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Detecting Carried Objects

in Short Video Sequences

Dima Damen and David Hogg

School of Computing, University of Leeds
{dima,dch}@comp.leeds.ac.uk

Abstract. We propose a new method for detecting objects such as bags
carried by pedestrians depicted in short video sequences. In common with
earlier work [1,2] on the same problem, the method starts by averaging
aligned foreground regions of a walking pedestrian to produce a rep-
resentation of motion and shape (known as a temporal template) that
has some immunity to noise in foreground segmentations and phase of
the walking cycle. Our key novelty is for carried objects to be revealed
by comparing the temporal templates against view-specific exemplars
generated offline for unencumbered pedestrians. A likelihood map ob-
tained from this match is combined in a Markov random field with a
map of prior probabilities for carried objects and a spatial continuity as-
sumption, from which we obtain a segmentation of carried objects using
the MAP solution. We have re-implemented the earlier state of the art
method [1] and demonstrate a substantial improvement in performance
for the new method on the challenging PETS2006 dataset [3]. Although
developed for a specific problem, the method could be applied to the de-
tection of irregularities in appearance for other categories of object that
move in a periodic fashion.

1 Introduction

The detection of carried objects is a potentially important objective for many
security applications of computer vision. However, the task is inherently difficult
due to the wide range of objects that can be carried by a person, and the different
ways in which they can be carried. This makes it hard to build a detector for
carried objects based on their appearance in isolation or jointly with the carrying
individual. An alternative approach is to look for irregularities in the silhouette of
a person, suggesting they could be carrying something. This is the approach that
we adopt, and whilst there are other factors that may give rise to irregularities,
such as clothing and build, experiments on a standard dataset are promising.

Although the method has been developed for the detection of objects carried
by people, there could be applications of the approach in other domains where
irregularities in the outline of known deformable objects are of potential interest.

We assume a static background and address errors in foreground segmentations
due to noise and partial occlusions, by aligning and averaging segmentations to
generate a so-called ‘temporal-template’ - this representation was originally pro-
posed in [1] for the same application. The temporal template is then matched
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Fig. 1. All the frames in the the sequence are first aligned. The temporal template
represents the frequency of each aligned pixel (relative to the median) being part
of the foreground. The exemplar temporal template from a similar viewing angle is
transformed (translation, scaling and rotation) to best match the generated temporal
template. By comparing the temporal template to the best match, protruding regions
are identified. MRF with a map of prior locations is used to decide on those pixels
representing carried objects.

against a pre-compiled exemplar temporal template of an unencumbered pedes-
trian viewed from the same direction. Protrusions from the exemplar are detected
as candidate pixels for carried objects. Finally, we incorporate prior information
about the expected locations of carried objects together with a spatial continuity
assumption in order to improve the segmentation of pixels representing the carried
objects. Figure 1 summarizes, with the use of an example, the process of detecting
carried objects.

Section 2 reviews previous work on the detection of carried objects. Section 3
presents our new method, based on matching temporal templates. Experiments
comparing the performance of the earlier work from Haritaoglu et al. and our new
method on the PETS2006 dataset are presented in Section 4. An extension of
the method to incorporate locational priors and a spatial continuity assumption
for detecting carried objects is presented in Section 5. The paper concludes with
an overall discussion.

2 Previous Work

Several previous methods have been proposed for detecting whether an indi-
vidual is carrying an object. The Backpack [1,2] system detects the presence of
carried objects from short video sequences of pedestrians (typically lasting a few
seconds) by assuming the pedestrian’s silhouette is symmetric when a bag is not
being carried, and that people exhibit periodic motion. Foreground segmenta-
tions are aligned using edge correlation. The aligned foreground masks for the
complete video segment are combined into the temporal template that records
the proportion of frames in the video sequence in which each (aligned) pixel
was classified as foreground. Next, symmetry analysis is performed. The princi-
pal axis is computed using principal component analysis of 2-D locations, and is
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Fig. 2. For each foreground segmentation, the principal axis is found and is constrained
to pass through the median coordinate of the foreground segmentation. Light gray
represents the two detected asymmetric regions. Asymmetric regions are projected
onto the horizontal projection histogram. Periodicity analysis is performed for the full
histogram [Freq = 21] and for regions 1 [Freq = 11] and 2 [Freq = 21]. As region 2 has
the same frequency as the full body, it is not considered a carried object.

constrained to pass through the median coordinate in the vertical and horizontal
directions. For each location x, relative to the median of the blob, asymmetry is
detected by reflecting the point in the principal axis. The proportion of frames in
which each location was classified as asymmetric is calculated. Consistent asym-
metric locations are grouped into connected components representing candidate
blobs.

Backpack then distinguishes between blobs representing carried objects and
those being parts of limbs by analyzing the periodicity of the horizontal projec-
tion histograms (See [1] for details). This estimates the periodic frequency of
the full body, and that of each asymmetric region. Backpack assumes the fre-
quency of an asymmetric blob that represents a limb is numerically comparable
to that of the full body. Otherwise, it is believed to be a carried object. Figure 2
illustrates the process from our re-implementation.

From our own evaluation, errors in the Backpack method arise from four
sources. Firstly, the asymmetric assumption is frequently violated. Secondly, the
position of the principal axis is often displaced by the presence of the carried
object. It may be possible to reduce this source of error by positioning the
major axis in other ways, for example forcing it to pass through the centroid
of the head [4] or the ground point of the person walking [5]. Thirdly, accurate
periodicity analysis requires a sufficient number of walking cycles to successfully
retrieve the frequency of the gait. Fourthly, the periodicity of the horizontal
projection histogram does not necessarily reflect the gait’s periodicity.

Later work by Benabdelkader and Davis [6] expanded the work of Haritaoglu
et al. by dividing the person’s body horizontally into three slices. The periodicity
and amplitude of the time series along each slice is studied to detect deviations
from the ‘natural’ walking person and locate the vertical position of the carried
object. They verified that the main limitation in Haritaoglu et al.’s method is
the sensitivity of the axis of symmetry to noise, as well as to the location and
size of the carried object(s).

Branca et al. [7] try to identify intruders in archaeological sites. Intruders are
defined as those carrying objects such as a probe or a tin. The work assumes
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a person is detected and segmented. Their approach thus tries to detect these
objects within the segmented foreground region. Detection is based on wavelet
decomposition, and the classification uses a supervised three layer neural net-
work, trained on examples of probes and tins in foreground segmentations.

Differentiating people carrying objects without locating the carried object has
also been studied. Nanda et al. [8] detect pedestrians carrying objects as outliers
of a model for an unencumbered pedestrian obtained in a supervised learning
procedure based on a three layer neural network. Alternatively, the work of Tao
et al. [9] tries to detect pedestrians carrying heavy objects by performing gait
analysis using General Tensor Discriminant Analysis (GTDA), and was tested
on the USF HumanID gait analysis dataset.

Recent work by Ghanem and Davis [10] tackles detecting abandoned baggage
by comparing the temporal template of the person before approaching a Region
of Interest (ROI) and after leaving it. Carried objects are detected by comparing
the temporal templates (the term ‘occupancy map’ was used in their work to
reference the same concept) and colour histograms of the ‘before’ and ‘after’
sequences. The approach assumes the person is detected twice, and that the
trajectory of the person before approaching the ROI and after departing are
always correctly connected. It also assumes all observed individuals follow the
same path, and thus uses two static cameras to record similar viewpoints.

Our method uses the temporal template but differs from earlier work [1,10]
by matching the generated temporal template against an exemplar temporal
template generated offline from a 3D model of a walking person. Several exem-
plars, corresponding to different views of a walking person, were generated from
reusable silhouettes used successfully for pose detection [11]. The use of temporal
templates provides better immunity to noise in foreground segmentations. Our
new approach does not require the pedestrian to be detected with and with-
out the carried object, and can handle all normal viewpoints. It also generalizes
to any type of carried object (not merely backpacks), and can be considered a
general approach to protrusions from other deformable tracked objects.

This work provides the first real test of this task on the challenging PETS2006
dataset, which we have annotated with ground-truth for all carried objects. It is
worth mentioning that this dataset does not depend on actors and thus records
typical carried objects in a busy station. This enables us to demonstrate the
generality of the approach, and clarify the real challenges of this task.

3 Description of the Method

Our method starts by creating the temporal template from a sequence of tracked
pedestrians as proposed by Haritaoglu et al. [2]. We, though, introduced two
changes to the procedure for creating the temporal template. Firstly, we apply
Iterative Closest Point (ICP), instead of edge correlation, to align successive
boundaries. ICP is performed on the edge points of the traced boundary around
the foreground segmentation. Unlike edge correlation, this does not require a pre-
defined search window, and in our experiments it gives a more accurate alignment
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in the presence of shape variations between consecutive frames. Secondly, L1 is
used to rank the frames by their similarity to the generated temporal template.
The highest ranked p% of the frames are used to re-calculate a more stable tem-
plate. p was set to 80 in our experiments. The more computationally expensive
Least Median of Squares (LMedS) estimator [12] gave similar results.

Having derived a temporal template from a tracked pedestrian, one of eight ex-
emplars are used to identify protrusions by matching. These exemplar temporal
templates represent a walking unencumbered pedestrian viewed from different
directions. A set of exemplars for eight viewing directions was created using
the dataset of silhouettes gathered at the Swiss Federal Institute of Technol-
ogy (EPFL) [11]. The dataset is collected from 8 people (5 men and 3 women)
walking at different speeds on a treadmill. Their motion was captured using 8
cameras and mapped onto a 3D Maya model. This dataset is comprised of all
the silhouettes of the mapped Maya model, and has previously been used for
pose detection, 3D reconstruction and gait recognition [11,13]. We average the
temporal templates of different individuals in this dataset to create the exem-
plar for each camera view. The eight exemplars (Figure 3) are used for detecting
the areas representing the pedestrian. The unmatched regions are expected to
correspond to carried object(s).

To decide on which exemplar to use, we estimate a homography from the
image plane to a coordinate frame on the ground-plane. We then use this to
estimate the position and direction of motion of each pedestrian on the ground.
The point on the ground-plane directly below the camera is estimated from the
vertical vanishing point. The angle between the line connecting this point to
the pedestrian and the direction of the pedestrian’s motion gives the viewing
direction, assuming the pedestrian is facing their direction of motion. We ignore
the elevation of the camera above the ground in order to avoid having to gener-
ate new exemplars for different elevations, although this approximation may be
unnecessary since generating the prototypes is fast and need only be done once.
The mean of the computed viewing directions over the short video sequence is
used to select the corresponding exemplar. Diagonal views (2,4,6,8) are used
to match a wider range of angles (60◦) in comparison to frontal views. This is
because the silhouettes change more radically near frontal views.

The chosen exemplar is first scaled so that its height is the same as that
of the generated temporal template. We align the median coordinate of the
temporal template with that of the corresponding exemplar. An exhaustive
search is then performed for the best match over a range of transformations.

Fig. 3. The eight exemplar temporal templates, created to represent 8 viewpoints
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Fig. 4. The temporal template of the person (a) is matched to the corresponding
exemplar (b), the global minimum (d) results in the protruding regions (c)

In our experiments, the chosen ranges for scales, rotations and translations were
[0.75:0.05:1.25], [-15:5:15] and [-30:3:30] respectively. The cost of matching two
templates is an L1 measure, linearly weighted by the y coordinate of each pixel
(plus a constant offset), giving higher weight to the head and shoulder region.
Equation 1 represents the cost of matching a transformed model (MT ) to the
Person (P ), where h represents the height of the matched matrices.

d(MT , P ) =
∑

x,y

|MT (x, y) − P (x, y)|(2h − y) (1)

The best match M̂T is the one that minimizes the matching cost

M̂T = argmin
T

d(MT , P ) (2)

Figure 4 shows an example of such a match and the located global minimum.
The best match M̂T is then used to identify areas protruding from the temporal
template:

protruding(x, y) = max(0, P (x, y) − M̂T (x, y)) (3)

We are only concerned with areas in the person template that do not match
body parts in the corresponding best match. Pixels where P (x, y) < M̂T (x, y)
are assumed to have been caused by noise, or poor foreground segmentation.
For the initial results in Section 4, the protruding values are thresholded and
grouped into connected components representing candidate segmentations of car-
ried objects. Another threshold limits the minimum area of accepted connected
components to remove very small blobs. An enhanced approach is presented in
Section 5 where segmentation is achieved using a binary-labeled MRF formula-
tion, combining prior information and spatial continuity.

4 Experiments and Results

We used the PETS2006 dataset and selected the viewpoint from the third camera
for which there is a greater number of people seen from the side. The ground-
plane homography was established using the ground truth measurements pro-
vided as part of the dataset. Moving objects were detected and tracked using
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Fig. 5. PETS2006 Third camera viewpoint showing ground truth bounding boxes rep-
resenting carried objects

a generic tracker [14] to retrieve foreground segmentations. The tracker has an
automatic shadow remover that worked efficiently on the dataset. Trajectories
shorter than 10 frames in length were discarded. As this method can not deal
with groups of people tracked together, such trajectories were also manually
removed. The carried objects in the dataset varied between boxes, hand bags,
briefcases and suitcases. Unusual objects are also present like a guitar in one
example. In some cases, people were carrying more than one object. The num-
ber of individually tracked people was 106. Ground truth for carried objects
was obtained manually for all 106 individuals. 83 carried objects were tracked,
and the bounding box of each was recorded for each frame (Figure 5). We chose
bounding boxes instead of pixel masks for simplicity.

We compare our re-implementation of Backpack as specified in their pa-
pers [1,2] with our proposed method (Section 3). To ensure fair comparison,
we use the same temporal templates as the input for both methods. A detec-
tion is labeled as true if the overlap between the bounding box of the predicted
carried object (Bp) and that of the ground truth (Bgt) exceeds 15% in more
than 50% of the frames in the sequence. The measure of overlap is defined by
Equation 4 [15]:

overlap(Bp, Bgt) =
area(Bp ∩ Bgt)

area(Bp ∪ Bgt)
(4)

A low overlap threshold is chosen because the ground truth bounding boxes
enclose the whole carried object, while both methods only detect the parts of
the object that do not overlap the body. Multiple detections of the same object
are counted as false positives.

We first compare the blobs retrieved from both techniques without period-
icity analysis. Each of the two algorithms has two parameters to tune, one for
thresholding and one for the minimum size of the accepted connected compo-
nent. Precision-Recall (PR) curves for the two methods are shown in Fig. 6 (left).
These were generated by linearly interpolating the points representing the max-
imum precision for each recall. They show a substantial improvement in per-
formance for the proposed method. Maximum precision on a recall of 0.5, for
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Fig. 6. PR curves for the proposed method compared to Haritaoglu et al.’s method
without (left) and with (right) periodicity analysis to classify the retrieved blobs

(a) (b) (c) (d)

Fig. 7. Three examples (a), along with their temporal templates (b) are assessed using
both techniques. Haritaoglu’s method (c-top) thresholded (d-top) and our proposed
method (c-bottom) thresholded (d-bottom) show some examples of how matching re-
trieves better estimate of the carried objects than symmetry.

example, was improved from 0.25 using asymmetry to 0.51 using matching.
Maximum recall was 0.74 for both techniques, as noisy temporal templates and
non-protruding carried objects affect both techniques. Figure 7 shows examples
comparing asymmetry analysis with matching temporal templates.

To further compare the methods, we present the results after performing pe-
riodicity analysis. We thus take all optimal setting points represented by the
curves in Fig. 6 (left), and vary the two thresholds for periodicity analysis.
Figure 6 (right) shows PR curves analogous to those in Fig. 6 (left) but now
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including periodicity analysis, again taking the maximum precision for each re-
call. The improved performance of our method is still apparent. In addition,
comparing the corresponding curves shows that periodicity analysis improves
the performance for both methods.

5 Using Prior Information and Assuming Spatial

Continuity

The protruding connected components can be at locations where carried objects
are not expected like hats on top of heads. We propose training for carried object
locations relative to the person’s silhouette to better differentiate carried objects
from other protruding regions, and at the same time impose a spatial continuity
assumption on the pixels corresponding to carried objects.

In this section, we show how training was used to generate a map of prior
locations. Training values were also used to estimate the distribution of protru-
sion values conditioned on their labeling. Finally, this information is combined
into a Markov random field, determining an energy function which is minimized.
Results are presented along with a discussion of the advantages of training for
prior locations. We divided the pedestrians into two sets, the first containing 56
pedestrians (Sets 1-4 in PETS2006) and the second containing 50 pedestrians
(Sets 5-7). Two-fold cross validation was used to detect carried objects.

Training for carried object locations is accomplished by mapping the temporal
template, using the inverse of the best transformation, to align its corresponding
exemplar. During training, we obtain connected components using a threshold of
0.5. Correct detections, by comparing to bounding boxes from the ground truth,
are used to train for locations of carried objects separately for each directionally-
specific exemplar. A map of prior probabilities Θd is produced for each viewpoint
d. Prior information for each location is calculated by the frequency of its oc-
currence within a correctly-detected carried object across the training set. To
make use of our small training set, we combine the maps of opposite exemplars.
For example, the first and the fifth exemplars are separated by 180◦. Θ1 and
Θ5 are thus combined by horizontally flipping one and calculating the weighted
average Θ1,5 (by the number of blobs). The same applies for Θ2,6, Θ3,7 and Θ4,8.
Figure 8 shows Θ2,6 using the two disjoint training sets.

We aim to label each location x within the person’s temporal template as
belonging to a carried object (mx = 1) or not (mx = 0). Using the raw pro-
trusion values v = protruding(x) calculated in Equation 3, we model the class-
conditional densities p(v|mx = 1) and p(v|mx = 0) based on training data (Fig-
ure 9). By studying these density distributions, p(v|mx = 1) was approximated
by two Gaussian distributions, one for stable carried objects, and another for
swinging objects. The parameters of the two Gaussians were manually chosen to
approximately fit the training density distributions.

p(v|mx = 1) = γN (v; 0.6, 0.3) + (1 − γ)N (v; 1.0, 0.05) (5)



Detecting Carried Objects in Short Video Sequences 163

Fig. 8. For the second exemplar (left), Θ2,6(middle) was generated using sets 1-4, and
Θ2,6(right) was generated using sets 5-7. The location model Θ has high values where
stronger evidence of carried objects had been seen in training. A prior of 0.2 was used
when no bags were seen. By symmetry, Θ6 is a horizontal flip.
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Fig. 9. Pixel values distribution for objects (left) and non-objects (right) protruding
pixels. Thresholded pixels (>0.5) that match true detections when compared to ground
truth, are used to train p(v|mx = 1). The rest are used to train p(v|mx = 0).

γ is the relative weight of the first Gaussian in the training set. Its value resulted
to be 0.64 for the first set, and 0.66 for the second disjoint set. The density
distribution p(v|mx = 0) resembles a reciprocal function. It was thus modeled
as:

p(v|mx = 0) =
1/(v + β)

log(1 + β) − log(β)
(6)

β was set to 0.01. The denominator represents the area under the curve for
normalization.

As we believe neighboring locations to have the same label, spatial continuity
can be constrained using a Markov Random Field (MRF). The energy function
to be minimized E(m) over Image I is given by Equation 7.

E(m) =
∑

x∈I

(
φ(v|mx) + ω(mx|Θ)

)
+

∑

(x,y)∈C

ψ(mx, my) (7)

φ(v|mx) represents the cost of assigning a label to the location x based on its
protrusion value v in the image:

φ(v|mx) =

{
− log(p(v|mx = 1)) if mx = 1

− log(p(v|mx = 0)) if mx = 0
(8)
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Fig. 10. PR Curves for detecting carried objects using MRF. Introducing location
maps to encode prior information about carried object locations produces better per-
formance.

(a) (b) (c) (d)

Fig. 11. The yellow rectangles show the choice of carried objects using MRF with
location models. Red rectangles refer to MRF without location models. Prior informa-
tion drops candidate blobs at improbable locations (a,b), and better segments the ob-
ject (a,c). It nevertheless decreases support for carried objects in unusual locations (d).

ω(mx|Θ) is based on the map of prior probabilities Θ given a specified walking
direction:

ω(mx|Θ) =

{
− log(p(x|Θ)) if mx = 1

− log(1 − p(x|Θ)) if mx = 0
(9)

The interaction potential ψ follows the Ising model over the cliques, where C
represents all the pairs of neighboring locations in the image I:

ψ(mx, my) =

{
λ if mx �= my

0 if mx = my

(10)

The interaction potential ψ is fixed regardless of the difference in protrusion
values v at locations x and y. We did not choose a data-dependent term because
the protrusion values represent the temporal continuity, and not the texture
information at the neighboring pixels.

We use the max-flow algorithm, proposed in [16], and its publically available
implementation, to minimize the energy function (Equation 7). Regions repre-
senting carried objects were thus retrieved. The smoothness cost term λ was
optimized based on the used training set.

To evaluate the effect of introducing location models, the term ω(mx|Θ) was
removed from the energy function and the results were re-calculated. λ was
varied between [0.1:0.1:6] to produce the PR curves in Fig. 10 that demonstrate
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Table 1. Better performance was achieved by introducing the MRF representation

Precision Recall TP FP FN

Thresholding 39.8% 49.4% 41 62 42

MRF - Prior 50.5% 55.4% 46 45 37

the advantage of introducing location prior models. Examples in Fig. 11 show
how prior models affect estimating carried objects.

In order to compare the MRF formulation with simple thresholding, we opti-
mize the parameters on each training dataset and test on the other. For MRF,
λ was optimized on the training datasets resulting in 2.2 and 2.5 respectively.
Table 1 presents the precision and recall results along with the actual counts
combined for the two test datasets, showing that MRF produces higher preci-
sion and recall results.

Quantitatively, for the 45 false positive, and 37 false negative cases, Fig. 12
dissects these results according to the reason for their occurrence. Figure 13
presents a collection of results highlighting reasons for success and the main
sources of failure. We also demonstrate the video results at
http://www.comp.leeds.ac.uk/dima/ECCVDemo.avi.

6 Conclusion

We have proposed a novel method to detect carried objects, aiming at higher
robustness than noisy single frame segmentations. Carried objects are assumed
to cause protruding regions from the normal silhouette. Like an earlier method
we use a temporal template but match against exemplars rather than assuming
that unencumbered pedestrians are symmetric. Evaluated on the PETS2006
dataset, the method achieves a substantial improvement in performance over the
previously published method. Finally, we train on possible locations of carried
objects and use an MRF to encode spatial constraints resulting in a further
improvement in performance.

Reasons behind FP detections

Protruding parts of clothing 15

Protruding body parts 10

Extreme body proportions 6

Incorrect template matching 5

Noisy temporal template 5

Duplicate matches 4

Total 45

Reasons behind FN detections

Bag with little or no protrusion 9

Dragged bag tracked separately by tracker 6

Carried object between legs 5

Carried object not segmented from background 4

Little evidence of prior location in training 3

Swinging small object 3

Noisy template 3

Incorrect template matching 2

Merging two protruding regions into one 2

Total 37

Fig. 12. Reasons behind False Positive (FP) and False Negative (FN) detections
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(1) (2) (3) (4) (5) (6) (7) (8)

Fig. 13. The proposed method can identify single (1) or multiple (2,3) carried objects.
(4) shows its ability to classify true negative cases. Objects extending over the body are
split into two (5). Failure cases may result from poor temporal templates due to poor
foreground segmentation (6). The map of prior locations could favor some false positive
objects (7). The method is not expected to cope with extreme body proportions (8).
The second row shows the detections projected into the temporal templates, and the
third row shows detections projected into the images.

Due to its dependence on protrusion, the method may not be able to dis-
tinguish carried objects from protruding clothing or non-average build. Future
improvements to this method might be achieved using texture templates to as-
sist segmentation based on color information. In addition, the independence
assumption in learning prior bag locations could be studied to utilize shapes
of previously seen bags in producing better segmentations. When matured, this
technique can be embedded into surveillance and security systems that aim at
tracking carried objects or detecting abandoned objects in public places.
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