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Abstract

This paper considers iterative learning control for linear systems with convex control input constraints. First, the constrained
ILC problem is formulated in a novel successive projection framework. Then, based on this projection method, two algorithms
are proposed to solve this constrained ILC problem. The results show that, when perfect tracking is possible, both algorithms
can achieve perfect tracking. The two algorithms differ however in that one algorithm needs much less computation than
the other. When perfect tracking is not possible, both algorithms can exhibit a form of practical convergence to a ”best
approximation”. The effect of weighting matrices on the performance of the algorithms is also discussed and finally, numerical
simulations are given to demonstrate the effectiveness of the proposed methods.
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1 Introduction

Iterative learning control (ILC) is a control method for
improving tracking performance of systems that execute
the same task repeatedly by learning from the past ac-
tions. Applications of ILC can be widely found in indus-
trial robot manipulator, chemical batch process, some
medical equipment and manufacturing, etc. Originating
from robotics, ILC now attracts more general research
interest [1], [2].

In many practical applications, the systems are under
some constraints due to physical limitations or perfor-
mance requirements. Hence, the ILC design must take
these constraints into account. However, most of the cur-
rent ILC research is based on assumed unconstrained
systems and few results have been reported regarding
the constrained case in the literature. [3] proposes a
novel nonlinear controller for process systems with input
constraints and the learning scheme only needs a little
knowledge of the process model. [4] considers ILC prob-
lem with soft constraints and uses Lagrange multiplier
methods to solve this problem. [5] uses quadratic opti-
mal design to formulate the constrained ILC problem
and suggests quadratic optimal design has the capabil-
ity of dealing with constraints.

In this paper, ILC design problem with general convex
input constraints is discussed. It is shown that the con-
strained ILC problem can be formulated in a recently

developed successive projection framework of ILC [6],
which provides an intuitive but rigorous method for sys-
tem analysis and design. Based on this, a systematic ap-
proach for constraints handling is provided and two al-
gorithms are proposed to solve this problem. The con-
vergence analysis shows that when perfect tracking is
possible, both algorithms can achieve perfect tracking
whereas the computation of one algorithm is much less
than the other at the cost of slightly slower convergence
rate. When perfect tracking is not possible, both al-
gorithms converge to asymptotic values representing a
”best fit” solution. Again the computational complex al-
gorithm has the best convergence properties. It is also
found that the input and output weighting matrices have
an interesting effect on the convergence properties of the
algorithms.

The paper is organized as follows. In Section 2, the con-
strained ILC problem is formulated. In Section 3, the
successive projection method is introduced and the con-
strained ILC problem is interpreted using this successive
projection formulation. In Section 4 and Section 5, two
algorithms are proposed and their convergence proper-
ties derived. In Section 6, numerical simulations are pre-
sented to demonstrate the effectiveness of the proposed
methods and finally, conclusions are given in Section 7.
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2 Problem Formulation

For simplicity, the formulation is described for linear dis-
crete time systems but more generally applies to linear
systems in Hilbert spaces described by equations of the
form y = Gu + d where u, y are the system input and
output respectively, G is a bounded linear operator from
an input Hilbert space to an output Hilbert space and
d represents other effects including the effect of initial
state conditions. For more details see [7]. Note that the
abstract formulation describes many situations of inter-
est including continuous linear state space model, dis-
crete time model and differential delay model of system
dynamics.

Consider the following discrete time, linear time-
invariant system

xk(t + 1) = Axk(t) + Buk(t)

yk(t) = Cxk(t), (1)

where t is the time index (i.e. sample number), k is the
iteration number and uk(t), xk(t), yk(t) are input, state
and output of the system on iteration k. The initial con-
dition xk(0) = x0, k = 1, 2, · · · is the same for all itera-
tions. The control objective is to track a given reference
signal r(t) defined on a finite duration t ∈ [0, N ] (i.e. t is
the sample number for time series of length N +1)and to
do so by repeated execution of the task and data trans-
fer from task to task. Mathematically, at the final time
t = N , the state is reset to x0 and time is reset to t = 0,
a new iteration is started and, again, the system is re-
quired to track the same reference.

Before presenting the main results, the operator form
of the dynamics is demonstrated using the well-known,
so-called lifted-system representation, which provides a
straightforward ”N×N matrix” approach in the analysis
of discrete-time ILC [8], [9].

Assume, for simplicity, the relative degree of the system
is unity (i.e. the generic condition CB 6= 0 is satisfied),
then system model (1) on the kth iteration can be ex-
pressed in an equivalent form

yk = Guk + d, (2)

where G and d are the N × N and N × 1 matrices

G =























CB 0 · · · 0 0

CAB CB
. . . 0 0

CA2B CAB
. . .

. . .
...

...
. . .

. . . CB 0

CAN−1B · · · · · · CAB CB























d =
[

CAx0 CA2x0 CA3x0 · · · CANx0

]T

. (3)

The N × 1 vectors of input, output and reference time
series uk, yk, r are defined as

uk =
[

uk(0) uk(1) · · · uk(N − 1)
]T

yk =
[

yk(1) yk(2) · · · yk(N)
]T

r =
[

r(1) r(2) · · · r(N)
]T

(4)

and k represents the iteration number. As the most im-
portant signal vector is the tracking error vector e =
r−y, then, without loss of generality, it can be assumed
that d = 0 by incorporating it into the reference signal
(i.e. replacing r by r − d). Hence (2) becomes

yk = Guk, (5)

where G is nonsingular and hence invertible.

The above representation of the original system (1) is
called the lifted-system representation. This approach
changes the original ILC problem into a MIMO tracking
problem [8], [9]. Note that the above lifted-system form
can be easily extended to situation when the system rel-
ative degree is larger than one. All the following discus-
sions will be based on the lifted-system representation.

Tracking error improvements from iteration to iteration
are achieved in ILC using the following general control
updating law

uk+1 = f (ek+1, . . . , ek−s, uk, · · · , uk−r) , (6)

where ek is the tracking error from the kth trial/iteration
and is defined as ek = r − yk. When s > 0 or r > 0,
(6) is called a high order updating law. This paper only
considers algorithms of the form uk+1 = f (ek+1, ek, uk).
For higher order algorithms, please refer to [10], [11] and
the references therein.

The ILC Algorithm Design Problem: The ILC al-
gorithm design problem can now be stated as finding a
control updating law (6) such that the system output
has the asymptotic property that ek → 0 as k → ∞.

There are many design methods to solve the ILC prob-
lem. The one used here is based on a quadratic (norm)
optimal formulation [12] where, at each iteration, a per-
formance index is minimized to obtain the system input
time series vector to be used for that iteration. The ba-
sis of this paper is Norm-Optimal ILC (NOILC) which
uses the following performance index

Jk+1(uk+1) = ‖ek+1‖
2
Q + ‖uk+1 − uk‖

2
R, (7)

minimized subject to the constraint that ek+1 = r −
Guk+1, G is the operator form of the system (1) and

2



Q and R are positive definite weighting matrices. Also
‖e‖2

Q denotes the quadratic form eT Qe and similarly

with ‖ · ‖2
R. Solving this optimization problem gives the

following optimal choice for the time series vector uk+1

uk+1 = uk + R−1GT Qek+1 (8)

which, when k → ∞, asymptotically achieves perfect
tracking. This well-known NOILC algorithm has many
appealing properties including implementation in terms
of Riccati state feedback. More details on NOILC can
be found in [7], [12], [13], [14], [15].

In practical applications, system constraints are widely
encountered. There are different kinds of constraints,
e.g., input constraint, input rate constraint and state or
output constraint. Constraints can be divided into two
classes: hard constraints and soft constraints. Hard con-
straints are constraints on magnitude(s) at each point in
time, for example, the output limits on actuators. Soft
constraints are constraints that are applied to the whole
function rather than its point-wise values e.g. constraints
on total energy usage. The input constraints are often
hard constraints. This paper only considers the input
constraint. Suppose the input is constrained to be in a
set Ω, which is taken to be a closed convex set in some
Hilbert space H. In practice, the set Ω is often simple
one. For example, the following constraints are often en-
countered:

• Ω = {u ∈ H : |u(t)| ≤ M(t)}
• Ω = {u ∈ H : λ(t) ≤ |u(t)| ≤ µ(t)}
• Ω = {u ∈ H : 0 ≤ u(t)}

If there are no constraints, the ILC design problem is rel-
atively easy to solve and there are many design methods
in the literature. However, when constraints are present,
the problem becomes more complicated. The problem is
to decide how to incorporate the constraints into the de-
sign process while retaining known performance proper-
ties. In the following sections, the successive projection
method proposed by Owens and Jones in [16] is used to
interpret iterative learning control, and a systematic ap-
proach for constraints handing in ILC is then proposed
in the form of two new algorithms. The algorithms are
related to but distinct from recently published work [6]
where successive projection was used to accelerate norm
optimal ILC.

3 Interpretation of ILC Using Successive Pro-
jection

In this section, the concept of successive projection is
summarised and its use in the ILC problem is demon-
strated (for more details, please refer to [6] which uses the
concepts to successfully accelerate norm optimal ILC).
It is shown that the convex constrained ILC problem can

be formulated in the successive projection framework,
the consequence of which is that a systematic approach
for constraints handling is produced with known con-
vergence properties. The notation in [16] is adopted in
order to be consistent with the original paper and make
the proof of our results more understandable. The nota-
tion r, k, t is also used elsewhere in the paper to denote
other variables, parameters or signals. This should cause
no confusion as their meaning can be inferred from the
context.

3.1 Successive Projection Method: An Overview

The successive projection method in the form described
by Owens and Jones [16] is a technique for finding a
point in the (assumed non-empty) intersection K1 ∩K2

of two closed, convex sets K1 and K2 in some real Hilbert
space H. The basic idea is to first select an initial iterate
k0 in H. Subsequent points are obtained successively by
projection of previous iterates onto one and then the
other of the two convex sets. It is formally described in
the following theorem.

Theorem 1 [16] Let K1 ⊂ H, K2 ⊂ H, be two closed
convex sets in a real Hilbert space H with K1 ∩ K2 non-
empty. Define

Kj =

[

K1, j odd

K2, j even

Then, given the initial guess k0 ∈ H, the sequence
{kj}j≥0 satisfying

‖kj − kj−1‖ = min
k∈Kj

‖k − kj−1‖, j ≥ 1 (9)

with kj ∈ Kj , j ≥ 1, is uniquely defined for each k0 ∈ H
and satisfies

‖kj+1 − kj‖ ≤ ‖kj − kj−1‖, j ≥ 2. (10)

Furthermore, for any x ∈ K1 ∩ K2,

‖x − kj‖
2 ≥ ‖x − kj+1‖

2 + ‖kj+1 − kj‖
2 (11)

so that the sequence {‖x − kj+1‖}j≥0 is monotonically
decreasing and {kj}j≥0 continuously gets closer to every
point in K1 ∩ K2. In addition

∞
∑

j=1

‖kj+1 − kj‖
2 ≤ ‖x − k1‖

2 (12)

so that, for each ǫ > 0, there exists an integer N such
that for j ≥ N

inf
k∈Kj+1

‖k − kj‖ < ǫ. (13)
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k0
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k2

k3

K1 ∩K2

K1

K2

(a) Illustration of the Successive Projection Algo-
rithm

k0

k1

k2

k3

e = 0

e = r − Gu

(0, u∗)

(b) Geometric Illustration of NOILC

Fig. 1. Successive Projection Interpretation of NOILC

That is, the iterates kj ∈ Kj become arbitrarily close to
Kj+1.

Moreover, when K1 ∩ K2 is empty, the algorithm con-
verges in the sense that ‖kj+1 − kj‖ → d(K1,K2) defin-
ing the minimum distance d(K1,K2) between the two sets
K1 and K2.

The process is illustrated in Figure 1(a) which indicates
convergence schematically to a point in the intersection
K1∩K2. In [16], this convergence is proved and a number
of related and improved iterative schemes are presented.
Here, the one related to our ILC results is used. For more
details please see [16].

3.2 Interpretation of ILC with Input Constraints

Consider the ILC design problem initially without con-
straints. If the original system is injective, then for every
achievable r(t), there exists a unique input u∗(t) such
that r(t) = [Gu∗](t). The task of the ILC control law is
to iteratively find a series of inputs such that uk → u∗

as k tends to infinity. That is equivalent to iteratively
finding the unique point (0, u∗) ∈ H = R

N × R
N in the

intersection of the following two sets in H:

• S1 = {(e, u) ∈ H : e = r − Gu}
• S2 = {(e, u) ∈ H : e = 0}

The successive projection method then can be applied
to generate an algorithm with the defined convergence

properties. In general it is required to verify that these
two sets are closed and convex in H. This is trivially
satisfied, for example, in finite dimensional time series
spaces such as H = R

N × R
N . In this case,the inner

product will be taken to be

〈(e, u), (z, v)〉 = eT Qz + uT Rv (14)

with Q > 0, R > 0 symmetric positive definite
and the associated induced norm will be ||(e, u)|| =
√

〈(e, u), (e, u)〉.

Then, using successive projection method in Theorem 1,
the well-known NOILC algorithm can be easily derived
[6], which is illustrated geometrically in Figure 1(b). Its
convergence properties can also be easily derived. For
more details, please refer to [6].

Now consider the constrained ILC problem discussed in
Section 2. The problem is to find the intersection of the
following closed, convex sets in H = R

N × R
N :

• S1 = {(e, u) ∈ H : e = r − Gu}
• S2 = {(e, u) ∈ H : e = 0}

under the constraint S3 = {(e, u) ∈ H : u ∈ Ω}. Note
that, it is normal that S1 ∩ S2 ∩ S3 is either a singleton
pair (e, u) = (0, u∗) solving the ILC problem or it is the
empty set ∅. In this second case, perfect tracking is not
achievable due to the introducing of input constraint Ω.

There are three sets in the constrained problem. It seems
the results in Owens and Jones [16] can not be directly
used. However, set S3 can be associated with either
S1 (yielding two sets S1 ∩ S3 and S2) or S2 (yield-
ing two sets S2 ∩ S3 and S1) and also notice that the
intersection of two closed convex sets is still a closed
convex set. Then, the original 3-set problem becomes
a 2-set problem, which is to find the intersection of
K1 = S1(resp.S1 ∩ S3) and K2 = S2 ∩ S3(resp.S2).

The successive projection method in Section 3.1 hence
generates two new iterative algorithms for the con-
strained ILC problem, which are demonstrated in the
following two sections. In what follows, we do not spec-
ify the exact form of the constraints other than that
they are closed and convex.

4 Constrained ILC: Algorithm 1

This algorithm identifies that input constraints with the
dynamics, a situation that explains why the algorithm
is more computationally intensive than its alternative
form (introduced later). The formal construction sets
K1 = S1 ∩ S3 and K2 = S2 to be the closed convex sets
in Theorem 1, which can be described as follows.

• K1 = {(e, u) ∈ H : e = r − Gu, u ∈ Ω}

4



r0(k0)

r1

r2(k1)

r3

e = 0

e = r − Gu

(0, u∗)

(a) (S1 ∩ S3) ∩ S2 6= ∅ and perfect tracking is possible

r0(k0)

r1

r2(k1)

r3

e = 0

e = r − Gu

(0, u∗)

(b) (S1∩S3)∩S2 = ∅ and perfect tracking is not possible

Fig. 2. Illustration of Algorithm 1

• K2 = {(e, u) ∈ H : e = 0}

The following algorithm can now be constructed and is
illustrated schematically in Figure 2(a) and Figure 2(b),
in which the cases when perfect tracking is possible (in-
tersection occurs) or not (the intersection is empty)are
shown, respectively.

4.1 Algorithm Description

Algorithm 1 Given any initial input u0 satisfying the
constraint with associated tracking error e0, the input
sequence uk+1, k = 0, 1, 2, · · · , defined by

uk+1 = arg min
u∈Ω

{

‖r − Gu‖2
Q + ‖u − uk‖

2
R

}

(15)

also satisfies the constraint and iteratively solves the con-
strained ILC problem.

Proof. According to Theorem 1, let K1 = S1 ∩ S3

and K2 = S2. Given r0 = (0, u0) ∈ K2, the sequence
{r1, r2, · · ·} given by

‖ri − ri−1‖ = inf
y∈Kj

‖y − ri−1‖, (16)

where Kj is defined as

Kj =

[

K1, j odd

K2, j even
,

iteratively finds the intersection of K1 and K2. The sub-
sequence {k1, k2, · · ·} ⊂ K2 defined by

kk = r2k, (17)

also iteratively finds the intersection of K1 and K2. That
is, it solves the ILC problem.

Note that, kk+1 = r2(k+1) is solved by

‖r2k+1 − kk‖ = inf
y∈K1

‖y − kk‖ (18)

and

‖kk+1 − r2k+1‖ = inf
y∈K2

‖y − r2k+1‖. (19)

Note that (18) is actually solving the following optimiza-
tion problem

r2k+1 : (ek+1, uk+1)

= arg min
(e,u)∈K1

{

‖e − 0‖2
Q + ‖u − uk‖

2
R

}

,
(20)

which is equivalent to solving

uk+1 = arg min
u∈Ω

{

‖r − Gu‖2
Q + ‖u − uk‖

2
R

}

(21)

and (19) simply gets kk+1 : (0, uk+1). That completes
the proof.

4.2 Convergence Analysis

This section discusses the convergence properties of Al-
gorithm 1. As mentioned in Section 3.2, due to the in-
troducing of the input constraints Ω, there may be no
intersection of S1, S2 and S3, which means perfect track-
ing of the reference signal may be not possible. In this
case, the convergence properties may have some differ-
ence. Hence the convergence results are presented in two
parts: (S1 ∩ S3) ∩ S2 6= ∅ and (S1 ∩ S3) ∩ S2 = ∅.

4.2.1 (S1 ∩ S3) ∩ S2 6= ∅

In this case, perfect tracking of the reference signal is
possible. Algorithm 1 has the highly desirable property
that the norm of the tracking error will decrease mono-
tonically, which is shown in the following theorem.
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Theorem 2 When perfect tracking is possible, Algo-
rithm 1 can achieve monotonic convergence to zero
tracking error, that is

‖ek+1‖ ≤ ‖ek‖, k = 0, 1, · · · . (22)

and

lim
k→∞

ek = 0, lim
k→∞

uk = u∗. (23)

Proof. Monotonic convergence can be easily obtained
from the algorithm itself. Note that, at k + 1 iteration,
the input uk+1 is given by

uk+1 = arg min
u∈Ω

{

‖r − Gu‖2
Q + ‖u − uk‖

2
R

}

. (24)

Define

Jk+1(u) = ‖r − Gu‖2
Q + ‖u − uk‖

2
R. (25)

Then, it is easy to see

Jk+1(uk) = ‖ek‖
2 ≥ Jk+1(uk+1)

= ‖ek+1‖
2 + ‖uk+1 − uk‖

2 ≥ ‖ek+1‖
2 (26)

Hence we have

‖ek+1‖ ≤ ‖ek‖. (27)

Zero tracking error is got by noticing that Algorithm 1
iteratively finds the intersection of K1 = S1 ∩ S3 and
K2 = S2, which is (0, u∗) when (S1 ∩ S3) ∩ S2 6= ∅,
and hence, achieves perfect tracking. That completes the
proof.

Algorithm 1 also has the desirable property that the dis-
tance between the kth input and the solution u∗ is de-
creasing monotonically, as proved in the following theo-
rem:

Theorem 3 When perfect tracking is possible, Algo-
rithm 1 has the property that, for all k ≥ 0 and for all
u0 and u∗

‖uk+1 − u∗‖ ≤ ‖uk − u∗‖, (28)

i.e., the input iterates approach the solution monotoni-
cally in norm.

Proof. According to Theorem 1 and the proof of Algo-
rithms 1, and given that x ∈ K1 ∩ K2 = (0, u∗), then

‖kk − x‖2 ≥ ‖r2k+1 − x‖2 ≥ ‖kk+1 − x‖2. (29)

As x is (0, u∗), kk is (0, uk) and kk+1 is (0, uk+1), it
immediately follows that

‖uk+1 − u∗‖ ≤ ‖uk − u∗‖. (30)

as required.

4.2.2 (S1 ∩ S3) ∩ S2 = ∅

In this case, perfect tracking is not possible. The al-
gorithm does however compute an approximation of
the unconstrained input u∗. For the convergence of the
tracking error, the following theorem holds.

Theorem 4 When perfect tracking is not possible, Al-
gorithm 1 converges to point u∗

s which is uniquely defined
by the following optimization problem

u∗
s = arg min

u∈Ω
‖r − Gu‖2

Q. (31)

Moreover, this convergence is monotonic in the tracking
error, that is,

‖ek+1‖ ≤ ‖ek‖, k = 0, 1, · · · . (32)

Proof. According to Theorem 1, when (S1∩S3)∩S2 =
∅, that is, perfect tracking can not be achieved, Algo-
rithms 1 will converge to point u∗

s, where r1 = (e, u) ∈
K1, r2 = (0, u∗

s) ∈ K2 defining the minimum distance of
the two sets, which is the solution of the following opti-
mization problem

(r1, r2) = arg min
r1∈K1,r2∈K2

‖r1 − r2‖
2
. (33)

Remember the definition of K1 and K2, (33) is equivalent
to solve

(u, u∗
s) = arg min

u∈Ω,u0

{

‖r − Gu‖2
Q + ‖u − u0‖

2
R

}

. (34)

Hence, Algorithm 1 converges to point u∗
s, which is de-

fined by

u∗
s = arg min

u∈Ω,u0

{

‖r − Gu0‖
2
Q + ‖u0 − u‖2

R

}

= arg min
u∈Ω

{

min
u0

‖r − Gu0‖
2
Q + ‖u0 − u‖2

R

}

. (35)

Notice that the inner minimization has the solution

u0 = u. (36)

Hence, substitute (36) into (35) and the optimization
problem can be transformed into

u∗
s = arg min

u∈Ω
‖r − Gu‖2

Q. (37)
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Note that G is invertible, then the performance index
to be minimized is strictly convex, also notice that the
constraint is convex, hence this quadratic programming
problem has the unique solution.

The proof of monotonic convergence is similar to that of
(S1 ∩ S3) ∩ S2 6= ∅ and is omitted here. That completes
the proof.

Remark 1 From the discussion above, it can be seen
that Algorithm 1 has the appealing property of mono-
tonic convergence of the tracking error. The main diffi-
culty with Algorithm 1 is the solution of the constrained
quadratic programming (QP) problem (15). In practice,
the dimension of the time series uk and plant operator G
may be very large and the QP problem will be difficult or
even become unmanageable. This is discussed in the next
section and two methods are given as possible solutions.

4.3 Solution of the Subproblem

As mentioned above, the solving of the large QP problem
is the main obstacle in applying Algorithm 1. In this
section, two methods are given to solve the problem, that
is, iterative solution and receding horizon method.

4.3.1 Using Iterative Algorithms

There are a number of iterative algorithms in the litera-
ture to solve large scale QP problem, see [17], [18], [19],
[20]. Here, the Goldstein-Levitin-Polyak (GLP) method
is introduced [17], [18].

The GLP method minimizes a continuously differen-
tiable function f : H → R over a closed convex set
Ω ⊂ H using the iterative algorithm

xk+1 = PΩ [xk − ak∇f(xk)] , k = 0, 1, · · · (38)

where PΩ(z) denote the projection of z ∈ H onto Ω,
∇f(xk) denotes the gradient of f at xk and ak ≥ 0 is
the step size and should satisfy

0 < ǫ ≤ ak ≤
2(1 − ǫ)

L
,∀k (39)

where L is a Lipschitz constant satisfying

|∇f(x) −∇f(y)| ≤ L|x − y|,∀x, y ∈ Ω. (40)

The convergence properties of this algorithm are also in-
cluded in [17] and omitted here. One appealing property
is that f(xk) will decrease monotonically, which is very
useful in ILC problem.

Algorithm 1 requires the solution of a QP problem, for
which the gradient and the Lipschitz constant can be

easily got. Also notice that the constraint is rather simple
and the projection can be carried on conveniently. Hence,
the GLP method can be used to solve the QP problem
arising in Algorithm 1. For the convergence property of
this method, we have the following theorem.

Theorem 5 Using Goldstein-Levitin-Polyak method to
solve the constrained QP problem, Algorithm 1 can main-
tain monotonic convergence in the tracking error.

Proof. Define

Jk+1(u) = ‖r − Gu‖2
Q + ‖u − uk‖

2
R (41)

Then, at trial k + 1, the algorithm minimizes the above
performance index subject to input constraints using
Goldstein-Levitin-Polyak method and the initial point
is uk. Note that using Goldstein-Levitin-Polyak method,
Jk+1(u) will decrease monotonically. Suppose the algo-

rithm stops and gives the k + 1th input uk+1, we have

Jk+1(uk) ≥ Jk+1(uk+1), (42)

which is actually

‖ek‖
2 ≥ ‖ek+1‖

2 + ‖uk+1 − uk‖
2. (43)

We immediately get

‖ek‖ ≥ ‖ek+1‖ (44)

and that completes the proof.

Remark 2 In practice, due to the computational ex-
penses, we can’t wait too many iterations to get the exact
solution. Then, a prescribed maximum iteration or an
expected accuracy can be given as criteria to terminate
the GLP algorithm.

4.3.2 Receding Horizon Method

Another approach to solve the QP problem is using re-
ceding horizon method, which is also noticed in [5]. The
main idea is introduced here, and for more details please
refer to [21].

At iteration k + 1, the following problem needs to be
solved

uk+1 = arg min
u∈Ω

{

‖r − Gu‖2
+ ‖u − uk‖

2
}

(45)

The difficulty of this problem lies in the possible large di-
mension of u and G. The receding horizon method, how-
ever solves this problem approximately through solving
a series of smaller scale QP problems:

7



(1) At time t and for the current state xt , solve an opti-
mal control problem over a fixed future interval, say
[t; t + Nu − 1], taking into account the constraints.

(2) Apply only the first step in the resulting optimal
control sequence.

(3) Measure the state reached at time t + 1.
(4) Repeat the fixed horizon optimization at time t+1

over the future interval [t+1; t+Nu], starting from
the (now) current state xt+1.

Then, the original problem is reduced to a series of fol-
lowing QP problems in Step 1:

u
opt
k+1,t = arg min

uk+1,t∈Ω

{

t+Nu−1
∑

i=t

‖r (i) − yk+1 (i)‖2

+‖uk+1,t (i) − uk (i)‖2
}

(46)

where

uk+1,t =
[

uk+1(t) uk+1(t + 1) · · · uk+1(t + Nu − 1)
]T

.

Note that this problem is of small size and can be solved
easily.

The choosing of Nu is very important. If Nu = N, (46)
becomes the original problem (45). Large value of Nu

will give more accurate solution at the cost of large com-
putational load while too small value may result in poor
performance. There are a number of results in the liter-
ature on how to choose the horizon, please refer to [21].

Note that, unlike Goldstein-Levitin-Polyak method, us-
ing receding horizon control, Algorithm 1 may lose the
monotonic convergence in the tracking error norm.

Remark 3 In this section, two methods are given to
solve the large size constrained QP problem. There are
also many other algorithms that can be used. It should be
kept in mind that due to the practical restrictions, only
an approximate solution of the QP problem can be got.
Using this solution, the appealing convergence properties
of Algorithms 1 may not be maintained, depending on the
property of the methods used.

4.4 Effect of Weighting Matrices Q and R

In this section, the effect of weighting matrices Q and
R on the convergence properties of Algorithm 1 is dis-
cussed.

According to (15), the weighting matrices Q and R pro-
vide scaling on the tracking error and the change of in-
put. Intuitively, if Q is fixed, then a smaller R implies
larger acceptable change of input, and which in turn, re-
sults in smaller tracking error. This leads to faster con-
vergence rate.
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r
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Fig. 3. The input signal

Consider SISO systems with scalar weighting Q and R.
Choose Q = 1 and consider the effect of R on algorithm
performance. The following results can be easily derived.
Whether perfect tracking is possible or not, it can be
expected (as with NOILC) that smaller R will result in
faster convergence rate. The algorithm will converge to
the solution of (31), which is independent of R. This
implies that the weighting matrix R has no effect on the
asymptotic accuracy but only affects the convergence
rate. This is illustrated by the following example.

Example 1 Consider the following simple second order
system

G(s) =
s − 4

s2 + 5s + 6
, (47)

which is sampled using a zero-order hold and a sampling
time of 0.1s. The trial length is 20s, zero initial condi-
tions are assumed and the reference signal is generated
by the sine-wave input u∗ shown in Figure 3. The con-
straint is taken to be |u(t)| ≤ 0.8, t = 0, 1, · · ·, which is
violated by u∗ so that perfect tracking is not possible. The
initial input is chosen to be u0 = 0. The simulation is
designed to evaluate the effect of weighting matrices on
the performance of Algorithm 1 over 100 iterations. Sim-
ulations are run in six cases with weighting chosen to be
Q = 1 and R = 3, 1, 0.1, 0.05, 0.01, 0.001, respectively.
The norms of the tracking error for each test are plotted
and shown in Figure 4.

From the figure, it can be seen that the weighting matrix
R have no effect on the asymptotic accuracy. However,
smaller values of R result in faster convergence, which
verifies our expectations.

When the system is MIMO or the weighting matrices are
not scalar, the analysis of the effect of weighting matri-
ces is expected to indicate a similar but more complex
pattern.
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Fig. 4. Effect of different weighting matrices on convergence
performance

5 Constrained ILC: Algorithm 2

In this section, an alternative algorithm is given by tak-
ing K1 = S1 and K2 = S2 ∩ S3 to be the closed, convex
sets in Theorem 1, which can be expressed as follows.

• K1 = {(e, u) ∈ H : e = r − Gu}
• K2 = {(e, u) ∈ H : e = 0, u ∈ Ω}

The following alternative algorithm to Algorithm 1 can
be constructed and is illustrated schematically in Fig-
ure 5(a) and Figure 5(b).

5.1 Algorithm Description

Algorithm 2 Given any initial input u0 satisfying the
constraint with associated tracking error e0, the input

r0(k0)

r1

r2(k1)

r3

e = 0

e = r − Gu

(0, u∗)

(a) S1 ∩ (S2 ∩ S3) 6= ∅ and perfect tracking is possible

r0(k0)

r1

r2(k1)

r3

e = 0

e = r − Gu

(0, u∗)

(b) S1∩(S2∩S3) = ∅ and possible tracking is not possible

Fig. 5. Illustration of Algorithm 2

sequence uk+1, k = 0, 1, 2, · · · , defined by the solution of
the input unconstrained NOILC optimization problem

ũk = arg min
u

{

‖r − Gu‖2
Q + ‖u − uk‖

2
R

}

(48)

followed by the simple input projection

uk+1 = arg min
u∈Ω

‖u − ũk‖ ∈ Ω (49)

also satisfies the constraint and iteratively solves the con-
strained ILC problem.

Proof. According to Theorem 1, let K1 = S1 and
K2 = S2 ∩ S3. Given r0 = (0, u0) ∈ K2, the sequence
{r1, r2, · · ·} given by

‖ri − ri−1‖ = inf
y∈Kj

‖y − ri−1‖, (50)

where Kj is defined as

Kj =

[

K1, j odd

K2, j even
,

iteratively finds the intersection of K1 and K2. Then,
the sub-sequence {k1, k2, · · ·} ⊂ K2 defined by

kk = r2k, (51)

9



also iteratively finds the intersection of K1 and K2 i.e.
it solves the ILC problem.

Note that, kk+1 = r2(k+1) is solved by

‖r2k+1 − kk‖ = inf
y∈K1

‖y − kk‖ (52)

and

‖kk+1 − r2k+1‖ = inf
y∈K2

‖y − r2k+1‖. (53)

Note that (52) is actually solving the following optimiza-
tion problem

r2k+1 : (ẽk, ũk)

= arg min
(e,u)∈K1

{

‖e − 0‖2
Q + ‖u − uk‖

2
R

} (54)

which is the solution of NOILC and (53) simply gives
kk+1 : (0, uk+1), where

uk+1 = arg min
u∈Ω

‖u − ũk‖. (55)

That completes the proof.

Remark 4 Note that the second step of Algorithm 2 re-
quires the solution of the problem (49). It seems this may
need the application of some optimization methods. How-
ever, in practice the input constraint Ω is often a point-
wise constraint and the solution of (49) can be computed
easily. For example, when Ω = {u ∈ H : |u(t)| ≤ M(t)},
the solution is simply as follows,

uk+1 (t) =















M (t) : ũk (t) > M (t)

ũk (t) : |ũk (t)| ≤ M (t)

−M (t) : ũk (t) < −M (t)

, (56)

for t = 0, · · · , N − 1.

5.2 Convergence Analysis

This section discusses the convergence properties of Al-
gorithm 2. As for Algorithm 1, the results are presented
in two parts: (S1 ∩ S3)∩ S2 6= ∅ and (S1 ∩ S3)∩ S2 = ∅.

5.2.1 (S1 ∩ S3) ∩ S2 6= ∅

In this case, perfect tracking of the reference signal is
possible with a unique input u∗. The theorem below di-
rectly follows from Theorem 1.

Theorem 6 When perfect tracking is possible, Algo-
rithm 2 solves the ILC problem in the sense that

lim
k→∞

ek = 0, lim
k→∞

uk = u∗. (57)

Moreover, this convergence is monotonic with respect to
the following performance index,

Jk = ‖Eek‖
2
Q + ‖Fek‖

2
R (58)

where

ek = r − Guk

E = I − G
(

GT QG + R
)−1

GT Q

F =
(

GT QG + R
)−1

GT Q

. (59)

Proof. Equation (57) can be easily deduced from The-
orem 1. Algorithm 2 iteratively finds the intersection
of K1 = S1 and K2 = S2 ∩ S3, which is (0, u∗) when
S1 ∩ (S2 ∩S3) 6= ∅, and hence, achieves perfect tracking.

Monotonic convergence with respect to the defined per-
formance index can be obtained as follows. According to
Theorem 1 and the proof of Algorithms 2, the distance
between {k0, r1, k1, r2, · · ·} is decreasing, that is

‖kk − r2k+1‖ ≥ ‖r2k+1 − kk+1‖

≥ ‖kk+1 − r2(k+1)+1‖ (60)

Note the left side is actually the minimum distance be-
tween kk and K1, which is

‖kk − r2k+1‖ = min
u

{

‖r − Gu‖2
Q + ‖u − uk‖

2
R

}

(61)

Note that this is the NOILC solution

ukr
= uk +

(

GT QG + R
)−1

GT Q (r − Gu) . (62)

Substituting the solution, (61) can be further written as

‖kk − r2k+1‖ = min
u

{

‖Eek‖
2 + ‖Fek‖

2
}

(63)

with E, F defined as (59). Note that this is performance
index Jk. Similarly, the right side of (60) is Jk+1. Then
according to (60), we have

Jk+1 ≤ Jk (64)

That is, performance index Jk is decreasing monotoni-
cally, which completes the proof.

Algorithm 2 first computes the NOILC solution and then
projects this solution onto the constraint. This approach
is much simpler than the previously described algorithm
in the sense that the computational load is much less and
hence is a simpler way to implement successive projec-
tion in practice. Intuitively, this strategy may, however,
lead to other problems such as a slower convergence rate.
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Fig. 7. The tracking performance of Algorithm 2

It is well-known that NOILC achieves monotonic conver-
gence in the tracking error. The following example shows
that, Algorithm 2, however, may not have this property.

Example 2 Consider the following system

G(s) =
4.2130s − 2.5164

s2 − 0.1312s + 3.6624
, (65)

which is sampled using a zero-order hold and a sampling
time of 0.1s. The trial length is 20s, zero initial condi-
tions are assumed and the reference signal is generated
by the square-wave input shown in Figure 6. The con-
straint is |u(t)| ≤ 1, t = 0, 1, · · ·, which is satisfied by the
input u∗ so that perfect tracking is possible. The initial
input is chosen to be u0 = 0. The simulation evaluates
the performance of Algorithm 2 over 100 iterations. The
weighting matrices are chosen to be Q = R = I for sim-
plicity. The norm of the tracking error from 2th to 11th

iteration is plotted and shown in Figure 7.

From the figure, it is clear that Algorithm 2 may not pro-
duce monotonic convergence in the tracking error norm.

Although Algorithm 2 may not maintain monotonic con-
vergence in the tracking error, it has the property that
the distance between the kth input and the optimal so-
lution is decreasing monotonically, which is shown in the
following theorem.

Theorem 7 When perfect tracking is possible, Algo-
rithm 2 has the property that, for all k ≥ 0 and for all
u0 and u∗

‖uk+1 − u∗‖ ≤ ‖uk − u∗‖, (66)

i.e., the input iterates approach the solution monotoni-
cally in norm.

Proof. The proof is similar to that of Algorithm 1 and
is omitted here.

5.2.2 (S1 ∩ S3) ∩ S2 = ∅

In this case, perfect tracking is not possible and only an
approximation of the original input u∗ can be achieved.
The following theorem describes algorithm behaviour.

Theorem 8 When perfect tracking is not possible, Al-
gorithm 2 converges to point u∗

s which is uniquely defined
by the following optimization problem,

u∗
s = arg min

u∈Ω

{

‖Ee‖2
Q + ‖Fe‖2

R

}

. (67)

Moreover, this convergence is monotonic with respect to
the following performance index,

Jk = ‖Eek‖
2
Q + ‖Fek‖

2
R (68)

where

e = r − Gu

E = I − G
(

GT QG + R
)−1

GT Q

F =
(

GT QG + R
)−1

GT Q

. (69)

Proof. According to Theorem 1, when S1∩ (S2∩S3) =
∅, that is, perfect tracking can not be achieved, Algo-
rithms 2 will converge to a point u∗

s, where r1 = (e, u) ∈
K1, r2 = (0, u∗

s) ∈ K2 defining the minimum distance
between the two sets, which is the solution of the follow-
ing optimization problem

(r1, r2) = arg min
r1∈K1,r2∈K2

‖r1 − r2‖
2
. (70)
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Remember the definition of K1 and K2, (70) is equivalent
to solve

(u, u∗
s) = arg min

u∈Ω,u0

{

‖r − Gu0‖
2
Q + ‖u0 − u‖2

R

}

. (71)

Hence, Algorithm 2 converges to point u∗
s, which is de-

fined by

u∗
s = arg min

u∈Ω,u0

{

‖r − Gu0‖
2
Q + ‖u0 − u‖2

R

}

= arg min
u∈Ω

{

min
u0

‖r − Gu0‖
2
Q + ‖u0 − u‖2

R

}

. (72)

Notice that the inner minimization is the solution of
NOILC and is given by

u0 = u +
(

GT QG + R
)−1

GT Q (r − Gu) (73)

Hence, substitute (73) into (72) and the optimization
problem can be transformed into

u∗
s = arg min

u∈Ω

{

‖Ee‖2
Q + ‖Fe‖2

R

}

(74)

where

e = r − Gu

E = I − G
(

GT QG + R
)−1

GT Q

F =
(

GT QG + R
)−1

GT Q

. (75)

Note that E and F are invertible, then the performance
index to be minimized is strictly convex, also notice that
the constraint is convex, hence this quadratic program-
ming problem has unique solution.

The proof of monotonic convergence with respect to Jk

is similar to that of Theorem 6 and omitted here, which
completes the proof.

Remark 5 For the constrained ILC problem, the best
result we can achieve in terms of tracking error is defined
by the following QP problem

u∗ = arg min
u∈Ω

‖r − Gu‖2. (76)

Compared to Theorem 8, it can be found that Algo-
rithm 2 actually minimizes weighted norm of tracking
error. In this case, only nearly optimal performance can
be achieved.

5.3 Effect of Weighting Matrices Q and R

In this section, the effect of weighting matrices Q and
R on the convergence properties of Algorithm 2 is dis-
cussed. As with Algorithm 1, the effect is illustrated in
an intuitive way.

Consider SISO systems with scalar weighing Q and R.
Choose Q = 1 and consider the effect of variation of R.
When perfect tracking is possible, perfect tracking can
be achieved and smaller R will result in faster conver-
gence. When perfect tracking is not possible, reducing
R will again result in faster convergence rate but the
asymptotic error changes (in contrast to Algorithm 1).
This can be explained as follows. Algorithm 2 converges
to the solution of the following problem

u∗
s = arg minu∈Ω

{

‖(I − G
(

GT QG + R
)−1

GT Q)e‖2
Q

+‖
(

GT QG + R
)−1

GT Qe‖2
R

}

When R → ∞, the first term of the last equation be-
comes ‖e‖2

Q and the second term becomes zero. Hence,
the optimization problem becomes

u∗
s = arg min

u∈Ω
‖e‖2

Q (77)

This is the constrained optimal solution and is the best
result that can be achieved with constrained control.
However, in this case, since the weighting of input change
R is very large, the convergence rate is expected to be
very slow. One the other hand, when R → 0, it can be
seen the first term of the last equation becomes zero
and the second term becomes ‖G−1e‖2

R, which can be
further written as ‖u−u∗‖2

R, where u∗ is the unique input
generating the reference signal. Hence, the optimization
problem becomes

u∗
s = arg min

u∈Ω
‖u − u∗‖2

R (78)

This is just the projection of u∗ onto the constraint set
Ω. Clearly the tracking error may be larger than that of
the constrained optimal solution. However, in this case,
the convergence rate is fast.

From the discussion above, it can be seen that when per-
fect tracking is not possible, the weighting matrix R pro-
vides a compromise between the convergence rate and
the tracking performance, which is very different from
that of Algorithm 1. This is illustrated in the following
example.

Example 3 Consider the following system

G(s) =
s + 4

s2 + 5s + 6
, (79)

which is sampled using a zero-order hold and a sampling
time of 0.1s. The trial length is 20s, zero initial condi-
tions are assumed and the reference signal is generated by
the sine-wave input shown in figure 3. The constraint set
is defined by |u(t)| ≤ 0.8, t = 0, 1, · · ·, which doesn’t con-
tain the input u∗. The initial input is chosen to be u0 = 0.

12



0 50 100 150 200

10
0

Trials

lg
‖
e
k
‖

R ↓

(a) Original figure

0 20 40 60 80 100

10
−0.29

10
−0.26

10
−0.23

10
−0.2

10
−0.17

10
−0.14

10
−0.11

Trials

lg
‖
e
k
‖

R↑

(b) Magnified figure

Fig. 8. Effect of different weighting matrices on convergence
performance

The simulation aims to investigate the effect of weight-
ing matrices on the performance of Algorithm 1 over 100
iterations. Six simulations are shown with the weighting
matrices Q = I and R = 3, 1, 0.1, 0.05, 0.01, 0.001, re-
spectively. The results are shown in Figure 8 and Fig-
ure 9.

From the figure, it can be seen that smaller R results
in faster convergence and the weighting matrix R does
have an effect on the asymptotic performance/accuracy
with larger values of R giving smaller asymptotic er-
ror norms. The asymptotic tracking error norm of Al-
gorithm 2 against different weighting matrices R is also
plotted and shown in Figure 10. Note that the lower hori-
zonal line is the tracking error norm with the input (77)
and the upper one is (78).

When the system is MIMO or the weighting matrices
are not scalar, the effect of weighting matrices would
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Fig. 9. Part of the resulting input
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Fig. 10. Effect of different weighting matrices on asymptotic
performance

not be so easy to analyze but a similar pattern could be
expected.

6 Numerical Simulation

In this section, three examples are given to demonstrate
the effectiveness of the proposed methods. First, con-
sider the following example where perfect tracking is
achievable.

Example 4 Consider the following non-minimum
phase system

G(s) =
s − 4

s2 + 5s + 6
, (80)

which is sampled using a zero-order hold and a sampling
time of 0.1s. The trial length is 20s, zero initial condi-
tions are assumed and the reference signal is generated by
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Fig. 12. Comparison of convergence

the square-wave input shown in figure 11. The constraint
is |u(t)| ≤ 1, t = 0, 1, · · ·, which just contains the input
u∗. The initial input is chose to be u0 = 0. The simula-
tion compares the NOILC, Algorithm 1 and Algorithm 2
with over 1000 iterations. For simplicity, the weighting
matrices are chosen to be Q = R = I. The results are
shown in Figure 12 and Figure 13.

Note that in this example, perfect tracking is possible.
According to Theorem 2 and Theorem 6, perfect track-
ing can be achieved by both algorithms. However, it is
expected that the constraint will be active during the iter-
ations, which means the resulting input of NOILC may
violate the constraint.

From Figure 12, it can be seen that Algorithm 1 and Al-
gorithm 2 is approaching perfect tracking, which verifies
the previous expectations. During the first iterations, as
u0 = 0, uk increases in point-wise magnitude gradually
and doesn’t violate the constraint in any of the three al-
gorithms. In subsequent iterations, the input computed
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Fig. 13. The tracking error at 1000th iteration

using NOILC then begins to violate the constraint and
differences begin to emerge. It is interesting to see that
Algorithm 1 and Algorithm 2 outperform NOILC at this
stage. It can also be seen that Algorithm 1 performs a
little better than Algorithm 2.

The second example is to illustrate what will happen if
perfect tracking is not possible.

Example 5 Consider the same non-minimum phase
system

G(s) =
s − 4

s2 + 5s + 6
, (81)

which is sampled using a zero-order hold and a sampling
time of 0.1s. The trial length is 20s, zero initial condi-
tions are assumed and the reference signal is generated
by the sine-wave input as shown in Figure 14. The con-
straint is replaced by |u(t)| ≤ 0.8, t = 0, 1, · · ·, so that per-
fect tracking is not possible. The initial input is chosen to
be u0 = 0. The simulation compares Algorithm 1, Algo-
rithm 2 and the constrained optimal (76) over 200 itera-
tions. The weighting matrices are chosen to be Q = R = I
for simplicity. In Algorithms 1, the constrained QP prob-
lem is solved by the Matlab optimization toolbox. The re-
sults are shown in Figure 15, Figure 16 and Figure 17.

From Figure 15, it can be seen that Algorithm 1 does con-
verge to the constrained optimal solution, which verifies
Theorem 4. Algorithm 2 converges to the solution of (67),
which verifies Theorem 8. It can be seen that Algorithm 2
converges faster than Algorithm 1, which is not difficult
to understand. Figure 17 shows the original input and
resulting input of the three algorithms at the 200th itera-
tion. It can be seen that the resulting input of Algorithm 1
converges to the constrained optimal solution, while Al-
gorithm 2 doesn’t. It is also noticed that the resulting fi-
nal input of Algorithm 2 is not just putting saturation
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Fig. 15. Comparison of convergence

0 5 10 15 20
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Time

e
f
in

a
l
(t

)

 

 
Algorithm 1
Algorithm 2
Constrained Optimal

Fig. 16. The tracking error at 200th iteration
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Fig. 17. The resulting input at 200th iteration

on the original input, instead, it adds some compensa-
tion. It should be kept in mind that although Algorithm 1
gives better performance, this is achieved at the expense
of large computation load, which may be not acceptable in
the real application, whereas Algorithm 2 achieves nearly
optimal performance using quite simple computation.

The third example is to illustrate alternative solution
methods of Algorithm 1 when perfect tracking is not
possible.

Example 6 Again, consider the same non-minimum
phase system

G(s) =
s − 4

s2 + 5s + 6
, (82)

which is sampled using zero-order hold and a sampling
time of 0.1s. The trial length is 20s and the reference sig-
nal is generated by the sine-wave input as shown in Fig-
ure 14. The constraint is |u(t)| ≤ 0.8, t = 0, 1, · · ·, which
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Fig. 18. Comparison of convergence

doesn’t contain the original input and implies that perfect
tracking is not possible. The initial input is chosen to be
u0 = 0. The simulation compares the iterative algorithm,
receding horizon method and exact solution of the con-
strained QP problem of Algorithm 1 over 200 iterations.
The exact solution is solved by Matlab optimization tool-
box. The weighting matrices are chosen to be Q = R = I.
In the iterative algorithm, the algorithm is stopped after
10 iteration. In the receding horizon control method, the
horizon is chosen to be Nu = 10. The results are shown
in Figure 18, Figure 19 and Figure 20.

From Figure 18, it can be seen that, the iterative solution
method converges to the constrained optimal solution as
k → ∞, while the receding horizon method doesn’t. This
is due to the solution accuracy of the receding horizon
method. Further simulation shows that when improving
the accuracy of the solution by increasing the horizon in
the receding horizon method, the limiting point become
closer to the constrained optimal solution. It can also be
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Fig. 19. The tracking error at 200th iteration

0 5 10 15 20
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time

u
f
in

a
l
(t

)

 

 

GLP method
Receding Horizon method
Quadratic Programming
Constrained Optimal
Original Input

Fig. 20. The resulting input at 200th iteration

noticed that the convergence rates of iterative solution
method and receding horizon control method are lower
than that of the exact solution of constrained QP prob-
lem. The convergence rate can be further improved by in-
creasing the iteration number in the iterative solution or
by enlarging the horizon in the receding horizon method.

7 Conclusion

Following the success of (unconstrained) norm-optimal
iterative learning control, this paper discusses iterative
learning control for linear systems with convex input
constraints, a situation that approximates to situations
met often in practice. First, the constrained ILC prob-
lem has been formulated in a novel successive projec-
tion framework. Then, based on this projection method,
two algorithms have been proposed to solve the con-
strained ILC problem. It has been shown that, when
perfect tracking is possible, both algorithms can achieve
perfect tracking whereas one algorithm needs much less
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computational effort. When perfect tracking is not pos-
sible, both algorithms have been shown to provide use-
ful approximate solutions to the constrained ILC prob-
lem but that (1) the asymptotic error will be non-zero
and (2) the computational complexity and convergence
properties of the algorithms do differ. These observa-
tions should be taken into account when choosing the al-
gorithm, which requires a compromise between the per-
formance/accuracy and the computational cost. The ef-
fect of weighting matrices on the performance of the al-
gorithms has also been discussed and numerical simula-
tions have been given to demonstrate their effectiveness.

For completeness, two methods are proposed to solve the
large scale QP problem arising in Algorithm 1. However,
a more accurate and faster solver would be useful. This
topic is worthy of further development. There is also
more work that needs to be done to extend the results
in this paper to nonlinear systems.

Finally, although the presentation has concentrated on
sampled data systems (for reasons of both simplicity and
practical relevance), the Hilbert space context of succes-
sive projection indicates that the ideas and results apply
more widely and, in particular, to the case of continu-
ous time systems with no change in the abstract form of
the algorithms or results. The realization of these results
will however change.
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