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Nonparametric circular time series analysis

Marco Di Marzioa, Agnese Panzeraa, Charles C. Taylorb,1

aDMQTE, Università di Chieti-Pescara, Viale Pindaro 42, 65127 Pescara, Italy.
bDepartement of Statistics, University of Leeds, Leeds LS2 9JT, UK.

Abstract

Although most circular datasets are in the form of time series, not much research has been done in the field of circular

time series analysis. We propose a nonparametric theory for smoothing and prediction in the time domain for circular

time series data. Our model is based on local polynomial fitting which minimizes an angular risk function. Both

asymptotic arguments and empirical examples are used to describe the accuracy of our methods.
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1. Introduction

1.1. Motivation

Circular data arise whenever directions are measured, and are usually expressed as angles relative to some fixed

reference point. Given that in the circular setting we have the identity 0 ≡ 2π, it is immediately apparent that linear

data methods are unsuitable for circular data. In last fifty years, however, circular statistics has greatly evolved, and

now circular counterparts exist for several parametric data analysis techniques. For a comprehensive account, see the

survey paper by Lee (2010), and the references therein.

Surely, not a great deal of theory exists for circular time series analysis, even though most datasets are in this

form, obvious examples being wind and ocean directions. Note that, in some applications, time itself can be viewed

as a circular measurement, but this is not the context of this paper in which we consider time as linear, with a circular

observation taken at each time point. Breckling (1989) builds an autoregressive model by wrapping a linear AR(1)

model around the circle. Four types of time series model are studied by Fisher & Lee (1994). The first is obtained

by wrapping standard linear ARMA processes, and the second by projecting a bivariate linear process. Two further
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models are based on modifications of parametric regression models. Other recent approaches are provided by Artes

et al. (2000), who target longitudinal data using generalized estimating equations, by Holzmann et al. (2006), who use

hidden Markov models for fitting linear-circular and circular-circular time series, and by the thesis of Hughes (2007),

who explores various adaptations of the Möbius model of Downs & Mardia (2002).

On the other hand, nonparametric statistical methods have become more and more popular over the last two

decades for the analysis of non-linear time series, see the books of Fan & Yao (2003) and Gao (2007) and the references

therein. See also Bosq (1998, chap. 7), who demonstrated that kernel-based estimators have the potential to improve

on ARMA models in many situations even when the latter appears appropriate to use. Indeed, existing studies show

that linearity assumptions – such as normality, symmetric cycles, unimodality, linearity between lagged variables,

and homoscedasticity – are rather strong in most practical situations. Similarly, Box-Jenkins models and ARCH

models often yield poor forecasts, particularly if the horizon is large, whereas a suitable nonparametric model behaves

efficiently even if stronger assumptions are satisfied and the data are truly linear. Anyway a strong complementarity

between parametric and nonparametric methods exists for time series: an obvious example lies in first performing

nonparametric trend estimation, then imposing a parametric model for the residual stationary data.

The above arguments provide our motivation for constructing kernel based smoothers for circular time series, as

done in the present paper. Specifically, we discuss trend estimation and prediction within a basic model which adds a

stationary random noise process to a deterministic trend which is not restricted in its functional form, apart from some

smoothness assumptions. In the subsequent Section 1.2 we formulate our model, whereas in Section 2 we present a

couple of smoothers which optimize an angular risk: one being based on the idea of local constant fit, the other one

employing local linear weights. In Section 3 we face boundary estimation, which in this context is essentially linked

to the idea of prediction. Finally, in Section 4 empirical experiments illustrate the findings, using both simulated and

real data.

1.2. The model

Let {Θt}
T
t=1

be a time series of angles taking values in T := [−π, π]. Assume the model

Θt = [m(t/T ) + εt](mod2π) (1)

where m : [0, 1] → T is an unknown smooth function of time representing the trend, and {εt} is a T-valued stationary

stochastic process such that E[sin(εt)] = 0 and with autocovariance function regularly varying at infinity with exponent

α > 0, i.e., as ℓ goes to infinity,
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a1) γcc(ℓ) := Cov[cos(εt), cos(εt+ℓ)] ∼ L1|ℓ|
−α;

a2) γsc(ℓ) := Cov[cos(εt), sin(εt+ℓ)] = E[cos(εt) sin(εt+ℓ)] ∼ L2|ℓ|
−α;

a3) γss(ℓ) := Cov[sin(εt), sin(εt+ℓ)] = E[sin(εt) sin(εt+ℓ)] ∼ L3|ℓ|
−α;

where Li ∈ R \ {0}, for i ∈ {1, 2, 3}, ℓ ∈ Z, and ∼ means that the ratio of the left and right hand sides converges to 1.

We define, moreover, |ℓ|α := 1 if ℓ = 0. We say that the case 0 < α < 1 indicates a long-range dependence, whereas

the case α > 1 implies so-called short-range dependence.

Note that here, when T goes to infinity, the number of observations become denser in the interval [0, 1], with the

dependence structure remaining the same. The fact that m depends on t/T makes the trend much more slowly varying

than the noise. This is desirable, but involves trend dependence on the sample size T , which is slightly weird. The

linear version of model (1) has been extensively used to model long-range dependent and non-stationary data. Of

course, in the linear case the assumptions concern directly the errors. But, noting that sin(θ) ≃ θ for small θ, and

that E[sin(εt)] = 0 then a3) closely resembles the linear hypotheses, whereas a1) and a2) do not appear to have linear

counterparts.

Concerning assumptions a1)–a3), they say that correlation goes to zero as the temporal lag ℓ diverges. This seems

natural, otherwise trend identifiability problems would arise, becoming virtually impossible to distinguish between

trend and autocorrelation signal. Nevertheless, it will be seen that an important rôle is played by the strength of the

dependence, i.e. the value of α. In general, for a fixed sample size, we would expect that the variance of an estimator

increases with the correlation. In fact, as this latter tends to one, the amount of information in the data diminishes

until it coincides with that contained in a single observation. It will often be the case that the autocorrelation structure

determines the optimal smoothing degree.

2. Trend estimation

2.1. A local estimator

If m(t/T ) is a predictor for the random angle Θt, a risk measure for it is

E[1 − cos(Θt − m(t/T ))], (2)
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which is reminiscent of the L2 linear risk, given that cos(θ) ≃ 1− θ2/2 for small θ. Letting m1(t/T ) := E[sin(Θt)], and

m2(t/T ) := E[cos(Θt)], the minimizer of (2) is

atan2[m1(t/T ),m2(t/T )] =































arctan

(

m1(t/T )

m2(t/T )

)

, i f m2(t/T ) > 0;

arctan

(

m1(t/T )

m2(t/T )

)

+ π, i f m2(t/T ) < 0.

Therefore, the approach we suggest is to consider the sample statistics

m̂1(t/T ) := 1/T

T
∑

i=1

sin(Θi)W(i/T − t/T ) and m̂2(t/T ) := 1/T

T
∑

i=1

cos(Θi)W(i/T − t/T ) (3)

with weights W defined in such a way that the ratio m̂1(t/T )/m̂2(t/T ) is an asymptotically unbiased estimator of

m1(t/T )/m2(t/T ), and define as an estimator for the trend function at t/T ,

m̂(t/T ) := atan2[m̂1(t/T ), m̂2(t/T )]. (4)

Note that m̂i is not necessarily an unbiased estimator of mi (i = 1, 2) since this will depend on the structure of the

weights. Asymptotic unbiasedness will be a distinctive property of the m̂is as formulated in next Section (see Lemma

1) but this will not hold any longer for the weights discussed in Section 2.3; see Lemma 2.

2.2. Using Kernel weights

Firstly we discuss the estimator (4) with weights W(·) = Kh(·) = 1/hK(·/h), where K, called a kernel, is a

symmetric density function with maximum at 0 and scale parameter h, this latter being often called the bandwidth.

We will give results for three different settings of α; see hypotheses a1)–a3) above. To derive the asymptotic properties

of our estimator we need some notation which will also be used elsewhere.

Let µ j(K) :=
∫

v jK(v)dv, R(K) :=
∫

K2(v)dv, Γ1(ℓ) := Cov[sin(Θi), sin(Θi+ℓ)], Γ2(ℓ) := Cov[cos(Θi), cos(Θi+ℓ)],

and Γ3(ℓ) := Cov[sin(Θi), cos(Θi+ℓ)].

Now we are able to establish some preliminary results in the following

Lemma 1. Given the time series {Θt}
T
t=1

observed from the model (1), consider the functions in (3) having Kh as the

weight function. If

i) the bandwidth h is such that h→ 0 and Th→ ∞ as T → ∞;

ii) K is a bounded and compactly supported kernel;

iii) m′′
1

and m′′
2

exist and are continuous at t/T;

then, for j ∈ {1, 2},

E[m̂ j(t/T )] = m j(t/T ) + 2−1h2µ2(K)m′′j (t/T ) + o(h2),
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Var[m̂ j(t/T )] =



















(Th)−αQ j(u, v)
∫ ∫

K(x)K(y)|x − y|−αdxdy + o((Th)−α), i f α ∈ (0, 1);

2(Th)−1Q j(u, v)R(K) log(Th) + o((Th)−1 log(Th)), i f α = 1;

(Th)−1
∑

Γ j(ℓ)R(K) + o((Th)−1), i f α > 1;

with

Q j(u, v) :=

{

L1susv + L2(cusv + sucv) + L3cucv, i f j = 1;

L1cucv − L2(cusv + sucv) + L3susv, i f j = 2;

and

Cov[m̂1(t/T ), m̂2(t/T )] =



















(Th)−αU(u, v)
∫ ∫

K(x)K(y)|x − y|−αdxdy + o((Th)−α), i f α ∈ (0, 1);

2(Th)−1U(u, v)R(K) log(Th) + o((Th)−1 log(Th)), i f α = 1;

(Th)−1
∑

Γ3(ℓ)R(K) + o((Th)−1), i f α > 1,

with U(u, v) := sucvL1 − L2(susv − cucv) − L3cusv, where u, v ∈ (0, h), si := sin(m(i)) and ci := cos(m(i)).

Proof. See Appendix.

Now, using the fact that m1(t/T ) and m2(t/T ) are the components of the first trigonometric moment of Θt, we

can write m1(t/T ) := C(t/T ) fs(t/T ) and m2(t/T ) := C(t/T ) fc(t/T ), where C(t/T ) := {m2
1
(t/T ) + m2

2
(t/T )}1/2 and

f 2
s (t/T ) + f 2

c (t/T ) = 1, and we get the following

Theorem 1. Given the time series {Θt}
T
t=1

observed from the model (1), if assumptions i) − iii) of Lemma 1 hold, for

the estimator m̂ having Kh as the weight function,

E[m̂(t/T )] − m(t/T ) = h2µ2(K)

[

m′′(t/T )

2
+

C′(t/T )

C(t/T )
m′(t/T )

]

+ O (ν(T, h, α)) ,

where

ν(T, h, α) =



















(Th)−α, i f α ∈ (0, 1);

(Th)−1 log(Th), i f α = 1;

(Th)−1, i f α > 1;

moreover

Var[m̂(t/T )] =



















(Th)−αC(t/T )−2V(t/T, u, v)
∫ ∫

K(x)K(y)|x − y|−αdxdy + o((Th)−α), i f α ∈ (0, 1);

2(Th)−1C(t/T )−2V(t/T, u, v)R(K) log(Th) + o((Th)−1 log(Th)), i f α = 1;

(Th)−1C(t/T )−2R(K)Z(t/T ) + o((Th)−1), i f α > 1.

where

V(t/T, u, v) := f 2
s (t/T )Q2(u, v) + f 2

c (t/T )Q1(u, v) − 2 fc(t/T ) fs(t/T )U(u, v), (5)

and

Z(t/T ) := f 2
s (t/T )

∑

ℓ

Γ2(ℓ) + f 2
c (t/T )

∑

ℓ

Γ1(ℓ) − 2 fc(t/T ) fs(t/T )
∑

ℓ

Γ3(ℓ). (6)

Proof. See Appendix.

Note that for homoscedastic errors the function C will be a constant, and so C′ will be zero, and in this case the

first term in the bias is the usual form for a Nadaraya-Watson estimator when the observations have an equi-sapced

design. We can see that, as in the linear theory, when the correlation decays at a slow rate, that rate dominates the

asymptotic variance, whilst in the case of short range dependence we have rates which are the same as the i.i.d. case.

5



2.3. Using local linear weights

Let

W(i/T − t/T ) = T−1Kh(i/T − t/T )















T
∑

k=1

Kh(k/T − t/T )(k/T − t/T )2 − (i/T − t/T )

T
∑

k=1

Kh(k/T − t/T )(k/T − t/T )















,

(7)

which are the weights of local linear polynomial fitting. The quantities needed to derive the asymptotic properties of

the resulting trend function estimator are provided by the following

Lemma 2. Given the time series {Θt}
T
t=1

from the model (1), if assumptions i)- iii) of Lemma 1 hold, then for the

functions in (3) having (7) as the weight function, and j ∈ {1, 2},

E[m̂ j(t/T )] = h2µ2(K)
{

m j(t/T ) + 2−1h2µ2(K)m′′j (t/T )
}

+ o(h4),

Var[m̂ j(t/T )] ∼



















h4µ2
2
(K)(Th)−αQ j(u, v)

∫ ∫

K(x)K(y)|x − y|−αdxdy + o(T−αh4−α), i f α ∈ (0, 1);

2h3µ2
2
(K)T−1Q j(u, v)R(K) log(Th) + o(T−1h3 log(Th)), i f α = 1;

h3µ2
2
(K)T−1

∑

Γ j(ℓ)R(K) + o(T−1h3), i f α > 1;

and

Cov[m̂1(t/T ), m̂2(t/T )] ∼



















h4µ2
2
(K)(Th)−αU(u, v)

∫ ∫

K(x)K(y)|x − y|−αdxdy + o(T−αh4−α), i f α ∈ (0, 1);

2h3µ2
2
(K)T−1U(u, v)R(K) log(Th) + o(T−1h3 log(Th)), i f α = 1;

h3µ2
2
(K)T−1

∑

Γ3(ℓ)R(K) + o(T−1h3), i f α > 1.

Proof. See Appendix.

The accuracy measures of the estimator (4) are provided by the following

Theorem 2. Given the time series {Θt}
T
t=1

observed from the model (1), if assumptions i) − iii) of Lemma 1 hold, for

the estimator m̂ equipped with the weight function in (7),

E[m̂(t/T )] − m(t/T ) = h2µ2(K)

{

m′′(t/T )

2
+

C′(t/T )

C(t/T )
m′(t/T )

}

+ O (δ(T, h, α))

where

δ(T, h, α) =



















T−αh4−α, i f α ∈ (0, 1);

T−1h3 log(Th), i f α = 1;

T−1h3, i f α > 1.

and

Var[m̂(t/T )] =



















(Th)−αC(t/T )−2V(t/T, u, v)
∫ ∫

K(x)K(y)|x − y|−αdxdy + o((Th)−α), i f α ∈ (0, 1);

2(Th)−1C(t/T )−2R(K) log(Th)V(t/T, u, v) + o((Th)−1 log(Th)), i f α = 1;

(Th)−1C(t/T )−2R(K)Z(t/T ) + o((Th)−1), i f α > 1;

where V and Z are the functions defined in (5) and (6) respectively.

Proof. See Appendix.
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3. Prediction and estimation at the boundary regions

We call prediction the task of estimating m((T + r)/T ), r ∈ N, under the model (1). Our predictor implements the

standard idea of using specific one-sided kernels, K(u) := aK(u)1{u≤0}, with a−1 :=
∫ 0

−∞
K(u)du, intended to make the

contribution of Θt larger as t becomes closer to T . When kernel weights are employed, we can establish the following

Theorem 3. Given the time series {Θt}
T
t=1

observed from the model (1), if assumptions i) − iii) of Lemma 1 hold, for

the estimator m̂ having Kh as the weight function, and each t ∈ [0,T + r], then

E[m̂(t/T )] − m(t/T ) = h

{[

µ1(K) + hµ2(K)
C′(t/T )

C(t/T )

]

m′(t/T ) + h
µ2(K)

2
m′′(t/T )

}

+ O (ν(T, h, α)) ,

and

Var[m̂(t/T )] =



















(Th)−αC−2(t/T )V(t/T, u, v)
∫ ∫

K(x)K(y)|x − y|−αdxdy + o((Th)−α), i f α ∈ (0, 1);

(Th)−1C−2(t/T )V(t/T, u, v)R(K) log(Th) + o((Th)−1 log(Th)), i f α = 1;

(Th)−1C−2(t/T )R(K)Z(t/T ) + o((Th)−1), i f α > 1.

Proof. See Appendix.

When linear weights are employed, we get

Theorem 4. Given the time series {Θt}
T
t=1

observed from the model (1), if assumptions i) − iii) of Lemma 1 hold, for

the estimator m̂ equipped with the weight function (7), with W in place of Kh, for each t ∈ [0,T + r], then

E[m̂(t/T )] − m(t/T ) = h2
µ2

2
(K) − µ1(K)µ3(K)

µ2(K) − µ2
1
(K)

{

C′(t/T )

C(t/T )
m′(t/T ) +

1

2
m′′(t/T )

}

+ O (δ(T, h, α))

and

Var[m̂(t/T )] =



























































V(t/T, u, v)
∫ ∫

K(x)K(y){µ2(K) − xµ1(K)}{µ2(K) − yµ1(K)}|x − y|−αdxdy

(Th)αC2(t/T ){µ2(K) − µ2
1
(K)}2

+ o((Th)−α), i f α ∈ (0, 1);

V(t/T, u, v) log(Th)
∫

K2(x){µ2(K) − xµ1(K)}2dx

ThC2(t/T ){µ2(K) − µ2
1
(K)}2

+ o((Th)−1 log(Th)), i f α = 1;

Z(t/T )
∫

K2(x){µ2(K) − xµ1(K)}2dx

ThC2(t/T ){µ2(K) − µ2
1
(K)}2

+ o((Th)−1), i f α > 1.

Proof. See Appendix.

As expected, linear weights improve on the kernel ones, and this is because prediction is substantially a boundary

estimation problem, in which case, as is well-known, local linear estimation is superior to a local constant fit. Also

note, that the quantities derived in Theorems 3 and 4 explain the behaviour of our estimator with weights based on

full kernels at boundary regions. In fact, for ω ∈ [0, 1), letting µ j,ω(K) :=
∫ 1

ω
x jK(x)dx and Rω(K) :=

∫ 1

ω
K2(x)dx, for

the estimator (4) at the (left) boundary point ωh, in the bias expression µ j(K) is replaced by µ j,ω(K), and all is divided

by µ0,ω(K), when kernel weights are employed, while, for the case of linear weights, µ2,ω(K) at the denominator

7



is multiplied by µ0,ω(K). Concerning the variance expression, R(K) is replaced by Rω(K), the integrals are taken

on [ω, 1] and all appears to be divided by µ2
0,ω

(K) when kernel weights are employed, while, for the case of linear

weights, µ2,ω(K) at the denominator is multiplied by µ0,ω(K).

4. Numerical results

4.1. Simulated data

We now consider an example in which m is a simple function, but with an error structure which is a circular version

of an AR(1) model. Specifically we consider (1) with m(t/T ) = 2 tan−1(0.01t − 10), t = 1, . . . ,T = 1000 and errors εt

satisfying

εt = atan2(2 sin(εt−1), 0.5 cos(εt−1) + 1)) + νt

where νt are independent and identically distributed von Mises random variables with mean zero, and concentration

κ = 5. An example dataset is shown in Figure 1 with the function m superimposed.
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Figure 1: Simulated data from (1) with m(t/1000) = 2 tan−1(0.01t − 10) and εt = atan2(2 sin(εt−1), 0.5 cos(εt−1) + 1)) + νt and νt ∼ vM(0, κ).

We simulated 1000 datasets from this model, and for each dataset we computed a one-step ahead forecast. In each

simulation we store θT+1 and θ̂T+1, the latter of which is computed from a local constant estimator and a local linear

estimator. In both cases, we choose the smoothing parameter by one-sided cross-validation (see next subsection for

more detail) and, for reference purposes, by minimization of
∑T−1

t=1 (1 − cos(m̂((t + 1)/T ) −m((t + 1)/T ))), in which m̂

is estimated by a local constant, or local linear estimate (regression over full range and not a boundary estimate). The

results are shown in Table 1. We can note that the smoothing parameter to optimally estimate m over the full range

of t compares poorly when used for forecasting with that designed for one-step ahead prediction. We also note that
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for prediction of θT+1 the local linar estimator gives a smaller bias than the local constant estimator, but with a higher

variance (lower κ) and, overall, a slightly higher average error. Note also, that although we have used a maximum

likelihood estimate of κ on the assumption of von Mises errors, we have observed that the distribution of m̂((t + 1)/T )

is bimodal.

prediction of m

smoothing selector one-sided CV “optimal” over full range

forecast bias (SE) κ (SE) error bias (SE) κ (SE) error

local constant 0.029 (0.03) 1.79 (0.07) 0.339 1.019 (0.01) 9.25 (0.40) 0.505

local linear 0.014 (0.03) 1.59 (0.07) 0.380 0.681 (0.01) 9.18 (0.40) 0.266

prediction of θT+1

smoothing selector one-sided CV “optimal” over full range

forecast bias (SE) κ (SE) error bias (SE) κ (SE) error

local constant 0.019 (0.02) 4.51 ( 0.18) 0.119 0.997 (0.03) 1.75 (0.07) 0.645

local linear 0.008 (0.02) 3.91 (0.16) 0.139 0.662 (0.03) 1.76 (0.07) 0.483

Table 1: Comparison of forecasts over 1000 simulations from model. Average error was taken relative to m and pairwise relative to θT+1, with bias

and κ taken from maximum likelihood estimates assuming errors to be von Mises.

4.2. Wind direction data

We illustrate our methodology for real data using historic wind direction data recorded by the National Oceanic

and Atmospheric Admistration’s National Data Buoy Center (http://www.ndbc.noaa.gov/historical data.shtml). We

use standard meteorological data from 2009 monitored at station 41010 (120NM East of Cape Canaveral), which is

automatically recorded every 30 minutes (at 20 and 50 past each hour). Wind direction (the direction the wind is

coming from in degrees clockwise from true North) was converted to radians, and — for ease of presentation — taken

to be on (−π, π] from true South. Due to some missing values, we consider a contiguous period of records from 14th

February to 31st August (199 days). The 9552 values were subsampled every 12th observation (4 times per day)

leading to a time series of length 796. It was decided to obtain one-step ahead forecasts as if in the month of August

(final 124 values). The data, together with autocorrelation plots, are shown in Figures 2 & 3. Note that fitting an AR

model to the sin of the angles, and selecting the model complexity by AIC leads to a model of order 20, with cosines

leading to a model of order 7, and it is clear from the plots that there are long-range correlations.

For real data, the function m(·) is unknown, so we take as our goal the problem of estimating θT+1, given previous

observations θ1, . . . , θT for T = 672, . . . , 795. As a measure of accuracy we use

795
∑

T=672

(1 − cos(θ̂T+1|T − θT+1)). (8)
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Figure 2: Wind directions (taken from South) 14th February – 31st August, 2009 sampled every 6 hours, starting at 2:50 a.m.. Dashed lines are

used to join observations which are far apart on the circle (and so may be connected around the “back”). The vertical dotted line shows the period

after which forecasting will be carried out.
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Figure 3: Autocorrelations and partial autocorrelations of sin and cosine for the data. Dashed lines show approximate confidence 95% intervals.
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We suppose that for each value of T we can select a (different) smoothing parameter by cross-validation, which is

chosen to minimize the prediction error of the one-step ahead forecasts over the second half of the data. That is, for

each T we choose the smoothing parameter to minimize:

T−1
∑

t=T/2

(1 − cos(θ̂t+1|t − θt+1)). (9)

We use m̂(·) to obtain θ̂ in which the estimator in Equation (4) is equipped with one-sided gaussian kernels. Note that

the normalizing constant a cancels in the atan2 function, which simplifies computations.

We compare the results for nonparametric local constant and local linear estimators. As a benchmark, we also

consider a parametric model in which we use a Möbius transformation (Downs & Mardia, 2002) where, for each T ,

we predict θT+1 using αT + 2 tan−1(wT tan(θT − βT ))), with αT ,wT and βT chosen to minimize (9). Despite the fact

that the time series itself is somewhat erratic the selected smoothing parameters did not vary much — the ranges

of concentration were (1.70, 1.76) and (4.17, 4.26) for local constant and local linear estimates, respectively. The

predicted values were also very similar at most time points; the sum of errors (8) was 26.0 for local constant, 26.5 for

local linear and 28.8 for the Möbius model. Figure 4 indicates which of the nonparametric forecasts was better at each

time point, and it can be seen that— as expected — the local linear prediction tended to do better when there was a

local trend.
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Figure 4: Data for August (forecasting period), with indication of method which gave more accurate prediction. Symbols indicate that the error of

the inferior method was at least 50% more than the preferred method.
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Appendix

Proof of Lemma 1. First observe that

E[m̂ j(t/T )] = T−1

T
∑

i=1

Kh(i/T − t/T )m j(i/T ),

then, expand m j(i/T ) in Taylor series around t/T , and, for each ℓ ≥ 0, use the approximation

T−1

T
∑

i=1

Kh(i/T − t/T )(i/T − t/T )ℓ = hℓµℓ(K) + o(hℓ), (10)

and then use assumptions i) − iii).

Concerning the variance, first note that

Γ1(ℓ) = si/T s(i+ℓ)/Tγcc(ℓ) + si/T c(i+ℓ)/Tγcs(ℓ) + ci/T s(i+ℓ)/Tγsc(ℓ) + ci/T c(i+ℓ)/Tγss(ℓ),

and

Γ2(ℓ) = ci/T c(i+ℓ)/Tγcc(ℓ) − ci/T s(i+ℓ)/Tγcs(ℓ) − si/T c(i+ℓ)/Tγsc(ℓ) + si/T s(i+ℓ)/Tγss(ℓ),

hence use conditions a1) − a3) to get

Var[m̂ j(t/T )] = T−2
∑

i

∑

k

Kh(i/T − t/T )Kh(k/T − t/T )Γ j(i − k)

∼ T−2
∑

i

∑

k

Kh(i/T )Kh(k/T )|i − k|−αQ j(i/T, k/T ).

Now, for α ∈ (0, 1), by approximating the discrete sum by its integral, and after two Taylor series expansions we get

Var[m̂ j(t/T )] ∼ (Th)−α
∫ ∫

K(x)K(y)|x − y|−αQ j(hx, hy)dxdy

= (Th)−αQ j(u, v)

∫ ∫

K(x)K(y)|x − y|−αdxdy + o((Th)−α),

and, for α = 1 and each c > 0,

Var[m̂ j(t/T )] ∼ (Th)−1

∫ ∫

|x−y|>c/(Th)

K(x)K(y)|x − y|−1Q j(hx, hy)dxdy

= (Th)−1Q j(u, v)

∫

K(x)dx

∫

|y|>c/(Th)

K(x + y)|y|−1dy + O(hT−1)

∼ 2(Th)−1Q j(u, v)R(K) log(Th) + o(T−1h−1 log(Th)).

12



where u ∈ (0, hx) and v ∈ (0, hy). Finally, for α > 1, we get

Var[ĝ j(t/T )] = T−2

+∞
∑

ℓ=−∞

Γ j(ℓ)
∑

i

Kh(i/T )Kh((i + ℓ)/T )

= (Th)−1

+∞
∑

ℓ=−∞

Γ j(ℓ)R(K) + o((Th)−1).

Concerning the covariance, first observe that

Cov[sin(Θi), cos(Θk)] = si/T ck/Tγcc(i − k) − si/T sk/Tγcs(i − k) + ci/T ck/Tγsc(i − k) − ci/T sk/Tγss(i − k),

then reason as in the previous paragraph. �

Proof of Theorem 1. For the bias, we start by expanding atan2(m̂1, m̂2) in a Taylor series around (m1,m2), to get

m̂ = m +
1

C

[

(m̂1 − m1) fc − (m̂2 − m2) fs

]

−
1

C2

[{

(m̂1 − m1)2 − (m̂2 − m2)2
}

fc fs + (m̂1 − m1)(m̂2 − m2)( f 2
c − f 2

s )
]

+ O
(

(m̂1 − m1)3
)

+ O
(

(m̂2 − m2)3
)

. (11)

Now, taking expectations, and using the results in Lemma 1, from (11) it follows

E[m̂(t/T )] − m(t/T ) =
1

C(t/T )
{E[m̂1(t/T ) − m1(t/T )] fc(t/T ) − E[m̂2(t/T ) − m2(t/T )] fs(t/T )} + O (ν(T, h, α))

=
h2µ2(K)

2C(t/T )

{

m′′1 (t/T ) fc(t/T ) − m′′2 (t/T ) fs(t/T )
}

+ O (ν(T, h, α))

= h2µ2(K)

[

m′′(t/T )

2
+

C′(t/T )m′(t/T )

C(t/T )

]

+ O (ν(T, h, α)) .

To derive the variance, use the expansion

atan2(m̂1, m̂2)2 = atan2(m1,m2)2 − 2
m

C

[

(m̂2 − m2) fs − (m̂1 − m1) fc
]

− 2
m

C2

{

[(m̂1 − m1)2 − (m̂2 − m2)2] fc fs + (m̂1 − m1)(m̂2 − m2)( f 2
c − f 2

s )
}

+
1

C2

{

(m̂2 − m2)2 f 2
s + (m̂1 − m1)2 f 2

c − 2(m̂1 − m1)(m̂2 − m2) fs fc
}

+ O
(

(m̂1 − m1)3
)

+ O
(

(m̂2 − m2)3
)

,

then, after taking expectations, and noting that E
[

(m̂ j − m j)
2
]

= Var[m̂ j] +
(

E[m̂ j] − m j

)2
, we obtain

Var[m̂(t/T )] ≈
1

C2(t/T )

{

f 2
s (t/T ) Var[m̂2(t/T )] + f 2

c (t/T ) Var[m̂1(t/T )] − 2 fs(t/T ) fc(t/T ) Cov[m̂1(t/T ), m̂2(t/T )]
}

,
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and by Lemma 1 the result follows.

�

Proof of Lemma 2. Recalling assumption ii), and the approximation (10), the weight function in (7) can be approxi-

mated by

W(i/T − t/T ) ∼ T−1Kh(i/T )h2µ2(K). (12)

Consequently,

E[m̂ j(t/T )] = T−1h2µ2(K)

T
∑

i=1

Kh(i/T − t/T )m j(i/T ).

Hence, expanding m j(i/T ) in Taylor series around t/T , and using assumption iii) we get the result. To derive variance

and covariance, use the approximation in (12), then reason as in the proof of Lemma 1. �

Proof of Theorem 2. To derive the bias and variance, follow the arguments used in the proof of Theorem 1, by ex-

panding atan2(m̂1, m̂2) and atan2(m̂1, m̂2)2 in a Taylor series around
(

h2µ2(K)C fs, h
2µ2(K)C fc

)

, then apply the results

provided by Lemma 2. �

Proof of Theorem 3. By reasoning as in the proof of Lemma 1, we find that, for j ∈ {1, 2},

E[m̂ j(t/T )] = m j(t/T ) + hµ1(K)m′j(t/T ) +
h2

2
µ2(K)m′′j (t/T ),

Var[m̂ j(t/T )] =















































(Th)−αQ j(u, v)
∫ ∫

K(x)K(y)|x − y|−αdxdy + o((Th)−α), i f α ∈ (0, 1);

(Th)−1Q j(u, v)R(K) log(Th) + o((Th)−1 log(Th)), i f α = 1;

(Th)−1
∑

Γ j(ℓ)R(K) + o((Th)−1), i f α > 1;

and

Cov[m̂1(t/T ), m̂2(t/T )] =















































(Th)−αU(u, v)
∫ ∫

K(x)K(y)|x − y|−αdxdy + o((Th)−α), i f α ∈ (0, 1);

(Th)−1U(u, v)R(K) log(Th) + o((Th)−1 log(Th)), i f α = 1;

(Th)−1
∑

Γ3(ℓ)R(K) + o((Th)−1), i f α > 1,

Hence, the arguments used in the proof of Theorem 1 yield the results. �

Proof of Theorem 4. First of all, use the approximations

T
∑

j=1

Kh( j/T − t/T )( j/T − t/T )ℓ = hℓµℓ(K) + o(hℓ)

14



in the weight function (7), and reason as in the proof of Lemma 2 to get, for j ∈ {1, 2},

E[m̂ j(t/T )] = h2{µ2(K) − µ2
1(K)}m j(t/T ) +

h4

2

{

µ2
2(K) − µ1(K)µ3(K)

}

m′′j (t/T ) + o(h4),

Var[m̂ j(t/T )] ∼















































h4(Th)−αQ j(u, v)
∫ ∫

K(x)K(y){µ2(K) − xµ1(K)}{µ2(K) − yµ1(K)}|x − y|−αdxdy + o(T−αh4−α), i f α ∈ (0, 1);

h3T−1Q j(u, v) log(Th)
∫

K2(x){µ2(K) − xµ1(K)}2dx + o(T−1h3 log(Th)), i f α = 1;

h3T−1
∑

Γ3(ℓ)
∫

K2(x){µ2(K) − xµ1(K)}2dx + o(T−1h3), i f α > 1;

(13)

and

Cov[m̂1(t/T ), m̂2(t/T )] ∼



















































h4U(u, v)
∫ ∫

K(x)K(y){µ2(K) − xµ1(K)}{µ2(K) − yµ1(K)}|x − y|−αdxdy

(Th)α
+ o(T−αh4−α), i f α ∈ (0, 1);

h3U(u, v) log(Th)
∫

K2(x){µ2(K) − xµ1(K)}2dx

T
+ o(T−1h3 log(Th)), i f α = 1;

h3
∑

Γ3(ℓ)
∫

K2(x){µ2(K) − xµ1(K)}2dx

T
+ o(T−1h3), i f α > 1,

(14)

then expand atan2(m̂1, m̂2) and atan2(m̂1, m̂2)2 in a Taylor series around (h2{µ2(K)−µ2
1
(K)}C fs, h

2{µ2(K)−µ2
1
(K)}C fc),

and reason as in the proof of Theorem 1. �
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