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Abstract: The effects of cubic nonlinear damping on the system output spectrum are 

theoretically studied through a dimensionless mass-spring-damping system model subject 

to a harmonic input, based on the Volterra series approximation. It is for the first time 

shown theoretically that the cubic nonlinear damping has little effect on the system 

output spectrum at high or low frequencies but drives the system output spectrum to be 

an alternative series at the natural frequency 1 such that the system output spectrum can 

be suppressed by the cubic damping.  
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1  Introduction 
       

Suppression of system output vibration covers a wide range of applications such as active 

control or isolation of the foundation vibration in many engineering systems [5]. 

Traditionally, an increase in damping can reduce the response at the resonance. However, 

this is often at the expense of degradation of isolation at high frequencies [4]. Some 

optimization methods have been proposed to deal with this problem, such as H-infinity 

control, �skyhook� damper, repetitive learning control, and optimization etc [4, 6, 9, 19]. 

On the other hand, it shall be noted that, exploitation of nonlinearities for improving the 

performance of vibration systems has also drawn the attention of researches [10-12, 14, 

20]. Although nonlinearity complicates the analysis of system output response, it may 

provide superior performance for specific applications as demonstrated in Jing et al [14]. 

Frequency domain analysis for damping systems is also reported in some publications 

[19], which however focused mainly on linear damping. Recently, some progress has 

been achieved in the analysis of nonlinear systems in the frequency domain based on 

Volterra series approximation theory [1, 7, 8, 15-17]. For these reasons, frequency 

domain analysis of a cubic nonlinear damping is theoretically performed as a case study 

in this paper for a dimensionless mass-spring-damping system model under harmonic 

excitation. Some important properties of the nonlinear damping are revealed and 

demonstrated theoretically. These may provide a useful insight into the understanding of 

nonlinear damping and the design of nonlinear vibration systems to suppress output 

vibration.  
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2  A dimensionless vibration system and its frequency response 
functions 
       

Consider a SDOF nonlinear mass-spring-damping system as show in Figure 1. The 

dynamics of the system can be described by 

)()()())(()( 2

21 tutzktztzcctzm c ′=′+′′++′ &&&&  

In this study, suppose the input u(t) to be a harmonic excitation given by 
)sin()( tAtu ′Ω=′  

which can be transformed into a dimensionless format as 
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which is the transmitted force from u(t) to the base. The dimensionless model (1a) can be 

found in many engineering systems, usually acting or known as a vibration isolator [3, 12] 

as shown in Figure 1 with a nonlinear damping, or be found in circuit systems as shown 

in Figure 2 with a nonlinear resistor. 

 
Fig. 1  A mass-spring-damping system with nonlinear damping 

 
Figure 2. A similar circuit system with nonlinear resistor 

       

Note that there is a cubic nonlinear damping terms in (1a). The objective of this study is 

to analyze the effect of the nonlinear damping on the system output response in the 

frequency domain, and therefore to demonstrate some notable advantages of the 

nonlinear damping compared with the linear damping known in the literature.  
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The frequency domain analysis of nonlinear systems can be carried out based on the 

Volterra series expansion theory. It is known that, nonlinear systems can be approximated 

by a Volterra series up to maximum order N in the neighbourhood of the zero equilibrium 

[2] as 
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where ),,( 1 nnh ττ L is called the nth-order Volterra kernel. The generalized frequency 

response function (GFRF) is defined as [13] 
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which provides a basis for the frequency domain analysis of nonlinear systems. In order 

to conduct the frequency domain analysis of the cubic nonlinear damping, the GFRFs and 

output spectrum of system (1) can be obtained by using some recently developed 

results[15-17]. These are summarized in the following Lemmas. 

       
Lemma 1. The GFRFs for the relationship between u(t) and y(t) of model (1) can be 

determined as: for n=0,1,2,3,�  
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where for n=0, 1,2,3,�  
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Proof. See Appendix A. Ƒ 

       

Therefore, based on (4-6), the GFRFs for the relationship between y(t) and u(t), can be 

determined up to any high orders. According to the results in [15, 17], and noting that 

there is only one nonlinear term with coefficient 2ξ , it can be obtained that the nth-order 

GFRF for the relationship between y(t) and u(t) can be expressed as for n=0,1,2,3,� 

),,(),,( 12112212112 ++++ ⋅= nn
n

n
y
n jjfjjH ωωξωω LL                              (7a) 
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0),,( 212 =n
y
n jjH ωω L                                                (7b) 

From the results in [16], it can be seen that ),,( 12112 ++ nn jjf ωω L is a function of 

)(1 i
x jH ω with degree 2n+1 and also a function of Lj(.) with degree n. Also from the 

recursive computation above, it can be verified that the complex valued 
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Assume that )()( 1111 ωω jHjf x= for n=0 in (7a). This can also be proved rigorously by 

mathematical induction which is straightforward. Equation (8) can be determined 

explicitly from equations (4-6). 

       
Lemma 2. The system output frequency response is 
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Proof. See Appendix B. Ƒ  

       

Equations (9a-c) are a qualitative description of the output spectrum of model (1), which 

facilitates the analysis in the following section. )(0 ωjY  denotes the effect of the linear part 

of the system, and )( ωjYn for n=1,2,3,� denotes the effect of the nonlinear damping. The 

detailed output spectrum can be determined by following the proof of Lemma 2 in 

Appendix B.  

 

3  Analysis based on the frequency response functions 
       

From Equations (9a-c), it can be seen that the nonlinear damping drives the system output 

spectrum to be an infinite series. When the nonlinear damping is zero, i.e., 02 =ξ , then 

the system is recovered to a linear system whose output spectrum is )(0 ωjY . In order to 

demonstrate the effect of the nonlinear damping on the system output spectrum, the 

following two cases are discussed. Assume 10 ξ≤  and 20 ξ≤ . 
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(1) Magnitude of )( ωjY  when |ω -1| is much larger than 0 
 

It follows from (6f) that  
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      Consider two cases in the following: 1>>ω and 1<<ω . For comparison, study the 

magnitude of the linear part in the output spectrum at first. It follows from (9b) that  
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When 2ξ =0, the magnitude of the system output spectrum will be guided by (11). It can 

be seen that, an increase of the linear damping parameter 1ξ will result in a decrease of the 

magnitude at 1=ω  but an increase of the magnitude at higher frequency, and 

5.0)(0 →ωjY when 0→ω . However, the nonlinear damping will not bring noticeable 

increase for the magnitude of the system output spectrum at higher or lower frequency 

than 1 as discussed below. 

 

      Case 1: high frequency response, i.e., 1>>ω  
       

Using (10) and (9c), it can be derived that for n>0 and 1>>ω  
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)()( 0 ωω jYjY → . Therefore, it can be concluded that, after the nonlinear damping is 

introduced, the magnitude of system output spectrum may not be obviously increased at 

higher frequencies compared with the case without the nonlinear damping being 
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introduced. Thus the nonlinear damping has little effect on the output spectrum of system 

(1) at high frequency. This may be held even for a larger but finite 2ξ .  

 

      Case 2: low frequency response, i.e., 1<<ω  
       

Similarly, using (10) and (9c), it can be derived that for n>0 and 1<<ω  
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From (12b), it can be seen that, when 1<<ω  and for a bounded 2ξ , 0)( →ωjYn , thus 

)()( 0 ωω jYjY → . Therefore, after the nonlinear damping is introduced, the magnitude of 

system output spectrum is not obviously increased at lower frequencies compared with 

the case without the nonlinear damping being introduced. Thus the nonlinear damping 

has also little effect on the output spectrum of system (1) at lower frequency. 

 

      The following discussion will show that a proper nonlinear damping will reduce the 

magnitude of system output spectrum at frequency 1≈ω . 

 

(2) The frequency characteristic of )( ωjY  at frequency 1≈ω  
       

For any C∈υ (the set of all the complex numbers), define  

⎥
⎦

⎤
⎢
⎣

⎡
=

))((0

0))((
)(

υ
υ

υ
IMAGsign

REALsign
signc                                (13) 

where 
⎩
⎨
⎧

<−
≥+

=
01

01
)(

x

x
xsign  for ℜ∈x , )(υREAL is the real part of υ  and )(υIMAG is the 

imaginary part of υ . Obviously, signc(.) ≠ 0, signc(.)
-1

 exists and signc(.)
-1

=signc(.).  
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      The traditional definition for the alternating series can refer to [18]. The following 

result can be established.  
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Theorem 1. Consider the dimensionless system (1). At around natural frequency 1, the 

cubic nonlinear damping drives the system output spectrum to be an alternating series if 

the linear damping parameter 1ξ  is sufficiently small, i.e., 31 <<ξ .  

 

Proof. By using this function, it can be derived that  
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where
⎪⎩

⎪
⎨
⎧

≥−

=
=

3if))((

1if2)(

ijijij

ijij

ij
ppsign

ppsign

δπ

π
θ , 0≥ijδ and 0→ijδ when 1and1 1 <<>> ξijp . Thus 

1

1
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=

− ij
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1±=ijp corresponds to ωωω jjj jll ±=++ )()1( L , and 
)(1 ω

ω
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is a positive real number in 

this case. However, 3≥ijp corresponds to ωωω ijjll jpjj =++ )()1( L , and 
)(1 ω

ω

ij

ij

jpL

jp

−
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approximately a pure negative or positive imaginary number. Note that there are more 

cases for ωωω jjj
ijll ±=++ )()1( L than those for ωωω

ii ijjll jpjj =++ )()1( L  ( 1>
iijp ). For 

example, let ji=5, then there are 3

5C cases for ωωω jjj ll =++ )5()1( L , but only one case for 

ωωω 5)5()1( jjj ll =++L  and 1

5C cases for ωωω 3)5()1( jjj ll =++L . Similarly, there are more 

cases for )()1( ijll jj ωω ++L to be a smaller number. And considering the multiplying 

terms∏
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(1) the largest magnitude value when the angular is 2/π  or 2/3π− (+2kπ ) is 
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Thus (14) gives for n>0, 1−=+ ))(())(( 1 ωω jYsigncjYsignc nn . Furthermore, if 1≈ω , it can be 

derived that 
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⎦
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⎢
⎣
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which yields 1−=))(())(( 01 ωω jYsigncjYsignc . This shows that the output spectrum (9a), i.e., 
L+++= )()()()( 210 ωωωω jYjYjYjY , is an alternating series at frequency 1≈ω  for a 

sufficiently small 1ξ . This completes the proof. Ƒ 

       

Therefore, the nonlinear damping drives the system output spectrum to be an alternating 

series at the natural frequency. There are contradictions between different terms in the 

series. Thus this may result in suppression of the system output spectrum for a proper 

nonlinear damping parameter. The following result can be obtained.  

       
Corollary 1. Consider the dimensionless system (1). At around natural frequency 1, there 

exist 2ξ >0, if the linear damping is sufficiently small, i.e., 31 <<ξ , and 220 ξξ <<   then the 

system output spectrum is convergent and the magnitude of the output spectrum can also 

be expressed into a convergent alternative series and can be suppressed  for 220 ξξ << .  

 

Proof. From Lemmas 1-2, the system output spectrum at around natural frequency 1 can 

be written as 
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From Theorem 1, it is an alternative series. From [2] and the continuity of )( ωjY  in 2ξ , 
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Note that (17) is an alternating series. That is, 0))(
~

)(
~

( ≤− ωω jYjYREAL ji for any i+j=odd 

integer. Therefore, for n=2k+1, 0)(
~

)(
~

12

0

12 <−∑
+

=
−+

k

i
iki jYjY ωω . This proves that (18) is an 

alternating series. Since (17) is convergent, (18) is also convergent. (18) further gives 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−+−=

∂

∂
=

∂

∂

∑ ∑
= =

−
−

,...2,1 0

1

2210

2

2

2

)(
~

)(
~

))(
~

)(
~

(
)(2

1

)(

)(2

1)(

n

n

i
ini

n jYjYnjYjYREAL
jY

jY

jY

jY

ωωξξωω
ω

ξ
ω

ωξ
ω

 

Because ))(
~

)(
~

( 10 ωω jYjYREAL − <0, it is obvious that there must exist 0< 2
�ξ < 2ξ  such that 

0
)(

2

<
∂

∂

ξ
ωjY

for 22
�0 ξξ << . Note that ∑ ∑
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− −
,...2,1 0

1

2 )(
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~

n

n

i
ini

n jYjYn ωωξ  is also an alternative series, 

thus in practice, it may also be negative under certain conditions. Hence, there must exist 

2
�ξ < 2ξ < 2ξ , such that 0

)(

2

<
∂

∂

ξ
ωjY

for 220 ξξ << . ͚ 

       

Based on the discussions above, it can be concluded that the nonlinear damping for the 

dimensionless system (1) has the following properties: 

(1) It has trivial effect on the system output spectrum at high or low frequencies. 

(2) Given a proper small linear damping, the nonlinear damping drive the system output 

spectrum to be a convergent alternative series, and the magnitude of the output 

spectrum can be decreased by the increase of the nonlinear damping at the natural 

frequency. 

 

4  Simulation study 
       

To verify the theoretical analysis results above, computation of the output spectrum of 

system (1) can be conducted up to the 5
th

 order according to Lemma 1 and Lemma 2. The 

GFRFs up to the 5
th

 order are 
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Therefore, the output spectrum is  
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Let 5.01 =ξ , then (6f) gives L1( ω ′j )= ( ) )5.0)(1()()(1 22

1 ωωωωξ ′⋅+′−−=′+′+− jjj , thus 

( ) )5.01()()(1)( 22

11 ωωωωξω jjjjL ⋅+−−=++−=                                 (18a) 

)5.01()( 2

1 ωωω jjL ⋅−−−=−                                                               (18b) 
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and it follows from (6e) that 
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Therefore,  

LL+−−++−= 2

22 )1736.24075.108(6)5.01()1( ξξ jjjY                        (19) 

Obviously, it is an alternating series. It can be verified by simulation that the magnitude 

of the output spectrum at the natural frequency 1=ω  can be reduced when 2ξ  is increased 

(See Figure 3 and Figure 4). Figure 3 is obtained by using the first three terms of the 

series (19). Since only the first three terms of (19) are used, it is only valid for a small 2ξ  

as shown in Figure 3. Figure 4 is a simulation result. For comparison, the magnitude 

characteristics of the system output spectrum with respect to the linear damping 

parameter 1ξ  under the condition 2ξ =0 and those with respect to the nonlinear damping 

parameter 2ξ  under the condition 1ξ =0.5 are studied, respectively (See Figures 5-7). In 

Figures 7 - 8, the results for 1ξ =0.5 or 0.54, 0.75 and 2ξ =0.028, 0.25 are studied. 

Compared with the linear damping, the nonlinear damping holds the magnitude of system 

output spectrum similar to the corresponding linear damping case for much higher or 

lower frequencies than 1 but reduce the magnitude to a lower level at around the natural 

frequency. However, although an increase of the linear damping will reduce the 

magnitude at around frequency 1, yet it also increases largely the magnitude of output at 

high or low frequencies.  
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Figure 3.  Theoretical computation of the magnitude of system output spectrum for 

different nonlinear damping parameter 2ξ   with 1ξ =0.5 at natural frequency 1=ω  
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Figure 4.  Simulation test for the magnitude of system output spectrum for different 

nonlinear damping parameter 2ξ with 1ξ =0.5 at natural frequency 1=ω  
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Figure 5.  Magnitude characteristics of system output spectrum with respect to frequency 

ω and different linear damping 1ξ  
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Figure 6.  Magnitude characteristics of system output spectrum with respect to frequency 

ω and different nonlinear damping 2ξ  with 1ξ =0.5 
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Figure 7.  Magnitude characteristics of system output spectrum with respect to frequency 

ω and different nonlinear damping 2ξ  and 1ξ  
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Figure 8.  Magnitude characteristics of system output spectrum with respect to frequency 

ω and different nonlinear damping 2ξ  and 1ξ (�*�from simulations) 
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5  Conclusions 
       

The cubic nonlinear damping is studied in the frequency domain through a dimensionless 

vibration system model actuated by a harmonic input. Theoretical analysis and simulation 

show that the cubic nonlinearity drives the system output spectrum to be an alternative 

series at the natural frequency 1, which can be used to suppress the magnitude level of 

the output spectrum, and the magnitude frequency characteristics of the system output 

spectrum at higher or lower frequencies than the natural frequency 1 after the cubic 

nonlinear damping is introduced is very similar to those before the cubic nonlinear 

damping is introduced. These results can provide a significant insight into the design of 

active and passive nonlinear vibration systems in practice. Further study will extend these 

results to a more general case.  

 

Appendix A: Proof of Lemma 1 
       

To compute the GFRFs for system (1), consider a more general model described by the 

following nonlinear differential equation (NDE) 
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c10(1)= 1ξ , c30(111)= 2ξ , c01(0)=-1, K=2, M=3 and all other parameters zero. 

       

For model (A1), the GFRFs can be computed through an algorithm provided in [1] 
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To obtain the frequency response functions for the SDOF vibration system (1), the 

system can be regarded that it has one input u(t) and two outputs x(t) and y(t). The 

GFRFs for the relationship between y(t) and u(t) are dependent on the GFRFs for the 

relationship between x(t) and u(t). Therefore, the later are derived first in the following.  

       

By the parametric characteristic analysis in [15], the nth-order GFRF for the relationship 

between x(t) and u(t) can be expressed as 
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According to the results in [17], for model (1)  
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Note also that there is only one nonlinear term with coefficient c3,0(1,1,1), thus it can be 
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Based on equations (A8-14), the GFRFs for the relationship between y(t) and u(t) can be 
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Noting that 1)0(~
0,1 =c , 10,1 )1(~ ξ=c , 20,3 )1,1,1(~ ξ=c and other parameters of form ),,(~
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Using (A14) yields for n>0 
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This completes the proof. Ƒ 

 

Appendix B: Proof of Lemma 2 
       

When the system input is a multi-tone function described by 
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the system output frequency response function can be obtained according to [7], 
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Using the GFRFs determined by equations (4-8) for the relationship from u(t) to y(t), the 

system output spectrum can then be determined by substituting (8) in (B2) gives 
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For the specific input function (1b), it can be obtained from (B2) that  
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where Fd is the magnitude of the input signal, i.e., Fd =1. Note that the condition 
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+121 nkk L means that there are n frequencies ωω −=

lk  and n+1 frequencies ωω =
lk . 
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Substituting these equations into (B3), (9a-c) can be obtained. This completes the proof. 
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