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Abstract—The set of available multi-objective optimization
algorithms continues to grow. This fact can be partially attributed
to their widespread use and applicability. However this increase
also suggests several issues remain to be addressed satisfactorily.
One such issue is the diversity and the number of solutions
available to the decision maker (DM). Even for algorithms very
well suited for a particular problem, it is difficult - mainly due
to the computational cost - to use a population large enough
to ensure the likelihood of obtaining a solution close to the
DMs preferences. In this paper we present a novel methodology
that produces additional Pareto optimal solutions from a Pareto
optimal set obtained at the end run of any multi-objective
optimization algorithm. This method, which we refer to as Pareto
estimation, is tested against a set of2 and 3-objective test
problems and a 3-objective portfolio optimization problem to
illustrate its’ utility for a real-world problem.

Index Terms—Pareto Estimation, Evolutionary Algorithms,
Metaheuristics, Multi-Objective Optimization, Nonlinear Estima-
tion

I. I NTRODUCTION

M UCH research effort has been dedicated to finding the
Pareto optimal set (PS) of multi-objective optimization

problems (MOPs). Many algorithms have been developed to
solve MOPs. Broadly speaking, these can be categorised in
two groups, based on their approach to fitness assignment; -
(i) algorithms based on Pareto dominance relations and (ii)
decomposition based approaches. Most algorithms developed
during the 1990s and early 2000s were Pareto-based [1]–[4],
and to this day the majority of the methodologies rely on some
variant of this type of fitness assignment. Decomposition-
based optimization techniques draw upon the fact that Pareto
optimal solutions can be obtained by aggregating the objective
functions into a set of scalar optimization problems [5]. This
set of problems can, in principle, be solved using some single
objective optimization algorithm.

In an a posteriori preference articulation1 scenario [5,
pp. 77], the main focus of multi-objective optimization al-
gorithms is to approximate the Pareto optimal Set (PS)2 as
quickly as possible, and distribute the Pareto optimal solutions

The authors are with the Department of Automatic Control andSystems
Engineering, University of Sheffield, Sheffield, UK, S1 3JD.
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1The interaction of the analyst and the decision maker takes place after a
set of Pareto optimal solutions has been generated.

2See Definition 4.

evenly. Although, this objective can easily become unman-
ageable for problems with more than3 objectives. This is
because for increasing number of dimensions in objective
space the number of solutions required tocover the entire
front increases exponentially [6] and thesweet spotof the
evolutionary algorithm parameters that produce good solutions
is reduced in size [7]. A potential solution to this problem
could be to restrict the search space by enforcing constraints
in objective space, see for instance [1]. In the present workwe
focus our attention to2 and3-objective problems to avoid such
complications and better illustrate the presented concepts.

However, if the decision maker (DM) is not completely
satisfied with the obtained PS, he/she can either recourse
to, a different algorithm or restart the preferred algorithm
with different parameters in the hope that the new PS will
more closely satisfy the requirements. Progressive-preference
articulation algorithms [1], [5], offer an alternative approach -
however the drawback is that the DM must bein-the-loopfor
the algorithm execution [5] and this can be rather demanding.

The proposed method in this paper alleviates these difficul-
ties for continuous MOPs by producing more and, usually,
better distributed Pareto optimal solutions along the entire
Pareto front (PF). Additionally, an important feature thatmay
be helpful to both the analyst and the decision maker is that if
there is a specific region of interest on the PF, the generation of
solutions can be focused on that region. This can be helpful
in situations where there is a set of solutions about a part
of the PF that the DM is interested in; but no solution is
found by the algorithm in that region. The method we propose
achieves this result by estimating the mapping of a convex set
to the decision vectors corresponding to the Pareto optimal
solutions obtained on the final iteration of a multi-objective
optimization algorithm. This convex set is used in lieu of the
objective vectors for reasons that are clarified in Section III and
Section IV. This mapping, identified here using a radial basis
function neural network (RBFNN), is then used to generate
estimates of decision vectors that would lead to Pareto optimal
solutions in the neighbourhood of the original solutions. It
should be noted that an RBFNN is chosen mainly because it
is computationally efficient to train and the produced results
are reasonable for the selected test problems. However this
choice is not restrictive and does not characterise the presented
methodology, as any modeling or metamodeling method can
be used instead - should the situation demand it.
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The idea that supports the proposed method, which we refer
to as Pareto Estimation method (PE), is that, for continuous
MOPs, it can be deduced from the Karush-Kuhn-Tucker
optimality conditions that the PS is piecewise continuous in
the decision variables, as previously noted in [8]. This fact,
combined with a reasonable approximation of the PS, can
be used constructively to infer the mapping of the above-
mentioned convex set to decision variables that produces
Pareto-optimal solutions.

The main contributions of this work can be summarised as
follows:

• A method, which we call Pareto Estimation (PE), is pre-
sented. PE can be used to increase the number of Pareto
optimal solutions, for2 and 3-objective problems, from
an approximation of the Pareto set. This can be useful
in a situation where the evolutionary algorithm has not
produced a solution close enough to the desired location
on the PF. Furthermore the Pareto estimation method
does not necessitate any alteration to the optimization
algorithm that is used to produce the Pareto set and is
dependent on it only as far as the quality of the PS is
concerned.

• The effectiveness of PE is validated using a set of test
problems, commonly used in the MOEA community, for
2 and3-objectives. It is shown that PE can produce more
Pareto optimal solutions across the entire PF with a much
lower cost compared to the alternative of restarting the
optimization or using an alternative algorithm to solve
the MOP. Also it is much more flexible compared with
progressive preference articulation methods [1]. Although
this is not the main purpose of the PE method, it is a good
test since if it can produce more solutions on the entire PF
then it should be able to increase the number of solutions
in specific regions as well, which we believe to be the
main utility of PE.

• Furthermore we consider a real-world problem, namely a
3-objective portfolio optimization problem, whereby, an
increased number of Pareto optimal solutions is produced
along the entire PF as well as in specific regions,with the
help of the Pareto estimation method.

The remainder of this paper is organized as follows. In
Section II a general formulation of a multi-objective opti-
mization problem is given followed by some fundamental
definitions. Related concepts and motivating ideas for the
proposed method are discussed in Section III. In Section IV
the Pareto estimation method is described for Pareto and
decomposition-based algorithms. The method is tested against
a set of multi-objective optimization problems and these tests
are reported in Section V and in Section VI PE is applied
to a 3-objective portfolio optimization problem. Lastly in
Section VII we discuss problems, potential solutions and ideas
related to the PE method and in Section VIII this paper is
summarized and concluded.

II. PROBLEM SETTING AND DEFINITIONS

A general definition of a multi-objective problem (MOP) is

min
x

F(x) = (f1(x), f2(x), . . . , fk(x)) ,

subject tox ∈ S,
(1)

where the number ofobjective functionsis k, S is thefeasible
region for the decisionvectorsx, andfi(x) is a scalar objec-
tive function, withi ∈ {1, ..., k}. Additionally, in this work it
is assumed thatx ∈ Rn and thatn is the number of decision
variables in the decision vectorx. Also, depending on the
definition ofS, (1) can be a constrained MOP. For simplicity,
only minimization problems are considered; however, this does
not limit the generality of the produced results since due
to the duality principle, maximization of a scalar objective
function fi is the same as minimization of−fi. An implicit
assumption is that the scalar objective functions in (1) are
mutually competing and possibly non-commensurate.

If the above assumptions obtain then only a partial ordering
can be defined unambiguously. Namely when comparing two
decision vectorsx, x̃ ∈ S, it can so happen that their
corresponding objective vectors are incomparable. In practise,
this situation is resolved by a decision maker who will select
one solution over all others, thus inducing a form of complete
ordering. However this ordering is mostly subjective, evenin
the case that utility functions [9] are used to ease the work of
the DM. In the absence of a DM a usual assumption is that the
relative importance of the objectives,fi, is unknown hence it
is reasonable to obtain several non-comparable solutions.The
problem of inducing partial ordering in Euclidean spaces was
initially studied by Edgeworth [10], and later further expanded
by Pareto [11]. The relations introduced by Pareto are defined
as follows for a minimization problem:

Definition 1. A decision vectorx⋆ ∈ S is said to weakly
dominate a decision vectorx iff fi(x

⋆) ≤ fi(x), ∀i ∈
{1, 2, . . . , k} and fi(x

⋆) < fi(x), for at least onei ∈
{1, 2, . . . , k} thenx⋆ � x.

Definition 2. A decision vectorx⋆ ∈ S is said todominate a
decision vectorx iff fi(x⋆) < fi(x), ∀i ∈ {1, 2, . . . , k} then
x
⋆ ≺ x.

Definition 3. A decision vectorx⋆ ∈ S is said to be
Pareto optimal if there is no other decision vectorx ∈ S

such thatfi(x) ≤ fi(x
⋆), ∀i ∈ {1, 2, . . . , k} and fi(x) <

fi(x
⋆), for at least onei ∈ {1, 2, . . . , k}.

Definition 4. Let F : S → Z, with S ∈ Rn and Z ∈ Rk. If
S is the feasible region then the setZ is the feasible region
in objective space. Given a setA ⊂ Z, the non-dominated
set3 is defined asP = {z : ∄z̃ � z, ∀z̃ ∈ A}. If A is the
entire feasible region in the objective space,Z, then the setP
is called thePareto optimal set (PS) or Pareto Front (PF).
Any elementz ∈ Z is referred to asobjective vector.

Also the following definitions are used in this work in
various contexts:

Definition 5. Theideal objective vector, z⋆, is the vector with
elements(inf(f1), . . . , inf(fk)) [5, pp. 16].

3Or Pareto Front approximation.
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Fig. 1. Metamodeling methods in EAs gradually refine a surrogate model and
then use it to find a better Pareto set approximation. Innovization methods use
the final Pareto set approximation to identifydesignrules, namely decision
vector relations that map to Pareto optimal solutions. Pareto Estimation, the
method proposed in this work, proceeds in the reverse direction by mapping
a surrogate set,̃P, of a Pareto front approximation,P , to the decision vector
set that maps toP .

Definition 6. The nadir objective vector, znd, is the vector
with elements(sup(f1), . . . , sup(fk)), subject tofi be ele-
ments of objective vectors in the Pareto optimal set [5, pp. 16].

Definition 7. The convex hull [12, pp. 24] of the setC =
{e1, . . . , ek}, denoted asconvC, whereei is a k× 1 vector
of zeros with1 on theith position, is referred to asCHI.

Definition 8. Theextended convex hull (EHI) of the setC,
is the union ofCHI and the points in the affine space of the
set C produced by the projection of a Pareto optimal front,
with ideal vector0 and nadir vector1, onto the hyper-surface
of C.

A multi-objective evolutionary algorithm (MOEA) will in
general attempt to obtain arepresentativeapproximation of
the Pareto optimal set. However what is considered to be a
representative approximation of the PS is not context inde-
pendent, but metrics have been devised to measure thequality
of the PS. For an excellent review of this topic the reader is
referred to [13].

III. R ELATED WORK

Multi-objective evolutionary algorithms have had tremen-
dous success in solving real-world problems. They have been
applied in control systems [14]–[16], in economics and finance
[17]–[20] and aerospace [21], [22]. This can be attributed to
the fact that evolutionary algorithms (EAs) perform well for a
wide range of problems that classical methods, such as convex
optimization [12], are inapplicable. However the robustness of
EAs does not come for free. For example, contrary to convex
optimization, there is no guarantee of global optimality for
solutions produced by evolutionary algorithms. Although in

practise there is strong evidence that very good approximations
of Pareto optimal solutions are generated.

A. Metamodeling Methods in Multi-Objective Optimization

An additional challenge that MOEAs face is that the cost,
of objective function evaluations, for a Pareto optimal solution
to be found is relatively high. This coupled with objective
functions that can take hours or days to evaluate constitutes a
severe limitation which is widely acknowledged in the MOEA
community [23]–[26]. A prevalent methodology employed by
researchers to tackle this issue is the use of metamodeling
methods in optimization. The insight is that, if a surrogate
model of the actual objective function can be created with
relatively few samples, then this surrogate model can be used
instead of the objective function in the optimization process.

Since the purpose of the surrogate model is to relieve the
EA from evaluating an expensive objective function as much
as possible, the primary selection criteria for a surrogatemodel
are adapted accordingly. Namely the suitability of a modeling
method is judged according to; - (i) the ease with which the
model parameters can be identified and, (ii) the cost of one
evaluation of the surrogate model which must be much smaller
than that of the actual objective function. Therefore, for a
metamodeling method that satisfies the above criteria, a large
number of objective function evaluations can be substituted
with calls to the surrogate model, hence reducing the total
cost of the optimization. Another criterion that is definitive
in the success of the aforementioned procedure is the model
precision. This so because if the surrogate model cannot
capture important features of the objective function the search
will be grossly misled, although caution should be exercised
not to overcomplicate the surrogate model to a degree that its
cost becomes comparable to the original objective function.
In a way, a surrogate model function can viewed as a low-
pass filter, hopefully separating thenoise from the important
features of the objective function, that is its’ minima (or
maxima). This is why such methods have been employed in
noisy optimization problems as well [27].

The general approach when substituting the real objective
function with a surrogate model for use in an EA, has the
following structure:

Step 1 Sample the real objective function.
Step 2 Using the obtained samples create a surrogate

model.
Step 3 Use the surrogate model in the optimization.
Step 4 If the convergence criteria are met stop, if not go

to Step 1.
An illustration of this iterative procedure can be seen in
Fig. 1, where an ever more accurate mapping of the deci-
sion space,S, to the objective spaceZ, is created in every
iteration, {F̂0, F̂1, . . . }. This approach was initially limited
to serial implementations [28], [29], however later advances
in metamodeling-based EAs employed local models [30] thus
reinstating a key strength of EAs, their potential to be executed
in parallel.

The idea to employ surrogate models in lieu of the thetrue
model of a process can be dated back to Box and Wilson [31]
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where they employed polynomial basis functions to create a
model from data. This approach is commonly referred to in the
literature as response surface method (RSM). Other examples
of modeling methods used in combination with an evolutionary
algorithm are neural networks [25], [32], [33] (multi-layer
perceptron as well as radial basis function networks), Kriging
or Gaussian processes generalized response surface methods
[34] as well as Bayesian regression [35].

B. Innovization Methods

Another issue that is not yet been satisfactorily addressed,
especially for many-objective problems4, is that the final
Pareto set contains information that can be used to infer
relationships in decision space that result in Pareto optimal
solutions. A method that attempts to answer this question
was presented by [36], which the authors callinnovization.
The authors argue that by identifying a set ofdesign rules
the multi-objective problem will not have to be solved again.
Although this premise seems intriguing, to generate such
design rules requires great effort on the behalf of the analyst,
thus is limited to very low dimensional problems in decision
and objective space [37]. Another difficulty with this method
is that the optimization algorithm has to be specifically tailored
to the process [36]–[38]. To deal with this shortcoming further
work presented in [37] attempts to resolve this by partially
automating the procedure. The objective in such methods is
to identify a mapping from decision space to objective space
that will guarantee that the resulting solutions will be Pareto
optimal, seeFig. 1. This amounts to identifying a set of
constraints/relationships in decision space that if adhered to,
will produce the desired results. However in these methods
there isn’t a clear way to obtain Pareto optimal solutions in
a specific region on the Pareto front, except by manually
constructing different relationships on different parts of the
front, something that can easily become unmanageable for
even the smallest problems. This fact can attested by the size
of the problems selected in [36], [37] which never exceeded
2− 5 decision variables and2 objectives.

C. Pareto Estimation Method - Motivation

In this work we bring forward and resolve, to some extent,
a question that seems to be ignored by the literature5. Namely
given an approximation of the Pareto front by any MOEA, is
there a way to obtain solutions, in specific parts of the PF, that
are not present in the given set, and if the answer is positive,
how can this be achieved? This question stems from the fact
that if there was a way to obtain a Pareto optimal solution that
adheres exactly to the decision makers’ preferences, then there
would be no need to evaluate any other solutions as it is usually
the case for multi-objective optimization algorithms. However
such algorithms inherit this strategy because there is no clear
path in incorporating all preferences since it is unknown if
they are in fact reasonable, that is to say if there exist sucha
solution at all. Additionally there is no clear way in obtaining

4Problems with more than three objectives.
5To the authors’ best knowledge.

a specific solution with accuracy. The remainder of this paper
considers this question and an answer is presented.

However to appreciate the importance of this question, let
us embark on a though experiment. Assume that we have a
function,

G(z) =

{

x if and only if F (x) = z, andz ∈ P

0 otherwise.
(2)

Namely the function,G, returns the corresponding Pareto
optimal decision vector if a Pareto optimal solution,z, is
used and0 otherwise. Obviously such a function would be
of limited use if the the analyst had no information about
the shape of the Pareto front as well as its location. Namely
the function,G, is a special indicator function with domain
of definition the Pareto optimal set,P , and range the Pareto
optimal decision vectors,D. Therefore given such a function
and the information about the exact location of the Pareto
front; it would be simply a matter of evaluating (2) in order to
obtain the decision vector that would result in a Pareto optimal
solution. Such a description of the Pareto front geometry can
be given by a parametric or non-parametric model if the
problem has already been successfully solved by some method.
A potential issue with such an approach is that a different
description of the PF will be required for different problems.
Although this seems troubling, there is nothing to precludethe
existence of a function with aconvenientdomain of definition,
that would map to the Pareto front of any given problem.
Naturally such function must depend, and adapt to, the Pareto
optimal set or some approximation of it, and hopefully a
procedure can be found to map the former to the latter. Strictly
speaking such a function would perform the following task,

Π(w) = z, z ∈ P . (3)

Additionally it would be even more convenient if the mapping,
Π, was predictable in the sense that for a givenw the resulting
z is not very hard to predict, as this would ease the complexity
of using the function (3). A natural candidate for such a task
would be an affine function, that is a linear function plus an
offset.

The final piece of this puzzle lies in the domain of definition
of the function described in (3). The requirements on such
a domain would be; - (i) that points within the domain of
definition of the function,Π, should be easy to obtain and (ii)
any convex combination of the points in the set must still be
in the set, that is to say the set must be convex. By adhering
to these requirements, and if relations similar to (2) and (3)
could be identified, then by the following procedure a Pareto
optimal solution could be obtained at any desired location on
the PF,

• Choose aw that would produce the desiredz. This is
verified by (3), if the resultingz is not the intended one;
it would be sufficient to changew a little. In this step
we exploit thepredictability of the mapping,Π.

• Use the obtainedz in (2) to obtain the decision vector,
x, that would produce the objective vectorz.

• Evaluate the actual objective function,F , using the
obtainedx to verify that F (x) = z. Although strictly
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f2(x)

f1(x)0

z⋆

znd

P

2.22

2.42

fi − z⋆i

f2(x)

f1(x)0 1.95

2.35

fi−z⋆i

znd
i −z⋆i

f2(x)

f1(x)0 1

1

projCHI
(·)

f2(x)

f1(x)0

P̃

1

1

Fig. 2. Illustration of theΠ−1 mapping for a hypothetical Pareto setP .

speaking, should the mappings described in (2) and (3)
be exact, this step is redundant.

So, if such a procedure was available in practise, there would
be a way to obtain the decision vector that satisfies the re-
quirements of the decision maker exactly, instead of repeatedly
solving a multi-objective optimization problem, in hope to
obtain a solution that closely satisfies the aforementioned
requirements.

IV. PARETO ESTIMATION METHOD

A. Overview

The question posed in Section III-C, is interesting because
depending on how well it can be answered, the information
that is in the analysts’ possession increases dramatically, thus
allowing the analyst to cater to more specific requests from the
decision maker. This is so because given absolute knowledge
of the aforementioned functions, (2) and (3), a multi-objective
problem is virtually solved, as any solution on the Pareto front
could, theoretically, be obtained with a very small additional
expense and high precision. Although to obtain the entire
Pareto optimal set may be infeasible in practice, this is the
predominant definition of what it means tosolve a multi-
objective optimization problem [5, pp. 61].

However, such a relationship is usually unknown for real-
world problems and sometimes it is unknown even for test
problems. Most multi-objective optimization algorithms strive
to generate a PS which possesses two key properties, first, it
should produce objective vectors as close as possible to the
true PF and, second, these objective vectors should be evenly
spread across the PF hyper-surface. Under the assumption
that the optimization algorithm of choice has succeeded, to
a reasonable degree, in producing a PS that possesses the
aforementioned properties, then the mapping,FP , of Pareto
optimal objective vectors,P , into6 their corresponding deci-

6See Section VII, for an explanation why this mapping is usually into and
not onto.

sion variablesD,
FP : P → D , (4)

can be identified using a modeling method [34]. A theoretical
argument based on the Karush-Kuhn-Tucker (KKT) optimality
conditions, which further fosters the idea that the mapping
in (4) should be identifiable, was proposed in [8] which is
further supported by [39], [40]. The authors stated that for
continuous multi-objective problems the Pareto optimal set is
piecewise continuous in decision space. This point is revisited
in Section VII. In the present work, a radial basis function
neural network (RBFNN) is used for this purpose, since it
is both robust and accurate for a wide set of problems [41].
The structure and further details regarding the way this type
of neural network is employed in this work is discussed in
Section IV-B.

However, even if the mapping,FP , was explicitly known, it
is still unclear how the desired Pareto optimal objective vectors
should be generated in order to obtain their corresponding
decision variables, usingFP . This problem is related to the
issue encountered in Section III-C with the functionG. For
example, assume that we have the exact mappingFP for a
multi-objective problem, with the only restriction being that
we provide the exact coordinates of Pareto optimal points. In
order to be able to provide this information, we are required
to know exactly the shape of the PF, meaning a mathematical
description of the PF hyper-surface must be available for all
potential problems. If such information is available for the
given problem, then all decision variables corresponding to the
PF could be obtained usingFP . This point becomes clearer
if we view the mappingFP as the inverse of the objective
functionF

−1(·) = FP (·), which leads to

FP (F(x)) = x. (5)

Even if the function,F(·), is not a bijection7 a mapping
G : P → D can still be obtained but can no longer be called
the inverse image of,F, however for practical purposes its
function would the same. Therefore it is relativelysafe to
ignore for the moment that the objective functionF(·) may
be many-to-one, this issue is further discussed in Section VII.

Now, let us assume that we can transform the setP to a
set P̃ , with the only difference being that we can very easily
obtain and manipulate the elements inP̃ and that any element
in P̃ is mapped exactly to one element in the Pareto optimal
setP . That is we require the mappingΠ−1 : P → P̃ to be a
bijection. In which case we can obtain the inverse transform
Π : P̃ → P , and,

FP (Π(P̃)) = D, (6)

would enable the DM to generate any required solution. One
way to produce such a mapping is to initially normalize the
objective vectors inP according to,

f̃i =
fi − z

⋆
i

zndi − z⋆i

, (7)

where z
⋆ and z

nd are estimated from the setP . This nor-
malization scales the objectives in the range[0, 1]. TheΠ−1

7A function that is an injection and a surjection is a bijection or one-to-one.
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x y

z

e1 e2

e3

CHI

EHI ∩ CH
c
I

P

Fig. 3. Illustration of theΠ−1 mapping for a Pareto setP with 3 objectives.
The points on the outer grid are inP , while the transformed̃P set is within
the hashed regions.

mapping is illustrated inFig. 2. After the normalization the re-
sulting objective vectors are projected ontoEHI ; for problems
with two objectives this is the same asCHI . Subsequently the
mappingF̃P ,

F̃P : P̃ → D (8)

is identified using a RBFNN, as shown inFig. 1. This model
in essence subsumes the composition of the mappingFP and
Π in (6).
Π−1 effectively takes a set of vectors inRk, P , and creates

its corresponding set inEHI , P̃ . For two dimensions, vectors
in P̃ will be part of the convex setCHI and this set will be
identical toEHI , seeFig. 2. For more than two dimensions,
bothEHI andCHI are still convex sets, but a more elaborate
procedure will be required to obtain points on theEHI due
to its geometry, seeFig. 3.

For example, consider a concave Pareto front as the one
shown inFig. 3. This front is the first octant of a sphere centred
at the origin with radius1.2. If we apply theΠ−1 transform to
this Pareto optimal set, the resulting̃P set will be on the union
of the striped areas inFig. 3, i.e.EHI . The part ofP̃ in CHI

is the set within the triangle with verticese1, e2 ande3. The
remaining points inP̃ are part of8 EHI ∩CHc

I , and, since the
edges of theEHI set are curved it is no longer straightforward
to generate points within this set that are evenly distributed.
Therefore the desired property of the function,Π, discussed
in Section III-C, that is the ability to easily generate points
within its domain, would be restricted. A partial solution to
this is to simply to bound the domain of definitions of the
Π mapping to theCHI artificially. This would maintain the
aforementioned desirable property but such a restriction would
limit the method in producing solutions that their projection
is within theCHI . The solutions inEHI ∩CHc

I correspond
to extremePareto optimal points which are, potentially, of
low interest [42]. However, if this assumption is not true and
the decision maker requires solutions within these regions,

8CHc
I

is the complement of the setCHI .

the method described in Section VI-B could be employed to
obtain estimates from the PE method. This can be achieved as
the entire,P̃, set is used in the model creation process (see
Section IV-B).

Finally, to generate the estimated Pareto optimal solu-
tions, a set of evenly spaced convex combinations of the
set C = {e1, . . . , ek} is created, let the resulting set be,
E . Subsequently this set can used as an input to a model
of F̃P . The resulting decision vectors may then be used in
the objective function to verify that they correspond to Pareto
optimal objective vectors. An alternative is to createE for a
specific region of interest in the PF, for example using points
that are within theconvC.

B. Radial Basis Function Neural Networks

Before we delve into a detailed description of how the
proposed method can be applied to decomposition and Pareto-
based multi-objective optimization algorithms, we first explore
the technique used to model thẽFP mapping.

Neural networks, or more precisely artificial neural net-
works9, are widely used in an array of different disciplines
[43]–[45]. They are well known for theiruniversal approxi-
mator property [46]. Furthermore, a subclass of NNs, namely
radial basis function neural networks (RBFNNs) have been
shown to be robust and accurate predictors when compared
to Kriging, multivariate adaptive splines and polynomial re-
gression methods [41]. RBFNNs have a single hidden layer
and an output layer. Their output layer is often comprised of
linear functions since this guarantees a unique solution totheir
weightsw [47] without the need to resort to the renowned
back-propagation algorithm [48].

RBFNNs usually employ basis functions that are radially
symmetric about their centresµ, for the chosen norm, and
decreasing asx drifts away fromµ. A commonly used basis
function is the Gaussian [47], given in its general form by,

φi(x) = exp

(

‖x− µi‖
2

2σ2
i

)

, (9)

where the norm‖·‖ is often the Euclidean (ℓ2-norm). Perhaps,
at this point a difficulty associated with RBFNNs is evident,
namely that, although the output layer is comprised of linear
functions, the hidden layer is highly non-linear in the param-
etersµ and σ, which can prove a challenge in the selection
of their optimal values. Various techniques are suggested in
the literature addressing this problem [47]. In this work we
choose to use all the training data as centres for the radial
basis functions,φi. Therefore the number of basis functions
is equal to the number of training vectors used. Additionally,
a uniform value for the parameter,σ, is used for all basis
functions, and it is set to5 · d̄µ, whered̄µ is the mean distance
of solutions inP̃ to their nearest neighbour. This value forσ

was chosen experimentally. Intuitively, this almost guarantees
that the basis functions overlap, thus minimizing the number of
regions in the interior of the set̃P for which no basis function

9Artificial neural networks are simply referred to as neural networks or
NNs in this work for convenience.
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is active. Therefore (9) becomes,

φi(x) = exp

(

‖x− P̃i‖
2
2

2(5d̄µ)2

)

. (10)

Arguably, this is the simplest way to choose the parameters of
the basis functions and was used to retain focus on the pro-
posed methodology. For a more elaborate and comprehensive
methodology on selection of the parameters of RBFNNs, the
reader is referred to [49].

The output of a RBFNN is a linear combination of the basis
functionsφi(·),

ym(x) =

|P̃|
∑

i=0

wm,iφi(x), (11)

where φ0(·) = 1 is the output layer bias term andm ∈
{1, . . . , n}, wheren is the number of outputs, i.e. the number
of decision variables.

To validate the created neural network(n−1)-cross valida-
tion was used as suggested in [23]. Namely, for a Pareto set of
sizeN , N NNs where created using(N − 1) samples for the
training set and the remaining sample was used to estimate
the generalization error. This procedure is repeated untilall
the solutions in the Pareto set have been used as a test sample
and then the mean square error is calculated. After estimating
the NN expected generalization error using cross validation,
the final NN is generated using the entire Pareto set.

C. Pareto Dominance Based Algorithms

The method described in Section IV-A introduced the gen-
eral procedure of the proposed technique, however certain
details were abstracted. Optimization algorithms based on
Pareto dominance for fitness assignment have several control
parameters. One of these parameters is the size of the popu-
lation to be used in the optimization process. This parameter
effectively provides an upper bound on the resulting number
of Pareto optimal solutions in the final setP . One requirement
for the methodology to function correctly, for the entire PF, is
that there be a sufficient number of non-dominated solutionsin
the final population. An additional requirement, that is evident
from experiments, is that the non-dominated set produced by
the algorithm is well spread across the PF, i.e. the solutions
are diverse and the mean distance from their neighbours has
small variance. This simply states that the performance of
the proposed method is dependent on the performance of the
algorithm used to solve the MOP.

Once the execution of a multi-objective evolutionary al-
gorithm (MOEA) has come to an end, the non-dominated
solutions of the resulting set, constitute the setP , with
corresponding decision variablesD. Then each objective in
P is normalized according to (7) in the range[0, 1] and the
ideal and nadir vectors are estimated from the setP as follows,

z
⋆ = (min{f1}, . . . ,min{fk}) , (12)

z
nd = (max{f1}, . . . ,max{fk}) , (13)

wherefi is the ith objective function and its corresponding
values for different solutions are found in theith column of

P . Note that since the produced Pareto set approximation has
finite size, theinf and sup operators are replaced by themin
andmax operators, which return the minimum and maximum
element of a set respectively. Next, the normalized set is
projected onto the hyperplaneE defined by{e1, . . . , ek−1}
whereei is a vector of zeros and a one in theith position.
This is achieved by initially projecting onto the subspace10

parallel toE and then shifting the result by1
k
J|P|,k, where

J|P|,k is the |P| × k unit matrix. To obtain the projection
matrix, k − 1 linearly independent vectors in theE plane are
required. These vectors are obtained in the following way:

H =

(

e1 −
1

k
1 · · ·ek−1 −

1

k
1

)

, (14)

whereH is a k× (k− 1) matrix. Subsequently the projection
matrix PE is obtained by,

PE = H(HTH)−1HT , (15)

wherePE is ak× k matrix with rankk− 1. The transformed
Pareto set̃P is,

P̃ = PPT
E +

1

k
J|P|,k. (16)

Finally the neural network used to identify the mappingF̃P ,
is created as described in Section IV-B, usingP̃ andD as the
training inputs and outputs respectively.

Once the neural network is trained it can be used to create
additional solutions for a new set of convex combinationsE .
However, this set has to be generated by the DM according to
his/her preference in a particular region of the PF; alternatively,
a more densely and evenly spaced convex set spanning the
entire PF could be created. The first option is likely to be
preferred when the cost of evaluating the objective function is
considerable or there is a clear preference towards a particular
region of the PF.

The described procedure is summarised as follows:

Step 1Obtain the non-dominated individuals from the final
population of a Pareto based MOEA,P , and its
corresponding decision variablesD.

Step 2NormalizeP according to (7).
Step 3Project the normalizedP onto the thek − 1 hy-

perplane going through{e1, . . . , ek−1} according to
(14), (15) and (16), to producẽP . For 2 objectives
this is the line through(0, 1)T and (1, 0)T , and
for 3 objectives, it is the plane through(1, 0, 0)T ,
(0, 1, 0)T and (0, 0, 1)T .

Step 4Identify the mappingF̃P using P̃ andD as inputs
and outputs, respectively, to train a RBFNN as de-
scribed in Section IV-B.

Step 5Create the setE , in this work this is a set of evenly
spaced convex vectors.

Step 6Use the setE as inputs to the NN created inStep
5, to obtain estimates of decision vectorsDE .

Step 7The setDE can be used with the objective function
F(·) to verify that the produced solutions are accept-
able.

10The parallel plane toE that goes through the0 vector.
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D. Decomposition-Based Algorithms

Decomposition-based MOEAs have recently increased in
popularity, a trend that was reinforced by the introductionof
MOEA/D by Zhang and Li [50]. In MOEA/D, the MOP in
(1), is decomposed into a set of scalar sub-problems. This
is achieved with the help of one of several decomposition
techniques, weighted sum, Chebyshev [5] and normal bound-
ary intersection [42] decompositions are some of the available
options. The multi-objective optimization problem, see (1), is
restated in the following way with the aid of the Chebyshev
decomposition,

min
x

g∞(x,ws, z⋆) = ‖ws ◦ |F(x)− z
⋆| ‖∞,

∀s = 1, . . . , N ,

s.t. x ∈ S,

(17)

wherews areN evenly distributed weighting vectors andN is
the population size andg∞ is the scalar objective function. The
◦ operator denotes the Hadamard product which is element-
wise multiplication of vectors or matrices. The intuition behind
this is that sinceg∞ is a continuous function ofw [50], N
evenly distributed weighting vectors should produce a well
distributed set of Pareto optimal solutions.

Consequently, since decomposition based algorithms al-
ready have a set of convex combinations, namely the weighting
vectorsw, and the correspondence of weighting vectors to
objective vectors is clear, the set̃P can be substituted with
the weighting vectorsw that produce Pareto optimal solu-
tions. This has the potential to greatly simplify the described
procedure in Section IV-C. However, although this simplifies
the algorithm, the choice of input vectors,wE , by the DM is
more difficult because of its indirect nature compared to the
general method described in Section IV-C, and this problem
becomes increasingly more difficult for increased number of
objectives.

Therefore, although the method described for Pareto based
algorithms can be applied directly to decomposition based
algorithms, if we choose to use the weighting vectorsw

instead of creating the set̃P,

F̃P : w → D. (18)

Thus, a simplification to the proposed method is available
when the MOEA used is based on decomposition, and is
summarised as follows:

Step 1Obtain the weighting vectors,w, corresponding to
non-dominated solutions.

Step 2Identify the mappingF̃P usingw andD as inputs
and outputs respectively, to train a RBFNN.

Step 3Generate a new set of weighting vectorswE in the
PF region of interest, or using one of the methods
discussed so far.

Step 4Use the setwE as inputs to the neural network
created inStep 2, to obtain estimates of decision
vectorsDw.

Step 5The setDw can be used with the objective func-
tion F(·) to verify that the produced solutions are
acceptable.

V. EXPERIMENT RESULTS

To test the merits of the proposed method, the Pareto-
based algorithm was chosen to be NSGA-II [4] and the
decomposition-based algorithm was chosen to be MOEA/D
[50]. The algorithms were run50 times, using a different seed
for the random number generator on every run, for six MOPs
with two and three objectives. The population size used for
both algorithms was set to101 for the two objective problems
and to276 for the three objective problems, as these values
are commonly employed in benchmarks [50]. Additionally,
the algorithms were allowed to run for300 generations for
the WFG problems and for500 generations for the DTLZ
problems. The DTLZ test problems are, DTLZ1 and DTLZ2
for two and three objectives. For completeness a definition of
the DTLZ1–2 test problems is given:

• DTLZ1, see [51]

f1(x) = (1 + g(x))x1x2,

f2(x) = (1 + g(x))x1(1− x2),

f3(x) = (1 + g(x))(1 − x1),

g(x) = 100(n− 2)+

100

n
∑

i=3

(

(xi − 0.5)2 − cos(20π(xi − 0.5))
)

,

where n is the number of decision variables, here
n = 10. The two dimensional problem isF (x) =
(f1(x), f2(x))

T .
• DTLZ2, see [51]

f1(x) = (1 + g(x)) cos
(x1π

2

)

cos
(x2π

2

)

,

f2(x) = (1 + g(x)) cos
(x1π

2

)

sin
(x2π

2

)

,

f3(x) = (1 + g(x)) sin
(x1π

2

)

,

g(x) =

n
∑

i=3

x2
i ,

with n = 10.

Additionally the test problems WFG2-3 and WFG6-7 from
the WFG toolkit [52] were used. The settings used for these
test problems can be seen in Table I. The parameters k and
l in Table I are the position and distance related parameters
respectively. This particular collection of test problemswas

TABLE I
TEST PROBLEM SETTINGS SUMMARY.

2-Obective Problem Instances

# Generations N n k l

WFG 300 101 24 4 20
DTLZ1 500 101 10 - -
DTLZ2 500 101 10 -

3-Objective Problem Instances

# Generations N n k l

WFG 300 276 24 4 20
DTLZ1 500 276 10 - -
DTLZ2 500 276 10 - -
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chosen with several considerations in mind. First, the problem
set had to be broadly used and recognised by the MOEA
community. Second, the problems should be challenging and
diverse. It is our belief that these aims are accomplished by
this particular problem set. It is hoped that future research
will provide further validation of the proposed methodology
through experiments on more test problems as well as real-
world problems. More specifically, DTLZ1 and DTLZ2 [51]
have been used in numerous studies [53], [54], [50], something
that is also true for the WFG toolkit [53], [54]. Furthermore,
each of these problems pose a different challenge. For instance,
WFG2 has a discontinuous Pareto front and is non-separable.
WFG3 is also non-separable and its Pareto front is linear for
two dimensions and degenerate for three or more. WFG6 has
a concave Pareto front and is non-separable and unimodal;
and, lastly, WFG7 is separable with a concave Pareto front
and has parameter dependent bias [52]. The settings for the
two algorithms were chosen in a similar fashion.

The hypothesis of this paper is that by using the Pareto es-
timation methodology the number of Pareto optimal solutions
available to the DM can be increased significantly, and despite
the fact that on many test instances the estimated Pareto set
actually turns out to be superior to the initial set this is not
the intended purpose of the method and can be treated as a
positive side effect. For performance assessment purposes, the
ratio of the following indices was used as - our main focus is
the relative quality of the Pareto set, produced by MOEA/D
and NSGA-II, before the application of the proposed method
and after - and not the performance of the employed algorithms
in absolute terms.

• Inverted Generational Distance (IGD), introduced in [55],

D(A,P⋆) =

∑

s∈P⋆

min{‖A1 − s‖2, . . . , ‖AN − s‖2}

|P⋆|
,

(19)
where|P⋆| is the cardinality of the setP⋆ andA is an
approximation of the PF. The IGD metric measures the
distance of the elements in the setA from the nearest
point of the actual PF. The ratio of this metric was used
as,

DR(A,B) =
D(A,P⋆)

D(B,P⋆)
, (20)

whereB is another PF approximation set. In this workB

is the estimated PF using the Pareto estimation method-
ology.

• Mean Distance to Nearest Neighbour,

S(A) =

|A|
∑

i=1

di

|A|
, (21)

wheredi is,

di = min
j

{‖f1(xi)−f1(xj)‖2+· · ·+‖fk(xi)−fk(xj)‖2}.

This metric can serve as a measure of the density of
solutions. Again, the ratio of this metric is used as,

SR(A,B) =
S(A)

S(B)
. (22)

and the coverage metric, described below, was used exactly as
defined in [56],

• Coverage Metric (C-Metric)

C(A,B) =
|{u ∈ B|∃v ∈ A : v � u}|

|B|
, (23)

C(A,B) = 0 is interpreted as: there is no solution inA
that dominates any solution inB. And C(A,B) = 1 is
interpreted as the exact opposite, i.e. all the solutions in
B are dominated by at least one solution inA.

A. Pareto Dominance Based Algorithms

For every run of NSGA-II, with settings as explained in
Section V, the proposed method was applied using an evenly
spaced convex setE of size∼10 times greater than the initial
population used in the optimization algorithm. The setE was
used as input to the identified mapping̃FP resulting in the
estimated decision vectorsDE . SubsequentlyDE was used
with the objective function generating the objective vectors
PE .

Specifically, for the2-objective test problems, the size of
the setPE was set to1 000 and for the3-objective problems
the size of the setPE was set to3 003. The original Pareto
optimal solutions used in the estimation process can be seen
in Fig. 6 andFig. 8, and the corresponding estimatesPE are
shown in Fig. 7 and Fig. 9. It should also be noted, as is
perhaps apparent from the figures, that the entire estimated
populationPE is presented and not a non-dominated subset.
The same procedure was performed for all50 runs of NSGA-
II for all test problems for two and three objectives and the
results are summarized in Table II-Table V and their non-
parametric counterparts are presented inFig. 4. Furthermore,
the number of valid solutions produced by the RBFNN, the
number of Pareto optimal solutions and the RBFNN estimated
generalization error using cross validation (see Section IV-B),
are presented inFig. 5.

Table II presents the ratio of the IGD indexDR(P ,PE),
and the mean distance to the nearest neighbourSR(P ,PE)
for problems with 2 objectives. The IGD index, in principle,
attains smaller values the closer the set under testing is to
the known PF. Additionally if the set does not cover certain
regions of the PF, this will cause the value of the IGD index
to increase, signifying a degraded performance. Therefore, for
this problem set, the proposed methodology is consistent in
producing solutions that are at least of the same distance
from the actual PF. Values ofDR(P ,PE) > 1 mean that
the setPE produce better values for the IGD index compared
to the original setP , and forDR(P ,PE) < 1 the converse
is true. Regarding the mean nearest neighbour distance ratio
SR(P ,PE), values ofSR(P ,PE) > 1 mean that the mean
distance from a solution to its nearest neighbour is smallerin
PE compared toP , and forSR(P ,PE) < 1 the converse is
true. In all cases the mean distance of neighbouring solutions
in PE is much smaller, this fact combined with the results for
DR(P ,PE) strongly indicates that the density of the available
Pareto optimal solutions has significantly increased usingour
proposed method.
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Fig. 4. Boxplots of the experiment results of the Pareto estimation method using Pareto set approximations generated byMOEA/D and NSGA-II. The labels
have the following formatProblem family:Problem number:Algorithm used, whereW refers to the WFG problem set andD to the DTLZ problem set. Also
the postfixD means that the Pareto set used was produced by MOEA/D, whileN by NSGA-II. For example the labelW6N refers to results obtained for the
WFG6 test problems using NSGA-II. The horizontal line in thetop 4 plots marks the value1.

TABLE II
DR(P,PE ) AND SR(P,PE ) VALUES OF THE SOLUTIONS FOUND BY

NSGA-II,P , AND THE ESTIMATED SETPE , FOR THE2-OBJECTIVE

PROBLEM SET.

DR(P,PE ) SR(P,PE )

Problem min mean std min mean std

WFG2 0.9879 1.0370 0.0174 2.3355 2.7844 0.2177
WFG3 1.0488 1.0589 0.0046 7.3917 7.8959 0.2286
WFG6 0.2834 0.7504 0.2730 5.0093 7.0383 0.6354
WFG7 0.7962 2.2765 0.5875 6.6541 7.6369 0.3695
DTLZ1 1.0772 4.0822 8.6262 7.3109 7.9676 0.2790
DTLZ2 11.3970 12.3377 0.3990 7.2193 8.0198 0.3061

TABLE III
C-METRIC VALUES OF THE SOLUTIONS FOUND BYNSGA-II,P , AND THE

ESTIMATED SETPE , FOR THE2-OBJECTIVE INSTANCES OF THE SELECTED

PROBLEM SET.

C(P,PE ) C(PE ,P)

Problem min mean std min mean std

WFG2 0.6244 0.6789 0.0153 0.1959 0.3154 0.0756
WFG3 0.0080 0.0253 0.0096 0.4796 0.6306 0.0761
WFG6 0.0170 0.6046 0.3884 0.0000 0.1778 0.2115
WFG7 0.0305 0.0726 0.0185 0.3000 0.4150 0.0551
DTLZ1 0.0020 0.0192 0.0139 0.0316 0.3222 0.1814
DTLZ2 0.0080 0.0122 0.0020 0.5102 0.6108 0.0494
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Fig. 9. Estimated solutionsPE (|PE | = 3003) from the non-dominated solutions found by NSGA-II for the3-objective problem set. The non-dominated
solutions in the WFG2 test problem are the represented by thedarker points on the plot.
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TABLE IV
DR(P,PE ) AND SR(P,PE ) VALUES OF THE SOLUTIONS FOUND BY

NSGA-II,P , AND THE ESTIMATED SETPE , FOR THE3-OBJECTIVE
PROBLEM SET.

DR(P,PE ) SR(P,PE )

Problem min mean std min mean std

WFG2 1.4909 2.8047 0.4878 2.6249 3.1172 0.2306
WFG3 0.5846 0.8013 0.1292 0.5519 0.7331 0.1036
WFG6 0.4242 0.8790 0.1679 3.7070 4.2835 0.7461
WFG7 1.0079 1.1950 0.0720 3.3899 3.7008 0.1752
DTLZ1 1.8795 6.6262 1.2512 2.9125 3.0811 0.1057
DTLZ2 1.1649 1.2655 0.0587 3.5877 3.8767 0.1289

TABLE V
C-METRIC VALUES OF THE SOLUTIONS FOUND BYNSGA-II,P , AND THE

ESTIMATED SETPE , FOR THE3-OBJECTIVE INSTANCES OF THE SELECTED
PROBLEM SET.

C(P,PE ) C(PE ,P)

Problem min mean std min mean std

WFG2 0.5253 0.5753 0.0197 0.5738 0.6342 0.0348
WFG3 0.2026 0.3773 0.1153 0.1141 0.1739 0.0262
WFG6 0.0043 0.2137 0.1768 0.0000 0.2417 0.1887
WFG7 0.0002 0.0035 0.0019 0.4733 0.5360 0.0280
DTLZ1 0.0000 0.0003 0.0004 0.0000 0.0463 0.0468
DTLZ2 0.0011 0.0027 0.0012 0.4482 0.4952 0.0264

In Table III the results for the C-metric are given for
C(P ,PE) and C(PE ,P) for the 2-objective test problems.
This metric was employed to further verify the consistency
of the method. And as can be seen for all problems, except
WFG2 and WFG6, the results are favourable. However it
is interesting to explore the potential reasons for the less
impressive performance in these two problems. Regarding
WFG2, since we did not use only the non-dominated subset of
PE , the identified PF is, as can be seen inFig. 7, an oscillating
function; this is exactly the PF directly obtained from the
WFG2 problem. Therefore, in a way, the method did actually
perform rather well in identifying the front. A remedy to avoid
such a behaviour would be that the requested solutionsE are
reasonably close to the transformed setP̃ of the original Pareto
optimal solutionsP , more elaborate methods are left for future
research. And regarding the test problem WFG6, combined
with the same moderate results in Table II, it seems that our
methodology has consistent difficulties with this particular
problem instance. A potential cause for these difficulties is
perhaps the simplicity of the modelling technique.

Table IV presentsDR(P ,PE) and SR(P ,PE) indices for
the3-objective case. AgainDR(P ,PE) has acceptable values,
meaning that there is no significant sign of degradation of
the IGD index.SR(P ,PE) shows that the mean neighbour
distance is consistently lower forPE . One noticeable feature
for the values ofSR(P ,PE) is that they are almost half of
their counterparts for the2-objective case, as seen in Table II.
This can partly be attributed to thecurse of dimensionality,
in the sense that to obtain similar results to Table II, we have
to produce approximatelyO(n2) order of solutions more than
for the2-objective case. This is not the case for the3-objective
instances of WFG2 and WFG3, which is mainly due to their

PF geometry.
In Table V the results for the C-metric are given for

C(P ,PE) andC(PE ,P) for the 3-objective problems. Again
the results are consistent, with WFG2 performing rather mod-
erately for the same reasons as for the2-objective case. The
surprising fact is that for the3-objective WFG6 performs
extremely well.

B. Decomposition Based Algorithms

The same experimental procedure as in Section V-A is
applied for the decomposition based version of the MOEA.
As previously mentioned, for this test case MOEA/D [50] was
used with the same population size as NSGA-II. Instead of a
setE , an evenly distributed set of weighting vectorswE was
used, as described in Section IV-D. In all other respects the
experimental setup is identical. The original Pareto optimal
solutions used in the estimation process can be seen inFig. 10
and Fig. 12, and the corresponding estimatesPE in Fig. 11
andFig. 13. As before, the entire estimated populationPE is
presented and used for the calculation of the statistical results.
Also the results are summarised inFig. 4 andFig. 5.

Table VI presents the ratio of the IGD indexDR(P ,PE),
and the mean distance to the nearest neighbourSR(P ,PE)
for problems with 2 objectives. A distinctive pattern, when
compared with the corresponding values in Table II, is that
when theDR(P ,PE) index is very close to1 the mean value
for SR(P ,PE) is very close to10, which is almost equal to
the scaling factor we chose to increase the size of the set
PE relative to the initial setP . One possible reason for this
behaviour, which no doubt is desirable, is that the solutions
produced by MOEA/D are very well distributed across the
PF. If we view the2-dimensional PF as a function, the fact
that solutions are well distributed can be seen as sampling
the function at regular intervals, hence their mean distance
has low variance. This enables the modelling technique we
used to better estimate the mapping, since a uniformσ value
was chosen for all the basis functions, see Section IV-B.
Another interesting fact is that, although the minimum value
of DR(P ,PE) for the problem WFG2, is less than1, the mean
value is1.0341 and the standard deviation is relatively small.
This indicates that, in general, the performance of our method
is producing good results with low deviations, for this problem
instance.

In Table VII the results for the C-metric are given for
C(P ,PE) and C(PE ,P) for the 2-objective test problems.
The results are very consistent, for all problems except WFG2
which is to be expected due to the shape of its PF.C(P ,PE)
is very close to0, signifying that a very small number of
the solutions inPE are dominated by solutions in the original
Pareto setP .

Table VIII presentsDR(P ,PE) andSR(P ,PE) indices for
the 3-objective case. In line with the results in Table VI
the DR(P ,PE) index is satisfactory. Although, for problems
WFG3 and WFG6 it seems to be somewhat low. This is
to a certain extent also reflected in theSR(P ,PE) index.
This behaviour, regarding problem WFG3, can be attributed
to the fact that the real PF was not successfully identified by
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TABLE VI
DR(P,PE ) AND SR(P,PE ) VALUES OF THE SOLUTIONS FOUND BY

MOEA/D,P , AND THE ESTIMATED SETPE , FOR THE2-OBJECTIVE
PROBLEM SET.

DR(P,PE ) SR(P,PE )

Problem min mean std min mean std

WFG2 0.7984 1.0341 0.0742 3.4859 6.1070 1.6286
WFG3 1.0037 1.0401 0.0216 9.1222 9.9152 0.1197
WFG6 0.7774 1.0288 0.0514 8.2379 9.5327 0.5143
WFG7 0.1164 2.3724 2.5573 7.8871 8.7620 0.3967
DTLZ1 1.0000 1.0000 0.0000 9.9820 9.9932 0.0049
DTLZ2 8.6618 9.8542 0.6573 9.8320 9.8454 0.0062

TABLE VII
C-METRIC VALUES OF THE SOLUTIONS FOUND BYMOEA/D,P , AND

THE ESTIMATED SETPE , FOR THE2-OBJECTIVE INSTANCES OF THE

SELECTED PROBLEM SET.

C(P,PE ) C(PE ,P)

Problem min mean std min mean std

WFG2 0.4675 0.6101 0.0787 0.0000 0.1174 0.1405
WFG3 0.0000 0.0003 0.0009 0.5941 0.7430 0.0591
WFG6 0.0000 0.0323 0.1474 0.0000 0.1289 0.0745
WFG7 0.0000 0.0001 0.0003 0.0000 0.0362 0.0209
DTLZ1 0.0000 0.0441 0.1414 0.0000 0.2875 0.3366
DTLZ2 0.0000 0.0000 0.0000 0.0099 0.0196 0.0014

the algorithm, which for WFG3 is a line in3-dimensions.
This conclusion is further supported by the fact that the
corresponding values forC(P ,PE) in Table IX are very close
to 0 attesting to the fact that the produced estimated Pareto set
PE , does in fact model the given set rather well. Therefore this
behaviour could be remedied by choosing the non-dominated
solutions in the setPE . However for our purposes this option
was avoided since this wouldmask such deficiencies, thus
disallowing further insight for possible improvements of the
proposed methodology.

In Table IX the results for the C-metric are given for
C(P ,PE) andC(PE ,P) for the 3-objective problems.

VI. PARETO ESTIMATION APPLIED TOPORTFOLIO

OPTIMIZATION

The seminal work of Markowitz [57] changed drastically
the way that managers and investors decide on what portfolio
of securities is appropriate for a given tolerance of risk. The
main idea is that given a portfolio composition, there are two

TABLE VIII
DR(P,PE ) AND SR(P,PE ) VALUES OF THE SOLUTIONS FOUND BY

MOEA/D,P , AND THE ESTIMATED SETPE , FOR THE3-OBJECTIVE

PROBLEM SET.

DR(P,PE ) SR(P,PE )

Problem min mean std min mean std

WFG2 6.5869 8.8543 0.8840 2.0372 2.3451 0.1331
WFG3 0.3963 0.4957 0.0709 1.6416 1.8425 0.1406
WFG6 0.2327 1.4326 0.8999 0.3148 4.3185 1.2262
WFG7 2.6739 3.5314 0.4975 4.7421 4.9538 0.0914
DTLZ1 1.0003 1.0983 0.6850 4.8150 5.4396 0.5015
DTLZ2 3.4609 5.3924 0.5535 3.9083 4.3850 0.2362

TABLE IX
C-METRIC VALUES OF THE SOLUTIONS FOUND BYMOEA/D,P , AND

THE ESTIMATED SETPE , FOR THE3-OBJECTIVE INSTANCES OF THE
SELECTED PROBLEM SET.

C(P,PE ) C(PE ,P)

Problem min mean std min mean std

WFG2 0.4675 0.6101 0.0787 0.0000 0.1174 0.1405
WFG3 0.0000 0.0003 0.0009 0.5941 0.7430 0.0591
WFG6 0.0000 0.0323 0.1474 0.0000 0.1289 0.0745
WFG7 0.0000 0.0001 0.0003 0.0000 0.0362 0.0209
DTLZ1 0.0000 0.0441 0.1414 0.0000 0.2875 0.3366
DTLZ2 0.0000 0.0000 0.0000 0.0099 0.0196 0.0014

main objectives to be considered. First, the expected return
is to be maximized and second, the variance of the expected
return is to be minimized. Variance of a portfolio allocation is
essentially a metric of risk. What was shown by Markowitz is
that these two objectives are competing, namely if an investor
wants extremely high expected returns, then he or she must
concede a high level of risk which could mean that the chance
for the entire portfolio to be diminished is increased. Although
not without its critics, Markowitz portfolio theory has taken by
storm the financial markets and is today employed virtually by
every investor. However, a strong critique of this approachin
selecting anoptimal allocation of a portfolio of stocks is that
the measure of risk, namely the variance of the portfolio, is
not entirely realistic due to the assumption that the expected
returns are normally distributed. This assumption is usually
not entirely true, and as it can be seen by the recent market
crash, can often prove to be devastatingly flawed.

A. Portfolio Optimization - Problem Definition

The classical portfolio optimization problem extended with
an additional measure of risk as a third objective, namely the
value-at-risk (VaR), can be defined as,

min
x

F(x) = (R(x), V (x),M(x)) ,

subject to
n
∑

i=1

xi = 1, andxi ≥ 0, i = 1, . . . , n,
(24)

where the decision vectorx represents the allocation of capital
onn securities. The constraint imposed on the decision vector
in (24) means that no gearing11is allowed as the maximum
allocation must be equal to the available capital and the
non-negativity constraint in the allocation (decision vector
components) means that short positions are not allowed. A
short position is one in which the investorborrowsa security
and sells it, in hope that he can later buy it at a lower price,
repay the loan by returning the security to the lender and
make a profit from the difference. Furthermore the scalar
objective functions in (24) are the negative of the expected
return,R(x), the portfolio variance,V (x), and the value at risk
calculated from historical data,M(x). The problem defined in
(24) closely follows the formulation used in [19]. However
contrary to the work in [19] we employ a non-parametric
method to calculate the portfolio VaR, instead of using the

11Gearing or leveraging is when securities are purchased on credit.
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Fig. 10. Pareto front solutions found by MOEA/D for the2-objective problem set.
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Fig. 11. Estimated solutionsPE (|PE | = 1000) from the non-dominated solutions found by MOEA/D for the2-objective problem set. The parts of the
PF, for the WFG2 problem, drawn in gray represent dominated solutions.

simplified VaR. Specifically these objectives are defined as
follows,

R(x) = −
1

N − 1

N−1
∑

i=1

ln

(

x
T
ri+1

xT ri

)

,

ri = (ris1 , . . . , r
i
sn
),

(25)

where risn is the return of the securitysn at time i. The
expression in (25) represents the negative of the expected com-
pounded return. The second objective, namely the portfolio
variance, is defined as:

V (x) = x
TΣx, (26)

where,Σ, is the covariance matrix of the underlying securities.
The covariance matrix is calculated using historic data, asis

the case for the value-at-risk, see Section VI-C. Lastly thethird
objective is the value-at-risk calculated by a non-parametric
method via historic simulation, see for example [58], [59],

M(x) = V aRt+1
α ,

V aRt+1
α = −inf

y

{

y ∈ R : P

(

ln

(

x
T
rt+1

xT rt

)

≤ y

)

≥ α

}

,

if V aRt+1
α < 0, thenM(x) = 0,

α ∈ (0, 1),
(27)

where α is the probability of a return smaller thany. In
essence VaR quantifies the potential loss in a portfolio with
probabilityα. Also if M(x) becomes negative, this translates
to positive returns (y > 0) in the worst casescenario, which
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Fig. 12. Pareto front solutions found by MOEA/D for the3-objective problem set.
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Fig. 13. Estimated solutionsPE (|PE | = 3003) from the non-dominated solutions found by MOEA/D for the3-objective problem set. The non-dominated
solutions in the WFG2 test problem are the represented by thedarker points on the plot.

means there is no risk in the investment, as far as VaR is
concerned, soM(x) is assigned to0. A negative value could
be assigned, however this has the potential to reduce the
portfolio diversification which is generally undesirable [59].
For example, if a security has never had extreme variations
in its price, then it would appear that it issafe, so if M(x)
is allowed to be negative (i.e. guaranteed positive returns),
then a clear strategy would be to allocate a big proportion
of the capital to this security. However, this will reduce
the portfolio diversification and increase its sensitivityto the
aforementioned security. So, should this security exhibita
large negativeswing, the entire portfolio would follow. An
even more conservative approach would be to assign a lower
bound on VaR for securities whose historic price has never
exhibited extreme variations. Since VaR can fail to account
for risk due to lack of portfolio diversification [59] and the
variance of the portfolio is insensitive to extreme events,the
two objectivesV (x) andM(x) complement each other well.

B. Decision Making Procedure

Given a Pareto set approximation,P , and using the Pareto
estimation method, the decision maker has the opportunity to
request a solution that is not present in the original Pareto
set approximation. To illustrate this consider the following
scenario. Let us assume that the decision maker is interested
in a solution,z̃ 6∈ P , that is within the convex hull of the
following solutions,z1, z2, z3 ∈ P . Without the PE method, a
solution to this would be to re-start the optimization process,
use another optimization algorithm or involve the decision
maker in the optimization procedure using some preference
articulation method, for instance [1]. All these alternatives
have a high cost in function evaluations and are not guaranteed
to produce the desired results. However, while the PE method
cannot guarantee positive results either, it does enable the
analyst to try and satisfy the DMs’ request at a much lower
cost. A way to leverage the Pareto estimation method could
be the following:

• Request from the decision maker to specify the regions
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Portfolio Optimization - Pareto Estimation Results
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Fig. 14. VEPF: Number of valid solutions generated by the PE method
when considering the entire Pareto front.VRA: Number of valid solutions
generated by the PE method for regionA. VRB: Number of valid solutions
generated by the PE method for regionB. PEPF: Number of Pareto optimal
solutions generated by the PE method when considering the entire Pareto
front. PRA: Number of Pareto optimal solutions generated by the PE method
for regionA. PRB: Number of Pareto optimal solutions generated by the PE
method for regionB. ERR: Neural network generalization error calculated
using cross validation.

of interest by selecting points from the obtained Pareto
set.

• For each region select3 pointsz1, z2, z3 ∈ P that fully
enclose the preferred region on the Pareto front. For2-
objective problems,2 points would suffice.

• Project the points on toCHI . Let these points be
w1,w2,w3.

• Generate points within theconv {w1,w2,w3}, namely
the convex hull of the set of points{w1,w2,w3}. A
way to achieve this is to create a set of evenly spaced
weighting vectors, as described in [50]. LetW be an
N × k matrix of N evenly spaced weighting vectors and
k = 3 in this example, then:

W̃ = W ·





z1

z2

z3



 , (28)

where the resulting matrix,̃W , will be comprised of
points within theconv {w1,w2,w3} by definition [60].

• Use the general version of the Pareto estimation method
(see Section IV-C) to identify the mapping̃FP .

• Use the points inW̃ as input to the identified mapping,
F̃P , to obtain a set of decision vectors,DE , that will
generate Pareto optimal points in the convex hull of the
region enclosed byz1, z2, z3.

• Finally, using the objective function verify that the set,
DE , does indeed produce Pareto optimal solutions.

Following the above mentioned procedure any region of in-
terest on the Pareto front can be further explored without
incurring the usually high cost of restarting the optimization
algorithm.

C. Portfolio Optimization Experiments

To evaluate the Pareto estimation method on the portfolio
optimization problem defined in (VI-A), NSGA-II was used

Portfolio Optimization - Relative Density
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Fig. 15. Mean distance to nearest neighbour ratio of: (i)SR(P,PE ) entire
Pareto front approximation produced by NSGA-II,P , divided by the set
obtained by the PE method,PE , for the entire PF, (ii)SR(PA,PE,A) the
Pareto optimal solutions in the neighbourhood of regionA, PA, divided by
the set of solutions obtained by the PE method in regionA, PP,A, (iii)
SR(PB ,PE,B) the Pareto optimal solutions in the neighbourhood of region
B, PB , divided by the set of solutions obtained by the PE method in region
B, PP,B.

with N = 300 for 350 generations, totaling a105 000 function
evaluations. This procedure was performed for50 independent
runs. Furthermore the dimension of the decision vector was
set ton = 20, which was comprised of20 randomly selected
securities. The historic data used for the calculation of the
objective function are daily opening prices for the past3 000
trading days and where obtained from Yahoo! Finance [61].
Subsequently the PE method was used to obtain more Pareto
optimal solutions for the entire Pareto front using the method
described in Section IV-C and two pre-specified regions using
the procedure described in Section VI-B. The number of
requested solutions for the entire Pareto front where3 003 and
for regionsA andB 300 additional points where generated
within the aforementioned regions. These results are shownin
Fig. 16.

In Fig. 14 the statistics of the output of the PE method are
shown. Notice that for all regions, namely the entire Pareto
front and the regionsA and B, all generated solutions are
valid. Furthermore the ratio of Pareto optimal solutions to
dominated solutions for the case of the entire Pareto front
seems to be lower when compared to regionsA andB. How-
ever its’ median is approximately0.41, which translates to4
Pareto optimal solutions for every10 generated solutions. This
seems to be a fairly good ratio, since for only3 003 function
evaluations an additional1231 Pareto optimal solutions are
generated. Also, notice that for regionsA andB (seeFig. 16)
this ratio is significantly higher. This is potentially due to the
size of the requested region and the quality of the model in
these parts of the PF. However the important benefit of the PE
method is seen from the accuracy in location of the generated
solutions in the above mentioned regions. So, for a cost of
300 extra objective function evaluations the decision maker
has obtained more than160 additional Pareto optimal solutions
in regionsA andB, which greatly increase the chance that a
specific solution would satisfy his or her preferences assuming
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that the regions where selected according to Section VI-B.
Furthermore, the mean nearest neighbour distance in the entire
Pareto front as well as for the regionsA andB is shown in
Fig. 15, and, although the increase in density of Pareto optimal
solutions for the entire Pareto front is modest (1.8 to 2.7 times
larger density), the increase in density in regionsA andB is
phenomenal. In real terms, and given the fact that the solutions
are very well distributed within the above regions (seeFig. 16),
this increase in the density of Pareto optimal solutions means
that for any desired solutions within these regions the DM will
be able to find one that is4 to 6 and 9 to 15 times12 closer
to the exact location of the preferred Pareto optimal solution
within regionA andB respectively.

VII. D ISCUSSION

This study has shown that the question posed in Sec-
tion III-C is far from impossible to answer. In fact it can
be answered with relative precision, as is strongly indicated
by the results for the selected test problems, shown inFig. 4,
Fig. 5 and even more so for the portfolio optimization problem,
whose results are shown inFig. 14 and Fig. 15. However,
the Pareto estimation method is not without its problems. For
instance, since the quality of the produced solutions depends
on the employed modeling method, which in turn depends on
the quality of the produced Pareto set approximation, it is to
be expected that when both these factors are satisfied to a
higher degree; better results are to follow. This is relatedto
the observation in [40], about the connectedness of the Pareto
optimal set in decision space for continuous multi-objective
problems. Namely, if the Pareto set approximation is notclose
to the true Pareto set, this argument need not necessarily
hold. For instance such a Pareto set approximation need not
necessarily be piecewise continuous, in decision space, as
the Karush-Kuhn-Tucker conditions would not obtain for the
aforementioned PS.

As mentioned in Section III-A, there are many alternative
methods for identifying the mappings used in the Pareto
estimation method, however since the cost of more elaborate
methods renders them prohibitive for repetitive testing asthe
one performed in Section V, it is difficult to quantify the
benefits in using more sophisticated identification methodsand
even more difficult to discern if the results are due to the
affinity of the modeling method to the particular problem set.
However, when applying the Pareto estimation method to a
specific real-world problem, the analyst has several options on
how to proceed to identify the required mappings used in PE.
An excellent work that addresses modeling issues and proposes
a comprehensive approach based on neural networks is [49],
wherein the entire procedure is systematized for producing
high quality models. Although it should be noted that, based
on the results in this work, the radial basis function neural
network proposed in Section IV-B, has more than acceptable
performance given the small amount of data that is usually
available in a Pareto set approximation, therefore it is an
excellent starting point.

12These numbers refer to the25th to 75th percentile inFig. 15.

Another aspect that has become evident, especially when
comparing the results produced using the Pareto sets produced
by NSGA-II and MOEA/D is that the distribution of the
Pareto optimal solutions on the Pareto front, disregardingtheir
convergence, seems to be an important factor determining
the quality of the model. So, it would appear if some active
learning method as in [62] could be used, the results could
potentially be improved. However, the problem of direct
control of the distribution of Pareto optimal points in the PS
is a very difficult one.

Lastly, the modeling employed in the Pareto estimation
method operates under the assumption that the mapping from
objective to decision space is a bijection, which seems to
be limiting if in fact the objective function,F, is many-
to-one. However, careful consideration of this issue shows
that this is not limiting to the Pareto estimation method, to
the contrary, it can be rather helpful. This is based on the
fact that, a many-to-one objective function whenviewedfrom
the objective space to the decision space, for every objective
vector there are one or more decision vectors to be found.
This means that the probability of finding one decision vector
for a specific objective vector is increased, which is to the
benefit of the modeling method as there are many alternatives.
Also, given the way multi-objective evolutionary algorithms
operate, that is they distribute Pareto optimal solutions across
the entire Pareto front, this one-to-many relationship would
be impossible to discern as MOEAs do not preserve solutions
that result in identical objective vectors. So it would be
highly unlikely for a Pareto set approximation to have such
alternativesas this in clash with MOEA objectives.

VIII. C ONCLUSION

Multiobjective optimization problem solvers seek to gen-
erate a satisfactory set of Pareto-optimal solutions to enable
a decision-maker to select suitable solution. Here, a novel
methodology that increases the density of available Pareto
optimal solutions has been described. Using this method, the
number of available solutions along the trade-off surface is
increased, thereby greatly enhancing the ability of the DM to
identify a suitable solution with accuracy.

This is accomplished by identifying the mapping of a
transformed set, derived from an approximation of the Pareto
optimal set, to the corresponding decision vectors. This map-
ping was identified with the aid of a radial basis function
neural network which was subsequently used to infer a number
of Pareto optimal solutionsPE . The proposed method was
presented in two forms. The first is a general formulation
that is widely applicable to any multi-objective optimization
algorithm. This formulation was applied to a Pareto-based
algorithm, NSGA-II, with a ten-fold increase in Pareto optimal
solutions. The second form of the proposed method applies
to decomposition-based algorithms. This form is motivated
by the fact that by using the weighting vectorsw in place
of P̃ we avoid the operations required to generate that set.
Both versions of the proposed method were experimentally
tested against a set of well-known test problems and the results
strongly indicate that the suggested methodology shows great
promise.
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Furthermore, the results in Section V-A and Section V-B,
suggest that the choice of weighting vectors in MOEA/D is
not optimal, i.e. an even distribution of Pareto optimal points
is not produced by the algorithm. By even distribution we
mean that the Pareto optimal points have a distribution that
minimizes thes-energy which has been shown to solve the best
packing problem for a sphere, see [63], [64] for further details.
This effect is transferred to the results of the proposed method
that used an approximation of the PF produced by MOEA/D,
see Fig. 12 and Fig. 13. This issue has been successfully

addressed and will be reported in a future work. In contrast
with MOEA/D, the Pareto-based method produced much more
uniform results, seeFig. 9. However, there are obviousedge
effects, which are explained by the fact that we generate
solutions only within theCHI , see Section IV-A andFig. 3.
This can be averted if Pareto estimation is used for specific
regions, as is seen in Section VI-B.

Finally, although the concepts presented in this work need
to be further developed, we believe that they can alter the
definition of what we currently consider to be a well dis-
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tributed approximation of the PF. This is primarily due the
fact that, if an inverse mapping can be identified, then the
main issue becomes that of theoptimal allocation of Pareto
optimal solutions on the PF such that the process of identifying
a suitable solution is facilitated. By optimal allocation we
mean an approximation set of the PF that provides the most
information about the underlying PF. This, still unknown
distribution, need not necessarily be anevendistribution of
Pareto optimal solutions. This issue is deferred to future
research along with the exploration of the applicability ofthe
presented method for many-objective optimization problems.
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