optimal solutions can be obtained by aggregating the algect ut btained he final | . ¢ lti-obiweti
functions into a set of scalar optimization problems [5]isThSClutions obtained on the final iteration of a multi-objeeti

set of problems can, in principle, be solved using some eingﬂg,t'm'_zat'on algo?thm. This cr(])nvex S‘Tt '_?. u;gd in lieu Cﬁth
objective optimization algorithm. objective vectors for reasons that are clarified in Sectiicami

In an a posteriori preference articulatidn scenario [5, Secti_on IV. This mapping, identified_here using a radial dasi
pp. 77, the main focus of multi-objective optimization gifunction neural network (RBFNN), is then used to generate
gorithms is to approximate the Pareto optimal Set {R2) estimates of decision vectors that would lead to Paretarapti

quickly as possible, and distribute the Pareto optimaltmis solutions in the neighbourhood of the original solutiorts. |
’ should be noted that an RBFNN is chosen mainly because it

The authors are with the Department of Automatic Control Systems IS computationally efficient to train and the produced rssul

Engineering, University of Sheffield, Sheffield, UK, S1 3JD. are reasonable for the selected test problems. However this
E-mail: 1.giagkiozis@sheffield.ac.uk . choice is not restrictive and does not characterise theepted

The interaction of the analyst and the decision maker talesemfter a . .
set of Pareto optimal solutions has been generated. methodology, as any modeling or metamodeling method can

25ee Definition 4. be used instead - should the situation demand it.
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The idea that supports the proposed method, which we refer
to as Pareto Estimation method (PE), is that, for continuous min F(x) = (f1(x), f2(x), .-, fe(x)),
MOPs, it can be deduced from the Karush-Kuhn-Tucker
optimality conditions that the PS is piecewise continuaqus i
the decision variables, as previously noted in [8]. Thig,facvhere the number adbjective functionss k, S is thefeasible
combined with a reasonable approximation of the PS, ceggionfor the decisionvectorsx, and f;(x) is a scalar objec-
be used constructively to infer the mapping of the abovéive function, withi € {1, ..., k}. Additionally, in this work it
mentioned convex set to decision variables that produdesassumed that € R™ and thatn is the number of decision

1)

subject tox € S,

Pareto-optimal solutions. variables in the decision vectar. Also, depending on the
The main contributions of this work can be summarised &€finition of S, (1) can be a constrained MOP. For simplicity,
follows: only minimization problems are considered; however, toissl

« A method, which we call Pareto Estimation (PE), is prer_1o'[ limit the generality of the produced results since due
sented. PiE can be used to increase the number’ of Pa}gtéh? dualjty principle, max.‘m.‘z‘."‘“o.” of a Scalar obje.etiv
optimal solutions, for2 and 3-objective problems, from function fi IS the same as m|n|m|;at|9n Of fi. An '”?p"c't
an approximation of the Pareto set. This can be usefigsumption is that the scalar objective functions in (1) are

in a situation where the evolutionary algorithm has n(gputually competing anq p055|bly non-commensurgte. .
produced a solution close enough to the desired Iocation” the above assumptions obtain then only a partial ordering

on the PF. Furthermore the Pareto estimation meth88n_b_e defined una~mbiguous_ly. Namely when comparing two
does not necessitate any alteration to the optimizatitqll’?c's'On vectorsx,Xx € 3, it can so happen that their

algorithm that is used to produce the Pareto set and grresponding objective vectors are incomparable. Intjzec
dependent on it only as far as the quality of the PS fois situation is resolved by a decision maker who will selec

concerned. one solution over all others, thus inducing a form of conmlet

Edering. However this ordering is mostly subjective, euren

o The effectiveness of PE is validated using a set of te% that utility functi 9 qt the wérk
problems, commonly used in the MOEA community, fof'® case that utility functions [9] are used to case the work o
e DM. In the absence of a DM a usual assumption is that the

2 and3-objectives. It is shown that PE can produce mo o f the obiecti . K h .
Pareto optimal solutions across the entire PF with a mugﬁlatwe Importance ol the objectives, is unknown hence it
8 reasonable to obtain several non-comparable solutidmes.

lower cost compared to the alternative of restarting tH bl £ induci ial ordering in Euclid
optimization or using an alternative algorithm to soly@"oRIeM Of Inducing partial ordering in Euclidean spaces wa

the MOP. Also it is much more flexible compared wit nitially studied by Edgevyorth _[10]’ and later further exmked_
progressive preference articulation methods [1]. AltHou y Pareto [11]. Thg .rellat|0_ns introduced by Pareto are define
this is not the main purpose of the PE method, it is a go&f follows for a minimization problem:

test since if it can produce more solutions on the entire R¥efinition 1. A decision vectorx* € S is said to weakly
then it should be able to increase the number of solutiogéminate a decision vectorx iff f;(x*) < fi(x), Vi €

in specific regions as well, which we believe to be the1,2, ... k} and fi(x*) < fi(x), for at least onei ¢
main utility of PE. {1,2,...,k} thenx* < x.

« Furthermore we consider a real-world problem, namelya = . i ) i
3-objective portfolio optimization problem, whereby, arPefl-n!tlon 2. A dQC|S|on vectok* € S !s said todominate a
increased number of Pareto optimal solutions is produc@@C'S'on vectow iff fi(x*) < fi(x), Vi € {1,2,...,k} then
along the entire PF as well as in specific regions,with the = *-
help of the Pareto estimation method. Definition 3. A decision vectorx* € S is said to be

The remainder of this paper is organized as follows. IAareto optimal if there is no other decision vectot € S

Section Il a general formulation of a multi-objective optisuch thatf;(x) < fi(x*), Vi € {1,2,...,k} and fi(x) <
mization problem is given followed by some fundamentafi(x*), for at least onei € {1,2,...,k}.

definitions. Related copcepts an_d motiyating ideas fc_>r tlﬁ?efinition 4. LetF : S — Z, with S € R” and Z € RF. If
proposed method are discussed in Section Ill. In Section Ié/

o . . cJS the feasible region then the sgtis the feasible region
the Pareto estimation method is described for Pareto an bbjective space. Given a s& C Z, the non-dominated

decomposition-based algorithms. The method is testeahagabetg is defined asP — {z : #7 < 2,¥z € A}. If A is the
a set of multi-_objecti\{e optimization prol_alems and 'Fhesnst_e entire feasible region in the obje_<:ti\;e spac¢g,then the seP
are reported in Section V and in Section VI PE is app!leg called thePareto optimal set (PS) or Pareto Front (PF).

to a 3—object|ve. portfolio optimization .problerr_L Lastly _'nAny element: € Z is referred to asobjective vector.
Section VII we discuss problems, potential solutions ared&d

related to the PE method and in Section VIII this paper is Also the following definitions are used in this work in
summarized and concluded. various contexts:

Definition 5. Theideal objective vector, z*, is the vector with
Il. PROBLEM SETTING AND DEFINITIONS elementinf(f1),...,inf(f%)) [5, pp.16].

A general definition of a multi-objective problem (MOP) is 20r Pareto Front approximation.
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Metamodeling Methods . : : .
A practise there is strong evidence that very good approiomst

of Pareto optimal solutions are generated.

A. Metamodeling Methods in Multi-Objective Optimization

An additional challenge that MOEAs face is that the cost,
of objective function evaluations, for a Pareto optimalsion
to be found is relatively high. This coupled with objective
functions that can take hours or days to evaluate constitute
severe limitation which is widely acknowledged in the MOEA
community [23]-[26]. A prevalent methodology employed by
researchers to tackle this issue is the use of metamodeling
methods in optimization. The insight is that, if a surrogate
model of the actual objective function can be created with
relatively few samples, then this surrogate model can bd use
instead of the objective function in the optimization prege

Since the purpose of the surrogate model is to relieve the
EA from evaluating an expensive objective function as much
as possible, the primary selection criteria for a surrogaidel
Fig. 1. Metamodeling methods in EAs gradually refine a sutegnodel and are adapted accordingly. Namely the suitability of a modgli
then use it to find a better Pareto set approximation. Inatieiz methods use method is judged according to; - (i) the ease with which the
B e e e, fare? 40 model parameters can be idenified and, (i) the cost of one
method propos@d in this work, proceeds in the reverse #iretty mapping evaluation of the Surrogate model which must be much smaller
a surrogate sefP, of a Pareto front approximatiorR, to the decision vector than that of the actual objective function. Therefore, for a
set that maps @ metamodeling method that satisfies the above criteria,ge lar
number of objective function evaluations can be substitute
with calls to the surrogate model, hence reducing the total
cost of the optimization. Another criterion that is defivéti
in the success of the aforementioned procedure is the model
precision. This so because if the surrogate model cannot
Definition 7. The convex hull [12, pp.24] of the set” = capture important features of the objective function thercle
{e1,...,ex}, denoted asonv C, wheree; is ak x 1 vector will be grossly misled, although caution should be exertise
of zeros withl on thei*" position, is referred to a<Hj. not to overcomplicate the surrogate model to a degree that it

Definition 8. The extended convex hull (EH;) of the setC, cost becomes comparable to the original objective function

is the union ofC H; and the points in the affine space of theIn a way, a surrogate model function can viewed as a low-

setC produced by the projection of a Pareto optimal frontPass filter, hopefully separating tm®isefrom the important

with ideal vector0 and nadir vectorl, onto the hyper-surface featqres of t_he_ objective function, that is its’ minima (or_
of C'. maxima). This is why such methods have been employed in

noisy optimization problems as well [27].

A multi-objective evolutionary algorithm (MOEA) will in ~ The general approach when substituting the real objective
general attempt to obtain @epresentativeapproximation of function with a surrogate model for use in an EA, has the
the Pareto optimal set. However what is considered to befalowing structure:
representative approximation of the PS is not context inde-step 1 Sample the real objective function.

pendent, but metrics have been devised to measurgufily ~ Step 2 Using the obtained samples create a surrogate

Definition 6. The nadir objective vector, z"¢, is the vector
with elements(sup(f1),...,sup(fx)), subject tof; be ele-
ments of objective vectors in the Pareto optimal set [5, pp. 1

of the PS. For an excellent review of this topic the reader is model.
referred to [13]. Step 3 Use the surrogate model in the optimization.
Step 4 If the convergence criteria are met stop, if not go
I1l. RELATED WORK to Step 1

Multi-objective evolutionary algorithms have had tremenAn illustration of this iterative procedure can be seen in
dous success in solving real-world problems. They have befeig. 1, where an ever more accurate mapping of the deci-
applied in control systems [14]-[16], in economics and foean sion space,S, to the objective space, is created in every
[17]-[20] and aerospace [21], [22]. This can be attributed fteration, {FO,Fl, ... }+. This approach was initially limited
the fact that evolutionary algorithms (EAs) perform welt B0 to serial implementations [28], [29], however later adwesc
wide range of problems that classical methods, such as gonire metamodeling-based EAs employed local models [30] thus
optimization [12], are inapplicable. However the robusiief reinstating a key strength of EAs, their potential to be exed
EAs does not come for free. For example, contrary to convaxparallel.
optimization, there is no guarantee of global optimality fo The idea to employ surrogate models in lieu of the tiiue
solutions produced by evolutionary algorithms. Although imodel of a process can be dated back to Box and Wilson [31]
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where they employed polynomial basis functions to createaaspecific solution with accuracy. The remainder of this pape

model from data. This approach is commonly referred to in tleensiders this question and an answer is presented.

literature as response surface method (RSM). Other exampleHowever to appreciate the importance of this question, let

of modeling methods used in combination with an evolutignaus embark on a though experiment. Assume that we have a

algorithm are neural networks [25], [32], [33] (multi-laye function,

perceptron as well as radial basis function networks), iKgg ) )
B {x if and only if F'(x) =z, andz € P

or Gaussian processes generalized response surface methodg(z)
0 otherwise.

[34] as well as Bayesian regression [35].

)

Namely the function,G, returns the corresponding Pareto
B. Innovization Methods optimal decision vector if a Pareto optimal solutian, is

Another issue that is not yet been satisfactorily addrességed andd otherwise. Obviously such a function would be
especially for many-objective problefpsis that the final of limited use if the the analyst had no information about
Pareto set contains information that can be used to infé¢ shape of the Pareto front as well as its location. Namely
relationships in decision space that result in Pareto atinthe function,G, is a special indicator function with domain
solutions. A method that attempts to answer this questi@h definition the Pareto optimal seg, and range the Pareto
was presented by [36], which the authors dalhovization optimal decision vectors). Therefore given such a function
The authors argue that by identifying a set dssign rules and the information about the exact location of the Pareto
the multi-objective problem will not have to be solved agaifront; it would be simply a matter of evaluating (2) in order t
Although this premise seems intriguing’ to generate Sueptain the decision vector that would result in a Paretawti
design rules requires great effort on the behalf of the atalysolution. Such a description of the Pareto front geometry ca
thus is limited to very low dimensional problems in decisioR€ 9given by a parametric or non-parametric model if the
and objective space [37]. Another difficulty with this metho Problem has already been successfully solved by some method
is that the optimization algorithm has to be specificalljoraid A Potential issue with such an approach is that a different
to the process [36]—[38]. To deal with this shortcomingfert description of the PF will be required for different problem
work presented in [37] attempts to resolve this by partialg)though this seems troubling, there is nothing to precltte
automating the procedure. The objective in such methodsexistence of a function with eonvenientiomain of definition,
to identify a mapping from decision space to objective spaé@at would map to the Pareto front of any given problem.
that will guarantee that the resulting solutions will be gtar Naturally such function must depend, and adapt to, the ®aret
optimal, seeFig. 1. This amounts to identifying a set ofoptimal set or some approximation of it, and hopefully a
constraints/relationships in decision space that if aethéo, Procedure can be found to map the former to the latter. $trict
will produce the desired results. However in these methog@Reaking such a function would perform the following task,
there |s_r!t a cl_ear way to obtain Pareto optimal solutions in (W) = 2, 7 € P. 3)

a specific region on the Pareto front, except by manually
constructing different relationships on different parfstioe Additionally it would be even more convenient if the mapping
front, something that can easily become unmanageable forwas predictable in the sense that for a givethe resulting
even the smallest problems. This fact can attested by tlee sizis not very hard to predict, as this would ease the complexity
of the problems selected in [36], [37] which never exceeded using the function (3). A natural candidate for such a task
2 — 5 decision variables an#l objectives. would be an affine function, that is a linear function plus an
offset.

The final piece of this puzzle lies in the domain of definition

_ ) of the function described in (3). The requirements on such
In this work we bring forward and resolve, to some extent, yomain would be; - (i) that points within the domain of

a_question that SEEMS to be ignored by the literatudamely definition of the function]I, should be easy to obtain and (ii)
given an approximation of the Pareto front by any MOEA, I§1ny convex combination of the points in the set must still be

there a way to obtain solutions, in specific parts of the P, thy, e et that is to say the set must be convex. By adhering
are not present in the g|ve’)n set, and if the answer is positiy§ yhese requirements, and if relations similar to (2) and (3
how can this be achieved? This question stems from the fagf |4 pe identified, then by the following procedure a Pareto

that if there was a way to obtain a Pareto optimal solutiot th@ptimal solution could be obtained at any desired location o
adheres exactly to the decision makers’ preferences, lfega t ., pg

would be no need to evaluate any other solutions as it is lysual
the case for multi-objective optimization algorithms. Hewer
such algorithms inherit this strategy because there is @arcl
path in incorporating all preferences since it is unknown if
they are in fact reasonable, that is to say if there exist such
solution at all. Additionally there is no clear way in obtiaig

C. Pareto Estimation Method - Motivation

o Choose aw that would produce the desired This is
verified by (3), if the resulting. is not the intended one;
it would be sufficient to change a little. In this step
we exploit thepredictability of the mapping]1.

« Use the obtained in (2) to obtain the decision vector,
x, that would produce the objective vectar

4Problems with more than three objectives. « Evaluate the actual objective functiod;, using the

5To the authors’ best knowledge. obtainedx to verify that F(x) = z. Although strictly
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F2(x)

2.42

f2(x)

* 2.35

2,22 fy(x) 0

F2(x)

1

sion variablesD,
Fp:P—>7D, (4)

can be identified using a modeling method [34]. A theoretical
argument based on the Karush-Kuhn-Tucker (KKT) optimality
conditions, which further fosters the idea that the mapping
in (4) should be identifiable, was proposed in [8] which is
further supported by [39], [40]. The authors stated that for
continuous multi-objective problems the Pareto optimalise

piecewise continuous in decision space. This point is iteds

in Section VII. In the present work, a radial basis function

neural network (RBFNN) is used for this purpose, since it
is both robust and accurate for a wide set of problems [41].
The structure and further details regarding the way thi typ
of neural network is employed in this work is discussed in
° Section IV-B.
° However, even if the mappind;p, was explicitly known, it
160 is still unclear how the desired Pareto optimal objectivetoes
should be generated in order to obtain their corresponding
decision variables, using’p. This problem is related to the
issue encountered in Section 11I-C with the functiéh For
ample, assume that we have the exact mappiagfor a
ulti-objective problem, with the only restriction beingat
er provide the exact coordinates of Pareto optimal poimts. |
‘Urder to be able to provide this information, we are required

re- . .
. . . 1 know exactly the shape of the PF, meaning a mathematical
quirements of the decision maker exactly, instead of repiiat description of the PF hyper-surface must be available for al

solving a multi-objective optimization problem, in hope t tential problems. If such information is available foeth

obta!n a sct)lu'uon that closely satisfies the aforemention ﬁ/en problem, then all decision variables correspondirtyé
requirements. PF could be obtained usingp. This point becomes clearer

if we view the mappingFr as the inverse of the objective
functionF~1(-) = Fp(-), which leads to
A. Overview

The question posed in Section 1lI-C, is interesting because Fp(F(x)) =x. ®)
depending on how well it can be answered, the informati®ven if the function,F(-), is not a bijectioh a mapping
that is in the analysts’ possession increases dramatitaily G : P — D can still be obtained but can no longer be called
allowing the analyst to cater to more specific requests fiwn tthe inverse image ofF, however for practical purposes its
decision maker. This is so because given absolute knowledgaction would the same. Therefore it is relativedpfe to
of the aforementioned functions, (2) and (3), a multi-obyec ignore for the moment that the objective functibii-) may
problem is virtually solved, as any solution on the Paretoifr be many-to-one, this issue is further discussed in Sectibn V
could, theoretically, be obtained with a very small additib Now, let us assume that we can transform the7db a
expense and high precision. Although to obtain the entiget?, with the only difference being that we can very easily
Pareto optimal set may be infeasible in practice, this is th#tain and manipulate the elementsfrand that any element
predominant definition of what it means &blve a multi- in P is mapped exactly to one element in the Pareto optimal
objective optimization problem [5, pp. 61]. setP. That is we require the mappifdg—' : P — P to be a

However, such a relationship is usually unknown for reabijection. In which case we can obtain the inverse transform
world problems and sometimes it is unknown even for tegt: P — P, and,
problems. Most multi-objective optimization algorithnts\se

to generate a PS which possesses two key properties, first, it . .
should produce objective vectors as close as possible to Yuld enable the DM to generate any required solution. One

true PF and, second, these objective vectors should beyevegy t© produce such a mapping is to initially normalize the
spread across the PF hyper-surface. Under the assump8Bifctive vectors inP according to,

that the optimization algorithm of choice has succeeded, to ~ fi—azr

a reasonable degree, in producing a PS that possesses the fi= znd _ g’ )
aforementioned properties, then the mappifg, of Pareto ' ’

optimal objective vectorsP, intc® their corresponding deci-

pTOJCHI(') °

0 1 fiee O

Fig. 2. lllustration of thelT~! mapping for a hypothetical Pareto st

speaking, should the mappings described in (2) and
be exact, this step is redundant.
So, if such a procedure was available in practise, theredvo
be a way to obtain the decision vector that satisfies the

IV. PARETO ESTIMATION METHOD

Fp(TI(P)) = D, ®)

wherez* and z"? are estimated from the s&. This nor-
malization scales the objectives in the rarggel]. The 11!

6See Section VI, for an explanation why this mapping is uguiatto and

not onto. A function that is an injection and a surjection is a bijestir one-to-one.
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the method described in Section VI-B could be employed to
obtain estimates from the PE method. This can be achieved as

M ¢ H: the entire,P, set is used in the model creation process (see

—— EH,NCH Sec_tlon IV-B). _ _

. Finally, to generate the estimated Pareto optimal solu-
tions, a set of evenly spaced convex combinations of the
setC = {ei1,...,er} is created, let the resulting set be,

P &. Subsequently this set can used as an input to a model

/ of Fp. The resulting decision vectors may then be used in

the objective function to verify that they correspond toe®ar
optimal objective vectors. An alternative is to credtdor a
specific region of interest in the PF, for example using oint
that are within theconv C.

B. Radial Basis Function Neural Networks

Fig. 3. lllustration of thelI~! mapping for a Pareto s with 3 objectives. Before we delve into a de,talled descrlptlo_q of how the
The points on the outer grid are 1, while the transformed set is within Proposed method can be applied to decomposition and Pareto-
the hashed regions. based multi-objective optimization algorithms, we firspkxe

the technigue used to model tli& mapping.

Neural networks, or more precisely artificial neural net-

mapping i_s illystrated ifrig. 2. AfFer the normalization the re- works®, are widely used in an array of different disciplines
sulting objective vectors are projected otitd{;; for problems [43]-[45]. They are well known for theianiversal approxi-

with two objectives this is the same &57;. Subsequently the mator property [46]. Furthermore, a subclass of NNs, namely
mapping£p, L radial basis function neural networks (RBFNNs) have been
Fp:P—=D (8)  shown to be robust and accurate predictors when compared

is identified using a RBFNN, as shown Fig. 1. This model 0 Kriging, multivariate adaptive splines and polynomiet r

in essence subsumes the composition of the mappingnd 9ression methods [41]. RBFNNS have a single hldde_n layer

11 in (6). and an output layer. Their output layer is often comprised of
1! effectively takes a set of vectors &F, P, and creates linear functions since this guarantees a unique solutidhed

its corresponding set i H, P. For two dimensions, vectors Weights w [47]_without .the need to resort to the renowned

in 7 will be part of the convex sef’H; and this set will be DPack-propagation algorithm [48].

identical to EH;, seeFig. 2. For more than two dimensions, RBFNNs usually employ basis functions that are radially

both EH; andCH; are still convex sets, but a more elaboratymmetric about their centrgs, for the chosen norm, and

procedure will be required to obtain points on thél; due decreasing ax drifts away fromu. A commonly used basis

to its geometry, se€ig. 3. function is the Gaussian [47], given in its general form by,
For example, consider a concave Pareto front as the one % — 2
shown inFig. 3. This front is the first octant of a sphere centred ¢i(x) = exp (T;) , 9)

at the origin with radiug.2. If we apply thell~! transform to
this Pareto optimal set, the resultifigset will be on the union where the nornf|-|| is often the Euclidear/¢-norm). Perhaps,

of the striped areas iRig. 3, i.e. EH;. The part ofP in CH; at this point a difficulty associated with RBFNNS is evident,
is the set within the triangle with vertices, e; andes. The namely that, although the output layer is comprised of linea
remaining points ir are part of EH;NCHY, and, since the functions, the hidden layer is highly non-linear in the para
edges of theZ H; set are curved it is no longer straightforwaratersy and o, which can prove a challenge in the selection
to generate points within this set that are evenly distetut of their optimal values. Various techniques are suggested i
Therefore the desired property of the functidh, discussed the literature addressing this problem [47]. In this work we
in Section IlI-C, that is the ability to easily generate @sin choose to use all the training data as centres for the radial
within its domain, would be restricted. A partial solutiom t basis functionsg;. Therefore the number of basis functions
this is to simply to bound the domain of definitions of thés equal to the number of training vectors used. Additigpall

IT mapping to theC H; artificially. This would maintain the a uniform value for the parameter, is used for all basis
aforementioned desirable property but such a restrictionlav  functions, and it is set t6- d,,, whered,, is the mean distance
limit the method in producing solutions that their projeati of solutions inP to their nearest neighbour. This value for

is within the CH;. The solutions inEHy N CH§ correspond was chosen experimentally. Intuitively, this almost guéeas

to extremePareto optimal points which are, potentially, othat the basis functions overlap, thus minimizing the nunolbe
low interest [42]. However, if this assumption is not truedanregions in the interior of the s@ for which no basis function
the decision maker requires solutions within these regions

9Artificial neural networks are simply referred to as neuratworks or
8CH; is the complement of the sétH;. NNs in this work for convenience.
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is active Therefore (9) becomes, P. Note that since the produced Pareto set approximation has
B2 finite size, theinf andsup operators are replaced by thén
$i(x) = exp u (10) andmax operators, which return the minimum and maximum
2(5d,.)? element of a set respectively. Next, the normalized set is

Arguably, this is the simplest way to choose the parametersRiCiected onto the hyperplang defined by{e:, ..., ex—1}
the basis functions and was used to retain focus on the pYieree; is a vector of zeros and a one in thé position.
posed methodology. For a more elaborate and comprehendids IS achieved by initially projecting onto the subspéce

methodology on selection of the parameters of RBFNNs, tRé"allel to £ and then shifting the result p%JIPLk’ where
reader is referred to [49]. Jip|kx is the |P| x k unit matrix. To obtain the projection

The output of a RBFNN is a linear combination of the basi®atrix, k — 1 linearly independent vectors in the plane are

functionse; (-), required. These vectors are obtained in the following way:
5 1 1
‘P‘ H = (el——1-~-ek1——1>, (14)
Y (%) =) Wy ii(%), (11) k k
=0

whereH is ak x (k— 1) matrix. Subsequently the projection

where ¢o(-) = 1 is the output layer bias term anth € matrix Pg is obtained by,

{1,...,n}, wheren is the number of outputs, i.e. the number B ——

of decision variables. Pp=H(H H)" H", (15)
To validate the created neural netwdrk—1)-cross valida- \here Py, is ak x k matrix with rankk — 1. The transformed

tion was used as suggested in [23]. Namely, for a Pareto sefeto sefd® is,

size N, N NNs where created usingV — 1) samples for the 1

training set and the remaining sample was used to estimate P = PPL + —J\p)k- (16)

the generalization error. This procedure is repeated aifitil k

the solutions in the Pareto set have been used as a test samRplglly the neural network used to identify the mappjﬁg,

and then the mean square error is calculated. After estigatis created as described in Section IV-B, usit@nd D as the

the NN expected generalization error using cross validatiaraining inputs and outputs respectively.

the final NN is generated using the entire Pareto set. Once the neural network is trained it can be used to create
additional solutions for a new set of convex combinatiéns
C. Pareto Dominance Based Algorithms However, this set has to be generated by the DM according to

The method described in Section IV-A introduced the ger'i‘—is,her preference in a particular region of the PF; altérely,

eral procedure of the proposed technique, however certdifnore densely and evenly spaced convex set spanning the

details were abstracted. Optimization algorithms based Sﬂtire PF could be created. The first option is likely to be

Pareto dominance for fithess assignment have several ton;argfgrred when the CO.St of evaluating the objective f”’""""?
1siderable or there is a clear preference towards a pkartic

parameters. One of these parameters is the size of the po?:ﬂp_
lation to be used in the optimization process. This parame &9ion of the_ PF. . .

effectively provides an upper bound on the resulting numberThe described procedure is summarised as follows:

of Pareto optimal solutions in the final st One requirement ~ Step 1Obtain the non-dominated individuals from the final
for the methodology to function correctly, for the entire, RF population of a Pareto based MOEA, and its
that there be a sufficient number of non-dominated solufions corresponding decision variablés

the final population. An additional requirement, that isdevit ~ Step 2Normalize’? according to (7).

from experiments, is that the non-dominated set produced byStep 3Project the normalized® onto the thek — 1 hy-

the algorithm is well spread across the PF, i.e. the solstion perplane going througfe, ..., e;—1} according to
are diverse and the mean distance from their neighbours has (14), (15) and (16), to producP. For 2 objectives
small variance. This simply states that the performance of this is the line through(0,1)” and (1,0)", and
the proposed method is dependent on the performance of the for 3 objectives, it is the plane through, 0,0)",

algorithm used to solve the MOP. (0,1,0)" and (0,0, 1)". }

Once the execution of a multi-objective evolutionary al- Step 4ldentify the mappingt’» using? andD as inputs
gorithm (MOEA) has come to an end, the non-dominated and outputs, respectively, to train a RBFNN as de-
solutions of the resulting set, constitute the et with scribed in Section IV-B.
corresponding decision variablg®. Then each objective in  Step 5Create the sef, in this work this is a set of evenly
P is normalized according to (7) in the ran@fe 1] and the spaced convex vectors.
ideal and nadir vectors are estimated from the/sas follows, ~ Step 6Use the set’ as inputs to the NN created iBtep

5, to obtain estimates of decision vectdps.
z" = (min{f,},..., min{fx}), (12)  step 7The setDg can be used with the objective function
2" = (max{fi},...,max{fr}), (13) F(-) to verify that the produced solutions are accept-
able.

where f; is the i*" objective function and its corresponding
values for different solutions are found in tié& column of 10The parallel plane td that goes through the vector.



8 ACSE RESEARCH REPORT, NO. 1028, NOVEMBER 2012

D. Decomposition-Based Algorithms V. EXPERIMENT RESULTS

Decomposition-based MOEAs have recently increased inTo test the merits of the proposed method, the Pareto-
popularity, a trend that was reinforced by the introductidn based algorithm was chosen to be NSGA-Il [4] and the
MOEA/D by Zhang and Li [50]. In MOEA/D, the MOP in decomposition-based algorithm was chosen to be MOEA/D
(1), is decomposed into a set of scalar sub-problems. TIi®]. The algorithms were ruB0 times, using a different seed
is achieved with the help of one of several decompositidor the random number generator on every run, for six MOPs
technigues, weighted sum, Chebyshev [5] and normal boundth two and three objectives. The population size used for
ary intersection [42] decompositions are some of the abvtgila both algorithms was set tt)1 for the two objective problems
options. The multi-objective optimization problem, seg (¢ and to276 for the three objective problems, as these values
restated in the following way with the aid of the Chebysheare commonly employed in benchmarks [50]. Additionally,
decomposition, the algorithms were allowed to run f&00 generations for
the WFG problems and fo500 generations for the DTLZ

N S *\ S _ *
m)fng“’(x’w 27) = [lw* o [F(x) = 27 o, problems. The DTLZ test problems are, DTLZ1 and DTLZ2
Vs=1,...,N, (17) for two and three objectives. For completeness a definitfon o
st. xe S the DTLZ1-2 test problems is given:

. N ) o DTLZ1, see [51]
wherew? are N evenly distributed weighting vectors aidis

the population size ang,, is the scalar objective function. The fi(x) = (14 g(x))x122,
o operator denotes the Hadamard product which is element- fa(x) = (1 + g(x))21(1 — 22),
wise multiplication of vectors or matrices. The intuitioatind
this is that sincey., is a continuous function ofv [50], N Fs(x) = (L4 9(x) (A = 1),
evenly distributed weighting vectors should produce a well g9(x) = 100(n — 2)+
distributed set of Pareto optimal solutions.
Consequently, since decomposition based algorithms al- 1002 —0.5)* — cos(20m (z; — 0-5)))’

ready have a set of convex combinations, namely the weightin
vectorsw, and the correspondence of weighting vectors to where n is the number of decision variables, here
objective vectors is clear, the sgt can be substituted with n = 10. The two dimensional problem ig'(x) =
the weighting vectorsw that produce Pareto optimal solu- (f1(x), f2(x)7T.

tions. This has the potential to greatly simplify the ddsed o DTLZ2, see [51]

procedure in Section IV-C. However, although this simpdifie

XrqTm ToT
the algorithm, the choice of input vectons,, by the DM is hi(x) = (1 +g(x)) cos (%) €08 (%) ’
more difficult because of its indirect nature compared to the e T o™
general method described in Section IV-C, and this problem fa(x) = ( +g(x))cos( 2 )Sm( 2 ) '
becomes increasingly more difficult for increased number of f3(x) = (1 + g(x)) sin (M) ,
objectives. 2
Therefore, although the method described for Pareto based g(x) = zn:xg
algorithms can be applied directly to decomposition based prt i
algorithms, if we choose to use the weighting vecters )
instead of creating the s@t, with n = 10.
- Additionally the test problems WFG2-3 and WFG6-7 from
Fp:w—D. (18) the WFG toolkit [52] were used. The settings used for these

Thus, a simplification to the proposed method is availabréSt problems can be seen in Table . The parameters k and

when the MOEA used is based on decomposition, and il Tat;JIe II a[rehthe p(t)smlon anI(IJI dt'Staane tre[[atedbriarameters
summarised as follows: respectively. This particular collection of test problemas

Step 1O0btain the weighting vectorsy, corresponding to TABLE |
non_domlnated Solutlons TEST PROBLEM SETTINGS SUMMARY

Step 2ldentify the mappingF» usingw and D as inputs
and outputs respectively, to train a RBFNN.

2-Obective Problem Instances

Step 3Generate a new set of weighting vectevs in the # Generations N n k|
PF region of interest, or using one of the methods WFG 300 101 24 4 20
discussed so far. DTLZ1 500 o1 10 - -

. DTLZ2 500 101 10 -

Step 4Use the setwg as inputs to the neural network
created inStep 2 to obtain estimates of decision 3-Objective Problem Instances
VectorsDy,. # Generations N n k |

Step 5The setD,, can be used with the objective func- WEG 300 276 24 4 20
tion F(-) to verify that the produced solutions are DTLZ1 500 276 10 - -

acceptable. DTLZ2 500 276 10
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chosen with several considerations in mind. First, the jgrob and the coverage metric, described below, was used exactly a
set had to be broadly used and recognised by the MOHk&fined in [56],

community. Second, the problems should be challenging and, Coverage Metric (C-Metric)

diverse. It is our belief that these aims are accomplished by

this particular problem set. It is hoped that future researc C(A, B) = {ueBlFveA:v= “}|,
will provide further validation of the proposed methodojog 1B

through experiments on more test problems as well as real- (4, B) = 0 is interpreted as: there is no solution in
world problems. More specifically, DTLZ1 and DTLZ2 [51] that dominates any solution iB. And C(A, B) =1 is
have been used in numerous studies [53], [54], [S0], somegthi  interpreted as the exact opposite, i.e. all the solutions in
that is also true for the WFG toolkit [53], [54] Furthermore B are dominated by at least one solution4n
each of these problems pose a different challenge. Foniosta
WFG2 has a discontinuous Pareto front and is non-separable.
WFG3 is also non-separable and its Pareto front is linear for
two dimensions and degenerate for three or more. WFG6 hagor every run of NSGA-II, with settings as explained in
a concave Pareto front and is non-separable and unimodgtction V, the proposed method was applied using an evenly
and, lastly, WFG7 is separable with a concave Pareto fraspaced convex sét of size ~10 times greater than the initial
and has parameter dependent bias [52]. The settings for gogulation used in the optimization algorithm. The Setvas
two algorithms were chosen in a similar fashion. used as input to the identified mappidg resulting in the
The hypothesis of this paper is that by using the Pareto estimated decision vectorBs. SubsequenthyDs was used
timation methodology the number of Pareto optimal solugionwith the objective function generating the objective vesto
available to the DM can be increased significantly, and despPs.
the fact that on many test instances the estimated Pareto s&pecifically, for the2-objective test problems, the size of
actually turns out to be superior to the initial set this ig ndhe setPs was set tol 000 and for the3-objective problems
the intended purpose of the method and can be treated abe size of the sePs was set to3003. The original Pareto
positive side effect. For performance assessment purpitses optimal solutions used in the estimation process can be seen
ratio of the following indices was used as - our main focus ia Fig. 6 andFig. 8, and the corresponding estimateg are
the relative quality of the Pareto set, produced by MOEA/Bhown inFig. 7 and Fig. 9. It should also be noted, as is
and NSGA-II, before the application of the proposed methqekrhaps apparent from the figures, that the entire estimated
and after - and not the performance of the employed algosthmopulationP; is presented and not a non-dominated subset.
in absolute terms. The same procedure was performed for58llruns of NSGA-
« Inverted Generational Distance (IGD), introduced in [55]! for all test problems for two and three objectives and the
. results are summarized in Table II-Table V and their non-
> min{||A; — s|l2, ..., [|[An — s]|2} . .
. sepr parametric counterparts are presentedrign 4. Furthermore,
D(A,P*) = P ' the number of valid solutions produced by the RBFNN, the
(19) number of Pareto optimal solutions and the RBFNN estimated
where|P*| is the cardinality of the seP* and A is an generalization error using cross validation (see SechbB)|
approximation of the PF. The IGD metric measures there presented ifig. 5.
distance of the elements in the sétfrom the nearest Table Il presents the ratio of the IGD ind&g(P, Ps),
point of the actual PF. The ratio of this metric was useand the mean distance to the nearest neightshyfP, Pg)

(23)

Pareto Dominance Based Algorithms

as, ) for problems with 2 objectives. The IGD index, in principle,
Dr(A, B) = D(A,P”) (20) attains smaller values the closer the set under testing is to
’ D(B,P~) the known PF. Additionally if the set does not cover certain

whereB is another PF approximation set. |n this wdsk regions of the PF, this will cause the value of the IGD index
is the estimated PF using the Pareto estimation methd@-increase, signifying a degraded performance. Therefore

ology. this problem set, the proposed methodology is consistent in
« Mean Distance to Nearest Neighbour, producing solutions that are at least of the same distance
Al from the actual PF. Values aDg(P,Ps) > 1 mean that
Sd; the setP¢ produce better values for the IGD index compared
S(A) = =1 1) to the original setP, and for Dr(P,Ps) < 1 the converse

|A| is true. Regarding the mean nearest neighbour distanae rati
Sr(P,Pe), values of Sg(P,Ps) > 1 mean that the mean
distance from a solution to its nearest neighbour is smaller
di = min{|| f1(x;) = f1(x)) |24 -+ fu(xi) = fr(x5)ll2}.  Pe compared toP, and for Sg(P,Ps) < 1 the converse is
. ! . . true. In all cases the mean distance of neighbouring salsitio
This metric can serve as a measure of the density 3f o is much smaller, this fact combined with the results for
solutions. Again, the ratio of this metric is used as, . (p p.) strongly indicates that the density of the available
S(A) Pareto optimal solutions has significantly increased usimg

Sr(A,B) = S(B) (22) proposed method.

whered; is,
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Fig. 4. Boxplots of the experiment results of the Paretaretion method using Pareto set approximations generatddQiyA/D and NSGA-II. The labels
have the following formaProblem family:Problem number:Algorithm usesdhereW refers to the WFG problem set amiito the DTLZ problem set. Also
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WFG6 test problems using NSGA-II. The horizontal line in thp 4 plots marks the valué.

Dg(P,

TABLE 1l
Ps) AND Sgr(P,Ps) VALUES OF THE SOLUTIONS FOUND BY

NSGA-II,P, AND THE ESTIMATED SETPg, FOR THE2-OBJECTIVE

PROBLEM SET

TABLE Il

C-METRIC VALUES OF THE SOLUTIONS FOUND BYINSGA-II, P, AND THE
ESTIMATED SETPg, FOR THE2-OBJECTIVE INSTANCES OF THE SELECTED

PROBLEM SET

Dr(P,Pe) Sr(P,Pe) C(P,Pg) C(Pg,P)

Problem min mean std min mean std Problem min mean std min mean std

WFG2 0.9879 1.0370 0.0174 2.3355 2.7844 0.2177 WFG2 0.6244 0.6789 0.0153 0.1959 0.3154 0.0756
WFG3 1.0488 1.0589 0.0046 7.3917 7.8959 0.2286 WFG3 0.0080 0.0253 0.0096 0.4796 0.6306 0.0761
WFG6 0.2834  0.7504 0.2730 5.0093 7.0383 0.6354 WFG6 0.0170 0.6046 0.3884 0.0000 0.1778 0.2115
WFG7 0.7962 2.2765 0.5875 6.6541 7.6369 0.3695 WFG7 0.0305 0.0726 0.0185 0.3000 0.4150 0.0551
DTLZ1 1.0772  4.0822 8.6262 7.3109 7.9676 0.2790 DTLZ1 0.0020 0.0192 0.0139 0.0316 0.3222 0.1814
DTLZ2 11.3970 12.3377 0.3990 7.2193 8.0198 0.3061 pDTLZ2 0.0080 0.0122 0.0020 0.5102 0.6108 0.0494
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Top Row: The number of valid solutions produced by the RBFNN in theefaestimation method fo2 and 3-objective problems instances,

normalized to thg0, 1] interval. So a value of means that all produced solutions are valid, and a valug tbfat no valid solution was produceiliddle
Row: Number of Pareto optimal solutions generated by the RBFNtenPE method, here too the values are normalized t¢0thg interval. Bottom Row:

The mean square error (MSE) of the RBFNN. Note that all ostmfitthe NN have been normalized to tfte 1] interval before calculating the MSE. The

labels on ther-axis have the same interpretation Fg. 4.
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Fig. 6. Pareto front solutions found by NSGA-II for tReobjective problem set.
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Fig. 7. Estimated solution®g (|Pz| = 1000) from the non-dominated solutions found by NSGA-II for tRebjective problem set. The dominated

solutions, for the WFG2 problem, are drawn in gray.
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Fig. 8. Pareto front solutions found by NSGA-II for tl3eobjective problem set.
WFG2 DTLZ1
0 0
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Fig. 9. Estimated solution®r (|Pg| = 3003) from the non-dominated solutions found by NSGA-II for th@bjective problem set. The non-dominated
solutions in the WFG2 test problem are the represented bgadhieer points on the plot.
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TABLE IV
DR (P, Psg) AND Sp(P, Pe) VALUES OF THE SOLUTIONS FOUND BY PF geometry.
NSGA-II, P, AND THE ESTIMATED SETPg, FOR THE3-OBJECTIVE In Table V the results for the C-metric are given for
PROBLEM SET C(P,Pg) andC(Pg, P) for the 3-objective problems. Again
the results are consistent, with WFG2 performing rather-mod
Dr(P, Pe) Sr(P, Pe) erately for the same reasons as for fhebjective case. The
Problem — min  mean std min  mean std  surprising fact is that for the-objective WFG6 performs

WFG2 1.4909 2.8047 0.4878 2.6249 3.1172 0.2306extremely well.
WFG3 0.5846 0.8013 0.1292 0.5519 0.7331 0.1036
WFG6 0.4242 0.8790 0.1679 3.7070 4.2835 0.7461

DTLZ1 1.8795 6.6262 1.2512 2.9125 3.0811 0.1057 ) ) ) ]
DTLZ2  1.1649 1.2655 0.0587 3.5877 3.8767 0.1289 The same experimental procedure as in Section V-A is

applied for the decomposition based version of the MOEA.
TABLE V As previously mentioned, for this test case MOEA/D [50] was
C-METRIC VALUES OF THE SOLUTIONS FOUND BWNSGA-II, P, AND THE  used with the same population size as NSGA-II. Instead of a
ESTIMATED SET'PE, FOR THEgRgziE;Té\éilNSTANCES OF THE SELECTED Seté’, an evenl)-/ dlSU:lbUted .Set Of Welghtlng VeCt@VS‘ was
used, as described in Section IV-D. In all other respects the
experimental setup is identical. The original Pareto oatim
solutions used in the estimation process can be seEigirl0
wrer  o5sms o575 0017 05738 o6aam 00348and Fig. 12, and the corresponding estimatPs in Fig. 11
WFG3 02026 03773 01153 01141 01739 0.02622ndF19. 13 As before, the entire estimated populatig is
WEG6 0.0043 02137 0.1768 0.0000 0.2417 0.1887presented and used for the calculation of the statisticailt®
WFG7  0.0002 0.0035 0.0019 0.4733 0.5360 0.0280Also the results are summarisedkig. 4 andFig. 5.
DTLZ1 ~ 0.0000 0.0003 0.0004 0.0000 0.0463 0.0468 Taple V| presents the ratio of the IGD indeéXz (P, Ps),
DTLZ2 0.0011 0.0027 0.0012 0.4482 0.4952 0.0264 . \
and the mean distance to the nearest neighlsou(P, Ps)
for problems with 2 objectives. A distinctive pattern, when
compared with the corresponding values in Table I, is that
In Table Il the results for the C-metric are given fomwhen theDr(P, P¢) index is very close td the mean value
C(P,Pe) and C(Pg,P) for the 2-objective test problems.for Si(P,Ps) is very close tol0, which is almost equal to
This metric was employed to further verify the consistenape scaling factor we chose to increase the size of the set
of the method. And as can be seen for all problems, exceps relative to the initial sefP. One possible reason for this
WFG2 and WFG6, the results are favourable. However ehaviour, which no doubt is desirable, is that the solstion
is interesting to explore the potential reasons for the lepsoduced by MOEA/D are very well distributed across the
impressive performance in these two problems. RegardiR§. If we view the2-dimensional PF as a function, the fact
WFG2, since we did not use only the non-dominated subsetthft solutions are well distributed can be seen as sampling
P¢, the identified PF is, as can be seerfFig. 7, an oscillating the function at regular intervals, hence their mean disgianc
function; this is exactly the PF directly obtained from théas low variance. This enables the modelling technique we
WFG2 problem. Therefore, in a way, the method did actuallysed to better estimate the mapping, since a unifervalue
perform rather well in identifying the front. A remedy to &lo was chosen for all the basis functions, see Section IV-B.
such a behaviour would be that the requested solutioase Another interesting fact is that, although the minimum ealu
reasonably close to the transformedBeif the original Pareto of Dy (P, P¢) for the problem WFG2, is less thanthe mean
optimal solutionsP, more elaborate methods are left for futurgalue is1.0341 and the standard deviation is relatively small.
research. And regarding the test problem WFG6, combingHis indicates that, in general, the performance of our ogkth
with the same moderate results in Table II, it seems that dsrproducing good results with low deviations, for this desh
methodology has consistent difficulties with this partigul instance.
problem instance. A potential cause for these difficult®s i In Table VII the results for the C-metric are given for
perhaps the simplicity of the modelling technique. C(P,Pe) and C(Pg,P) for the 2-objective test problems.
Table IV presentsDg(P,Ps) and Sgr(P, Ps) indices for The results are very consistent, for all problems except WFG
the 3-objective case. Agai (P, P¢) has acceptable values,which is to be expected due to the shape of its @&, Ps)
meaning that there is no significant sign of degradation & very close to0, signifying that a very small number of
the IGD index.Sgr(P,Pe) shows that the mean neighbouthe solutions irPs are dominated by solutions in the original
distance is consistently lower fd?c. One noticeable feature Pareto sefP.
for the values ofSgr(P, Pg) is that they are almost half of Table VIl presentsDr(P, Pe) and Sg(P, Pg) indices for
their counterparts for the-objective case, as seen in Table llthe 3-objective case. In line with the results in Table VI
This can partly be attributed to theurse of dimensionality the Dr(P,Ps) index is satisfactory. Although, for problems
in the sense that to obtain similar results to Table Il, weehaWFG3 and WFG6 it seems to be somewhat low. This is
to produce approximatel§?(n?) order of solutions more thanto a certain extent also reflected in tig; (P, Ps) index.
for the 2-objective case. This is not the case for 8aebjective This behaviour, regarding problem WFG3, can be attributed
instances of WFG2 and WFG3, which is mainly due to theto the fact that the real PF was not successfully identified by

C(P,Pg) C(Pg,P)

Problem min mean std min mean std
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TABLE IX
C-METRIC VALUES OF THE SOLUTIONS FOUND BYMOEA/D, P, AND
THE ESTIMATED SETPg, FOR THE3-OBJECTIVE INSTANCES OF THE
SELECTED PROBLEM SET

TABLE VI
Dgr(P,Pg) AND Sg(P,Pg) VALUES OF THE SOLUTIONS FOUND BY
MOEA/D, P, AND THE ESTIMATED SETPg, FOR THE2-OBJECTIVE
PROBLEM SET

DR(Pv 7)5) SR(P7P£) C(P77J5) C(P“:?P)
Problem min mean std min mean std Problem min mean std min mean std

WFG2 0.7984 1.0341 0.0742 3.4859 6.1070 1.6286 WFG2 0.4675 0.6101 0.0787 0.0000 0.1174 0.1405
WFG3 1.0037 1.0401 0.0216 9.1222 9.9152 0.1197 WFG3 0.0000 0.0003 0.0009 0.5941 0.7430 0.0591
WFG6 0.7774 1.0288 0.0514 8.2379 9.5327 0.5143 WFG6 0.0000 0.0323 0.1474 0.0000 0.1289 0.0745
WFG7 0.1164 2.3724 25573 7.8871 8.7620 0.3967 WFG7 0.0000 0.0001 0.0003 0.0000 0.0362 0.0209
DTLZ1 1.0000 1.0000 0.0000 9.9820 9.9932 0.0049 DTLZ1  0.0000 0.0441 0.1414 0.0000 0.2875 0.3366
DTLZ2  8.6618 9.8542 0.6573 9.8320 9.8454 0.0062 DTLZ2 0.0000 0.0000 0.0000 0.0099 0.0196 0.0014

TABLE VII
C-METRIC VALUES OF THE SOLUTIONS FOUND BYMOEA/D, P, AND . . . . .
[ main objectives to be considered. First, the expected metur

THE ESTIMATED SETPE, FOR THE2-OBJECTIVE INSTANCES OF THE
SELECTED PROBLEM SET is to be maximized and second, the variance of the expected
return is to be minimized. Variance of a portfolio allocatis
C(P,Pe) C(Pe,P) essentially a metric of risk. What was shown by Markowitz is
that these two objectives are competing, namely if an iorest
wants extremely high expected returns, then he or she must

WFG2 0.4675 0.6101 0.0787 0.0000 0.1174 O. ! ) )
WFG3 0.0000 0.0003 0.0009 05941 0.7430 0.0591concede a high level of risk which could mean that the chance
WFG6 ~ 0.0000 0.0323 0.1474 0.0000 0.1289  0.0745for the entire portfolio to be diminished is increased. Aliigh

WFG7  0.0000 0.0001 0.0003 0.0000 0.0362 0.0209 ; : . ; :

DTLz1 00000 00441 01414 0.0000 0.2875 O. not Wlthout_ its cr_|t|cs, Markowitz portfoho theory has kak by

DTLZ2 0.0000 0.0000 0.0000 0.0099 0.0196 0.0014 storm the financial markets and is today employed V|rtueyly b
every investor. However, a strong critique of this approich
selecting aroptimal allocation of a portfolio of stocks is that

the algorithm, which for WFG3 is a line is-dimensions the measure of risk, namely the variance of the portfolio, is
This conclusion is further supported by the fact that thiaot entirely realistic due to the assumption that the exguect

corresponding values faf(P, P¢ ) in Table IX are very close returns_are normally dist_ributed. This assumption is ugual
to 0 attesting to the fact that the produced estimated Pareto Qg entirely true, and as it can be Seen by the recent market
Pe, does in fact model the given set rather well. Therefore thf&aSh. can often prove to be devastatingly flawed.
behaviour could be remedied by choosing the non-dominated
solutions in the sePs. However for our purposes this optionA. Portfolio Optimization - Problem Definition
was avoided since this woulthask such deficiencies, thus The classical portfolio optimization problem extendedhwit
disallowing further insight for possible improvements bet an additional measure of risk as a third objective, namedy th
pr?p0$egl m?;hogology- s for the C . en | value-at-risk (VaR), can be defined as,

n Table the results for the C-metric are given for )
C(P,Pe) andC(Pg, P) for the 3-objective problems. HicmF(x) = (B(x), V(x), M(x)),

Problem min mean std min mean std

: & , (24)
VI. PARETO ESTIMATION APPLIED TOPORTFOLIO subject toni =1 andz; 20,i=1,...,n,
OPTIMIZATION = _ _
The seminal work of Markowitz [57] changed drasticall;yvhere the q_eC|S|on vecto:rre_pre_sents the allocation _01_‘ capital
: . n securities. The constraint imposed on the decision vector
the way that managers and investors decide on what portfalio "y .
P . : i In" (24) means that no gearitigs allowed as the maximum
of securities is appropriate for a given tolerance of riske T allocation must be eaual to the available capital and the
main idea is that given a portfolio composition, there are tw - qual i pite
non-negativity constraint in the allocation (decision teec
components) means that short positions are not allowed. A
Da(P,Pe) Sa(P.P )TAB'-E \S/'g COLUTIONS £O short position is one in which the investisorrowsa security
R(P,Psg) AND Sg(P, Pg) VALUES OF THE SOLUTIONS FOUND BY L . .
MOEA/D. P, AND THE ESTIMATED SETPg, FOR THE3-OBJECTIVE and sells it, in hope that he can later bgy it at a lower price,
PROBLEM SET repay the loan by returning the security to the lender and
make a profit from the difference. Furthermore the scalar
Dr(P,Pe) Sr(P,Pe) objective functions in (24) are the negative of the expected
return,R(x), the portfolio variance (x), and the value at risk

calculated from historical datd/ (x). The problem defined in

WFG2 6.5869 8.8543 0.8840 2.0372 2.3451 0. : :
WEG3 0.3963 0.4957 0.0709 1.6416 1.8425 0.1406(24) closely follows the formulation used in [19]. However
WFG6 02327 14326 0.8999 0.3148 4.3185 1.2262contrary to the work in [19] we employ a non-parametric

WFG7 2.6739 35314 0.4975 4.7421 4.9538 0.0914 ; ; ;
DTLZ1 10003 10083 06850 48150 54395 05015 method to calculate the portfolio VaR, instead of using the
DTLZ2  3.4609 5.3924 0.5535 3.9083 4.3850 0.2362 . N " .

Gearing or leveraging is when securities are purchased eitcr

Problem min mean std min mean std
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Fig. 10. Pareto front solutions found by MOEA/D for tBeobjective problem set.
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Fig. 11.

PF, for the WFG2 problem, drawn in gray represent dominatdations.

Estimated solution®g (|Pz| = 1000) from the non-dominated solutions found by MOEA/D for thebjective problem set. The parts of the

simplified VaR. Specifically these objectives are defined #se case for the value-at-risk, see Section VI-C. Lastltlirel

follows, objective is the value-at-risk calculated by a non-paraimet
L -l T method via historic simulation, see for example [58], [59],
X T
R(x)=——— n 7) ,
N-1= (25) M(x) = VaR*H,
r; = (T‘él,... 7

VaRL™ = —inf

where r; is the return of the security, at time i. The
expression in (25) represents the negative of the expeotad ¢
pounded return. The second objective, namely the portfolio
variance, is defined as:

XTI'
feor(o () )20}

if VaR.™ <0, thenM(x) =0,

a € (0,1),

(27)

where « is the probability of a return smaller tham In

_ T
V) =x"2x, (26) essence VaR quantifies the potential loss in a portfolio with
where Y, is the covariance matrix of the underlying securitieqrobability .. Also if M (x) becomes negative, this translates
The covariance matrix is calculated using historic dataisasto positive returnsy > 0) in the worst casescenario, which
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WFG2 WFG3 DTLZ1

Fig. 12. Pareto front solutions found by MOEA/D for tBeobjective problem set.

WFG2 WFG3 DTLZ1

Fig. 13. Estimated solution®g (|Pr| = 3003) from the non-dominated solutions found by MOEA/D for th@bjective problem set. The non-dominated
solutions in the WFG2 test problem are the represented bgdhieer points on the plot.

means there is no risk in the investment, as far as VaRBs Decision Making Procedure

concerned, sd/(x) is assigned td@. A negative value could

be assigned, however this has the potential to reduce thec_;'ver_1 a Parito dseL ar:jpro_x!matlmlé anﬁl uswg the Parefto
portfolio diversification which is generally undesirabe9]. estimation met 0 » the 'eciSion makert as the qpportumtyt
iatioffauest a solution that is not present in the original Pareto

set approximation. To illustrate this consider the followi
is allowed to be negative (i.e. guaranteed positive re)umgcenarlo. Let us assume that the decision maker is intdreste

then a clear strategy would be to allocate a big proporti 'ﬁ”a S_OIUI'OT'Z_ ¢ P, that is W'th\'x/_ t:e cohnvithull ﬁf (;he
of the capital to this security. However, this will reducd®OWIng solutions.zy,z;,z; € P. Without the PE method, a

the portfolio diversification and increase its sensitividythe solution o this W.OU.Id k_Je to re-s_tart the 9pt|m|zat|on pRxe
aforementioned security. So, should this security exhibit US€ another optimization algorithm or involve the decision

large negativeswing the entire portfolio would follow. An maker in the optimization procedure using some preference

even more conservative approach would be to assign a |o\£éiijculat|on method, for instance [1]. All these alteruas

bound on VaR for securities whose historic price has ne gve a high cost in function evaluations and are not guagdnte
o} produce the desired results. However, while the PE method

cannot guarantee positive results either, it does enalde th
analyst to try and satisfy the DMs’ request at a much lower
| cost. A way to leverage the Pareto estimation method could
be the following:

in its price, then it would appear that it &afe so if M(x)

for risk due to lack of portfolio diversification [59] and the
variance of the portfolio is insensitive to extreme evettis,
two objectivesl/(x) and M (x) complement each other wel

« Request from the decision maker to specify the regions
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Portfolio Optimization - Pareto Estimation Results Portfolio Optimization - Relative Density

+

1F — .

40 +

0.8 F
30 F
0.6 |

-
|
= g
04} L
1

, T
*
= .
+ RN 0 —_—

VEPF VRA VRB PEPF PRA PRB ERR - SR(P,Pg) SR(PA,P&A) SR<PB77)£,B)

t

+ 4 A+ k«D

Fig. 14. VEPF: Number of valid solutions generated by the PE methoffig. 15. Mean distance to nearest neighbour ratio ofS@)XP, Pgc) entire
when considering the entire Pareto fromfRA: Number of valid solutions Pareto front approximation produced by NSGA-P®, divided by the set
generated by the PE method for regidn VRB: Number of valid solutions obtained by the PE metho®¢, for the entire PF, (i)Sr(Pa,Ps, 4) the
generated by the PE method for regiBh PEPF: Number of Pareto optimal Pareto optimal solutions in the neighbourhood of regibnP 4, divided by
solutions generated by the PE method when considering thiee éPareto  the set of solutions obtained by the PE method in regionPp 4, (iii)
front. PRA: Number of Pareto optimal solutions generated by the PE rdeth&'r (Pp, Pg ) the Pareto optimal solutions in the neighbourhood of region
for region A. PRB: Number of Pareto optimal solutions generated by the PB, Pp, divided by the set of solutions obtained by the PE methodgion
method for regionB. ERR: Neural network generalization error calculatedB, Pp 5.

using cross validation.

of interest by selecting points from the obtained Pare{gith N = 300 for 350 generations, totaling #5 000 function
set. evaluations. This procedure was performedioindependent

« For each region sele@ pointszy,z2,z3 € P that fully  runs. Furthermore the dimension of the decision vector was
enclose the preferred region on the Pareto front. For set ton = 20, which was comprised a0 randomly selected

objective problems? points would suffice. . securities. The historic data used for the calculation @ th
+ Project the points on taCH;. Let these points be objective function are daily opening prices for the p2g00
W1, W2, W3. trading days and where obtained from Yahoo! Finance [61].

« Generate points within theonv {w1, w2, w3}, namely Subsequently the PE method was used to obtain more Pareto
the convex hull of the set of pointéw1, w2, w3}. A optimal solutions for the entire Pareto front using the rdth
way to achieve this is to create a set of evenly spacg@scribed in Section IV-C and two pre-specified regionsgusin
weighting vectors, as described in [50]. LBt be an the procedure described in Section VI-B. The number of
N x k matrix of N evenly spaced weighting vectors andequested solutions for the entire Pareto front wisdie3 and

k =3 in this example, then: for regionsA and B 300 additional points where generated
7 within the aforementioned regions. These results are stiown
W=w-| z |, (28) Fig. 16.
Z3 In Fig. 14 the statistics of the output of the PE method are

shown. Notice that for all regions, namely the entire Pareto
front and the regionsd and B, all generated solutions are
v;(ajlid. Furthermore the ratio of Pareto optimal solutions to
(see Section IV-C) to identify the mappinigp. ominated solutions for the case of the_entlre Pareto front
Lk . . o . seems to be lower when compared to regidnand B. How-
« Use the points iV as input to the identified mapping, o o . :
~ ) -~ . 2'ever its’ median is approximately.41, which translates td
Fp, to obtain a set of decision vector®e, that will . . - .
enerate Pareto optimal points in the convex hull of thFéareto optimal solutions for evety) generated solutions. This
?e ion enclosed bp P seems to be a fairly good ratio, since for oBl903 function
-9 . ¥1,22, Zs. . . evaluations an additional231 Pareto optimal solutions are
« Finally, using the objective function verify that the set . ) .
D does indeed produce Pareto ontimal solutions generated. Also, notice that for regioAsand B (seeFig. 16)
& P P " this ratio is significantly higher. This is potentially duzthe

Following the above mentioned procedure any region of i, ¢ of the requested region and the quality of the model in
terest on the Pareto front can be further explored withojfose harts of the PF. However the important benefit of the PE
incurring the usually high cost of restarting the optimiaat o4 is seen from the accuracy in location of the generated
algorithm. solutions in the above mentioned regions. So, for a cost of
) L . 300 extra objective function evaluations the decision maker
C. Portfolio Optimization Experiments has obtained more tha60 additional Pareto optimal solutions
To evaluate the Pareto estimation method on the portfolio regionsA and B, which greatly increase the chance that a

optimization problem defined in (VI-A), NSGA-Il was usedspecific solution would satisfy his or her preferences agsgm

where the resulting matrixj¥’, will be comprised of
points within theconv {w;, wy, w3} by definition [60].
« Use the general version of the Pareto estimation meth
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that the regions where selected according to Section VI-B.Another aspect that has become evident, especially when
Furthermore, the mean nearest neighbour distance in tive entomparing the results produced using the Pareto sets pedduc
Pareto front as well as for the regiodsand B is shown in by NSGA-Il and MOEA/D is that the distribution of the
Fig. 15, and, although the increase in density of Pareto optimRareto optimal solutions on the Pareto front, disregarthieq
solutions for the entire Pareto front is models8(to 2.7 times convergence, seems to be an important factor determining
larger density), the increase in density in regiohsnd B is the quality of the model. So, it would appear if some active
phenomenal. In real terms, and given the fact that the swolsiti learning method as in [62] could be used, the results could
are very well distributed within the above regions (5&g 16), potentially be improved. However, the problem of direct
this increase in the density of Pareto optimal solutionsmaeacontrol of the distribution of Pareto optimal points in th& P
that for any desired solutions within these regions the DM wiis a very difficult one.
be able to find one that i$ to 6 and 9 to 15 times? closer Lastly, the modeling employed in the Pareto estimation
to the exact location of the preferred Pareto optimal sofuti method operates under the assumption that the mapping from
within region A and B respectively. objective to decision space is a bijection, which seems to
be limiting if in fact the objective functionF, is many-
to-one. However, careful consideration of this issue shows
that this is not limiting to the Pareto estimation method, to
This study has shown that the question posed in Sdbe contrary, it can be rather helpful. This is based on the
tion 1I-C is far from impossible to answer. In fact it canfact that, a many-to-one objective function whaawedfrom
be answered with relative precision, as is strongly indidatthe objective space to the decision space, for every obgecti
by the results for the selected test problems, showfidn4, vector there are one or more decision vectors to be found.
Fig. 5and even more so for the portfolio optimization problemThis means that the probability of finding one decision vecto
whose results are shown ifig. 14 and Fig. 15 However, for a specific objective vector is increased, which is to the
the Pareto estimation method is not without its problems. Fbenefit of the modeling method as there are many alternatives
instance, since the quality of the produced solutions déperflso, given the way multi-objective evolutionary algoritls
on the employed modeling method, which in turn depends operate, that is they distribute Pareto optimal soluticress
the quality of the produced Pareto set approximation, ibis the entire Pareto front, this one-to-many relationship hou
be expected that when both these factors are satisfied tbeaimpossible to discern as MOEAs do not preserve solutions
higher degree; better results are to follow. This is related that result in identical objective vectors. So it would be
the observation in [40], about the connectedness of thetdarkighly unlikely for a Pareto set approximation to have such
optimal set in decision space for continuous multi-objexti alternativesas this in clash with MOEA objectives.
problems. Namely, if the Pareto set approximation isahase
to the true Pareto set, this argument need not necessarily VIIl. CONCLUSION
hold. For instance such a Pareto set approximation need noMultiobjective optimization problem solvers seek to gen-
necessarily be piecewise continuous, in decision space,eagte a satisfactory set of Pareto-optimal solutions tdlena
the Karush-Kuhn-Tucker conditions would not obtain for tha decision-maker to select suitable solution. Here, a novel
aforementioned PS. methodology that increases the density of available Pareto
As mentioned in Section llI-A, there are many alternativeptimal solutions has been described. Using this methad, th
methods for identifying the mappings used in the Paretwmber of available solutions along the trade-off surface i
estimation method, however since the cost of more elaborétereased, thereby greatly enhancing the ability of the DM t
methods renders them prohibitive for repetitive testinghes identify a suitable solution with accuracy.
one performed in Section V, it is difficult to quantify the This is accomplished by identifying the mapping of a
benefits in using more sophisticated identification mettzods transformed set, derived from an approximation of the Baret
even more difficult to discern if the results are due to theptimal set, to the corresponding decision vectors. Thip-ma
affinity of the modeling method to the particular problem seping was identified with the aid of a radial basis function
However, when applying the Pareto estimation method tongural network which was subsequently used to infer a number
specific real-world problem, the analyst has several optam of Pareto optimal solution®:. The proposed method was
how to proceed to identify the required mappings used in PEesented in two forms. The first is a general formulation
An excellent work that addresses modeling issues and pespoiat is widely applicable to any multi-objective optimiiat
a comprehensive approach based on neural networks is [48¢orithm. This formulation was applied to a Pareto-based
wherein the entire procedure is systematized for produciatgorithm, NSGA-II, with a ten-fold increase in Pareto o
high quality models. Although it should be noted that, basewlutions. The second form of the proposed method applies
on the results in this work, the radial basis function neurtd decomposition-based algorithms. This form is motivated
network proposed in Section IV-B, has more than acceptalslg the fact that by using the weighting vectoss in place
performance given the small amount of data that is usuafyf P we avoid the operations required to generate that set.
available in a Pareto set approximation, therefore it is doth versions of the proposed method were experimentally
excellent starting point. tested against a set of well-known test problems and thétsesu
strongly indicate that the suggested methodology showet gre
12These numbers refer to tiSth to 75th percentile inFig. 15. promise.

VIl. DISCUSSION
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Fig. 16. Top Left: Portfolio optimization Pareto front and the two regions mterest.Top Right: The Pareto estimation method applied to identify more
solutions in regionA and B, the correspondence of points on thd{; to the generated Pareto optimal solutions is marked by thdeshregionsBottom
Left: A closer view of the generated Pareto optimal solutions égian A. Bottom Right: A closer view of the generated Pareto optimal solutions égian

B. Note that for illustration purposes, in the bottom and tightr figures the Pareto front has been shiftedOby in all dimensions.

Furthermore, the results in Section V-A and Section V-Baddressed and will be reported in a future work. In contrast
suggest that the choice of weighting vectors in MOEA/D iwith MOEA/D, the Pareto-based method produced much more
not optimal, i.e. an even distribution of Pareto optimalni®i uniform results, se&ig. 9. However, there are obvioledge
is not produced by the algorithm. By even distribution weffects, which are explained by the fact that we generate
mean that the Pareto optimal points have a distribution tredlutions only within theC'H;, see Section IV-A andrig. 3.
minimizes thes-energy which has been shown to solve the be$his can be averted if Pareto estimation is used for specific
packing problem for a sphere, see [63], [64] for further dieta regions, as is seen in Section VI-B.

This effect is transferred to the results of the propose0tet  £ina)y although the concepts presented in this work need
that used an approximation of the PF produced by MOEA/Ry pe further developed, we believe that they can alter the
seeFig. 12 and Fig. 13 This issue has been successfullyefinition of what we currently consider to be a well dis-
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tributed approximation of the PF. This is primarily due theis]
fact that, if an inverse mapping can be identified, then the
main issue becomes that of tioptimal allocation of Pareto ;g
optimal solutions on the PF such that the process of idengjfy

a suitable solution is facilitated. By optimal allocatiorew
mean an approximation set of the PF that provides the m
information about the underlying PF. This, still unknown
distribution, need not necessarily be amendistribution of
Pareto optimal solutions. This issue is deferred to futu%l]
research along with the exploration of the applicabilitytiod
presented method for many-objective optimization prolsiem(22]
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