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Abstract 20 

This paper is concerned with the comparison of two numerical viscoelastic strategies 21 

for predicting the fast filament stretching, relaxation and break up of low viscosity, 22 

weakly elastic polymeric fluids. Experimental data on stretch, relaxation and breakup 23 

was obtained using a Cambridge Trimaster for a Newtonian solvent (DEP) and three 24 

monodisperse polystyrene polymer solutions. Two numerical codes were tested to 25 

simulate the flow numerically. One code used a 1D approximation coupled with the 26 

Arbitrary Lagrangian Eulerian (ALE) approach and the other, a 2D axisymmetric 27 

approximation for the flow. In both cases the same constitutive equations and mono 28 

and multimode parameter fitting was used; thereby enabling a direct comparison on 29 

both codes and their respective fit to the experimental data. Both simulations fitted the 30 

experimental data well and surprisingly the 1D code closely matched that of the 2D. 31 

In both cases it was found necessary to utilise a multimode approach to obtain a 32 

realistic match to the experimental data. The sensitivity of the simulation to the choice 33 

of constitutive equation (Oldroyd-B and FENE-CR) and the magnitude of non linear 34 

parameters were also investigated. The results are of particular relevance to ink jet 35 

processing and demonstrate that high shear rate, low viscosity viscoelastic polymeric 36 

flows can be simulated with reasonable accuracy. 37 

1.Introduction 38 

The way in which viscoelastic fluids stretch, thin and break up is of relevance to a 39 

number of technologies and these three aspects of the flow have in the past received 40 

extensive scientific attention; although generally as three different individual topics. 41 

The stretching of polymeric fluids in particular has received detailed experimental and 42 

modeling attention in the last decade from amongst others (Anna and McKinley 43 
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(2001), McKinley and Sridhar (2002), Bach et al. (2002), Clasen et al. (2006)) where 44 

the work has concentrated on determining the transient extensional viscosity of fluids. 45 

The thinning of prestretched polymeric fluids has also been investigated 46 

experimentally following pioneering experimental work by (Bazilevsky et al., 1997) 47 

which was subsequently modelled by (Entov and Hinch (1997)). A review by 48 

McKinley (2005a) gives an authoritative account of factors that influence filament 49 

thinning behaviour. Filament breakup is a delicate process and is the least well 50 

characterized and modelled of the three topics amongst stretching, relaxation and 51 

breakup covered by this paper. 52 

Ink jet printing can involve all three elements considered above during filament 53 

formation and droplet breakup (Dong et al. (2006), Hoath et al. (2009), Jang et al. 54 

(2009)). In order to mimic elements of this complex deformation process a 55 

�Cambridge Trimaster� geometry apparatus was developed specifically as a device to 56 

capture aspects of the process with well-defined boundary conditions (Vadillo et al. 57 

(2010a)). The Cambridge Trimaster has strong similarity to the single piston Rozhkov 58 

filament thinning device (Bazilevsky et al. (1990) and the Haake Caber filament 59 

thinning apparatus (http://www.thermo.com/com/cda/product/detail/). The twin piston 60 

Trimaster was developed specifically for low viscosity fluids with a fast, controlled 61 

initial displacement and for use with high speed photography [Vadillo et al.(2010a)]. 62 

Characterisation of low viscosity, linear viscoelasticity with short relaxation times is a 63 

challenging area of rheology, however the Pechold, Piezo Axial Vibrator (PAV) 64 

(Groß et al. (2002), Kirschenmann (2003), Crassous et al. (2005), and Vadillo et al. 65 

(2010b)) is an apparatus that can probe fluid within the range of millisecond 66 

relaxation times. Thus by using a combination of the Cambridge Trimaster and the 67 

PAV it was possible to probe both the extensional filament break up behaviour of 68 
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viscoelastic fluids that are well characterized, at least in the Linear Viscoelastic 69 

(LVE) regime using the PAV. 70 

In a recent work, some authors of this paper have published the matching of 71 

experimental and simulation filament stretching and thinning data using the single 72 

mode Maxwell description for the viscoelastic contribution of the fluid (Tembely et 73 

al. (2012). The results were promising, although all the elements of the Trimaster data 74 

with a single mode 1D simulation of the process of thinning and break up could not be 75 

fully captured. A direct comparison between 1D and 2D modeling may be found in 76 

the work of Yildirim and Basaran (2001) and more recently by Furlani and Hanchak 77 

(2011). The latter authors have used the slender jet 1D approximation and solved the 78 

nonlinear partial differential equations using the method-of lines wherein the PDEs 79 

are transformed to a system of ordinary differential equations for the nodal values of 80 

the jet variables on a uniform staggered grid. The 1D results are impressive with the 81 

key advantages being the ease of implementation and the speed of computation albeit 82 

in a different configuration than the problem considered in this paper. In the present 83 

paper, Trimaster data for polymer solutions are matched to single and multimode 84 

viscoelastic simulation data, using both a computationally time efficient 1D 85 

simulation and a potentially more rigorous 2D simulation. The paper represents a 86 

�state of art� position in matching extensional time dependent results with high level 87 

numerical simulation, thereby enabling the effects of constitutive equation and 88 

constitutive parameters to be tested.  89 

2.Test fluids, rheological characterisation and Trimaster experimental protocols. 90 

2a Test fluid preparation and characterisation. 91 
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The fluids used were a series of mono-disperse polystyrene dissolved in diethyl 92 

phthalate (DEP) solvent as previously described in [Vadillo et al., 2010]. Near mono 93 

disperse Polystyrene polymer was manufactured specially by Dow, and gel 94 

permeation chromatography (GPC) with THF as the solvent enabled determination of 95 

mass and number average molecular weights Mw and Mn as 110 kg/mol and 96 

105kg/mol respectively. A stock solution of PS dilution series was prepared by adding 97 

10wt% of PS to the DEP at ambient temperature.  The resulting solution was heated to 98 

180°C and stirred for several hours until the polymer was fully dissolved.  The 99 

dilution series were prepared by subsequent dilution of the respective stock solutions. 100 

Sample surface tension remained constant at 37mN/m up to 10wt% PS110 101 

concentration and with a critical polymer overlap concentration c* of 2.40wt% 102 

[Clasen et al. (2006a)].  The zero shear viscosities η0 of the solutions were determined 103 

from PAV low frequency complex viscosity η* data within the terminal relaxation 104 

regime and the measured viscosities are given in Table I.   105 

Table I: Zero shear rate complex viscosity of the different polymer solutions at 25°C 106 

2b. Rheological characterisation. 107 

The Piezo Axial Vibrator (PAV) has been used to characterise the linear viscoelastic 108 

behaviour of samples with viscosity has low as 1mPa.s on a frequency range 109 

comprised between 0.1Hz and 10000Hz [Groß et al. (2002); Kirschenmann (2003); 110 

Crassous et al. (2005); Vadillo et al. (2010b  The PAV measures the complex 111 

modulus G* of the test fluid with G* = G� + iG�� and where G� is the storage modulus 112 

and G�� is the loss modulus.  The complex viscosity η* is related to the complex 113 

modulus by η* = G*/ωѽ where ω is the angular frequency.  Experimental LVE results 114 

are presented in Fig. 1.  Loss modulus G�� and elastic modulus G� have been found to 115 
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increase with the frequency and to vertically shift with the polymer addition. Note, the 116 

pure DEP solvent does not show any G�.  Both moduli approach at lower frequencies 117 

the terminal relaxation regime with the expected scaling with a power of 1 for the loss 118 

modulus (Fig. 1.a), and a power of 2 for the storage modulus (Fig. 1.b), and a constant 119 

complex viscosity η* in this regime as shown in Fig. 1.c (except for 5wt% PS110 after 120 

2000Hz).  The experimental results are displayed between 102 and 104Hz, the range 121 

on which the storage modulus has been captured.  At lower frequency, the fluids have 122 

been found essentially to behave as a Newtonian fluid with the presence of a loss 123 

modulus only.  124 

2c. Cambridge Trimaster experimental protocol 125 

The Cambridge Trimaster (CTM) is a Capillary Breakup Extensional Rheometer that 126 

has been specifically designed to probe the extensional rheology of weakly 127 

viscoelastic fluids.  This apparatus performs a fast stretch of a cylinder of fluid 128 

initially located between two identical pistons over a short distance.  This apparatus 129 

and its limitation have been presented in details in [Vadillo et al. 2010a]. In the 130 

present study, the piston diameters are 1.2mm and the experimental filament 131 

stretching conditions are an initial gap size L0 of 0.6mm and a stretching distance Lf 132 

of 0.8mm at a relative piston speed 2Vp of 150mm/s.  This corresponds to a filament 133 

strain rate 2Vp/L0 = 250 s-1 and a filament aspect ratio Lf/L0 of 2.3.  The piston 134 

velocity and stretching distance have been chosen to ensure that pistons stop their 135 

motion before the critical time scale for inertio-capillary break up for the sample with 136 

the lower viscosity, here the DEP.  For such a fluid, this time scale has been estimated 137 

around 5ms [Tembely et al., 2012].    These conditions have been used in the 138 

following for both experiments and simulations. 139 
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The transient filament profiles were captured using a Photron Fastcam 140 

(http://www.photron.com/index.php?cmd=product_general&product_id=1) 1024 PCI 141 

high speed camera at 6000 fps, for a picture size of 128 x 256 with a shutter time of 142 

3µs.  The filament thinning measurement, as well as the filament breakup behaviour, 143 

was obtained using automatic image processing based of greyscale variation 144 

throughout image for edge detection and the minimum diameter that can be resolved 145 

was about ~ 6µm.   146 

2d Relaxation time and moduli determination. 147 

Relaxation spectrum determination from LVE measurements is an ill-posed problem 148 

and has been studied extensively in the literature [see for example Baumgaertel and 149 

Winter (1989); Kamath et al. (1990), Stadler and Bailly (2009)] and different 150 

techniques from linear to non-linear regression have been developed to obtain 151 

relaxation spectra from oscillatory LVE data. In the modelling carried out here, a 152 

series of equidistant relaxation times spaced on the logarithmic scale was chosen with 153 

one mode per decade. This was motivated by the fact that, in experiments, low visco-154 

elastic fluids have shown significant differences between relaxation times in shear and 155 

in extension [Clasen et al. (2006)] and recent simulations have shown that using a 156 

single mode Maxwell description of the fluid was not sufficient [Tembely et al. 157 

(2012)] to capture those differences. The minimization program for both G� and G�� 158 

data was solved using Matlab®. The solution involved the use of SQP (Sequential 159 

quadratic programming) [Jorge and Wright (2006)] methods which may be considered 160 

as a state of the art nonlinear programming optimization technique. This method has 161 

been shown to outperform other methods in terms of accuracy, efficiency, and 162 

adaptability over a large number of problems [Schittkowski (1985)] and it is an 163 
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effective method for non-linear optimization with constraints. In each iteration the 164 

non-linear problem was approximated using a quadratic which is easy to solve (hence 165 

the name SQP). 166 

The conversion of the experimental data (G'm, G"m, Ȧj) into a relaxation function was 167 

performed by expressing G(t) as a discrete relaxation spectrum (gi, Ȝi). The Maxwell 168 

model relates the real and imaginary parts of the complex modulus determined in 169 

LVE measurement to the discrete relaxation spectrum of N relaxation times λi and a 170 

relaxation strengths gi through: 171 
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with Ȧ being the angular frequency of the experiment, and N is the number of 174 

relaxation modes. As indicated in (2), G� accounts for the solvent viscosity. 175 

Generally the spectra can be computed by minimizing the �least mean square error� 176 

as follows [Armstrong et al. (1987); Curtiss et al. (1987); Stadler and Bailly (2009)]: 177 
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(2) 178 

where M is the number of measurements. 179 

The model was initialized by choosing the relaxation times to be equidistantly spaced 180 

on a logarithmic scale such that ( ) pii /1/log 1 =+λλ . Setting p = 1, i.e, one mode per 181 

decade, has been found to provide sufficient accuracy to accurately describe the LVE 182 
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behavior (Fig. 1). In the numerical simulation, the Maxwell component of the model 183 

was fitted with 5 modes. The relaxation times are chosen such that G� and G� 184 

measured over the frequency range Ȧmin< Ȧ<Ȧmax recover all the information 185 

regarding the relaxation spectrum over the range 1/ Ȧmax<Ȝi< 1/ Ȧmin, however the 186 

correct range is given by eʌ/2/ Ȧmax< Ȝi < e-ʌ/2/Ȧmin  [Davies and Anderssen (1997)]. 187 

This spectrum is a generalized form of the Maxwellian dynamics [Ferry (1980)] and 188 

shown in Table II.  189 

3. General equations and numerical simulations. 190 

Numerical simulations of the Trimaster deformation were performed using both a 191 

one-dimensional model and a 2D axisymmetric model. In the following sub-sections 192 

the general equations and the numerical techniques used in both cases are detailed.  193 

3a. Flow geometry. 194 

To model the experimental conditions, an initial cylindrical column of fluid was 195 

considered bounded by two rigid circular pistons of diameter D0.  The fluid and the 196 

pistons were initially at rest; subsequently the pistons moved vertically outwards with 197 

time-dependent velocities Vp(t) (top piston) and -Vp(t) (bottom piston), which are 198 

prescribed functions based on fitting a smooth tanh curves through measurements of 199 

the Trimaster piston motion in the experiments. As described in Tembely et al 2011, 200 

the form of tanh has been chosen to fit the symmetrical �S� shape experimentally 201 

observed for the piston motion with time.  In that work, the authors have shown that 202 

the use of an accurate representation of the piston dynamic response is of importance 203 

in the simulation of fast transient dynamic of low viscosity and/or low viscoelasticity 204 

fluids. 205 
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Using a cylindrical coordinate system {r, ș, z}, the flow was constrained to be 206 

axisymmetric so that all flow fields are independent of the angular coordinate ș, and 207 

the simulation may be restricted to the rz-plane.  The coordinate origin is at the axis of 208 

the jet, midway between the initial positions of the two pistons.  Fig. 2 shows a 209 

schematic diagram of the computational domain at an intermediate stage of the piston 210 

motion. 211 

Symmetric boundary conditions are required along the z-axis to maintain 212 

axisymmetry, and conditions of no-slip were applied at each piston surface.  The 213 

boundary conditions at the free surface are those of zero shear stress and the 214 

interfacial pressure discontinuity due to the surface curvature 215 

fluid
air. . 0 and . ,[ ] γκ= = −t T n T n                                          (3) 216 

where  T  is the total stress tensor, n is the unit vector normal to the free surface 217 

(directed outward from the fluid), t is the unit tangent vector to the free surface in the 218 

rz-plane, Ȗ is the coefficient of surface tension, and ț is the curvature of the interface.  219 

It is assumed that the external air pressure is a negligible constant. 220 

The location of the free surface at each time-step was determined implicitly via a 221 

kinematic condition.  In the axisymmetric simulations, this was realized 222 

automatically, since the mesh is Lagrangian and the mesh nodes are advected with the 223 

local fluid velocity.  The contact lines between the free surface and the pistons were 224 

held pinned at the piston edges throughout. 225 

The initial conditions are that the fluid is at rest (v=0) and the polymer is at 226 

unstretched equilibrium (Ai=I). 227 

3b. Governing equations 228 
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The governing equations for incompressible isothermal flow of a viscoelastic fluid are 229 

the classical Navier-Stokes equations for Newtonian fluids together with an additional 230 

viscoelastic term coming from the extra stress tensorı . The momentum conservation 231 

then may be expressed as follows in which the 3rd term on right-hand-side accounts 232 

for viscoelasticity: 233 

2( . ) .s

d
p g

dt
ρ ρ η ρ+ ∇ = −∇ + ∇ + ∇ +

v
v v v ı z                                     (4) 234 

and the continuity equation reads: 235 

. 0∇ =v                                                                               (5) 236 

where p is the fluid pressure, ȡ is the fluid density, Șs is the solvent viscosity, and g is 237 

the acceleration due to gravity. 238 

3c. Constitutive equations 239 

For the viscoelastic fluid models, the polymer contribution was described by a 240 

Finitely Extensible Nonlinear Elastic (FENE) dumbbell model which makes use of 241 

the conformation tensor A, and the stress tensor reads [see for example, Chilcott and 242 

Rallison (1988)]: 243 

( )( )Gf R= −ı A I                                                  (6) 244 

whereG  is the elastic modulus, )(Rf is the finite extensibility factor related to the 245 

finite extensibility parameter L , representing the ratio of a fully extended polymer 246 

(dumbbell) to its equilibrium length and R = Tr(A).  L can be described in terms of 247 

molecular parameters as: 248 



 12

 

( )
ν

θ
−

∞ ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

12

2sin
3

u

w

MC

Mj
L  (7) 249 

In this expression, θ corresponds to the C-C bond angle and is equal to 109.5°, j 250 

corresponds to the number of bonds (2 in the case of PS) of a monomer of molar mass 251 

Mu = 104g/mol, C∞ is the characteristic ratio for a given polymer equal to 9.6, Mw is 252 

the molecular weight of the polymer and ν is the excluded volume exponent equals to 253 

0.57 for PS110 [Clasen et al. (2006b)].  In the case where the dumbbells are infinitely 254 

extensible, ( ) 1f R =  and the constitutive equation is that of an Oldroyd-B fluid.  For 255 

PS110, L has been estimated at 15. 256 

For a multimode model, the extra stress may be expressed as a sum of contributions 257 

from each mode. For the generalized multimode problem with N modes, each mode 258 

(i) with partial viscosity (Și) and relaxation time (Ȝi), and the extra-stress tensor of the 259 

FENE-CR expresses: 260 

 1

( )( ) ,
N

i i i i

i
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(8) 261 

where ( )2( ) 1/ 1 /i i i if R R L= −  with ( )Tri iR = A .  For simplicity, it is assumed that the 262 

extensibility Li=L is constant, but other approaches may be used [Lielens et al. 263 

(1998)]. The dimensionless evolution equation for the thi  mode is 264 
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(9) 265 

Where .Ti
i i i i i

d

dt

∇

= −∇ − ∇
A

A v .A A v  is the Oldroyd upper-convected time derivative of 266 

Ai, and Dei is the Deborah number for the thi  mode defined as follow 267 

 De /i iλ τ=  (11) 268 
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gi and λi are the modulii and relaxation times described by the multimode 269 

optimization see sub-section (2d) and where τ  is the characteristic inertio-capillary 270 

time scale of the system defined by 3
0 /Rτ ρ γ= . 271 

Scaling was performed using the piston radius R0 as a length scale, and a 272 

characteristic speed U as a velocity scale , where U is the average piston speed in the 273 

2D case, and U=R0/Ĳ in the 1D case. The time was scaled by R0/Uand Ĳ, in the 2D and 274 

1D cases respectively; whereas pressures and stresses were scaled by ρU2. The 275 

scalings yielded the dimensionless governing equations: 276 

2
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1 1
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where t , v , and p  are now the dimensionless time, velocity, and pressure 278 

respectively. For each viscoelastic mode an additional parameter ci = giλi/ηs has been 279 

introduced: it may be interpreted as a measure of the concentration (volume fraction) 280 

of dumbbell molecules corresponding to the thi  mode. With the particular scalings 281 

used here, the flow is characterized by the dimensionless groups Re We, and Fr, 282 

which are respectively the Reynolds, Weber, and Froude numbers 283 

 

1/22 2
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η γ
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284 

in addition to the Deborah number Dei for each mode, defined earlier.  The Reynolds 285 

number represents the competition between inertia and viscosity, the Weber number 286 

the competition between the inertia and the surface tension while the Froud number 287 

represents the competition between inertia and gravity effects. 288 

Another important dimensionless number is that of Ohnesorge, 0Oh /S Rη ργ= .With 289 

the scalings used here, the Ohnesorge number can be expressed in terms of the Weber 290 
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and Reynolds numbers: Oh We / Re= . Alternative choices of scaling may result in 291 

other different dimensionless groupings [Eggers and Villermaux, (2008)] as for 292 

example, the Capillary number (ratio between viscous forces and surface tension) and 293 

the Bond number (ratio between gravitational forces and surface tension).  The Bond 294 

number and the Capillary number have been estimated at ~0.11 and between 0.04 and 295 

0.28 respectively indicating that surface tension is the dominating force and the 296 

gravitational effects negligible. An extensive discussion of dimensionless number of 297 

the problem can be found in [McKinley, 2005b].   298 

3d. Computational methods 299 

1D simulation 300 

The previous equations (4), (5), (6) can be further simplified to retrieve the lubrication 301 

equation. The 1D simulation method follows the same approach as in the recently 302 

presented published work by Tembely et al. (2012) namely considering the radial 303 

expansions and taking the lower order results in r lead to the nonlinear one-304 

dimensional equations describing the filament dynamics [Eggers and Dupont (1994); 305 

Shi et al. (1994)]. The result is a system of equations for the local radius h(z, t) of the 306 

fluid neck, and the average velocity v(z, t) in the axial direction:  307 

 0=
2

h
vhvht
′+′+∂  (14) 308 

where prime (')denotes the derivative with respect to z coordinates and  309 

 

2
2

, ,2 2

( ) 1
= 3 ( ) 't s p zz p rr

v h
v vv h

h h
κ ν σ σ
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 (15)
 310 
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For the multimode one-dimensional model in dimensionless form, the axial and radial 311 

stress may be expressed as: 312 
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 314 

As previously, the full expression of the curvature given in equation (18) was used to 315 

avoid instability in the solution and to provide the capacity to represent a rounded 316 

drop:  317 

 
3/221/22 )'(1)'(1
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To close the one-dimensional model, the following boundary conditions are imposed, 319 

the no-slip conditions at the piston surfaces, 320 

0)2,/()2,/( RtLzhtLzh ===−=                                                (12) 321 

pp VtLzvVtLzv ==−=−= )2,/(,)2,/(                                              (13) 322 

and a kinematic condition for the radius h(z,t) of the jet may be expressed as 323 

 = = ( = , )z r

dh h h
v v r h t

dt t z

∂ ∂
+

∂ ∂
                                       (14) 324 

The governing equations in 1D simulation were solved with COMSOL, 325 

(http://www.uk.comsol.com/) using the Arbitrary Lagrangian-Eulerian (ALE) 326 

technique. The ALE technique is such that the computational mesh can move 327 

arbitrarily to optimize the shape of the elements, whilst the mesh on the boundaries 328 
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follows the pistons motion. This ALE capacity implemented in the Comsol code 329 

combined with the choice of very fine meshes enables to track the relevant physics as 330 

shown in (Tembely et al. 2012).  Due to the piston motion the computational domain 331 

changes with time (see Fig. 3). With the ALE approach, the time derivative of any 332 

quantity is defined as ( ).m

d
v v

dt t

∂
= + − ∇

∂

f f
 333 

 334 

where mv
f

 is the mesh velocity imposed by the piston velocity.  335 

The stress boundaries are ignored in the 1D approach due to the weakly viscoelastic 336 

character of the samples and the initial filament aspect ratio being close to 1 [Yao and 337 

McKinley, 1998]. The 2D axisymmetric approach includes per se that effect. 338 

Fig. 4 presents the evolution of the simulated mid-filament as a function of time for 339 

1D and 2D simulation using different number of mesh elements.  The 1D numerical 340 

results with between 240 and 3840 mesh elements do not show any difference. The 341 

results thus seem to be insensitive to mesh size as shown in the figure below.  Similar 342 

observation is made for the 2D simulation results regardless of the initial number of 343 

mesh elements. The 2D simulation approach mesh is adaptive and evolves with time 344 

throughout the simulation resulting a very large number of elements (see insert in Fig. 345 

4.a). 346 

    347 

2D simulation 348 

An extended version of the split Lagrangian-Eulerian method of Harlen et al [Harlen 349 

et al. (1995)] was used. The nature of the extension was twofold: in the problems for 350 

which the method was originally developed there were no free surface boundaries, 351 

and the inertial terms were neglected (Re = 0). The method has since been adapted 352 

and extended to deal with inertial flows and has been used to model the breakup of 353 
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Newtonian and viscoelastic jets [Morrison and Harlen (2010); Castrejon-Pita et al. 354 

(2011)]. 355 

The velocity and pressure fields are discretized over an irregular triangular mesh of 356 

P1--P1 Galerkin elements; each component of the conformation tensor A  is assigned 357 

a value for each element. An artificial stabilization was employed in order to prevent 358 

spurious numerical pressure oscillations [Brezzi and Pitkaranta (1984)]. The value of 359 

the stabilization parameter was optimized with respect to the spectral properties of the 360 

discrete coefficient matrix [Wathen and Silvester (1993)]. A theta-scheme was used 361 

for the discrete time-stepping, and the discrete governing equations were linearized 362 

via Picard iteration. For each iteration, the linear system was solved numerically using 363 

the minimal residual (MINRES) method [Paige and Saunders (1975)]. Adaptive time-364 

stepping was controlled by a CFL [Courant et al. (1928)] condition. The position of 365 

each mesh node was updated after each time-step using the converged velocity 366 

solution. 367 

The numerical integration of the evolution equation for the conformation tensor was 368 

conducted separately for each element between time-steps, by transforming to a co-369 

deforming frame with local coordinates in each triangle. In such a frame, the upper 370 

convected derivative 
∇

A  becomes the ordinary time derivative dA/dt. Similarly the 371 

Lagrangian derivative Du/Dt becomes du/dt. The interfacial boundary condition is 372 

handled similarly to the treatment by [Westborg and Hassager (1989)]. 373 

To maintain element shape quality throughout the simulations, local mesh 374 

reconnections were made between time-steps in regions where significant element 375 

distortion had occurred. The criteria for reconnection were based on the geometric 376 

optimality of the Delaunay triangulation [Edelsbrunner (2000)]. The local mesh 377 
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resolution was also maintained by the addition of new nodes in depleted regions, and 378 

the removal of nodes in congested regions. 379 

In order to represent the capillary breakup of thin fluid filaments, the fluid domain 380 

was subdivided artificially when the filament radius falls below a certain threshold. 381 

This threshold has been taken as 0.5%<  of the piston diameter to match the smallest 382 

diameter that can be experimentally resolved (~6µm).  Below this value, the filament 383 

is not experimentally visible and is therefore considered broken.  A more detailed 384 

discussion of the capability of the simulations to capture pinch-off dynamics on a 385 

finer scale is given in [Castrejon-Pita et al. (2011)]. 386 

 387 

4. Results and discussion 388 

4.a Experimental results 389 

Examples of the base experimental data are shown in Fig. 5 where photographs of 390 

Trimaster experiments for different polymer loading are shown as a function of time. 391 

The pure DEP solvent, shown as series 5a, indicates a filament stretch followed by 392 

end pinching during relaxation to give a single central drop. The other extreme is 393 

shown by series 5d for the 5% polymer loading, where stretching is followed by a 394 

progressive filament thinning with a very much longer break up time.  The whole time 395 

evolution of the full profile along the thread is of general interest and importance; 396 

however the detailed behaviour of the centre line diameter will be considered 397 

beforehand. 398 

4.b Numerical results 399 

Mid filament evolution 400 
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The experimental time evolution of the mid-point of the filament is given in Fig. 6 401 

and the figure displays the characteristic feature of an increased filament life time 402 

with a progressive increase of polymer loading. It is this experimental mid filament 403 

time evolution that has been used as the basis for comparison with the 1D and 2D 404 

numerical simulations.  Fig. 7 shows that both the 1D and 2D numerical simulations 405 

are in close agreement with the base case Newtonian experimental results. Both the 406 

decay profile and final 7.5 ms break point are accurately described by the simulations.  407 

Figures 7 to 15 present the evolution of the mid-filament and not the minimum 408 

filament or the breakup point which position might vary from one case to another. 409 

The simulation breakup diameter has been set at 6µm but might occur at the top and 410 

bottom of the filament, as experimentally observed in the case of DEP.  In such case, 411 

a droplet is formed in the middle of the filament explaining the large diameter 412 

observed experimentally and in simulations at breakup time (Fig. 5 and 7). 413 

Single mode simulations are shown in Fig. 8, 9 and 10 for 1, 2.5 and 5% 414 

concentration solutions respectively. The simulations were carried out using the 415 

FENE-CR constitutive equation with the extensibility parameter L = 30.  The 416 

extensibility value of L = 30 adopted in this paper has been found to provide a better 417 

match with the experimental results than the theoretical value of 15.  The possible 418 

existence of higher molecular mass chains, albeit in small quantities, may justify this 419 

choice. Moreover, for an indication of the choice of L, the comparative plot depicted 420 

in Fig 13.b of the squared extensibility 2L  and ( )Tri iR = A , which represents the 421 

average length per mode i.e. of the polymer chain, shows that an extensibility value of  422 

around 30 is an appropriate  choice. The 5th mode seems to capture the polymer global 423 

chain unravelling mechanism which takes place at larger length scales. On the other 424 
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hand, the others modes (1, 2, 3) with negligible values of 
iR involves local changes of 425 

the molecular conformation; the 
iR  axial evolution confirms that higher stretching 426 

occurs in the middle of the filament.  427 

The capillary thinning of viscoelastic fluid is controlled by the longest relaxation time 428 

with a mid-filament diameter decreasing in the form of D(t) ~ α.exp(-t/3λ) 429 

[Bazilevsky et al. (1990)). Fitting this exponential decay to the experimental data 430 

presented in Fig. 6 yields extensional relaxation times λext of 0.425ms, 1.19ms and 431 

3.2ms for 1, 2.5 and 5wt% respectively. The extensional relaxation λext increased with 432 

polymer loading as expected. Whilst both the 1D and 2D simulations match the 1% 433 

solution data shown in Fig. 8, there is a progressive mismatch in both decay and pinch 434 

off with increasing concentration shown in Fig. 9 and 10. In particular the decay 435 

immediately after piston cessation is over predicted by both 1D and 2D simulations. 436 

Perhaps surprisingly, both the 1D and 2D simulations give a similar response.  It was 437 

speculated that differences may appear between single mode and multimode models 438 

because of the existence of shorter and longer modes and of their interactions close to 439 

capillary pinch-off in the vicinity of both pistons [Matallah et al. (2007)]. 440 

In the 1D paper, (Tembely et al., JOR 2012) single mode modelling only was used; 441 

however both a short mode obtained from the PAV data and a long mode obtained 442 

from matching with experiment were used. In that paper it was shown that the 443 

smallest relaxation time as input in a non-linear model was unable to correctly predict 444 

filament thinning whilst the longest relaxation time gave reasonable filament thinning 445 

results but a large discrepancy with the experimental G� and G� data. In this paper, 446 

incorporation of multi modes has been carried out in order to fit with greater accuracy 447 

the filament thinning experimental results whilst also capturing the PAV data too. We 448 
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have chosen 5 modes in order to have one mode per decade over the range of interest 449 

covered experimentally.  The exact choice of the number of modes is a matter of taste. 450 

Two would be too few and eight probably too many.  451 

In this paper, we have used the same non-linear constitutive equation as in the 452 

previous paper and the the oscillatory linear viscoelastic data was then fitted to a 453 

multimode model with five modes spaced by a decade between modes and the fitted 454 

parameters are given in Table II. These multimode parameters were then used in both 455 

the 1D and 2D simulations using the multimode FENE-CR constitutive equation (eq. 456 

9 and 10). The results are shown in Fig. 11, 12 and 14 for the 1, 2.5 and 5% solutions 457 

respectively.  The fit at all concentrations is now greatly improved from the single 458 

mode simulations over the whole decay and again there appears to be little difference 459 

between the 1D and 2D simulations.  460 

Using a multimode Maxwell model approach allows better accounting for the 461 

transition between visco-capillary thinning and elasto-capillary thinning as shown by 462 

the large reduction of the filament diameter at times between 7 and 10ms. This was 463 

one of the main limitations for the single mode Maxwell approach as shown in the 464 

previous section and recently reported results by some authors of this paper (Tembely 465 

et al. (2012)). The results shown I this current paper clearly demonstrate that a 466 

multimode description of the fluid is necessary and that, perhaps surprisingly, the 1D 467 

simulation appears to give a closer match to the experimental results. The multimode 468 

approach also captures the results for potential non-linear elongation behavior and 469 

relaxation time changes with the help of using the linear time spectrum and the non 470 

linear  constitutive equation.  471 

The sensitivity of the filament thinning and breakup to constitutive equation and non 472 

linear parameters is shown in Fig. 14 and 15.  In Fig. 14 it can be seen that using the 473 
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1D simulation, there is little difference between the multimode FENE-CR and 474 

Oldroyd model predictions.  Any differences that may appear were essentially masked 475 

by the use of multi modes.   Simulation using the theoretically predicted value for the 476 

limiting extensibility L of PS110 (L = 15), the �best fit� obtained (L = 30) and a 477 

significantly larger value, here L = 100, have been chosen to investigate the effect L 478 

of the FENE-CR model.  Fig. 14 shows that L does effect the simulation slightly in 479 

the transition zone for the short time modes and particularly in the final stages of 480 

decay with a pinch off time that decreases with decreasing limiting extensibility 481 

parameter L. 482 

Transient profiles 483 

Figure 16 and 17 present the1D and 2D multi modes FENE-CR and Oldroyd-B full 484 

simulated transient profiles for the case of 5wt% PS110 diluted in DEP.  A generally 485 

good match between simulations is observed with differences only appearing towards 486 

the end of the filament thinning mechanism, ie, near to break up.  Figure 16 shows 487 

that the 1D simulation predicts a final thread like decay, whereas the 2D simulation 488 

still has a pinch off component. The multi mode Oldroyd-B simulations shown in 489 

Figure 17 also shows a similar trend, with the 1D having a more thread like final 490 

decay.  Despite the improvement provided by the use of multi modes approach instead 491 

of the single mode approach, these results clearly highlight the need for investigating 492 

other constitutive equations for the modelling of fast stretching and filament thinning 493 

of low viscoelastic fluids.   494 

Detailed full profile comparison between experimental transient profiles of PS110 at 495 

5wt% in DEP with FENE-CR multi modes 1D and 2D simulation transient profiles is 496 

presented in Fig. 18.  Both simulation approaches provide a good match with the 497 

experimental profiles for the overall mechanism with again the main discrepancies 498 
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appearing at the late stage of the filament thinning mechanism.  Close examination of 499 

the experimental and simulated profiles show that the fluid regions attached to the top 500 

and bottom pistons are smaller experimentally than for both simulations. This results 501 

in a larger length of the thinning filament in the experimental case and may explain 502 

the differences observed between 1D and 2D simulations.  The filament aspect ratio is 503 

usually defined by the variation between initial and final position of the piston but it 504 

can be seen here that despite using similar piston motions for the simulations and the 505 

experiments, differences in the filament length arise.  Such filament length variations 506 

are expected to significantly affect the filament break up profile especially in the case 507 

of low viscosity low viscoelastic fluids.  The investigation of the full velocity field, in 508 

terms of simulation and using Particle Image Velocimetry (PIV) experiments, within 509 

both the filament and the piston region would help the understanding of the 510 

differences observed in the filament shape especially toward the break up time. 511 

 512 

Weissenberg number Wi and apparent extensional viscosity ηe,app 513 

Figure 19 presents the evolution of the Weissenberg number Wi as a function of the 514 

filament thinning Hencky strain ε in the case of multi mode FENE-CR simulations. 515 

Weissenberg number and filament thinning Hencky strain may be defined as follows: 516 

௜ܹ ൌ ௘௫௧Ǥߣ  ሶ (22) 517ߝ

ߝ ൌ ʹǤ ln ቀ ஽బ஽ሺ௧ሻቁ (23) 518 

ሶߝ ൌ ଶ஽ሺ௧ሻ ௗ஽ሺ௧ሻௗ௧  (22) 519 

The simulated data of the mid filament evolution have been used to estimate the 520 

longest extensional relaxation time and value of 2.98ms and 5.1ms were obtained for 521 
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the 1D approach and the 2D simulation respectively, in the case of PS110 at 5wt% in 522 

DEP. 523 

In the case of the multimode FENE-CR approach, the 1D simulation approach 524 

predicts reasonably well the overall mechanism with; in particular the double curved 525 

behaviour experimentally observed in the transition between visco-capillary and 526 

elasto-capillary regimes (Wi = 0.5) whereas the 2D approach provides a good match 527 

on the long time scale but does not capture the double curvature.  The behaviour at 528 

high Hencky strain is correctly represented for both types of simulations.  529 

The use of the multimode approach does significantly improve the match with 530 

experimental data in comparison to that of the single mode and, even if all the 531 

subtleties of the complex filament thinning mechanism seem not to be fully 532 

represented, it provides good agreement with experimental data. The description of a 533 

Weissenberg number, when using a multimode approach, has difficulties in relation to 534 

a suitable choice of relaxation time used in the definition of the Weissenberg number.  535 

It is also very sensitive to noise (simulation or experimental) due to the fact that it is 536 

based on the derivative of the mid filament evolution.   537 

Finally, Fig. 20 presents the transient apparent extensional viscosity ηe,app, with 538 ߟ௘ǡ௔௣௣ ൌ െߪǤ ௗ௧ௗ஽೘೔೏ሺ௧ሻ, as a function of Hencky strain for multimode FENE-CR.  The 539 

comparison is particularly good in view of the approximations which have been made 540 

for the calculation of the phenomenological Maxwell times. Notably, the complex 541 

behaviour of the extensional viscosity is qualitatively correctly predicted at 542 

intermediate times by both the 1D and 2D simulations with the prediction of the 543 

sudden increase in ηext after the pistons have stopped.  Close attention shows  that the 544 

1D simulation approach produces a surprisingly good agreement with experimental 545 
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results, while the  2D simulation approach fails to represent the long term extensional 546 

viscosity behaviour. 547 

 548 

5. Conclusions 549 

Results described in this paper have shown that a multimode constitutive equation 550 

approach is necessary to describe the detailed viscoelastic extensional flow behaviour 551 

of dilute or semi dilute polymer solutions. The result is consistent with the findings of 552 

Entov and Hinch (1997) who also found it necessary to resort to a multimode mode 553 

approach for higher viscosity viscoelastic polymer solutions. However, simulations 554 

for different polymer concentrations indicate that the improvement due to the use of 555 

multimodes instead of single mode is reduced with increase of the solution diluteness.  556 

Results presented in this work indicate great potential for the simulation of very fast 557 

break up dynamic of more dilute polymer solution using multimode Maxwell 558 

approach with important application potential in areas such as ink jet printing. 559 

The FENE-CR constitutive equation appears to be an effective suitable constitutive 560 

equation to use for the fluids examined in this paper, although the Oldroyd model was 561 

found to give an equivalent response when used with multimodes. It appears that 562 

multimode modelling can disguise certain limiting features of different constitutive 563 

models, but however remains necessary even for the monodisperse polymer systems 564 

which have been tested. 565 

An initially surprising result of the paper is the fact that the 1D modelling gives 566 

apparently improved results over the more rigorous 2D modelling in some limited 567 

cases described above. This indicates that the 1D approximation is valid enough for 568 
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the initial and boundary conditions used and in particular for the mid filament 569 

diameter evolution. It is probable that when details of highly non-linear behaviour, i.e. 570 

pinch off position, number of beads, etc. are considered differences will emerge from 571 

the two techniques.  The pinch off position and the number of small drops is an 572 

essential parameter in ink-jet printing since the satellite drops may merge or not 573 

following the type of detachment.  574 

Further comparison would be to follow the filament transients following breakup. 575 

Such a work has been done for Newtonian liquid (Castrejon Pita et al. 2012) but this 576 

work does not include non-Newtonian fluids., The non-linear evolution of main drop 577 

and satellites do influence printability criterion taking into account the Ohnesorge and 578 

the Deborah numbers as described in preliminary work by Tembely et al. 2011. 579 
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Solvent Mw (g/mol) C (wt%) �* (mPa.s) 

DEP 110000 0 10 

DEP 110000 1 15.2 

DEP 110000 2.5 31.5 

DEP 110000 5 69 

Table I: Zero shear rate complex viscosity of the different polymer solutions at 25°C 698 

 699 

 700 

 1%PS 2.5%PS 5%PS 10%PS 

li(µs) gi(Pa) gi(Pa) gi(Pa) gi(Pa) 

1 7.789 83.8229 397.9015 1086.4419

10 428.76 1450.8952 4680.9517 9126.8723

100 1.6435 10.5177 93.1172 2012.6511

1000 0 0 0 16.4133 

10000 0.0342 0.1855 0.4288 0.4291 

Table II: Relaxation time and shear modulus obtained from Maxwell model fit of the 701 

PAV data for the different samples 702 
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Figure 1: Evolution of (a) Loss modulus G��, (b) elastic modulus G� and (c) complex 708 

viscosity h* as a function frequency for DEP-PS 110 000 solutions at different 709 

concentrations. (Ÿ) DEP, (Ɣ)DEP-1wt% PS110, (Ƒ) DEP-2.5wt% PS110, and (Ƈ) 710 

DEP-5wt% PS110. Solid line represents the multimode optimization results while the 711 

dashed line on G� graph corresponds to a power law function of index 2. 712 
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 714 

 715 

Figure 2: Diagram of filament stretch and thinning geometry  and the computational 716 

domain, shown midway through the stretching phase as the pistons move outwards 717 

and the fluid column necks in the middle.  Initially the fluid column is cylindrical. 718 

Extracted from [Tembely et al., 2012] 719 

 720 

  721 
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 722 

 723 

Figure 3:  mesh evolution of the ALE method for the 1D simulation 724 
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 727 

 728 

Figure 4: Evolution of the simulated mid-filament for different number of mesh 729 

elements for (a) 1D simulation approach (b) 2D simulation approach. In the 2D 730 

simulation, the legend gives the number of triangles at t = 7.2ms. 731 
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 733 

 734 

Figure 5: Photograph of the filament stretch, thinning and break up captured with the 735 

Trimaster for (a) DEP, (b) DEP + 1wt% PS110, (c) DEP + 2.5wt% PS110, (d) DEP + 736 

5wt% PS110. The first picture of each series (t = 5.3ms) corresponds to the piston 737 

cessation of motion 738 
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 740 

 741 

Figure 6: Time evolution of mid-filament taken from photographs of figure 2. (Ÿ) 742 

DEP, (ż) DEP-1wt% PS110, (ǻ) DEP-2.5wt% PS110, and (Ƈ) DEP-5wt% PS110, (---743 

) piston cessation of motion.  744 
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  746 
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 747 

Figure 7: Newtonian base case. Plot of the mid filament diameter evolution as a 748 

function of time. Vertical line (---) corresponds to piston cessation of motion. 749 
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 751 

 752 

Figure 8: Single mode, 1wt% PS110 in DEP solution. Plot of the mid filament 753 

diameter evolution as a function of time.  Constitutive equation: Fene-CR, relaxation 754 

time λ = 0.425ms, shear modulus g = 11.25Pa and polymer extensibility L = 30.  755 

Initial gap size: 0.6mm, final gap size: 1.4mm, pistons relative velocity: 150mm/s. 756 

Vertical line (---) corresponds to piston cessation of motion (aspect ratio 2.3).  757 
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 759 

 760 

Figure 9: Single mode, 2.5wt% PS110 in DEP solution. Plot of the mid filament 761 

diameter evolution as a function of time. Constitutive equation: Fene-CR, relaxation 762 

time λ = 1.19ms, shear modulus g = 15Pa and polymer extensibility L = 30. time (---) 763 

corresponds to piston cessation of motion.   764 

 765 
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 767 

Figure 10: Single mode, 5wt% PS110 in DEP solution. Plot of the mid filament 768 

diameter evolution as a function of time. Constitutive equation: Fene-CR, relaxation 769 

time λ = 3.2 ms, shear modulus g = 17Pa and polymer extensibility L = 30.   Vertical 770 

Line (---) corresponds to piston cessation of motion.   771 
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 773 

 774 

 775 

Figure 11: Multi mode, 1wt% PS110 in DEP solution. Plot of the mid filament 776 

diameter evolution as a function of time. Constitutive equation: Fene-CR, relaxation 777 

times λi and shear modulus gi for the different modes i are given in Table II and 778 

polymer extensibility L = 30.  Vertical line (---) corresponds to piston cessation of 779 

motion.   780 
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 782 

 783 

Figure 12: Multi mode, 2.5wt% PS110 in DEP solution. Plot of the mid filament 784 

diameter evolution as a function of time. Constitutive equation: Fene-CR, relaxation 785 

times λi and shear modulus gi for the different modes i are given in Table II and 786 

polymer extensibility L = 30.  Vertical line (---) corresponds to piston cessation of 787 

motion.   788 
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 791 

 792 

Figure 13: (a) Multi mode, 5% solution. Plot of the mid filament diameter evolution 793 

as a function of time. Constitutive equation: Fene-CR, relaxation times λi and shear 794 

modulus gi for the different modes i are given in Table II and polymer extensibility L 795 



 49

= 30.  Vertical line (---) corresponds to piston cessation of motion.  (b) Evolution of 796 

the Ri as a function of time 797 

 798 
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 800 

Figure 14: Multi modes, 5wt% PS110 in DEP solution. Plot of the mid filament 801 

diameter evolution as a function of time. Constitutive equation: Oldroyd-B, relaxation 802 

times λi and shear modulus gi for the different modes i are given in Table II.  Vertical 803 

line (---) corresponds to piston cessation of motion.   804 
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 806 

Figure 15: Effect of extensibility parameter L. Symbols represent the experimental 807 

data of the evolution of the mid-filament as a function time and lines represent 1D 808 

multi-mode numerical simulations for different polymer chain extensibilities L. 809 

Constitutive equation: Fene-CR , relaxation times λi and shear mdulus gi for the 810 

different modes i are given in Table II..  Vertical line (---) corresponds to piston 811 

cessation of motion.  812 
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 814 

 815 

Figure 16: Comparison between the 1D numerical FENE-CR multimode transient 816 

profiles (left), and the corresponding 2D simulations (right) for the DEP+5%PS. The 817 

prescribed times are 5.3ms, 12ms, 18.5ms, 25.5 ms, 38ms. 818 

 819 
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 821 

Figure 17: A comparison between the 1D numerical Oldroyd-B multimode transient 822 

profiles (left), and the corresponding 2D simulations (right).  The prescribed times are 823 

5.3ms, 12ms, 18ms, 25ms, 32ms and 44ms for 1D simulation and 5.3ms, 12ms, 18ms, 824 

25ms, 28ms, 32.5ms for 2D simulation 825 

 826 
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 828 

Figure 18: Comparison between the experimental transient profiles for the 829 

DEP+5wt%PS110 and the simulations of (a) the 1D and (b) the 2D cases using the 830 

FENE-CR multimode constitutive equations. 831 

 832 
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 834 

Figure 19: Evolution of the Weissenberg number as a function of the Hencky strain.  835 

Transient Weissenberg numbers were calculated using λ = 3.2ms for experimental 836 

data, λ = 2.89ms and λ =5.1ms for 1D simulation  and 2D simulation data using multi 837 

modes FENE-CR as constitutive equation. 838 
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 840 

Figure 20: Evolution of the transient apparent extensional viscosity ηe,app as a 841 

function of the Hencky strain ε for computed from the mid filament evolution shown 842 

in Fig. 12.  843 

 844 
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