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Abstract—Decomposition-based algorithms for multi-objective
optimization problems have increased in popularity in the past
decade. Although their convergence to the Pareto optimal ont
(PF) is in several instances superior to that of Pareto-baskalgo-
rithms, the problem of selecting a way to distribute or guidethese
solutions in a high-dimensional space has not been exploreth
this work, we introduce a novel concept which we calgeneralized
decomposition. Generalized decomposition provides a fraawork
with which the decision maker (DM) can guide the underlying
evolutionary algorithm toward specific regions of interest or
the entire Pareto front with the desired distribution of Pareto
optimal solutions. Additionally, it is shown that generalized
decomposition simplifies many-objective problems by unifing
the three performance objectives of multi-objective evoltionary
algorithms — convergence to the PF, evenly distributed Pate
optimal solutions and coverage of the entire front — to only ae,
that of convergence. A framework, established on generakz
decomposition, and an estimation of distribution algoritrm (EDA)
based on low-order statistics, hamely the cross-entropy ntieod
(CE), is created to illustrate the benefits of the proposed cwept
for many objective problems. This choice of EDA also enables
the test of the hypothesis that low-order statistics based [BAs
can have comparable performance to more elaborate EDAs.

Index Terms—Generalized decomposition, cross entropy
method, MACE, many-objective optimization, multiobjective op-
timization, decomposition methods, scalarising functios.

I. INTRODUCTION

of the k£ objectives are competing and some are harmonious
then theeffectivenumber of objectives will be less thahn
[4]. MOPs for 2 or 3 objectives have been heavily studied,
however there is the need for algorithm frameworks that
can deal with higher dimensional problems, i.e. more than
3 objectives. These problems are so-called many-objective
problems (MAPSs), for brevity we refer to multi and many-
objective problems simply as MAPs.

The problem that is apparent in MAPs is that there is no
natural way of ordering the obtained solutions; this ordering
is crucial for fithess assignment. However MOEAs base their
decisionas to the direction of search on the assigned fitness of
various solutions in the population. This is a very well kmow
problem in MAPs and has been addressed with varying degrees
of success by a number of researchers over the past three
decades [5]-[7]. In general there are two approaches emgloy
to resolve this issue: Pareto-based and decompositidbas
methods. In both methodologies there is the assumption that
the relative importance of the objectives is unknown. In the
case that this information is given by the decision maker {DM
then a decomposition method can be used to create a scalar
objective function, see Section Il

Pareto-based methods use the Pareto-dominance relations
[8], to induce partial ordering in the objective space. Ehes
relations, were initially introduced by Edgeworth [9] and

ULTI-objective problems arise naturally in many disci{ater expanded by Pareto [10]. For example for two vectors
plines, for example in control systems [1], finance [2h,b € R", a < b if all the elements ina are smaller or
and biology [3]. A multi-objective problem (MOP) is definedequal K) to the corresponding elements n and at least

as,

(fl(x), fQ(X), .

subject tox € S,

chin F(x) =  fr(x))

(1)

where k is the number of objective functions andis the
vector of decision variables defined in the dom8irC R™.
It should be clarified what we mean by the notatimﬁn is

one element ira is strictly (<) smaller than its corresponding
element inb. This partial ordering, induced by the relation,

is denoted am < b, and, in the context of a minimization
problem this expression is read as: the veet@ominatesb.

For a more complete treatment of Pareto-dominance rekation
the reader is referred to [8]. However such relations are of
limited utility when the number of dimensions is increased

minimization overx which is different to themin operator [11]. This is primarily because the number of non-dominated
which returns the minimum element of a set. We follow thisolutions increases as the dimensionality of the problem in
convention because it leads to a more compact descriptiefeases, and for dimensions greater than around ten, almost
There is an implicit assumption that the scalar objectivgl the solutions are non-dominated [12]. Hence this type of
functions are competing, since if this assumption is no¢ tripartial ordering becomes of limited use in high dimensions
then (1) degenerates to a single objective problem, or ifesomince, if all the generated solutions are non-dominatee, th
EA has no objective measure on which to base its selection
process.

Decomposition-based methods employ a scalarizing func-
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tion to aggregate all the objectives into a single objectiviail. This can be seen in [19] whereby a front described by:
function. Such methods have been used predominantly in ngid-+ f» = 1 is generated and the estimate using the Newton
linear mathematical programming, where the main algorithmethod is: f}44° + f3445 = 1. Therefore, the first part of
is based on some variant of gradient search [8], [13]. Howeuwhe suggested method can mislead the entire procedure in
multi-objective evolutionary algorithms (MOEAS) have als [18], [19]. The second problem, is that the weighting vestor
employed decomposition with varying degrees of success, that correspond to points on the identified Pareto front are
example [14]-[16]. Arguably, decomposition methods have nformulated in a similar fashion to (2), hence the issue of
been explored to sufficient depth for MAPs. For exampl@onconvexity of the problem formulation emerges again and
a popular hypothesis, that is employed by several MOEAthe resulting weighting vectors will not produce subproide
is that an even distribution of weighting vectors will resulthat converge to the reference points. Lastly, the hypamel
in well distributed Pareto optimal points [7]. However, withindicator [20], which is used to ascertain the quality of the
the help of a novel concept which we cageéneralizedde- referencepoints on the PF, has exponential complexity in the
composition, we show that this assumption is fundamentatiyimber of objectives [21], [22], which limits the method to
flawed and we provide an exact solution to this issue, subjegiproximately4-objective problems, since the hypervolume
to some prior information. It is interesting to note thatesly must be calculated several times on every iteration of the
several researchers have taken an interest in the selectgorithm [19].
of weighting vectors in decomposition-based methods. For
instance [17] identify two issues with the way that set of Most tantalizingly, in a recent publication Gu et al. [23]
weighting vectors are selected in MOEA/D [7]: (i) it is notdiscuss a solution for identifying a weighting vector sahgs
possible to select an arbitrary number of weighting ve¢tora set of evenly distributed Pareto optimal solutions. Havev
which can be problematic for many-objectives, and, (ii) théne proposed method in the above mentioned work is limited
number of weighting vectors situated on theundarytends for the weighted sum method and the Chebyshev scalarizing
to be large. The boundary in this context is understood tonction [23]. For example if weakly Pareto optimal solutso
mean: weighting vectors with many components equal to zeeve to be avoided, th@odifiedChebyshev scalarizing function
Weighting vectors on the boundary produce subproblems tligt pp. 101] can be used. However there is no clear way in
completely disregard some of the objective functions wliich identifying the required set of weighting vectors using the
general is undesirable [17]. The suggestion is to wsiéorm proposed methodology in [23].
designto select the set of weighting vectors instead of a set
of evenly distributed weighting vectors. However, as isvetho  Evolutionary algorithms (EAs) have found numerous ap-
in this work, an even owniform distribution of weighting plications in MAPs [12]. This is because most EAs are
vectors does not produce evenly distributed Pareto optinmdpulation-based, in the sense that at each iteration are ent
solutions, hence what is proposed in [17] does not addrgsspulation of solutions is evaluated. This feature is qesaén-
the more pressing issue, that of finding the distribution ¢ifal to MAPs since, in a posteriori optimization, an entire
weighting vectors that would lead to a Pareto set whose poifiamily of solutions is required to describe the trade-offace.
have adesirabledistribution on the PF. This distribution canThis trade-off surface in objective space is also called the
be defined in numerous ways, and depends mostly on tareto front (PF). Another important reason for EA applica-
preferences of the DM. This issue is further discussed nility is that they impose almost no constraints on the probl
Section IlI-C. structure; for example, continuity and differentiabildye not
An interesting adaptive method to select the set of weighequired for EA operation. Due to these factors MAP research
ing vectors is presented in [18], [19]. The main idea is t vibrantin the EA community, something that can be attéste
identify the Pareto front geometry and then distribute ao$et by the number of EAs available for MAPs, e.g. [7], [12],
points on that surface in such a way so as to maximize tf@4]. Specifically EAs are comprised of a number of algorithm
hypervolume indicator [20]. Subsequently, the points fburfamilies, such as genetic algorithms (GAs) [25] and evoluti
in the previous step, are used to identify a weighting vexctostrategies (ES) [26], as well as differential evolution {PE7]
that, upon minimization of the resulting subproblems, wlouland others. Most of the aforementioned algorithm families
result in similar points on the Pareto front. The idea seerage inspired by some naturally occurring process, such as
hopeful, however, there are three major difficulties witis th DNA recombination and mutation [25]. However this presents
approach. First, the authors assume that the Pareto front cartain difficulties. For example, it is very hard to analyise
be parameterized using the following, behaviour of MOEAs analytically, thus their performance on
- po a problem cannot be guaranteed prior to application. This is
R (2) why EAs are usually evaluated experimentally using sonte tes
where,p; € R, and the fact that (2) equals to one meansroblem sets [28]—[30].
that the objective functions are normalized in the rarn@el,).
The problem is that (2) is nonconvex but the authors of [18], More recently, a new family of algorithms has emerged,
[19] ignored this issue and used the Newton method to solmamely estimation of distribution algorithms (EDAs). EDAs
for the p; parameters. Therefore, if there is noise in the Parestand in the middle ground between Monte-Carlo simulation
optimal points used in identifying thg; parameters or the and EAs. In EDAs, a probabilistic model is built, based on
Pareto front geometry hag, # p;, i # j, this method will elite individuals, which subsequently is sampled prodgan



GIAGKIOZIS et al: GENERALIZED DECOMPOSITION AND CROSS ENTROPY METHODS FORAWY-OBJECTIVE OPTIMIZATION 3

new population obettet individuals. From the EA point of The remainder of this paper is structured as follows. In
view, EDAs can be traced back to recombination operatoBgction Il we elaborate on the ensuing problems in Pareto-
based on density estimators that use good performing ohdivbased methods for many objective problems. In Section llI
uals in the population as sample [31]. A positive aspect gEneralized decomposition is described along with the fitene
EDAs is that it is straightforward to fuse prior informatiorthat this method can bring to currently existing MOEAs.
into the optimization procedure, thus reducing the time eollowing this, in Section IV the CE-method is presented
convergence if such information is available. Also, the anto along with its form for continuous optimization problems. A
of heuristics, compared with other EAs, is reduced easiag tany-objective optimization framework based on genegdliz
task of mathematical analysis of these algorithms. Thisnis decomposition and the CE-method is presented in Section V.
important aspect which has been overlooked, due to inherdie algorithms in our comparative studies in Section VII
difficulties, in most heuristics for optimization. Studie§ are described in Section VI. In Section VIII we illustrate
this kind are usually applied to algorithms that are not uséww generalized decomposition can be used for preference
in practice [32], [33], therefore the practical value of Bucarticulation. Lastly in Section IX we summarize and conelud
studies is limited. However EDAs are not a panacea sintlds work.

they heavily depend on the quality and complexity of the

underlying probabilistic model [34]. For instance, a simpl |I. PARETO-BASED METHODSAND MANY-OBJECTIVE

EDA based on low-order statistics, i.e. an EDA that does not PROBLEMS

account for variable dependencies, can be easily misled ifrp o concept of Pareto-dominance is of limited use as a

in fact, such dependencies exist in the underlying probleg} .. assignment scheme for many-objective problems. Of
To overcome such difficulties researchers proposed evee MBBurse, Pareto-optimal solutions in any number of dimerssio
elaborate models [34], which of course increase the contplex, i il pe the minimal elements of the feasible set in
of the a_llgorithm anq in some instances the id_entification %jective space. In [39] a very interesting geometric arguim
the optimal model is of comparable complexity to that gf hresented that should clarify this point. In what follows

the optimization problem necessitating the use of heusistiy|zporate on the above mentioned argument.

[35]. Acknowledging this problem has led some researclers t ~gnsider the simplest multi-objective case, namelg-a
suggest hybridization of EDAs based on simple probalilistyyiective problem. Every point in objective space defines
models with some form of cIusterlng_ [36]. This course iSegions, (i) a region that contains solutions that are tlezet-
further supported by more recent studies [37]. o ter, (ii) a region that contains solutions that are cleartyrse
_For these reasons we have selected an optimization alggy iii, iv) two regions where the solutions are incompéeab
rithm, the so-called Cross Entropy method (CE), as the mai§ the point in question. Now, fai-objective problems there
algorithm in our gene_rallzed decompos!tlon-_based f_ra_rmbwoareS such regions2?), however there is only region which
The CE-method was introduced by Rubinstein [38], initi@ty contains clearly better solutions arid region with clearly

a rare event estimation technique and subsequently as @n algorse solutions. So, there a2é — 2 = 6 regions that contain
rithm for combipatorial and continl_Jous optimization pm’nls. _solutions incomparable to the point in question. In gentral
The most alluring feature of CE is that, for a certain familyg|iowing is true, fork-dimensional problems, there is always
of instrumental densities, the updating rules can be caied| | region with clearly better solutions, region with clearly
analytically, and thus are extremely efficient and fastoAlse |orse solutions an@* — 2 regions containing incomparable
theoretical background of CE is enabling theoretical &8 digs|ytions. Now, assuming that there is no bias towards any of
of this method which can provide sound guidelines about thg.ge regions in the problem (objective function), the pb

applicability of this algorithm to problems. ity that a solution is generated in any one of these regions by
follows: to the volume of these regions divided by the volume of the

« A generalization of decomposition methods is presenteghtire feasible set in objective spacelowever, for increasing
that is applicable to a wide range of EAs and for alhumber of dimensions, the likelihood that a solution will be
scalarizing functions that are convex with respect to trgenerated within the region of solutions that are clearlyebe
weighting vectors. Using the presented methodology, thecomes almost insignificant the closer the point is to the
spread of the resulting PF can be directly controlledareto front [39]. For example, fdrl dimensions there are
Additionally, it is shown how generalized decompositio 048 regions, hence for the above problem, the probability
can be used to refine the search of a MOEA in regiofigr a solution to be generated, that dominates the current
that are of particular interest to the DM, thus introducingoint, is approximatelyp = 1/2048 = 4.88=* if the point
preference articulation for decomposition methods.  in question is exactly in theniddle of the feasible objective

« Using generalized decomposition, the CE-method is eget. To contrast this, the probability that a non-comparabl
tended to MAPs and is shown to perform very welsolution is generated 3046/2 048 ~ 0.99.
compared to two other EAs, namely MOEA/D, RM- However, we have simplified the problem greatly, that is we
MEDA, and random search. have assumed no bias and that the point is significantly away

from the Pareto front so that the volume of all the regions

10r more precisely, individuals that are more likely to betérethan their
predecessors. 2We assume that the feasible objective set is bounded.
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Fig. 1. Left: An affine Pareto front. Right: The correspomdioptimal Fig. 3. Left: A convex Pareto front. Right: The correspomgdiaptimal
weighting vectors. Different shades of grey aid in identify corresponding weighting vectors.
regions in the Pareto front and the associated weightingprec

be better with respect to the particular subproblem [39]. An
intuitive way that explains why this is the case is if we coesi
the effect of a scalarizing function to the objective spake.
scalarizing function projects the entire objective spanéo
a line*, therefore some regions that contain incomparable
solutions in the Pareto sense, now become solutions that
0 are either better or worse for the particular subproblem.
Admittedly this is not an entirely desirable behaviour, lboer
the algorithm is provided with an unambiguous direction of
Fig. ﬁ Left: A concave Pareto front. Right: The correspagdoptimal  gearch. It should be noted that by using a decompositioaebas
weighting vectors. method, the problem does not become any easier to solve. The
major difference between decomposition-based and Pareto-
is approximately the same. Naturally, this is highly unljke based algorithms is that the former provide unambiguous
PP y j ) Y gy information about the quality of the produced solutions at
to be the case, so let us consider a more realistic scenario. . . .
. . . every iteration while the latter cannot always guarantesh su
Let the problem in question be bounded, so assuming we . o . 2
. e . . = nformation because the likelihood of generating incorapé
know the boundaries, we can shift it so that its forward image) . L : . C L
olutions in high dimensions is high [12]. However it is

(objective space) is the nonnegative orthant. The only Caesgsy to reduce the above argument into a zugzwang between

that the problem will be easier to solve, is when there is bi‘Ia-"sareto-based methods and decomposition-based methasls. Th
towards the Pareto front, but this is not usually encoudtere ; : . '
in practice. The contrary is a much more common situatiofy accomplished by the simple observation that dhearly

' Bétterregions in the Chebyshev scalarizing function (see (5))

namely that there is “resistance” in finding better SOILEmonare identical to the regions generated by Pareto dominance
This combined with the fact that as a solution approachgs 9 9 y

toward the Pareto front the region that contains clearlyebet as_ed methods, while the incomparable and clearly worse
: . . o regions in Pareto-based methods are mappedetarly worse
solutions is becoming very small, the probability that a seor

T L . . regions by the Chebyshev scalarizing function. Namely, if
solution is generated is increasing towasd— 1 (no-bias . o
X i, .we require a decomposition method that can guarantee the

towards worse solutions) and the probability of generatin . . .

A ; neration of Pareto optimal solutions, then, we have to use
a better solution is diminishing toward — 0. Regarding o X . . )

. S . . the Chebyshev scalarizing function but in so doing we give

the regions that contain incomparable solutions, theiuwa . .
) . ; . up the favourable convergence r&teschieved when using
is exchangedwith the region that contains clearly wors

) . . . WOlSGhe weighted sum method, and vice versa. There are ways
solutions. Therefore it becomes increasingly more diffitol . o . .
i . . . L that different scalarizing functions can be used to adaftiv
find solutions in the desirable direction.

The difference with decomposition-based algorithms i th resolve this issue while preserving the guarantees that the

for each subproblem a complete ordering of the Objectif/thebyshev function provides however this requires further

space is defined, irrespective of its dimension. This inmﬁen(?vest@anon.
reduce? the rate of decrease of the probability that a better
solution is generated [39]. To see this consider a scenlaaio t N
the weighted sum method is used (see (3)). In this scenafio Pecomposition Methods
the weighting vector represents the normal of a hyperplaneDecomposition methods, or so-called scalarizing funstion
that separates the feasible objective space in two regiohave been employed in several MOEAs, for example [14]-
One region containing better solutions and one with wor§#6]. These methods transform (1) to a single-objectivéopro
solutions. Solutions above the hyperplane are consideredlem by combining the objective functions to form a single
be worse while solutions below the hyperplane are taken tscalar objective function. The potential of such methods fo
extending MOEAs to MOPs is obvious considering the basis

Ill. GENERALIZED DECOMPOSITION

3This statement is true only for the weighted sum scalarifimgtion. For ) ) o )
other scalarizing functions a more elaborate formulatmrejuired, however  “In this case a segment of a ray, since the objective spaceuisded.
there are indications that a similar statement may be ésitaol [39]. 50r more correctly the potential for favourable convergerates.
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124 C={e;:i=1,...,k} ande; is a vector whose components
are all equal to zero, except it§" component that is equal

to one. Alsoconv C is the convex hullof the setC' which

is defined in (37). For further details see Appendix B. This
means that all Pareto optimal solutions can be found using
the Chebyshev decomposition. This result is very encongggi
however it does not suggest a way to choose the weighting
vectorsw in order for a representative and evenly spread PF
to be obtained.

10510(}1}(515;,) )

5 o Generalized decompositior B. Optimal Choice of Weighting Vectors

¢ —uo— Evenly distributed weighti t . .
8- = Unfornl iStbutEd Weighting veetors The guarantee that all Pareto optimal solutions can be
104 -— - — Expected energy of uniformly distributed Pareto solutions obtained by the Chebyshev decomposition, for some convex

1 | | | | | | | | | weighting vecton_v, is _WeII known and has been exploited on
5 3 4 5 5 7 8 s 10 11 humerous occasions in past research. For example Jaszkiewi
Number of Obijectives [14] suggests that a uniformly sampled set of weighting
Fio 4. Logarithm of th o of ived decosit | vectorsw should produce uniformly distributed Pareto optimal
e e cecas Solutions along the entire PF. Later Zhang et al. 7] argae th
[14]. choosing at each iteration a new random weighting vector
is too ambitious, since only an approximation of the PF is
necessary. Instead the authors suggest that a set of evenly
of almost every, if not all, optimization algorithms is a fmetl spaced weighting vectors should produeell distributed
that can address only single objective problems. TherefdPareto optimal solutions. Their main argument was that this
decomposition methods present a clear path in extendirty sebould be the case since the various subproblems obtained

algorithms to MOPs. using different weighting vectors are a continuous funcod
Arguably the simplest scalarizing function is the weightethe weights [7]. This seems to be the case, however there
sum method [40]: is nothing to suggest that thisontinuousfunction is also
min wTF(x) linear in the parameters, which is the only case for which
x their assumption would hold, up to a multiplicative constan
k (3) Namely, an evenly distributed set of weighting vectors wioul
Zwi =1, andw; >0, Vi€ {1,...,k}, produce well distributed Pareto optimal solutions only hie t
i=1 case that the function..(-) defined as:
wherew = (w1, ..., wy). However it has been shown that for min geo (x, w*, 2*) = |W* 0 |F(x) — 2*| ||
complicated Pareto fronts, an algorithm based on (3) is lenab x
to discover all Pareto optimal solutions [8]. Although, hwit Vs={1,...,N}, (6)
some modifications this simple decomposition can produce subject tox € S,

respectable results, for example see [7]. .
A more sophisticated decomposition is based on tiﬁ%’l
weighted metrics method [40]:

linear in the weightsw, which is obviously not the case.
e parametelV in (6) is the size of the population which is
equal to the number of subproblems to be solved waridis
k P the weighting vector of the” subproblem.
min (Z w;i| fi(x) — Z;|P> : (4) Therefore, the assumption that, well distributed Pareto
* = optimal points will result from decomposing an MAP into

. - k B a set of scalar subproblems with the aid of evenly spaced
here as in (3), itis assumed that > 0 and that 3, , w; = 1, weighting vectorsw, is not entirely valid. An illustration of

andp € [1,_oo). Also z* is theideal vector, wh!ch is equal yic can be seen ifig. (1) — Fig. (3° where to the left
to the minimum values for all the objectives mdependent%e depict a PF and to the right we calculate the weighting

Whenp — co the well known Chebyshev decomposition 'Jrectors that would produce these Pareto optimal solutions,

obtained: . . assuming that the algorithm is successful in minimizing all
m;nllw ° [F(x) = 27| [loo- ®) subproblems. This calculation was performed with what we

The o operator denotes the Hadamard product which cI:aII generalized decompositipwhich is given by the solution

element-wise multiplication of vectors or matrices of theng Of the program in (7). The insight in this formulation is that

size. This decomposition is quite interesting due the fakcJY using (7) we carsolvethe inverse problem, i.e. given a

that there are theoretical results stating that for any tBar 0|_ntF_(x) N obje~ctlve space we want to .f|nd aunique convex
. o : I weighting vectorw for which the following would be true
optimal solutionx there exists aonvexweighting vectorw

for_Whi_Ch the solution of (5) isx [8]. Note that by, convex  saq affine function is a linear function plus a shift, namgly= ax + c,
weighting vector,w, we mean a vectow € conv C, where is an affine function.

—1
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[WoF(X)||e < |[[woF(X)|l for all convex vectorsv. This the generalized decomposition framework is fully capable
means, that for all possible subproblems defined by the setodfaccommodating any other definition of well distributed
weighting vectorsv € W, the Pareto optimal solutioRi(x) is Pareto optimal solutions. A commonly used measure of evenly
closestto the subproblem defined by the weighting vecokar distributed points on the unit hypersphere is the Coulomb
Closest in this context means that the Pareto optimal swluti potential [44], or Riesz kernel [45], defined as:

F(x), minimizes the subproblem defined ky. Additionally,

W is the set of allk dimensional convex vectors. The ability E(Z;s) = Z lzi — 2], 5 >0
to obtain the weighting vecto& for a particular point on the 1<i<j<N 9)
Pareto front can be exploited in several ways as explairted la zcRF and,Z={z;:ie€{l,...,N}},

in this section. To obtain thé& vectors, the following program ] ] o
is to be solved for every Pareto optimal point of interest: and fors =2, (9) is equivalent, up to a multiplicative constant,
to the Coulomb potential energy. The satin the present

H‘lgnHW o F(x)][oc, work is the set of objective vectors Intuitively, when (9)
k is minimized then the mean nearest neighbour distance of
subject tOZwi =1, (7) the set of pointsz is maximized, subject to the constraints
i—1 imposed by the geometry of the PF. For some examples on the
andw; >0,Vie{1,...,k}. distribution of solutions using (9) the reader is referre¢4t4].

We illustrate the fluctuation of energy for an increasing bem

of dimensions, when the weighting vectors are chosen either
according to the suggestions in [14] or [7], sEg. (4). It
hould be noted that these schemes for weight vector smlecti
are predominantly used in several algorithms. The resnlts i
cs:ig. (4) have been obtained in the following way:

Also to obtain the optimal weighting vectors for the weighte
metrics scalarizing function fop other than infinity, all that
is required is to change the norm in (7) to reflect th
change. If the scalar objective functio(; (x), ..., fx(x)),
that comprise the objective vectd¥(x), are non-negative for
all x € § then the problem formulated in (7) is a discipline i i
convex program [41], hence it is also a convex program. So a® FOr 2 to 11 dimensions and for a concave A¥,number
unique solution is guaranteed and can be obtained by solving Of Objective vectors are selected according to generalized
(7) using some interior-point method [42]. On a side note the deécomposition and the methods described in [14] and
non-negativity constraint on the scalar objective funwican [7]. The number of selected objective vectors used in
be relaxed in the case that all scalar functions are bounded €Very instance can be seen in Table I. This choice is
from below and these lower bounds are known. In which case Motivated by the fact thatl is the number of subdivisions

F(x) is replaced by, per dimension, so the point density of objective vectors
_ for a constantid should represent the PF equally well,
F(x) = (fi—b1,..., fx — bx), (8) in all dimensions. TheH/ parameter has been set To

because fot 1 objectives the number of objective vectors,
N, increases quite rapidly for a higher value #f.

For instance, forH = 8 and H = 9 the number of
objective vectors becomes = 19448 and N = 43758
respectively. This increases the computational resources
required for the experiment significantly.

« For each problem instance, a set of weighting vectors was
generated according to the proposed methods in [14] and
[7]. For generalized decomposition the weighting vectors
are generated using a reference Pareto front with the
desired distribution. For example, 2dimensions the first
quadrant of a unit circle is uniformly sampled and then
the optimal weighting vectors are estimated by solving
(7). Also the expected enerd¥( E;) is calculated using
N x 50 independent uniformly distributed samples on
the PF. Details on the generation of a uniformly sampled
concave PF can be found in Appendix A.

o Subsequently, using the inverse relationship to (7),

whereb; are the respective lower bounds for the scalar objec-
tive functionsf;. For details on the formalism of disciplined
convex programming, the interested reader is referred1p-[4
[43].

The general idea is that the generation of weighting vectors
greatly influences the convergence and spread of the mgulti
Pareto front. However, this selection has been eitherrarlit
[14], or based on invalid assumptions [7]. Additionallyeth
method presented by MOEA/D (see Section VI-A) to gener-
ate weighting vectors is limiting in the sense that for high
dimensional problems the choice of the size of the popuiatio
is restrictive. For example, folf = 10, where H can be
interpreted as the number of divisions per dimension for the
weighting vectors, and fot1 objectives the population size
must be equal t®2378. This H setting is less than half
of that used by Zhang et al. [7] fo3-objective problems.
This restriction can prove problematic in certain situasio
for example if a different choice of population size is more
natural or if there are computational and memory conssaint

TABLE |
. . . THE NUMBER OF OBJECTIVE VECTORSIN, FOR CONSTANTH USED IN
C. The Effect of Weighting Vector Choice THE EXPER,MENTSESEN INFig. (4).
Assuming that our definition afiell distributed PF solutions
is a Pareto optimal set uniformly distributed along the érad _Obi-# 2 3 4 5 6 7 8 9 10 1
off surface, the following experiment illustrates the bfise H 7 7 7 7 7 7 7 7 7 7

of using generalized decomposition. It should be noted that N 7 28 8% 210 462 924 1716 3003 5005 8008
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namely: In CE, the optimization problem is cast as a rare event
Fm(iIiHF(X)OWIIOO, estimation and, subsequently, an adaptive technique, with
* . the aid of importance sampling, is applied to update the
subject toz fi=1, (10) parameters of an mstrumental_ density. The derived prolidem

— called theassociated stochastic proble@ASP). The method

. then uses the ASP to implicitly solve the original optimiaat
andfi 20.Vi€{l,.... k} problem. Generally speaking there are two steps involved in

the Pareto optimal solutionB(x) that minimize every this iterative procedure,

subproblemw are calculated. However, as can be seen
in (10), the inverse problem to (7) can be solved only for
an affine Pareto front. Although, in the case of a concave
PF, the affine PF obtained by (10) can be projected onto
the unit hypersphere and the obtained solutions will still
be optimal for their corresponding weighting vectors.
« Lastly, the log ratio of the energy of obtained solutions

for every methodF,,,, and the expected enerd§(E;),
is calculated for all objectives in Table I.

In Fig. (4) it can be seen that the energignatureof general-

ized decomposition asymptotically converge&{d; ), which

is the expected energy of uniformly distributed solutiongtee

Generate a populatidrbased on a prior distributiop.
The distributiong is uniquely defined by a parameter
vector v. In the initial iterations of the algorithm it is
usually the uniform distribution, unless there is prior
information available.

o Update the parameter vectorto create the posterior
distribution using an elite subseg, of the previous
population.

Since its introduction, several studies expanding on the
initial methodology have been presented. Most notably, the
minimum cross-entropy (MCE) method [47], where a non-

convex PF. Therefore, generalized decomposition suadgssf parametri.c instrumental distripution Is used. Albeit, MEE
captures the underlying distribution of the target PF, so qpmputatlonally more demanding compared with CE. Another

is only a matter of convergence of the underlying algorith|J.1L|"u;"res“ndg approafh,zresented bty Bote\élgE[48]l, toGegééEd i
to that front in order to obtain an approximation of that P ermed generajized cross entropy ( ). In » qurte
with the desired distribution. Conversely, solutions aixd elegantly, the ASP is transformed 10 a convex program with

5 5 .
using the scalarisation method employed by MOEA/D [7] otlhe he_lp 9f th?X dwec?ed divergence. GCE overcomes the
MOGLS [14], have radically different energy levels sigify specification bias by using non-parametrlc_ densn_y g_sttmat

a distribution of Pareto optimal solutions very differemthat HOV\(/jeyer, the ;:.ompl:.tatlon?tll cost of GCE is prohibitive when
of the uniform. Additionally, since (9) penalizes solutsottat used in an optimization seting. .
are clustered, we can see that foor more dimensions the .Let us assume _thaF the optimization problem to be mini-
other methods produce significantly more clustered soistio™zed is single objective:

in comparison to generalized decomposition. These redalts
not provide superiority information of one method over all

others. They do however furnish evidence that given prigh . is the decision variable vector arfdx*) — +* is the

information about the definition of what well distributedr€® minimum. Assuming<* is rare® in S, (11) can be interpreted

gptlmal so_Itl_Jtmns on_(]lthet_]f’Fthmeansdto tf(\je DM, ??neralg_ﬁda different way, i.e. as a rare event estimation. Thegefor
ecomposition can identify this and produce solutions di 11) can be restated as follows,

tributed accordingly. Therefore, for a MOEA that is based o
generalized decompos_ition, the three performan_ce ob@=cti Eulfxy<y = Pu(f(X) <) =1, (12)
that an EA, when applied to an MAP, has to achieve, namely

— convergence, well distributed solutions along the PF amdhere/ is the probability of theare event I is the indicator
coverage of the entire PF — degenerate to only one, thatfofction andE, is the expectation of a quantity distributed
convergence. This, of course, is subject to prior knowleafge according to the density(-; u). Also X is a random variable
the PF shape and a definition of whatll distributed Pareto associated with the decision variable vectorFor notational
optimal solutions mean to the DM. In Section VIII we presertompactness we definé (X';v) = Ir(x)<»

how this feature of generalized decomposition can be used fo
preference articulation.

m)in f(x) (11)

L f(x) <~

0 X) > .
IV. CROSSENTROPY METHOD HX) >

The cross entropy method (CE) was introduced by RNow to estimate/ for some# that |5 — v*|| < €, with €
binstein [38], for single objective continuous and diseretsmall, we have to solvé,(H (X;4)) which is non-trivial
optimization problems. In its original form, CE was based our initial assumption is true, i.e. that the probability
on Kullback-Leibler cross-entropy, importance samplimgl a P, (H(X;%)) is small whenX ~ g(-;u). In the trivial case
the Boltzmann distribution for continuous problems, while
Markov chains are employed in the discrete case [38]. It"Note that the termpopulation and samplesare used interchangeably in

is interesting to note that in this form CE is similar, irfMi$ work; unless stated otherwise. N
inciole. babilit llecti PC thod ird d By rare in this context we mean that faf, = {x : ||x* — z||2 < e&,e >
principle, to probability collectives (PC), a method irdtm@ed oy and< small then the probabilityP(x € ) = [,, u(x)dx < 1, where,

by Wolpert et al. [46] for distributed control and optimimat. «, is a density function.

H(X;7) = { (13)
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that the aforementioned assumption is not trdecan be from thenatural exponential familyNEF) [49], then, (21) can
estimated using therude Monte Carlo{CMC) estimator, be solved analytically [47] by solving the following systerh
| equations:
=52 HX:7). (14) L
i=1 max— ZH(Xi)W(Xi; u,vi_1)VyIng(X;;v) =0. (22)
If, however, our prior assumption holds that the indicator N i=1
function I (x)<, in (14) will most likely be identically0 for  Thjs js a major strength in CE, that is, the fact that the Lipdat
all x;, then a different approach is necessary. An alternatiyges for the instrumental densities can be obtained analt
to CMC is theimportance samplind|S) estimator which is ransjates to a much lower computational overhead. Briefly,

defined as follows, some distributions in the NEF family are the Gaussian, Baiss
1 X and the gamma distributions [50].
b= ZW(?Q;H, V) H(X;7), (15)  The procedure described by (20)-(22) will generate a
i=1 monotonically nonincreasing sequence pfvalues: {v;
where W(X;u,v) = “’ﬁfii is the likelihood ratio (LR). t =1,2,...}, with the corresponding instrumental densities

converging to the optimal parameter for which the event
P, (H(X;7)) is increasingly easier to estimate, i.e. becomes
morelikely under the density(-; v).

Now the problem is to find the 1S density-; v) that would
minimize the variance of the estimator; theoretically tleeoz
variance density is:

9" (x) = w (16) A. CE Method for Continuous Optimization
However (16) involves the quantity which we are trying to The procedure described so far is directly applicable to
estimate (), hence its practical value is limited, although we@ptimization problems, the only difference being that tneel
could, up to a multiplicative constant, attempt to minimize 7 is either thea priori minimum of the objective functiorf(-)
“distance” ofg(-; v) from g*(-). For this purpose, a convenientor, if this information is not available, it is allowed to dease
measure of “distance” is the Kullback-Leibldistance(KL), ad infinitum In practice, for bounded problems, the sequence

defined as: {1|t=1,2,...} converges to a value close to the minimum,
9(x) hence the stopping criterion can be set4p— ;1| < ¢ for
Do.) = [t (422 a (17) some smalb.
) A commonly used candidate for the instrumental densities
and upon expansion, is the normal distribution,
D(g. ) = [ 90x)nglx) dx o (_ (e - u)?) ’s
(18) g(z; py0) oy P 52 ) (23)
- /g(x) Inf(x) dx. and its truncated equivalent for problems with boundary-con

Since the first term in (18) is constant, we only need ttr_alnts. We should mention that the updating rules derived

minimize the second term which is equivalent to maximizin sing (22) are identical for the regular and truncated Gauss

. 8].
J 9(x) In h(x) dx. Therefore the optimal parameter vector, . : S .
in the minimum variance sense, is obtained by the solution ofIt IS suggefsted n [Af?l Fhat for the optlmlzatlon_case, IS(.]B n
the following program: very useful since the initial parametein the densityy(-; u) is

actually arbitrary, under the assumption that we do notgmsss
v = maxEg H(X;v)W (X;u, V) Ing(X;v), (19) any information about the location of the optimum. However,
Y ) ] o .. such information may be available, hence maintaining the IS

where X' is independent and identically distributed (i.i.dpgtimator allows prior information to be exploited. Thisnca

according tog(; v). HoweverP(H(X;7)) is still a rare pgo achieved by setting the parametersaccording to the
event. In CE this is overcome by substitutioroiith ¥ > 7 jnformation available, which should, in turn, help steee th

equal to thep-quantile of f (') underv. The program in (19) gearch towards optimal solutions faster. On the downsfde, i
is solved for decreasing levels qfuntil 7 < 7. So (19), N the prior information is not correct, this biasing can lehd t

the CE method, becomes: optimization procedure astray.

ve = max By, , H(X;y_1)W(X;u,vi1)Ing(X;v), The CE method for single objective problems can be sum-
v (20) marized as follows:
whose stochastic counterpart is, Step 1 Initialize vq to the uniform distribution and seét=
1.
N

1 Step 2 Sample the distributiory(-;v;—1) to generate a

= max — > H(X;v-1)W(Xi;u,vi 1) Ing(X;;v), . Vi1) 10 generate
ViT RN ; (Fi7-)W (A5 0, v In g (A5 v) random sample of siz& and evaluate the objective

(21) function f(-).

where Xy, ..., Xy is drawn fromg(-;v;_1). Typically (21) Step 3 Select the topN performing samples and use them
is convex and if the instrumental densitigé;-) are chosen to estimatev,. Solving (22) we obtain the updating
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rules for the normal distribution; = {1, 0} Algorithm 1 MACE-gD

pN ) . 1: {wy,...,wn} < gD(PF Shapg
iy = Zi_p}vW()((“ et Vt—l)-;(z MWD < minx + U(0,1)(max x — min x)
L W(Xsu, v
i=1 iy Uy Vi—1

2:
3. S « C(maxx — min x)
N 1 4: XM (—N(M,S)
5 — S WX u, v 1) (& — 1)) 5:
t — 1
Zfivl W(Xi;u,vi_q) 6:
7

, (24)

E « F(XD)

z* < min{E;,,...,E}
(25) t+1

wherep is some small value, e.§.1. The updating 8: repeat

rules in (24) and (25) could lead to premature9: for i + 1, N do

convergence [47], so smoothedversion is usually 10: VO — g0 (XD w;, z%)
employed: 1L Q < Sort(V®)
A 12: E<+ Q. pN
pe = o + (1 — )1 (26) 13 MO ast + (1 - )i s
or = BiGr + (1 = Fr)or-1, 14: Si(tS — Bi6e + (1 — Bt)G1—1
wherea and3; are smoothing parameters withe  15: 1 MM sM)
(0.7,1) and 3, is calculated as: 16: Vl(t) o gtce(xgt)’wi’z*)
1\? 17: it VIV < V" then
B e (0.7,1), (27) 19: xEtH) — 5((_755
g€ (5,9). 20: z* < min <z*, F (xgt)))
21 end if

Step 4 If the stopping condition is not met go tetep 2
otherwise output the current, as the estimate of
the location of the optimum.

22: end for
23: t<—t+1
24: until ¢t < MaxGenerations

25 x +— M®
V. GENERALIZED DECOMPOSITIONBASED MANY

OBJECTIVE CROSSENTROPY

The proposed algorithm is based on the CE method, see
Section IV, and the newly introduced concept of general-

ized decomposition, as described in Section Ill. However depicted inFig. (2). The generation of this target
we introduce two versions: many-objective CE (MACE) and front is mostly a matter of preference. To insulate
MACE based on generalized decomposition (MAGE}. The the DM from different objective function scales, it
difference between the versions is that the weighting rseto is advisable that the objective functions are normal-
in MACE are generated according to the suggestions in [7] to ized in the rangg0, 1]. This can be achieved if the
enable a clearer comparison with the MOEA/D framework and ideal vectorz* is known a priori or an adaptive
evaluate the benefits and potential shortcomings of garedal method is used during the optimization, such as in
decomposition. Therefore MACE employs a set of evenly [7]. Note that this method can be used only for
spaced weighting vectors to further test validity of our hy- bounded objective functions, since generalized de-
pothesis that this scheme does not result ieandistribution composition in its current formulation, only applies
of Pareto optimal solutions on the PF, see Section 11I-C. We to such functions.

show how such issues can be overcome using MADE- Step 2 Solve (7) for every point in the reference PF gen-
and present a method that can prove invaluable when the erated inStep 1to obtain the optimal weighting
optimization problem has many objectives. The general idea vectorsw.

is that we can generate a set of weighting vectors near region

that are of interest, thus avoiding a waste of resources The reference Pareto front used in this work for the WFG4-9

search of Pareto optimal solutions away from such regIon&st problems in Section VII-C is a uniformly distributed se

The main algonthm n MA.CE. and MACEGD s the CE. on a concave front using the method described in Appendix A.

method for continuous optimization problems, as describ . ) A

: . X . For the test problem WFG3, since the front is a line in any

in Section IV-A. An overview of MACEgD can be seen in ; . .

Algorithm 1. In line 1. the ootimal weighting vectors arenumber of dimensions, an evenly spaced set of points were
g : ' P ghting s?lected along this line and lastly for the WFG2 problem

obtained according to p_rior. information about .the shapg e optimal weighting vectors are evaluated using a random
the PF and the desired distribution of Pareto optimal somsti
sample from the true PF.

This procedure is comprised of two steps, namely:
Step 1 Generate a set of solutions according to the PF Next, in lines2—4, the starting populatioX (! is initialized
shape of the given problem. For example, for By sampling the almost uniform distributiovi(M, S). In this

concave PF this reference front could be the oneork, for notational compactness/(M, S) has the following
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meaning: in [7]. In any other case, the relative distance of the Pareto

N(us,o11) - N (g, oin) optimal solutions will be correct.
: - : ’ (28) VI. BENCHMARK ALGORITHMS

Npvpona) oo N(pnn, onn) The goal of the comparative studies in this work is not to
where n is the number of decision variables amd the proclaim abestalgorithm among variants of MACE and the
size of the population, which is the same as the number gbrementioned frameworks. Our main aim is to explore the
subproblems and/ is the truncated normal distribution in thepotential of generalized decomposition versus what is idens
domain of definition of the corresponding decision variableered to be standard practice in decomposition-based MOEAs.
The matrix, M (") contains the current estimate of the decisiomhe additional benefit is that the generalized decompasitio
variables an&S® contains the standard deviation parametergamework seems very suitable for the extension of EDAs
The M) matrix is initialized at random within the decisiontgo MAPs, something that enables us to evaluate whether the
variables’ domain of definition or using some alternativgerformance of the CE method is comparable with established
method, for example Latin hypercube sampling. TH€) MOEAs. Therefore, our selection of MOEA/D as a benchmark
matrix is initialized to some sufficiently large value so tthaalgorithm is only natural since this algorithm frameworlsha
the truncated normal distributions tend to be approxiryatehecome a baseline for comparison of decomposition-based
equal to the uniform distribution at the first iteration, v MOEAs. Also the good performance of RM-MEDA against
that no prior information is available. For this reason we usther EDAs makes it a suitable candidate to evaluate the main

C = 10, see line3. EDA in our MACE and MACEgD algorithms.
Next, the objective functior(-) is evaluated for the initial

. 1 : e ) .

Fn?rl?ilrjrl:ﬁxng? (tri ea;%itz;:gleglb}/:c?\%s |isEe'st|mated using the A. M.ulti—Objective Evolutionary Algorithm based on Decom-
The main loop of the MACHID algorithm is in lines8— position

24. At each iteration and for every subproblem,, the entire ~ As mentioned in Section |, decomposition methods were

population is evaluated using the Chebyshev decomposititisually applied in conjunction with gradient search method

The population performancéy](t) is sorted in an ascendingﬁ“hOUQh there are examples of EAs based on this type of

ordef and the solutions in the-percentile,&, are used to fithess assignment. One notable framework based on decom-

update the instrumental density parameters ofithsubprob- position, introduced by Zhang et al. [7], is the MOEA/D algo-

lem, M‘" and S{. Next, a new solution'", is sampled fithm. The original version of MOEA/D was a decomposition-

from the parametric density using the updated parametkis. TPased algorithm consisting of mating restriction and ahisec

new solution is evaluated and if its performance is superiBfeserving the best-so-far solution for every subprobléhe

to the previous solution it is retained, see linE&20. The USe of scalarizing functions to extend an EA to MAPs has the

algorithm terminates once the maximum function evaluatiofollowing benefits:

are reached. Finally, the PF approximation set is the matrixe Diversity preserving operators aetite preserving strate-

M®), gies, become, to an extent, redundant if the choice of
MACE and MACEgD have similarities with MOEA/D weighting vectors and decomposition method is suitable

[7] and derivatives [51]-[53]. However there are fundanaént for the problem in question.

differences which have been motivated by the results ine The computational cost tends to be lower compared to

Section IlI-C. Namely, MACE and MACHED do not have a Pareto-based algorithms [7].

mating restriction, and there is no neighbourhood in weénght MOEA/D depends on one of several available decomposition
vector space. In fact only the top performing individuals forechniques, - weighted sum, Chebyshev [8] and a penalty-
every subproblem are used, irrespective of ttwigin (see pased variant of the normal boundary intersection [7], [54]
Algorithm 1), namely the distribution that generated themgecompositions - with each having its own strengths and
In contrast to that, MOEA/D derivatives insist on using &eaknesses. The minimization problem from Section 1, when
neighbourhood based on the distance of the weighting \@ctqjising the Chebyshev decomposition is restated according to
This choice seems reasonable when the relative locatidmeof {6). |n MOEA/D the vectorsw® are N evenly distributed
Pareto optimal solutions resulting from the set of submwotd \yeighting vectors. A MAP is decomposed 6 subproblems

is unknown. However, even if the Pareto front geometry gsing w'. Each individual in the population is assigned to a
unknown a priori, this information can be extracted usingingle subproblem, and s¥ is also the size of the population.

generalized decomposition. For example, assuming an affi{ngr example, for 2-objective problem, the weighting vectors

Pareto front geometry the neighbourhood can be calculatedgie defined as:

objective space. The weighting vectors can be calculatied us . i ‘ ‘

(7) and the neighbourhood structure can be as calculated for wy = g wp = 1wy, i€ {0,...,H}, (29)

the above Pareto front. Here the assumption of an affined’aret _

front is only limiting if the real Pareto front is discontiaus. Where_ thEH_ parameter controls the number of sub_d|V|S|0ns

However, this is also problematic for MOEA/D as define#®' d|me_n5|0n ar_ldwl - {wizwé}' The argume_nt 1S that

sinceg is a continuous function ok, N evenly distributed

9For maximization problemsV () is sorted in descending order. weighting vectors should result iN evenly distributed Pareto
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optimal solutions, assuming that the objectives are namedl B. Regularity Model-Based Estimation of Distribution Algo
[7]. However this argument is only valid in the case thaithm

a boundary intersection (Bl) approach is used, such as therpg gecond algorithm that we employ in our comparative
normal boundary intersection method (NBI) [54]. In NBI they gies, see Section VI, is the regularity model-basedimul

following program is to be solved: objective estimation of distribution algorithm (RM-MEDA)
. proposed by Zhang et al. [55]. The main idea in RM-MEDA
Hi(in Invi(x; W', 2%) =d (30) is that, for continuous MAPs, the Pareto set can be viewed as

a (k —1)-dimensional piecewise continuous manifold. So, for
two dimensions, the PF can be described with line segments,
fgor three dimensions with planes etc.

Zhang et al. [55] used inductively the Karush-Kuhn-Tucker
condition [8] for continuous multi-objective problemssast-
ing that the PF of a problem with objectives is defined by a

subject toz* — F(x) = d - w',

where Zhang et al. [7] suggest a penalty function approach
handle the equality constraint. Thus (30) is transformed to

min gy (x; W', 27) = di + pds (k — 1) dimensional manifold in the decision variable space.
I (z* — F(x))Tw'|, 31 This assertion allowed Zhang et al. [55] to approximate this
di = ) (31) (k — 1) dimensional manifold withK piecewise continuous

w2

. i manifolds. To accomplish this task, @& — 1) dimensional
by = [F(x) — (2" — dyw)] P O

local principal component analysis algorithm was used to
) . _ partition the population intd< disjoint clusters and then the
where p is a tunable parameter which controls the relativeangig and its variance were estimated. The problem with

importance of convergence,, and positionds, in the penalty s annroach is that there is no objective measure to choose
function. It was shown that MOEA/D using (31) has the potefra number of clusterss for an unknown problem, hence

tial to produce truly evenly distributgd P.areto optimam'mins_ the practitioner must heavily depend on #reoothnessf the
[7]. Unfortunately (31) has three significant drawbackssti ,piactive function in the decision space. In contrast, ifsit
the normal-boundary intersection method does not gu&anig,,yn 5 priori that the MAP fulfils the smoothness criteria

that the solutions to the subproblems will be Pareto optimﬁqen RM-MEDA will be able to exploit that structure and thus
[54]. Second, NBI has to be solved using a penalty meth%gnverge much faster.

which introduces one more parameter that has to be tuned foy, [55] RM-MEDA was evaluated against PCX-NSGA-II

every test _p_roblem separately, and lastly it is unclear Htis_w t_ 56], GDE3 [57] and MIDEA [58], on average, outperform-
decomposition method can be scaled for MAPs. A descripti the aforementioned algorithms on variants of the DT

of the MOEA/D algorithm follows: test problems [30]. However the performance of RM-MEDA

Step 1 GenerateN equally spacedy’ vectors according comes at the expense of increased computational cost due

to (29). Create a matri¥8 containing the nearestto the necessity of computing a local principal component
neighbours of eachw’ and initialize the ideal analysis at each iteration. The implementation of RM-MEDA

weighting vectorz* to a large value. that is employed in this work is the publicly available versi
Step 2 Evaluate the decision variable vectdsusing the in MATLAB code provided by the authors [55].
objective function.
Step 3 Update the ideal vectat* = min(z*, F(x)).
Step 4 For each individuak € {1,..., N} execute the ) _
following procedure: Random search is regarded as the absolute baseline al-

Step 4.1 Apply genetic operators, crossover and mutatio§rthm in MOEAs. In random search, absolutely no prior
using individuals in the neighbourhood of each s@Ssumptions are made about the problem and, during the
lution. The choice of individuals is random amongPtimization, the search is not affected by thmess of
neighbouring solutions. he previous samples. Random search with memory, that is

Step 4.2 Evaluate the newly generated solution using (6). &N algorithm that samples uniformly the decision variable
Step 4.3 Update the ideal vectas*. space but does not revisit solutions previously samplgdysn

Step 4.4 If the new solution is superior to the preViOusasymptotical convergence [59]. However, since there is no
in the archive, then swap the old solution to th@echanism tosteer the search, the time to convergence is

ith subproblem with the new solution. OtherwiseProportional to the problem complexity. Conversely, due to
retain the old solution. its simplicity and inability tolearn, it cannot be misled by
Step 4.5 Check if the new solution is better for any of thdn€ problem. The random search algorithm employed in the

neighbouring subproblems and substitute if that gurrent work is in its most basic form. The objective funatio
the case. is evaluated for25000 uniformly sampled decision variable

Step 5 If the termination criteria are met, output the non€ombinations, then the non-dominated solutions are exlac
dominated solutions. Otherwise, proceedtep 4 and a randomly selected subset is chosen for evaluatiog usin

the methodology described in Section VII.
In this work the MATLAB code provided by the authors of

MOEA/D is used [7]. 10zitzler, Deb, Thiele (ZDT)

C. Random Search
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TABLE I . - .
VALUE OF THE H PARAMETER INMOEA/D AND MACE AND THE optimal weighting vectors for the test instances WFG2 and

CORRESPONDING POPULATION SIZEV. THE POPULATION SIZEISTHE ~ WFG3 were generated by a random sample of the true Pareto

* .
SAME FOR ALL ALGORITHMS. |'P ‘ IS THE SIZE OF THEPARETO FRONT set and’ for the prObIemS WFG4—WFG9, the method described
REFERENCE SETSOLUTIONS IN THIS SET ARE UNIFORMLY DISTRIBUTED

ALONG THE PE. in Appendix A was employed for generating a concave Pareto
optimal set.
Obj.# 2 3 4 5 6 7 8 9 10 1 In practice such information is usually not available befor

H 101 20 10 7 6 5 5 5 5 5 the application of the optimization algorithm. This prahble
N 101 210 220 210 252 210 330 495 715 1001 . . . g n .
|P*| 500 1000 1500 2000 2500 3000 3500 4000 4500 5000Can be addressed using an identification method to determine
the PF shape during the optimization; the methodology to be
TABLE Il adopted will be investigated in future research.
SETTINGS FORMACE AND MACE-gD. Finally, as is probably evident from the selection of the
reference PF for the generation of the weighting vectors in
P> B 4 MACE-gD, we assume that the DM is interested in a PF that
01 09 09 7 is uniformly distributed on that front. This is due to severa
considerations. First, if we follow the method usually a@gl
in MOEA benchmarking for generating the reference PF of
VIl. COMPARATIVE STUDIES concave geometry, say far dimensions, i.e. generate a set
A. Performance Indicator of evenly distributed weighting vectors and then projedbon
The main performance metric for the comparative studié@e first octant of the unit sphere, then for. highgr dimension
in this work is the generational distance (GD) indicatorisThd.ue t.o the curvature of the hypersphere th'TQ‘ will mduce@elqr
metric has been chosen since we are mainly interested in %S N the r_eferen_ce set. Namely, the density of Paretonapti
convergence properties of the studied algorithms. o) ut|0ns_ will be higher near the edges of the PF compared to
. . . . . the density near the centre. Conversely, to produce a tuay e
* Qeneratlonal Distance (GD), introduced in [60], is dedistribution of Pareto optimal solutions in high dimensada
fined thus: still an unresolved issue for an arbitrary number of points,
> min{[|[Pf —sl2,..., [Py — sll2} even for PFs that have simple geometry, see [44], [45].
D(A,P*) = 4
4]

here [P+ s th o of A (32) C. Experiment Results
where |P*| is the cardinality of the seP*. The GD . .
metric measures the distance of the elements in the se‘[A‘ summary of the GD-metric performance of the algorithms

A from the nearest point of the reference PEis an IS presented in Tables IV-XI. The values in bold indicate

approximation of the true Pareto front arRt is the the best performing algorithm for the particular instande o
reference Pareto optimal set a test problem. We used the Kruskal-Wallis test at 968

confidence level to verify whether the mean performance of
_ o the studied algorithms is different. For each algorithm and
B. Experiment Description for each problem instance we used the Wilcoxon two-sided
In Section I, it was explained that the three objectivesank sum test forw = 0.05 (95% confidence level). Every
that MOEAs have to achieve — namely convergence, diversitgne an algorithm outperforms another in the test group, for
and PF coverage — can be reduced to only one, convergergcéest instance, & was added to its rank. Since we have
in the generalized decomposition framework. Therefore, tlalgorithms, the maximum rank for an algorithm4sA rank
most important quantity of interest becomes some measureobfl means that the algorithm in question performs better than
convergence to the PF. For this reason, the GD metric wal$ other algorithms for that particular test instance. e t
used, see (32). case that no algorithm is clearly better we have a tie thuis bot
The problem set chosen to perform the experiments is thlgorithms are displayed in bold in Table IV-Table XI. An
WFG toolkit [28], specifically problems WFG2-WFG9, sincelgorithm with a rank of4 is denoted with &(1), one with
they contain several challenging problems, are scalabe anrank of3 with a (2) and so forth, with(1) denoting the
the PFs are knowm priori. For all test instances we usedbest performing algorithm an@) the worst performer. These
32 decision variables and the parameter is calculated as:values are recorded to the right of the GD-metric perforreanc
k=4+2-(M —1), the only exception being thz-objective in Tables IV-XI.
instances of the test problems where it is setiitd/ is the Table IV presents the results of the algorithms 111
number of objectives. The neighbourhood sizén MOEA/D  objective instances of the WFG2 test problem. WFG2 has
was selected to bé0% of the population sizeN, since, the following features — it is non-separable, unimodal with
according to [12], this appears to be a setting producinglgotespect to all objectives except the last which is multi-adpd
results for MAPs. The population size was the same for dliere is no bias in the parameters and the PF geometry is
the algorithms, see Table Il. The parameters of the CE methgidcewise convex. In this problem, MACED performance is
are the same in MACE and MACHDP and have been selectedsignificantly better than the other algorithms for MOPs hgvi
according to the suggestions in [47], see Table lll. Lastlypore than4 objectives. We attribute this performance to the
the reference Pareto fronts used in MA@B-to produce the fact that, for PFs that have a convex geometry, the optimal



GIAGKIOZIS et al: GENERALIZED DECOMPOSITION AND CROSS ENTROPY METHODS FORAWY-OBJECTIVE OPTIMIZATION

I3

I3

Fig. 5.

MACE- gD

WFG2

TABLE IV
GD-METRIC PERFORMANCE OF THE STUDIED ALGORITHMS ON THE
WFG2PROBLEM FOR2—110BJECTIVES

MACE
WFG2

MOEA/D
WFG2

RM-MEDA

TABLE V

WFG2

MACEgD, MACE, MOEA/D and RM-MEDA Pareto front foB-objective instances of the WFG2-WFGS5 test problems.

WFG3PROBLEM FOR2—110BJECTIVES

13

GD-METRIC PERFORMANCE OF THE STUDIED ALGORITHMS ON THE

WFG2 WFG3
Obj. # MACE  MACEgD MOEA/D RM-MEDA  RAND Obj. # MACE  MACEgD MOEA/D RM-MEDA  RAND

2 00816 (3) 0.1027 (4) 0.0656 (2) 0.0279(1) 0.1687 (5) 2 0.0133(1) 0.0194(3) 0.0190 (3) 0.0215 (4) 0.2108 (5)
3 0.0353(1) 0.0386(2) 00444 (3) 0.0794 (4) 0.1929 (5) 3 00699 (2) 0.0231(1) 0.1553 (3) 0.2419 (4)  0.2899 (5)
4 00712 (2) 0.0485(1) 0.1283 (4) 0.1274 (3)  0.1998 (5) 4 00841 (2) 0.0338(1) 02422 (3) 0.3474 (5) 0.3204 (4)
5 00718 (2) 0.0471(1) 0.1717 (4) 0.1674 (3) 0.2125 (5) 5 01023 (2) 0.0230(1) 03137 (3) 0.3885(5) 0.3311 (4)
6  0.0573(2) 0.0423(1) 0.1489 (3) 0.1979 (4)  0.2228 (5) 6 01146 (2) 0.0209(1) 02701 (3) 0.4091 (5) 0.3312 (4)
7 0.0650 (2) 0.0487(1) 0.1081 (3) 0.2152 (4)  0.2335 (5) 7 01033 (2) 0.0340(1) 02122 (3) 0.4346 (5) 0.3321 (4)
8  0.0525(2) 0.0379(1) 0.0806 (3) 0.2434 (4)  0.2649 (5) 8 00921 (2) 0.0290(1) 01912 (3) 0.4356 (5) 0.3350 (4)
9 00471 (2) 0.0286(1) 00791 (3) 0.2563 (4) 0.2638 (5) 9 0.0848 (2) 0.0237(1) 0.1728 (3) 0.4342 (5) 0.3364 (4)
10  0.0495 (2) 0.0168(1) 0.0658 (3) 0.2694 (4) 0.2785 (5) 10  0.0760 (2) 0.0135(1) 0.1512(3) 0.4314 (5) 0.3371 (4)
11  0.0453 (2) 0.0108(1) 0.0814 (3) 0.2793 (4) 0.2867 (5) 11  0.0702 (2) 0.0117(1) 0.1317 (3) 0.4283(5) 0.3379 (4)
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Fig. 6.

MACE- gD

TABLE VI
GD-METRIC PERFORMANCE OF THE STUDIED ALGORITHMS ON THE
WFG4PROBLEM FOR2—110BJECTIVES
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RM-MEDA

TABLE VII
GD-METRIC PERFORMANCE OF THE STUDIED ALGORITHMS ON THE
WFG5PROBLEM FOR2—110BJECTIVES

MACE-gD, MACE, MOEA/D and RM-MEDA Pareto front for 3 objective irstces of the WFG6-WFG9 test problems.

WFG4 WFG5

Obj. # MACE  MACEgD MOEA/D RM-MEDA  RAND Obj. # MACE  MACEgD MOEA/D RM-MEDA  RAND

2 0.0345(3) 0.0344 (3) 0.0211(1) 0.0392 (4) 0.1161 (5) 2 0.0393(2) 0.0523(4) 0.0276(1) 0.0433 (3) 0.1947 (5)
3 00617 (3) 0.0522 (2) 0.0316(1) 0.0939 (4)  0.1302 (5) 3 0.1052(3) 0.0962 (2) 0.0321(1) 0.2168 (5) 0.2114 (4)
4 00749 (3) 0.0740 (2) 0.0655(1) 0.1336 (4)  0.1358 (5) 4 01533 (2) 0.1845(3) 0.0655(1) 0.2652 (5)  0.2268 (4)
5 01438 (3) 0.1048(1) 0.1653 (5) 0.1464 (4)  0.1407 (2) 5  0.1537(2) 0.2221(3) 0.1540(2) 0.2604 (5)  0.2307 (4)
6  0.1358(1) 0.1414 (2) 0.1959 (5) 0.1668 (4)  0.1549 (3) 6 01579 (2) 0.2313 (3) 0.1558(1) 0.2556 (5)  0.2346 (4)
7 02349 (4) 0.1997 (3) 0.2739 (5)  0.1898 (2) 0.1770(1) 7 0.1872(1) 0.2286(2) 0.2455(4) 0.2588 (5) 0.2372 (3)
8 03176 (4) 0.2351(3) 0.3371(5) 0.2172 (2) 0.2025(1) 8 02620 (3) 0.2340(1) 0.3262 (5) 0.2646 (4) 0.2441 (2)
9 0.3995(5) 0.3028 (3) 0.3958 (4) 0.2495(1)  0.2568 (2) 9  0.3357(4) 0.2685(2) 0.4007 (5) 0.2748 (3) 0.2598(1)
10  0.3791 (4) 0.3265(3) 0.4001 (5) 0.2718 (2)0.2577(1) 10  0.3497 (4) 0.2789 (2) 0.3813 (5)  0.2911 (3)0.2706(1)
11 04839 (5) 0.3875(3) 0.4644 (4) 0.3162(1)  0.3540 (2) 11 0.4479 (4) 0.3203 (3) 0.4792 (5) 0.3096 (2)0.3036(1)
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TABLE VI

GD-METRIC PERFORMANCE OF THE STUDIED ALGORITHMs on THE  the WFG3 problems mainly due to the PF geometry. Si_nce
WFGB6PROBLEM FOR2—110BJECTIVES the PF geometry is affine, if we have the optimal weighting
vectors then the algorithm directly attempts to converghi®
WFG6

location, while other algorithms are exploring the seardce
Obj.# MACE  MACEgD MOEA/D RM-MEDA  RAND under the assumption that the front is some hyper-surface
0.0162(2)  0.0226 (3)  0.0293 (4) 0.0164(2) 0.2465 (5)  which is to be populated with solutions. This focus illuttsa
8:8‘7123 % g:gggg g; 8:82%3 g:%jﬂ Ejg 8:322? g; the poten_tial _advantages of generalized decompositioso AI
0.1459 (2) 0.1182(1) 0.1644 (3) 0.2532 (4) 0.2940 (5) encouraging is the fact that MACE performs very well, which
91960 gg g&gg%gg 91962 gg 92574 Ejg 02936 g means that, if the information about the geometry of the PF
0.3004 (4) 0.2215(1) 0.3234 (5) 0.2759 (2) 0.2885 (3) IS not very accurate, the algorithm can still achieve actapt
0.3890 (5) 0.2716(1)  0.3520 (4)  0.2888 (2)  0.2951 (3) resylts, Additionally the results of RM-MEDA on WFG3
0.3762 (5) 0.3004(1) 0.3758 (5)  0.3078 (3)  0.3032 (2) . : ; .
04632 (5) 0.3577 (3) 0.4233 (4)  0.3257 (2)0.3201(1) further support our previous hypothesis about its selactio
scheme, notably its performance is much degraded compared
TABLE IX to WFG2. Lastly, a curiosity is that for increasing humber of
GD-METRIC PERFORMANCE OF THE STUDIED ALGORITHMS ON THE dimensions, MAC@D is not 0n|y better Compared with other
WFG7PROBLEM FOR2-110BJECTIVES algorithms but the GD metric becomes smaller, something
that is counter intuitive. However, the explanation is eath
, simple, namely, since WFG3 is a line in any number of
Obj. # MACE  MACEgD MOEAD RM-MEDA  RAND . . . X .
dimensions, the necessity of employing a larger population
2 8:8322 % 8:8;3‘9‘ 8; 8:82228; 8;2123 Eﬁg 8;};2; g is diminished. Since the population size is increased, aad w
0.0819 (3) 0.0740 (2) 0.0732(1) 0.1742(4) 0.1998 (5) know exactly the optimal weighting vectors, the density of
o157 gg 8&2228; e gg o gjg P gg solutions along the WFG3 PF is effectively increased, hence
0.2587 (4) 0.1889(1) 0.2839 (5) 0.2191 (3) 0.2142 (2) the decrease in the mean of the GD metric. In Table VI
03268 gg 92082 g; 93708 g; 92932 gg 8:5;328 the results for the WFG4 problem are presented. WFG4 is
0.3803 (4) 0.3092 (3) 0.4052 (5)  0.2844 (2)0.2633(1) a separable problem, multi-modal with no bias and its PF
0.4812 (4) 0.3704 (3) 0.4875 (5) 0.3115(1) 0.3153 (2)  geometry is concave. In this problem the major influence on
algorithm performance seems to be the fact that this problem
is multi-modal. From the MACE and MACED perspective,
weighting vector set, seig. (3), is clustered near the centrethe fact that the instrumental densities used are Gaussian
region. So, using an even distribution of weighting vectorappears to have a significant effect. Namely, the multi-rhoda
the effective number of Pareto optimal solutions for whichature of the problem is misleading to all of the algorithms.
these vectors are optimal is reduced. This is especialyyitru However, the more elaborate model employed in RM-MEDA
higher dimensions, since the features seehign (3) are only helps the algorithm scale much better compared with the
accentuated. However, the MACE algorithm that utilized thether algorithms. This conclusion is based on the perfooman
same weighting vector selection as MOEA/D, outperforms tleg random search on this problem and the fact that RM-
latter algorithm for all instances except theobjective case. MEDA follows this much moresmoothlyrelative to all other
This, in combination with the fact that MOEA/D consistenthalgorithms. For example, for thel objective instance, while
outperforms RM-MEDA, except for the-objective instance, random search achieves a mean value for the GD-metric of
leads to the hypothesis that Pareto-based algorithmstdten 0.3540, MACE-gD, MOEA/D and MACE have much worse
are not very well suited for problems with convex PF geom@erformance. The positive effect of generalized decontiposi
tries in high dimensions. This hypothesis is further supggbr however, is clearly visible when comparing MAGIB to
by the fact that RM-MEDA uses a variant of non-dominateMACE. For instances witl2—4 objectives, MOEA/D exhibits
sorting [55]. So, for high dimensions, the closer the esiiia the best performance, however it is closely followed by
PF is to the true PF, the fewer are the solutions that are part o
the first and second non-dominated fronts, which means that
the availability ofgoodsolutions to the model creation process TABLE X
is reduced in RM-MEDA. Therefore, the closer the algorithm GD-METRIC PERFORMANCE OF THE STUDIED ALGORITHMS ON THE
. irp . WFG8PROBLEM FOR2—110BJECTIVES
is to the actual PF, the more difficult it becomes for further
progress to be achieved. WEGS
The results for the WFG3 instances are given in Table \/.Obj_ 4
The WFG3 problem is non-separable, unimodal with no bias
in the parameters and its PF geometry is affine degenemrte, i.
the front is always a line for any number of dimensions. In
this problem as well, the MACIgD algorithm has the supe-
rior performance, except for th2-objective instance, where
the performance of all algorithms is comparable. However
MACE has statistically better performance fdrobjectives.
We believe that MACEgD outperforms other approaches on

e
RPBoo~ourwn

WFG7

e
RPBoo~vourw

MACE MACEgD MOEA/D RM-MEDA RAND

0.0598 (2) 0.0697 (3) 0.0582(1) 0.0875(4) 0.2043 (5)
0.0857 (3) 0.0797 (2) 0.0562(1) 0.1671 (4) 0.2147 (5)
0.1201 (3) 0.1165 (2) 0.0790(1) 0.2596 (5)  0.2436 (4)
0.1453 (2) 0.1349(1) 0.1966 (3) 0.2982 (5)  0.2635 (4)
0.1835 (2) 0.1528(1) 0.1961 (3) 0.3005 (5)  0.2657 (4)
0.2524 (2) 0.1888(1) 0.2804 (4) 0.3002 (5)  0.2652 (3)
0.3214 (4) 0.2237(1) 0.3594 (5) 0.3134 (3)  0.2703 (2)
0.3762 (4) 0.2706(1) 0.3929 (5) 0.3246 (3)  0.2852 (2)
0.3698 (4) 0.2995 (2) 0.4050 (5)  0.3401 (3)0.2912(1)
0.4669 (5) 0.3601 (3) 0.4658 (4)  0.3560 (2)0.3254(1)

e
RPBoo~vourwn
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MACE-gD and MACE. This leads to the hypothesis that . 0.4
more elaborate EDA coupled with generalized decompositit
could potentially overcome the difficulties present in geois
similar to WFG4. Table VII presents the results for thi 034
WFG5 problem. WFGS5 is a unimodal, separable and decept
problem with no bias and a concave PF. It is most interestile

that for this test problem, contrary to what we anticipafll- §’ 024 .-
MEDA performs consistently worse than random search, ti3

only exception being th@-objective test instance. However 0157

0.35

for more than9 objectives, random search out-performs th ., | imgg»g[}
other algorithms. Also, when compared with RM-MEDA, bot} — & MOEAD
MACE and MACEgD perform significantly better for all ~ 0.05+ T RNNEDA
instances witl2—10 objectives, a fact that supports the theor o

presented in [36] that EDAs using low order statistics wit s 3 4 5 & 71 8 s 10 n

some form of clustering have potential. Of course, clustgri Number of Objectives
is not used in these versions of the MACE algorithm; this is _ _ _
. . Fig. 7. Mean GD-metric performance of studied algorithmsrowFG2-9
the subject of future research. Another important featsre ¢, 1, objectives.
that MOEA/D strongly outperforms all algorithms on thisttes

problem for2—6 objectives although its performance is heavily
degraded for larger numbers of objectives, performing mugable X—Table XI. For2—-3 objectives MOEA/D has superior
worse than random search. This rapid relative degradationgerformance to all algorithms and fé+10 objectives MACE-
performance is not seen in MACE. We believe that this phgp is the top performer. It is interesting to note that, in
nomenon has to do with the control parameters in MOEA/Bhat range of objectives, MACE and MOEA/D exhibit similar
leading us to the conclusion that MACE, MAGIB and performance, which further suggests that the decompasitio
RM-MEDA are more robust with respect to their controllingnethod has a strong influence on algorithm performance.
parameters. This is in accord with recent studies that showraple IX and Table X correspond to the mean GD-metric
that the sweet spot of configuration parametankswith  yalue of the compared algorithms for the problems WFG7 and
an increase in problem dimension [61]. WFG8. The demonstrated performance is similar to the result
Table VIII presents the results of the GD-metric perforreported in Table IV-Table VIII.
mance for the WFG6 test problem. WFG6 is a non-separablel astly, Table XI presents the results for the WFG9 test
unimodal problem with no bias and concave PF geometproblem which is non-separable, multi-modal and deceptive
These results further strengthen the hypothesis that the BEG9 has also parameter dependent bias and its PF geometry
method performs very well on unimodal problems. Generallig concave. Based on what we have observed in Table VI, also
the performance of MACE and MACEP over all test prob- a multi-modal problem, the results here are counter-intiit
lems that are unimodal is similar, see Table VII-Table X. Thespecially given the fact that WFG9 is not only multi-modal
exception to this is WFG3. However the geometry of WFGBULt it is also deceptive. For this reason we anticipatedmiidt
is influencing the performance of the algorithms greatly, 9dEDA would be the top performer. Instead, for more thag
that MACE-gD, which has prior information of theorrect objectives the performance of RM-MEDA is very close to that
direction of search can exploit this feature. In WFG6, RMef random search and worse in the last two instances, i.e. for
MEDA performs worse than random search for all instanceés and 11 objectives. In contrast, fo3—7 objectives MACE,
except the2-objective one. We believe that this phenomenadACE-gD and MOEA/D have relatively similar performance
has to do with the fact that this problem non-separable, as-isvith MACE-gD in the lead. For8—10 objectives this lead
the case for WFG2-3 and WFG8-9, see Table IV-Table V argsignificantly increased and this is attributed to gernezdl
decomposition, since the performance of the CE method for
multi-modal problems is moderate, or so it would seem.

TABLE XI
GD-METRIC PERFORMANCE OF THE STUDIED ALGORITHMS ON THE
WFGOPROBLEM FOR2-110BJECTIVES D. Sensitivity of MACE and MACE-gD to theParameter
WEG9 Although a complete sensitivity analysis of algorithm per-
Obj # MACE  MACEGQD MOEAD RM-MEDA _ RAND formance with respect to all control parameters in the MACE

5 00223 (2) 00259 (3) 00286 (4) 00179(1) 01925 (5) gpd_MACEgD algonth_ms |s.bey0nd the scope of thls work,
0.0390 (3) 0.0366(2) 0.0365(2) 0.0657 (4) 0.2410 (5) It is important that we investigate how convergence is affec
0.0653 (3) 0.0592(1) 0.0607 (2) ~ 0.1636 (4) 0.2764 (5) py the p parameter. This parameter controls the percentage
0.1494 (3) 0.0987(1) 0.1468 (2) 0.2442 (4)  0.2982 (5) o : : .

01441 (3) 0.1349(1) 0.1369 (2) 0.2655(4) 03073 (5) Of the individuals in the previous generation that are used
0.2193 (2) 0.1843(1) 0.2270(3)  0.2769 (4)  0.3070 (5) in the updating process of the and o parameters of the
0.3055 (4) 0.2223(1) 0.3122 (5) 0.2889 (2) 0.3058 (4) . L o .
0.3657 (4) 0.2742(1) 03685 (5 0.3039 (2) 03110 (3 Instrumental densities in the CE method. Intuitively, sinc
0.3514 (4) 0.2999(1) 0.3547 (5)  0.3214 (3) 0.3199 (2) every instrumental density is sampled only once for every

04473 (4) 03488 (3 04506 (5) 0.3416 (2)0.3346(1) subproblem, this parameter controls the amount of infaionat

e
RPBoo~vourw
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Fig. 8. Mean GD-metric performance of MACE, over all objees for the Fig. 9. Mean GD-metric performance of MAGED, over all objectives for
WFG9 test problem. the WFG9 test problem.

sharing between different subproblems. In that context QF:fo][fmatnc(:je for MA:E Chc}l:ld Squef; that the altgorIEPr:n IS
is similar to theT parameter in MOEA/D. However the NO! allected as much as COgD, by the p parameter. The

neighbourhoodor the MACE algorithms does not depend orgge(s)tlonr:s: V\tlr?y IS M'A;C;Et Ies_s su?ﬁepnbl_e r:? var|at|;)ns N
the closeness of weighting vectors but depends only on the ur nypothesis 1s that, -since the weighting vectors 1n

similarity of performance of different subproblems. Henite ACE are selected in the same fashion as in MOEA/D’
is not fixed as it is in MOEA/D. subproblems are aggregated in a very small region of the

T h he GD . ; ¢ MACE PF, therefore sharing information with neighbouring solus
0 test _ owﬁt € qf met_“c perlormance 'Od q an(?s less disruptive, for instance, s&&. (2). Conversely, the
MACE-gD is affected for various values gf 50 independent weighting vectors in MACEgD are distributed according to a

trlalslwere ;l)lerfﬁrmed fop = {0.1, 02& " ’_0'?} onhthe WFG9 uniformly distributed Pareto front, so that, as we increase
problem. All other parameters are identical to those emguoyy,q |oss jikely it is to obtairocal information from faraway

in Sgction VII-C. The results can be seerrig. (8) ~Fig. (10). g 1ytions. Hence the convergence rate of the algorithm is
In Fig. (8) and Fig. (9) the mean performance of the WOy, mewhat inhibited for large

algorithms .OYﬁQ_H Ogj?rﬁivis fOL diffre]:rent valuesfof thﬁ;h Additionally, the GD-performance of MACEP appears to
parameter is illustrated. The fact that the mean perfor@anc ., quasi-convex function @f seeFig. (9). We believe this

MACE—gD, s_eeFig. (9), is better when compared with I\/lACE’is due to the presence of two competing trends in MAGLE-

e N ) EFirst, as we increasg, more samples are used in the updating
and MACEgD exhibit similar variation in terms of their GD rules in (24) and (25), hence better estimates are obtained.
meric performance for the selected rangepoNamely the However, past a certain value fer which for the selected
absolute value of the difference of the best performance l%roblem ,set appears to be someV\’/here betw8en 0.6), the

. . . —3 . ’
thedworse one_?sf Se&lﬁé% (S)danMilg% (g) IS 2.79 x 1|0 A GD-metric performance starts to degrade. This degrad#ion
an 2'96. x 107 for an gD respectively. due to the second trend. As we incregassamples obtained by
comparison of t_hese values vv_|th the absolute performanceoq) parate subproblems are used in the updating processe hen
the above algorithms shown Fig. (10), suggests that MACE convergence to the PF becomes slower. This is consistemt wit

and MACSEgD_?re"reIa;uvely rObUStftO variations in l'ihep_a- the hypothesis that generalized decomposition succéssful
r?r&ig‘z pzc&ﬂ'zgé’ tD? mehanvf)”e:reogrmar;)cle over a Obmat captures the density of the PF reference set used to generate
0 an gD for the problemi8.2109and o optimal weighting vectors.

0.1685 respectively which means that fpre {0.1,...,0.9} In Fig. (10) the mean GD performance is illustrated over

ﬂ}eMV:gEt'ond'nM'féE)rrBa_ncf :;’;'(tyh rezple;:;(;o the GtD_ rTetng” p values for increasing number of objectives. Again, this
a tﬁn' beh 9o IS 1. I'tO ?n I .d'ffo refpec VY- result is consistent with the experiments in Section VII-C.
owever their behaviour s qualitatively ditterent. Additionally, it seems that the linear scaling of perforroan

MACE performs relatively better for all values of> 0.2 of the MACE-gD algorithm as seen iifig. (7), is persistent
with no consistent degradation or improvement past thig, 5 range ofp values.

threshold. Therefore any value ferthat is greater thaf.2
should produce acceptable results. In contrast to MACE, the
performance of MACHD varies in a much more coherent
manner for different values of, and, in general fop < 0.5 Apart from convergence in MOEA algorithms, which is a

it performs consistently better than for > 0.5. The lack relatively well defined concept, there can be no consensus on
of coherencyin the improvement (or degradation) in GDthe meaning of awell distributed Pareto set. Apart from the

VIIl. PREFERENCEARTICULATION



18 ACSE RESEARCH REPORT, NO. 1029, NOVEMBER 2012

and,
e MASE
045 Cy = Cy NGy,
0.4 Co={z:(21—c1)* + (22— c2)? + (23 — c3)* > 7’2},
0.35— PR Cy = {Z : (Zl - 01)2 + (Z2 - 02)2 + (Z3 - 03)2 < Tl%}v

. / r2 =0.2, r7 = 0.27, c = (0.63,0.63,0.38).

Subsequently (7) was solved to obtain the weighting vectors
corresponding to these regions and using these weighting
02 vectors MACEgD was able to generate a PF that closely
015 resembles the initially chosen regions, deig. (11). This
concept extends directly to MAPs, however the results are
much more difficult to visualise.

0.25—

GD-Metric

0.1

005+ g™ Additionally, although it is useful to know the geometry
a of the PF, it is sufficient if its general shape is known. The
) ! ' ! L ! ! ' I boundary for which the weighting vectors radically change
Number of Objectives position is the transition from concave geometry to convex

Fig. 10. Mean GD-metric performance of MACE and MAG@E; over all geometry, se¢ig. (1) - Fig. (3)
p values for the WFG9 test problem.

IX. CONCLUSION

A new concept was introduced and used in the solution of
theoretical difficulties, a proper definition of a well distited many-objective optimization problems (MAPS), namely gene
PF cannot be given, mainly because it is contingent on thfized decompositiorgD). With the aid ofgD, weighting vec-
preferences of the decision maker (DM). Of what use woutdrs can be selected optimally to satisfy specific requirgse
a Pareto optimal set be, if the solutions that are of inteestin the distribution of the Pareto optimal solutions along BF.
the DM are sparsely sampled, if at all. This approach allows decomposition-based MOEAs to focus

Generalized decomposition can be employed very effean only one performance objective, that of convergencedo th
tively to resolve this problem, given that some informatioRF. This can be a significant advantage over other MOEAs
is availablea priori about the general shape of the PF. Tthat have to tacklg performance objectives simultaneously,
illustrate this we used th&-objective instances of WFG2-9i.e. Pareto front coverage, even distribution of Paretonugt
with an evenly distributed reference PF for the generatibn solutions and convergence to the Pareto front. Basegibaand
weighting vectors in MACEgD, seeFig. (5) andFig. (6). As the CE method, a many-objective optimization framework was
can be seen, the solutions produced by MAgIE-are more presented, MACED. The performance of MACHED with
evenly distributed compared with MOEA/D or RM-MEDA. Itrespect to the GD-metric is competitive with that of MOEA/D
should be noted that, apart from a different reference PEhfor and RM-MEDA, for the selected problem set. Additionally,
generation of weighting vectors, all algorithm parametees a methodology for incorporating DM preferences is given,
identical with the ones used in Section VII-C. Furthermor@ising the presented framework. As far as we are aware,
we also used &-objective DTLZ2 instance, a test problenthere is no other method available that can address all of the
with concave PF, and selected manually a set of regions onaarementioned issues so successfully. Another benefjDef
artificially generated PF, sdgg. (11). These regions representased algorithms is that since there is a clear way to dig&ib
the desired parts of the PF, potentially because other pegts solutions on the Pareto front very precisely, the necesdity
of no interest to the DM. The set of points seen in the leftsing elaborate archiving strategies and sharing is dghed.

figure inFig. (11) is the set, However, these benefits require that certain prior inforomat

is available. Specifically, the geometry of the Pareto front
C=CiUCyUC3UCQCy, needs to be knowa priori. This requirement can be alleviated

to a certain degree, however, by adaptively identifying the
and the sets”;, Cs, C5, C, are defined as follows, shape of the PF of a problem during the optimization process.

This adaptive Pareto front identification for use wgih seems

Cr={z: (21 —c1)* + (22 — c2)® + (23 — ¢3)* > 1?}, to be a promising direction for future research.

r2 = 0.65, ¢ = (0.33,0.33,0.33), Another result of this study is that the CE method appears

to be a strong candidate as the main algorithm of choice for
multiobjective optimization. This is fortunate since thé& C
Cy={z: (21 —c1)? + (22 — c2)® + (23 — c3)® <77}, method is based on sound theoretical principles which can
2 = 0.15, ¢ = (0.53,0.23,0.8), facilitate further analysis of this method. Also, the hypesis
presented in [36], that EDAs based on low order statistics
and clustering can be used as an alternative to complex
Cz={z: (21— 1)’ + (22 — c2)? + (23 — e3)* < 1%}, probabilistic models, seems to be supported by the obtained
r? =0.1, ¢ = (0.23,0.53,0.8), results in Section VII-C. However, as no clustering method i
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Desired Regions Weighting Vectors DTLZ2 - Obtained Regions

fs

fi wy

f2 w2 f2 h

Fig. 11. Left: Preferred regions of the Pareto front. Middleeighting vectors corresponding to the preferred PF regidRight: Obtained Pareto optimal
solutions on &3-objective instance of the DTLZ2.

employed in MACEgD, this does not constitute solid proofuniformly distributed points all that is necessary is taesethe

but it is certainly a good indication. points that all their components are non-negative. Thatlis a
In conclusion, it was shown that MACED is a scalable pointsU for which the following is truel/ € R’;. Conversely

framework for tackling many-objective problems, for exdenp to obtain a Pareto front with convex geometry , it is suffitien

seeFig. (7), with respect to the GD-metric. Also, MACED to select all the generated poiritsc R™.

seems to be robust with respect to its main control parameterHowever there is a limitation to the described method.

p, see Section VII-D. Furthermore, the collective resultthis Namely since only a subset of the generated solutidnis

work strongly suggest that the choice of weighting vectotssed, for higher dimensions in order to obtain the same numbe

in MOEAs based on decomposition can affect not only thef Pareto optimal points it is required that the number of uni

distribution of Pareto optimal solutions on the PF but afs® t formly distributed solutions ifi/ is constantly increased. The

convergence of the algorithm. This issue is more evident iequired number of points iV, such that a specific number

many-objective problems. Restriction of the search indbje of Pareto optimal solutions is obtained, can be derived from

space to a region that is of interest can be an effective agprothe following relation that follows directly from geomaetri

in MAPs. Otherwise, the necessary increase in populaticonsiderations,

size to obtain similar coverage in many-objectives as Xor

or 3-objective problems is computationally intractable. This

restricted search is fully supported by the presented framv?here:z

work.

1
|P| ~ 2—k|U| (34)

becomes an equality in the limit 48| — oo. For
example, to obtain approximatel00 uniformly distributed
solutions for a concave PF i dimensions, then it is required
APPENDIXA that 204800 uniformly distributed vectord/ are generated
GENERATING AN N-DIMENSIONAL UNIFORMLY on thel1l dimensional unit hypersphere. This translates-to
DISTRIBUTED CONCAVE OR CONVEX PARETO FRONT 2.2x10% samples from the normal distributiovi(0, 1). So this
A moderately efficient and highly convenient method fomethod can easily become impractical for higher dimensions
generating uniformly distributed points on the unit hypéresre
of arbitrary dimension is presented by Marsaglia [62]. ket
be the dimension of a unit hypersphere. Then the method to
uniformly distribute points on itssurfacecan be summarized

APPENDIXB
CONVEX SETS AND FUNCTIONS

as follows: Some fundamental definitions about convex sets and func-
« GenerateX;, X,,..., X, independent random deviatedions are given below. For further details the reader isrrete
distributed according toV'(0,1). A/(0,1) is the normal to [42] for an applications oriented presentation and [@8] f
distribution with mear0 and variancd. a more theoretical approach.
. CalculateS = X7 + X7 +-- -+ X2, the point defined as:
U_<ﬁ7ﬁ’m’ﬁ> (33) A. Convex Sets
VS VS VS A set C C R"™ is convexif for any x,y € C and any
is uniformly distributed on the n-dimensional hyperspherg ¢ [0,1],
[62].

) . ) ) Ox+ (1 —-0)y € C. (35)
With this method, points on the unit hypersphere can be

sampled that are uniformly distributed; however these goinThe combination of the points, y in (35), is called aconvex
are not Pareto optimal. To obtain a concave Pareto front witbmbinationand can be extended to multiple points in a
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similar manner to the extension of affine combinations, f2
d d
Z oixfi, with Zoz = 1’ and 91 Z 07 for all 7 = 1’ e d. Convex 7
i=1 i=1
(36)

The set of all convex combinations of a convex 6ets the
convex hullof that set and is denoted as,

Discontinuous

d d
COHVO—{Z@&:&EC, Zei_mizo}, (37) e
=1 i=1

Concave

fori=1,...,d. ez

A function f : R™ — R is said to be convex if the domain \
of definition of f, denoted aslom f, is a convex set and
Vx,y € dom f andd € [0,1] we have,

flox+(1=0)y) <0f(x)+(1-0)f(y). (38) _ - .
Fig. 12. A Pareto front which is partially convex, partialpncave and

A function is strictly convex if the inequality in (38) is discontinuous. Notice that the frame of reference, whiclthis case isf1,

: : : : ; : used to determine the convex and concave parts is arbitrangely the same
strict. .Accordl-ngly a .fu.n-ctlon IS concave #f IS convex. A_ parts of the Pareto front would be partially convex and ceecaven iff was
more interesting definition of convex and concave functiorgosen as the reference. However, discontinuities on tharBot always
is formulated with the aid of thepigraphof a function, see Vvisible from all frames of reference, i.e. the projection of the PFtiua f>

h

Appendix B-B axis is continuous, while the projection on tlfie axis is discontinuous.
B. Epigraph « Partially convex, ifg is convex over a convex subset of
y [4
Theepigraphof a functionf : R™ — R, which is the Greek don_lg- -
word for above the graphis defined as « Partially concave, ify is concave over a convex subset of
dom g.
epi f={(x,t):xedom f,t R, f(x) <t}, (39) , Ppartially affine, ifg is convex and concave over a convex

subset ofdom g.

Piecewise convex, if; partially convex over all convex

subsets oflom g.

« Piecewise concave, if partially concave over all convex
subsets oflom g.

hypo f = {(x,t) : x edom f,t € R, f(x) > t}. (40) . Piecewise affine, ifg partially affine over all convex

subsets oflom g.

consequenthyepi f ¢ R™**1. If the epigraph of a function is
a convex set then the function is convex and vice versa. The®
hypographof a function f : R® — R, meaningbelow the
graph is defined as,

If a function is concave, its hypograph is a convex set. In

general a functionf : R® — R with a convex domain of
definition is: ACKNOWLEDGMENT
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