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Abstract: The effects of cubic nonlinear damping on the system output spectrum are
theoretically studied through a dimensionless mass-spring-damping system model subject
to a harmonic input, based on the Volterra series approximation. It is for the first time
shown theoretically that the cubic nonlinear damping has little effect on the system
output spectrum at high or low frequencies but drives the system output spectrum to be
an alternative series at the natural frequency 1 such that the system output spectrum can
be suppressed by the cubic damping.
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1 Introduction

Suppression of system output vibration covers a wide range of applications such as active
control or isolation of the foundation vibration in many engineering systems [5].
Traditionally, an increase in damping can reduce the response at the resonance. However,
this is often at the expense of degradation of isolation at high frequencies [4]. Some
optimization methods have been proposed to deal with this problem, such as H-infinity
control, “skyhook” damper, repetitive learning control, and optimization etc [4, 6, 9, 19].
On the other hand, it shall be noted that, exploitation of nonlinearities for improving the
performance of vibration systems has also drawn the attention of researches [10-12, 14,
20]. Although nonlinearity complicates the analysis of system output response, it may
provide superior performance for specific applications as demonstrated in Jing et al [14].
Frequency domain analysis for damping systems is also reported in some publications
[19], which however focused mainly on linear damping. Recently, some progress has
been achieved in the analysis of nonlinear systems in the frequency domain based on
Volterra series approximation theory [1, 7, 8, 15-17]. For these reasons, frequency
domain analysis of a cubic nonlinear damping is theoretically performed as a case study
in this paper for a dimensionless mass-spring-damping system model under harmonic
excitation. Some important properties of the nonlinear damping are revealed and
demonstrated theoretically. These may provide a useful insight into the understanding of
nonlinear damping and the design of nonlinear vibration systems to suppress output
vibration.



2 A dimensionless vibration system and its frequency response
functions

Consider a SDOF nonlinear mass-spring-damping system as show in Figure 1. The
dynamics of the system can be described by
mZ(t") + (C, + C,z(t") ") z(t") + Kk z(t") = u(t’)

In this study, suppose the input U(t) to be a harmonic excitation given by

u(t’) = Asin(Qt")
which can be transformed into a dimensionless format as

X(1) + & X(1) + &%) + (1) = u() (la)
ut) = kisin(a)t) (1b)
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k=1 in what follows. Consider the output of interest for model (1ab) as
Y(O) = £X(0) + &% ©) + X(1) (lc)
which is the transmitted force from u(t) to the base. The dimensionless model (1a) can be
found in many engineering systems, usually acting or known as a vibration isolator [3, 12]
as shown in Figure 1 with a nonlinear damping, or be found in circuit systems as shown
in Figure 2 with a nonlinear resistor.
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Fig. 1 A mass-spring-damping system with nonlinear damping

. i

C L

F;. For convenience, let

u(t)

Figure 2. A similar circuit system with nonlinear resistor

Note that there is a cubic nonlinear damping terms in (1a). The objective of this study is
to analyze the effect of the nonlinear damping on the system output response in the
frequency domain, and therefore to demonstrate some notable advantages of the
nonlinear damping compared with the linear damping known in the literature.



The frequency domain analysis of nonlinear systems can be carried out based on the
Volterra series expansion theory. It is known that, nonlinear systems can be approximated
by a Volterra series up to maximum order N in the neighbourhood of the zero equilibrium
[2] as

yO=3[" [ nmr Jut-e)dr (2)

where h (z,,---,7,) i1s called the nth-order Volterra kernel. The generalized frequency
response function (GFRF) is defined as [13]

Hn(jwla“'a an) :J.j; Ij; hn(T],'-',Tn)CXp(—j([UlTI +"'+wnrn))drl "'dTn (3)
which provides a basis for the frequency domain analysis of nonlinear systems. In order
to conduct the frequency domain analysis of the cubic nonlinear damping, the GFRFs and

output spectrum of system (1) can be obtained by using some recently developed
results[15-17]. These are summarized in the following Lemmas.

Lemma 1. The GFRFs for the relationship between u(t) and y(t) of model (1) can be
determined as: for n=0,1,2,3,...
szn(ja)l"”9ja)2n)=0 (4)
and
HZyn+1(jw19“'-7 jw2n+1) - ) - - - - (Sa)
= (1 + 51 ' (Ja)l +eet ]a)2n+l))' H2n+1(]a)15”" Jw2n+1) + 5(5(n))§2H2n+1,3(1w1""’ Ja)2n+1)
(5a) can also be written as for n>0,

v .
H (o, jo,,,,)
2n-1

jo, +-+ jo,..,)’ = . . .
:_52 (J : ) 2n+1) Z HHri(Ja)XH"“’Ja)XH‘)(Ja)XH+"'+wa+r‘) (Sb)

L2n+1(Ja)1 teeet Ja)ZnH) r-rp=1 i=1

p

> r=2n4
where for n=0, 1,2,3,...
Hzxn(jwla"'aijn):O (63)
H jo,, -, jo,,,
H2Xn+1(ja)1a"'aja)2n+1):§2 Znﬂ,S(le -Ja)z 1) (6b)
Lo (Joy +-- 4 Joo,,)
2n-1
H2n+1,3('):ZHiX(jww'”sjwi)H2n+1-i,2(ja)i+la"'ajw2n+1)(ja)1+"'+ja)i) (6C)
i=l
H2n+1,1(jw1:"':jwzml):|'|2xn+1(ja)1»"'»ja)zm)(j(‘%""""‘ja)zm)k1 (6d)
. -1
HX () = — (6¢)
1 : L (jo,)
|—2n+1(jw1+‘”+jw2n+1)=_<1+‘f1(ja)1+‘”+jw2n+1)+(ja)1+”'+ja)2n+1)2> (6D

Proof. See Appendix A. O

Therefore, based on (4-6), the GFRFs for the relationship between y(t) and u(t), can be
determined up to any high orders. According to the results in [15, 17], and noting that
there is only one nonlinear term with coefficient &,, it can be obtained that the nth-order

GFREF for the relationship between y(t) and u(t) can be expressed as for n=0,1,2,3,...

H2yn+1(ja)1"”’ ja)2n+1) :gzn ! f2n+1(ja)15”'9 ja)2n+1) (73)



szn(jwlz'“zjwln):o (7b)
From the results in [16], it can be seen that f,  (jo,, ,j®,,) is a function of
H(jo,) with degree 2n+1 and also a function of L;j(.) with degree n. Also from the

recursive computation above, it can be verified that the complex valued
function f,,, (jo,, -, jo,,,)in (7a) can be written as

f2n+1(ja)la"'s ja)znﬂ)

2n+1 n-1
(jo, +-+ jw2n+l)2 'H(jw1)H1X(jwi)'H(jw|(1) +eeet jwl(j,)) (8)
i=1

= — E i i=1
- n-1

Civ>osdng) i i i i
jiekiisksn-1 La(Jo, +--+ Jw2n+l)'HLj‘ (le(l) +eeet le(j‘))
i=1

Assume that f,(jo,)=H(je,) for n=0 in (7a). This can also be proved rigorously by
mathematical induction which is straightforward. Equation (8) can be determined
explicitly from equations (4-6).

Lemma 2. The system output frequency response is

N
Y(jo) =Yy(jo)+ Y Y, (jo) (92)
T __de(1+j§1w)Hlx(ja))
Y, (jo) = : (9b)
_ i(Ey JGoH (o) (joH (o) (jo)
Vi(jwy=gp AFa) | | (. )
2 Ll(la))

(9¢)

i jwl(l) +eeet jwl(j,)

_ Lj‘(ja)l(l) teeot jwl(j‘))

O Tt O =0 (s o
jie{2k+1|1<k<n-1}
190 771G 1 when n=1

n-1
for n>0 with assumption that Z H : :
G o) Lo+t o)

jie(2k+1|1<k<n-1}

Proof. See Appendix B. o

Equations (9a-c) are a qualitative description of the output spectrum of model (1), which
facilitates the analysis in the following section. Y,(jw) denotes the effect of the linear part

of the system, and Y, (jw) for n=1,2,3,... denotes the effect of the nonlinear damping. The

detailed output spectrum can be determined by following the proof of Lemma 2 in
Appendix B.

3 Analysisbased on the frequency response functions

From Equations (9a-c), it can be seen that the nonlinear damping drives the system output
spectrum to be an infinite series. When the nonlinear damping is zero, i.e., & =0, then

the system is recovered to a linear system whose output spectrum is Y,(jo). In order to

demonstrate the effect of the nonlinear damping on the system output spectrum, the
following two cases are discussed. Assume0< ¢, and 0< ¢, .



(1) Magnitude of Y(jw) when | -1] ismuch larger than O

It follows from (6f) that

|L2n+1(ja)1 +ot j@,,)

=1+ & (9 + (19| = {1-0)" +(£,0)°

O+t 0y, =Q

J(Q2)? Q) >0? for Q >>1
ILNijfnlz{ @)= e (10a)

then

JI+(EQ)? =1 for Q <<1

and it follows from (6¢) that

— forw, >>1
H (o) =< {0 (10b)

|L (le)| 1 for o, <<1

Consider two cases in the following: o >>1and @ <<1. For comparison, study the
magnitude of the linear part in the output spectrum at first. It follows from (9b) that

JFaﬂ;@Huml I+ (o)’ I+ (o) (an
2 e+ (0] 20— + ()

When ¢&,=0, the magnitude of the system output spectrum will be guided by (11). It can

be seen that, an increase of the linear damping parameter & will result in a decrease of the

magnitude at w=1 but an increase of the magnitude at higher frequency, and
|\70(ja))|—>0.5 when o — 0. However, the nonlinear damping will not bring noticeable

¥, (je)| =

increase for the magnitude of the system output spectrum at higher or lower frequency
than 1 as discussed below.

Case 1: high frequency response, i.e., 0 >> 1

Using (10) and (9c¢), it can be derived that for >0 and & >> 1

2n+1

X/ 2 _
iojsgr G PIIOLZ@ g s )
n 2 2n+1 - .
S L, (jo)| R L Gorgy -+ ey
! 2ot je(2k+1f1<k<n 1 '
5|20+ 2
fn (F )2n+1 |a)(a) ) (a)) n-1 |a)l(1) +...+a}|(j‘)|
2 2+l 2 ’ Z Z 2
2 @ o+ vy =0 (g = (@) T @)
- j,e{2k+lr1£k£n—l}
NP > [ —
~ o2 QN 2nal
O+ O, =O (s n-1) i=1 |a)|(1) +"'+C()|“-‘)|
jiet 2k+1\1<k<n 1} Fr
1 1 1
n
<& > > peE (12a)

O+t =0 Cirs s dnan)
jief2k+1]1<k<n-1}

om (12a), it can be seen that, when »>>1 and for a bounded ¢, ,

\Z,(jw)|—>0 , thus
|Y( ja;)|—>\70( jo) . Therefore, it can be concluded that, after the nonlinear damping is

introduced, the magnitude of system output spectrum may not be obviously increased at
higher frequencies compared with the case without the nonlinear damping being



introduced. Thus the nonlinear damping has little effect on the output spectrum of system
(1) at high frequency. This may be held even for a larger but finite &, .

Case 2: low frequency responsg, i.e., o << 1

Similarly, using (10) and (9c¢), it can be derived that for >0 and w << 1

2n+1

= n (Fy )2n+] (i (w)? e |50|(1) o )|
Y.(jo)|<&; - - , :
| a)| oo |L](J60)| ww..%zn_lzw G('J,zkﬂzlikm ) 1—[|L (joyg, +-+ ja)lm)|
I \
2n+l 2n+l1 . 2 n-1
<§2n ( 2(!2)n+l ’ |a) 1 (a)) ’ Z Z |a)|(1) +'-'+a)|(ji)|

O+t O, =0 (;,2k 1[ 1) i=1
jie{2k+

=& 221n+1 SCR Z Z H|a’|u) +a’|(ji>| (12b)

O+ F 0, =0
i e{2k+1\1<k<n 1}

From (12b), it can be seen that, when w<<1 and for a bounded¢,,

\?n(jw)|—>o, thus
IY(jo) = Y,(jo). Therefore, after the nonlinear damping is introduced, the magnitude of

system output spectrum is not obviously increased at lower frequencies compared with
the case without the nonlinear damping being introduced. Thus the nonlinear damping
has also little effect on the output spectrum of system (1) at lower frequency.

The following discussion will show that a proper nonlinear damping will reduce the
magnitude of system output spectrum at frequency o ~ 1.

(2) Thefrequency characteristic of Y(jw) at frequency o ~1

For any v e € (the set of all the complex numbers), define
. {s gn(REAL(v)) 0 }
signc(v) = .
0 sign(IMAG(v))

(13)

1 x>0 . .
+1 0 for xe®, REAL(v) is the real part of v and IMAG(v) is the
<

imaginary part of v. Obviously, signc(.) = 0, signc(.)”" exists and signc(.)'=signc(.).

where sign(x) = {

Definition 1. Considering a series Sin €, i.e, SSS+S+HtS+...... , if the following
conditions hold,
(1) REAL(Ss,)IMAG(S,)REAL(S,., ) IMAG(s,.,) # 0, and additionally Signc(s,)Signc(S.+1)=-1 (2)
REAL(s,)IMAG(s,)REAL(s, ., )IMAG(s,,,) = 0, and additionally
SigN(REAL(s, )REAL(S,,,)) = -1 or sign(IMAG(s,)IMAG(s,,,)) =-1
then it is said to be an alternating series, where 1 is two-dimensional unitary matrix.

The traditional definition for the alternating series can refer to [18]. The following
result can be established.



Theorem 1. Consider the dimensionless system (1). At around natural frequency 1, the
cubic nonlinear damping drives the system output spectrum to be an alternating series if
the linear damping parameter ¢&, is sufficiently small, i.e., & <<3.

Proof. By using this function, it can be derived that

i(F,)™ |(Ja))H (Ja))| ja)H (Ja))) (jw)
p2n+l L(Ja))

L .

D D T 1 F

o+ g, =0 (s Iny) i Ly Uog ++ o)
e{2n+1\n12 3

signe(Y, (jw)) = signe| &' -

which further yields
signe(Y,,,, (jo)signe(Y, (jo)™ = signe(Y,,, (jo))signe(Y, (jo))

.\ . .
. Joygy +-+ oy
=sgng E I I b h) (14)
0+ g, =0 (- Ly Gaygy ++ o))
15{2n+3\n 0,2,...}

n-1 i i
. Ja)ll +...+Ja)IA
-signg Z Z H a0 )
O+ 4y =0 (i) o LiGag o+ Joy,)
J,e{2n+1\n 1,2,.}

Note that o, €{o,-w}, and the condition o, +--+ o, =, thus there are n+1 frequencies

equal to » and n frequencies equal to - @ . jo, + -+ ja,,, is the summation of j;
frequencies chosen from the 2n+1 frequencies, where j; is an odd number. Note also
that Z(.) includes all the possible cases for different values of o, € {w,-w} such

thatw, +---+ o, =w.Itcanbe verified that jo,, +---+ jo,;, = pjo for some odd integer p
satisfying |p|<n+2. Thus

signc Z Z ﬁ j%“ i ja.)l(j')

ey S ws S RS € [ TR (CTORY)

J,e{2n+1\n 1,2,.}
. e jpijw
=(-1)""signc R (15)
wk.*"‘*‘zuk:z,.. —o (jy. J%: ]f_lll_(pij‘w)2+§l(1pijlw)

Jezn+1\n 1,2,...}

_ (—1)""signc Z Z ﬁ jpi-j,a)

Lt O =0 (o) i=1 _Ll(inj,w)
jie 2n+1\n 1,2,.}
Consider % at w ~ 1 where p; is an odd integer satisfying |p;|<n+2.
ij
i i i5500(p;)
I L T L]

- Ll(JpUa)) plj + ng le \/(1_ p”) +(§1 p|1)2 J”



Si(\:]n(pij)”/2 if|pij|_1

where g, =1 _ ,6,20ands; —» 0when|pij| >>1land & <<1. Thus
sign(p; Nz —o6;) if | pij| >3
Py
————— =1/ when|p;| =1 (16a)
- L, (Jpj®) 1 | J|
and
in. —i(G=6)sgn(p;) — (=5 san(p;)
Bo e <& when [p, > 1 (16b)
-L(jpj®) \/p”?+§12 |pij|
+i .. .
p; =*1corresponds to jw,, +---+ jo,;, =*jo, and %15 a positive real number in
- w
. . . . jpija)
this case. However, ..|23 corresponds t0 ja,, +--+ jo,;, = jpyo , and “Lin)
-L{pjo

approximately a pure negative or positive imaginary number. Note that there are more
cases for ju +--+jo,;, =*jw than those for jo, ++jw, = jp,@ (|pij‘|>1 ). For

example, let ji=5, then there areC.cases for jo, +--+ jo,s = jo, but only one case for
jory ++ joys, = j50 and C; cases for jw,, +--+ jos = j3w. Similarly, there are more

cases for |jcom) oot jcol(j‘)| to be a smaller number. And considering the multiplying

n-1 iD.
termsH Jp” p in (15), it can be seen from (16) that H%IS a negative real
number only 1f there are only 2+4m (for m=0,1,2,...) terms with p;>1 in this
multiplication. Obviously, there are more other cases which have positive real parts.
Therefore, from the discussion above, there are more cases in which -z<

o P e
ar —— ___)<0. Especially, it can be seen that for the value of | | —————
e = (g, o =0 Bopecially H=ina
(1) the largest magnitude value when the angular isz/2 or -3z/2 (+2k ) is L% ;
ij 1
1

n-2 2

however, the largest magnitude value when the angular is - z/2 is also L.

ij 1
(2) the largest magnitude value when the angular is -z (+2k = ) 1is %5713
pij 1
< 3% ek however the largest magnitude value when the angular is 0 is —
1 1

Therefore, if ¢ is sufficiently small, i.e., & << 3, then the following equality can hold

. ip @ ' ipy @
sgng . > H L(jjp” |59 > Z H i

O+t oy =0 (e rnl) i=1 o+t O, =0 (1 L (Jp'lwa})
jie2n+l|n=1,2,..} ii e‘2n+3'1n 1,2,...}
which enables (15) to be
n-1 i 1
. Joygy +-F oy _
signd Z z o) ) — (-1)™" - const
O+ g1 =0 (o 1) i Ly (o) ++ o)
J,e{2n+1\n 1,2,..}



Thus (14) gives for n>0, signc(Y,,,(jw)signe(Y, (jo)) = —1. Furthermore, if o ~1, it can be

derived that

iFa(+j&oH (jo)
2

o . Ry 1 [-1 0
signe(Y, (j)) = signe(- )=Son- =l =

. — . . i(F. )2t (ja))HIX(ja))zn. joH X (jo) (]a))2
Slgl‘]C(Yl(Ja))):ggnc(é":zn.J(zgn)+1 | | ( ) )

L](jw)
_ F) oM G| & 1 0
= signe(&! - —2 | > | .2’_2):{0 1}:1

which yields signe(Y, (je))signe(Y, (jw)) = —1. This shows that the output spectrum (9a), i.e.,
Y(jo)=Y,(jo)+Y,(jo)+Y,(jw)+--- , is an alternating series at frequency w~1 for a
sufficiently small ¢&,. This completes the proof. O

Therefore, the nonlinear damping drives the system output spectrum to be an alternating
series at the natural frequency. There are contradictions between different terms in the
series. Thus this may result in suppression of the system output spectrum for a proper
nonlinear damping parameter. The following result can be obtained.

Corollary 1. Consider the dimensionless system (1). At around natural frequency 1, there
exist & >0, if the linear damping is sufficiently small, i.e., & <<3, and0<¢&, <&, then the

system output spectrum is convergent and the magnitude of the output spectrum can also
be expressed into a convergent alternative series and can be suppressed for 0<¢&, <&, .

Proof. From Lemmas 1-2, the system output spectrum at around natural frequency 1 can
be written as

Y(j@) =Yy (jo) + &Y (jo) + &Y, (jo) + - (17)
From Theorem 1, it is an alternative series. From [2] and the continuity of Y(jw) in &,,

there must exist Z >0, such that it is a convergent series for 0< ¢, < §=2 The magnitude of
Y(jw) can be evaluated by

Y(jo)" =Y(jo)Y(-jw)
=Y (jo) + &Y (jo) + EY, (jo) +- )Yy (- j@) + &Y (- j@) + EVy (- jo) +-+) (18)
= D VoY, (-io)

n=0,1,2,.. =0

For n=2k, it can be verified that
2k
D Yoy (o) =Y (jo)o (= jo) + - + Y (jo) (o) +-+ Yy (jo)Y, (- jw) >0

i=0
For n=2k+1, it can be derived that

2k+1

D N ((0)Yaer (@) =Yy (j0) Yoy (—j@) + - + Y (jOWiy (- j@) + -+ Vo, (j0)Yy (- @)

i=0

= REAL(Y, (j@)Yo, (= j@) +-- + Y (j0)Y,, (— j@))

10



Note that (17) is an alternating series. That is, REAL(Y,(j®)Y,(-j®)) <0 for any i+j=odd
2k+1
integer. Therefore, for n=2k+1, Y Y (jo)¥,, (-j®)<0 . This proves that (18) is an
i=0
alternating series. Since (17) is convergent, (18) is also convergent. (18) further gives
avde| 1 avdof
0, q¥(jo)| 0,

—1 V (i v i n-1 G " .
" ¥(jo)| {REALWO(Jw)YI (-lw)+&, n:lz’;wnfz ;Yi( jo)Y, (- Ja))}

Because REAL(Y, (jo)Y. (- ja)) <0, it is obvious that there must exist 0<&, <&, such that

aY(] A L ~ . . .

M <0foro<&, <&, Note that Y n& > V(jo)Y, (-je) is also an alternative series,
2 n=1,2,... i=0

thus in practice, it may also be negative under certain conditions. Hence, there must exist

Y(jo)

£,<E,<E,, such that <0foro<é¢, <&,. 0

2

Based on the discussions above, it can be concluded that the nonlinear damping for the

dimensionless system (1) has the following properties:

(1) It has trivial effect on the system output spectrum at high or low frequencies.

(2) Given a proper small linear damping, the nonlinear damping drive the system output
spectrum to be a convergent alternative series, and the magnitude of the output
spectrum can be decreased by the increase of the nonlinear damping at the natural
frequency.

4 Simulation study

To verify the theoretical analysis results above, computation of the output spectrum of
system (1) can be conducted up to the 5™ order according to Lemma 1 and Lemma 2. The
GFRFs up to the 5™ order are

) . . 1+§1'(j6()1)
Hly D=1 1 ! 'Hlx [ e —
(o) =0+& - Jon) Hi (o) =-—= 5
H;(jwl’“"jwznﬂ):SEzH3.,3(Ja)1a"'a.JC‘)3):§2H1x(10)1)"‘.H1X(]w3)'.(]wl)‘”(]a%)
Li(jo, ++ joy) Li(jo,++ jw,)

HY(jo, -, jo) = (1+& - (jo, +-+ o) - HI(joy,, jo,)
+§2H1X(ja)l)~-~Hlx(ja)3)~(ja)1)~-~(ja)3)
_EHM (@) HE (o) (j@)(j0y) (14 & -(jo, +-+ jo,))
Li(jo, ++ jo)
+&H(jo) - H (jo,)-(jo) - (jo,)

= £H ) H (00 (o)) IO

11



Ho(j@. |
st(ja)l,'”,ja%):é:z 5-’3(]601 -JwS)
Ls(Jo, +---+ Jos)

£ H1X(jw1)Hlx(jwz)st(jwp"'ajws)(jwl)(jwz)(jws+"'+jw5)
= - : - +H1X(ja)1)H3X(jwza"‘aja)4)H1X(jw5)(jw1)(ja)2+"'+ja)4)(ja)5)
Ls(Jo, +---+ Jos) - . _ ‘- . . . .
+Hy(jo, -, jo)H (jo)H (Jos)(jo, +--+ jo,)(Jo,)(|os)
jo, +-+ joos

Li(joy +-+ jos)

_ §22H1X(ja)l)~-~Hlx(ja)s)-(ja)l)~-~(ja)5)

j@,++ jo,
LS(ja)l teeet ](05)

Li(jo, ++ja,)

jo, +-+ jo,

Li(jo, +-+ jwy)

HY(jo,, -, jos)

:(l+§1 (Jo, +--+ jws))'st(jwla"',jw5)+§2H5,3(ja)1a' * Jos)

jo, +--+ jo
L3(ja)3 +eeet ]a)5)

:_(fzzHlx(ja)l)~-~Hlx(jw5)~(jwl)---(jws)-(jwl +ootjo)’?
Li(jo, +-+ jos)

jo, ++ o,
Li(jo,+ -+ jw,)

jo, ++ jo,

Li(jo, +-+ jw,)
Therefore, the output spectrum is
A
Y(jo) =Y, (jo)+ Zvn(jw)=7o(iw)+71(l'w)+72(iw)+”' (17a)
n=1
where

Zoos i+ iGeH (je)

Y, (jo) = > (17b)
. i [GomGel (ieH(jo)-(jo) 3@H (o) H (o) o
Vi(io)=¢ o5 3=¢,

2 L (jo) o 8L, (jo) (17¢)

_ g demiie)| HiGe) o
Y,(jo)==%- -
2 L (jo)

3 ( jostod o, jotetjo, ot o, J

oy o\ Loy ++jos) Lo, ++jo,) Li(jo +-+ o)

. xoio N* X 3 (17¢)
_g [doniGe) HiGe)o' 5 [ororie
3 L (jo)

o+ 0 L(jo, ++ jo,)

_ﬁ}(iw)H:(Jw)r-Hf(jw)-af{ 6jo_, “3jo___jio J
2° L (jo) L(jo) Li(-jo) L(j30)
Let & =0.5, then (6) gives Li( jo' )=—(1+ & (jo)) + (jo')?)=~(1- (")’ +0.5- jo') , thus
L(jo) =-(1+&(jo)+ (jo)*)=-(1-0" +0.5- jo) (18a)
L(-jo)=—(1-0"-05" o) (18b)
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L, (j30)=—(1-90° +1.5- jw) (18¢c)
and it follows from (6e) that
-1 1 1

H(jo)= = = 18d
(o) L(jo) 1-(0)’+&(jo) 1-0*+j0.50 (18d)
Then at the natural frequency o =1, it can be obtained that
Vo(jw)hj:l:_J(1+chla2))H1(Jw):_mo'sj)
o) .3-|(a>)H:(jw)|2~Hf(jw)-af_65
1) 5 =63 8L, (jo) =06,
4
_ 2 iao)H *(i ‘HX(iw)- o’ . Y .
YZ(Ja))(oﬂ:%kJW) I(Jw)| I(Jw) @ ( 6160 + 310) + ]30) ]
2 L (Jo) Lo L(-jo) L(j3o)
3] 2 2 .
=—6(18+———)&2 =—£2(108.4075 - 2.1
6(8+_8+1'5j)§2 £2(108.4075-2.1736 j)
Therefore,
Y(jl)=—(1+0.5))+6&, —(108.4075—2.1736j)&E) + -+ (19)

Obviously, it is an alternating series. It can be verified by simulation that the magnitude
of the output spectrum at the natural frequency @ =1 can be reduced when ¢&, is increased

(See Figure 3 and Figure 4). Figure 3 is obtained by using the first three terms of the
series (19). Since only the first three terms of (19) are used, it is only valid for a small ¢,

as shown in Figure 3. Figure 4 is a simulation result. For comparison, the magnitude
characteristics of the system output spectrum with respect to the linear damping
parameter & under the condition &,=0 and those with respect to the nonlinear damping

parameter &, under the condition & =0.5 are studied, respectively (See Figures 5-7). In
Figures 7 - 8, the results for & =0.5 or 0.54, 0.75 and &,=0.028, 0.25 are studied.

Compared with the linear damping, the nonlinear damping holds the magnitude of system
output spectrum similar to the corresponding linear damping case for much higher or
lower frequencies than 1 but reduce the magnitude to a lower level at around the natural
frequency. However, although an increase of the linear damping will reduce the
magnitude at around frequency 1, yet it also increases largely the magnitude of output at
high or low frequencies.
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Magnitude of output spectrum
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1.05¢

1.04 1 1 1 1 1 1 1 1 1 |
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

Nonlinear damping &,

Figure 3. Theoretical computation of the magnitude of system output spectrum for
different nonlinear damping parameter £, with &=0.5 at natural frequency w =1

13

1.2¢ B

Magnitude of output spectrum

05 1 1 1 1 1

Nonlinear damping &

Figure 4. Simulation test for the magnitude of system output spectrum for different
nonlinear damping parameter &, with & =0.5 at natural frequency o =1
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Magnitude of output spectrum

1
0 0.5 1 15 2 25 3
Frequency

Figure 5. Magnitude characteristics of system output spectrum with respect to frequency
o and different linear damping ¢

1.4-
e =0.001
— =01
1.2y — - - =0.028

Magnitude of output spectrum

1
0 0.5 1 15 2 2.5 3
Frequency

Figure 6. Magnitude characteristics of system output spectrum with respect to frequency
o and different nonlinear damping &, with & =0.5
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Figure 7. Magnitude characteristics of system output spectrum with respect to frequency
o and different nonlinear damping &, and &,
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Figure 8. Magnitude characteristics of system output spectrum with respect to frequency
o and different nonlinear damping &, and & (“*”from simulations)

16



5 Conclusions

The cubic nonlinear damping is studied in the frequency domain through a dimensionless
vibration system model actuated by a harmonic input. Theoretical analysis and simulation
show that the cubic nonlinearity drives the system output spectrum to be an alternative
series at the natural frequency 1, which can be used to suppress the magnitude level of
the output spectrum, and the magnitude frequency characteristics of the system output
spectrum at higher or lower frequencies than the natural frequency 1 after the cubic
nonlinear damping is introduced is very similar to those before the cubic nonlinear
damping is introduced. These results can provide a significant insight into the design of
active and passive nonlinear vibration systems in practice. Further study will extend these
results to a more general case.

Appendix A: Proof of Lemma 1

To compute the GFRFs for system (1), consider a more general model described by the
following nonlinear differential equation (NDE)

ST Y ki M)ﬂd y“)ﬁd uv _ (A1)

m=1 p=0 k; Ky, 4=0 i=p+l

where d* X(t)

=xt) , pto=m, Z() Z() Z(-) , M is the maximum degree of

k=0 K Kpeq=0 Kpeq=0
nonlinearity in terms of y(t) and u(t), and K is the maximum order of the derivative. It is
obvious that model (1a) is just a very special case of model (A1) with c¢;o(0)=1, c10(2)=1,
cro()=¢&,, c3o(111)=¢,, co1(0)=-1, K=2, M=3 and all other parameters zero.

For model (A1), the GFRFs can be computed through an algorithm provided in [1]
K
Ln(ja)l +eeet Ja)n) Hn(ja)l""’ Ja)n) = Zco,n(kﬂ'”’kn)(ja)l)kI '”(ja)n)kn

K k=0
n-1 n-q K 9 K
+Z Z Cp,q(kl’.”’kp+q)(H(ja)n—q+i) p7‘)Hn—q,p(ja)la‘”’ja)n—q) (Az)
g=1 p=1 K ,Ky,q=0 i=1
n K
3 > ok k) H o (j@y, e, jo,)
p=2 ki, kp
—p+1 ‘
Hn,p('): zHi(jwla'“z jwi)Hn—i,p—l(jwiHa"'a an)(le +"'+jwi) ’ (A3)
i=1
Hn,l(ja)h'"aja)n):Hn(ja)l,"':ja)n)(ja)l+"'+ja)n)k] (A4)

K
where Ly( jo, +++ jo, ):—ch(k1 Yjo, +--+ jo,) . Moreover, equation (A3) can also be

written as

n—p+1

Hn,p(ja)la"'a ja)n): Z HH (]a)rxﬂ’ "a rx+r )(]a)rxﬂ +oet Ja)r><+rl)kI (AS)
re-rp=li=1
Zr,:n

i—1
where X =>r, .
x=1
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To obtain the frequency response functions for the SDOF vibration system (1), the
system can be regarded that it has one input u(t) and two outputs x(t) and y(t). The
GFRFs for the relationship between y(t) and u(t) are dependent on the GFRFs for the
relationship between x(t) and u(t). Therefore, the later are derived first in the following.

By the parametric characteristic analysis in [15], the nth-order GFRF for the relationship
between x(t) and u(t) can be expressed as

Hi(o j0,) = CE(H (o, j@y) Tojay,-, jo,)
where f.(jo,,-, jw,)1s a complex valued vector, “® ” and “®” are two operators defined
in [15], CE(H,f(jwl,~~~, ja)n))is referred to as the parametric characteristic of the nth-order
GFRF

oy

X i n-1n-q « 2 <
CE(H :(Ja)l PR Ja)n)) = CO,n ® (q@l 5—2 Cp,q ® CE(H n—-g-p+l ())] ® (Cn,o ® p@z Cp,O ® CE(H n-p+l ())

According to the results in [17], for model (1)

CE(H,(jo,, -, jo,)) = CE(H (jo,, -, j@,))
Note also that there is only one nonlinear term with coefficient ¢;(1,1,1), thus it can be
obtained that the nth-order GFRF for the relationship between y(t) and u(t) can be
expressed as for n=0,1,2,3,...

H (o, jo, ) =8 - 1,0, (Jo, -, joy,,) (A6)

szn(ja)l"”’ja)Zn):O (A7)

Hence, only odd order GFRFs need to be computed. From (A2) it can be derived that for
the first order GFRF,

H(jo) =— (A8)
: : L(jo)
and for n=1,2,3,...
H2n(jw17"'7jw2n):0 (A9)
X . . f H n+ (j(l),"',j(l)m)
H2n+1(Ja)17"'7Ja)2n+1): 22 },3 1 f Sl (AlO)
L2n+l(]a)1+"'+Ja)2n+1)
2n-1
H2n+1,3('):ZHiX(jwlﬁ"'ﬁjwi)HZnH—i,Z(jwiHr“'rjw2n+l)(jwl+"'+jwi) (All)
i=1
H2n+1,1(ja)l""’ja)Znﬂ):|-|2><n+1(ja)1>"'»ja)2n+1)(ja)l"_'""’_J.C()ZnJrl)|<1 (AlZ)
L2n+1(jw1+"'+jw2n+l)=_<1+‘§1(ja)l+"'+jw2n+1)+(ja)1+"'+ja)2n+1)2) (A13)
From (AS), (A11) can also be written as
a1 3
Hons (o, j@,0,) = Z HH:(ijHa'“sja)x“‘)(ijn*"'*ijm) (A14)

Based on equations (A8-14), the GFRFs for the relationship between y(t) and u(t) can be
obtained by applying the results in [17]. For n=0,1,2,3,...

2n+l1 1

szn(ja)]s”'s ijn) =0and H2yn+1 ja)l""’ jw2n+1) :Z Zap,o(kl’”'9kp)H2n+l,p(ja)l""’ jw2n+l)

p=1 k, ,kp:O
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Noting that€,(0)=1, € ,(1)=¢, €,@1L) =¢, and other parameters of form €, ,(k,,---.k,)
zero and using (A11), it can be further obtained that for n=0,1,2,3,...
Howi (J@y,5 j@300) = C o (O H 5 (J@1, 7, J0,0,) +C o (DH o (J@1, 0, [05,1)
+ 5(5(71))63,0 (LLDH 5 (j@y, s joy,,)
Hon(on, s jon) + EH L (To, s jo,,) - (Jo + + [o,,,)
+0(6(MNEH 5 (J@y, s Jwy,,)
=(1+& - (Jo, +++ jor0,)) Hipy (Jor, [0, + S(S(MNEH s (j@y, - [@050,)  (ALS)

where §(n) = {:} nl= 0 . From (A10) and (A15), it can be obtained that for n>0,
cise

2y+1(1a)1’ : ’ja)ZnH)
:(1"'51 ]w1+"'+jw2n+1))' 2Xn+1(jw19“' jw2n+l)+§2H2n+],3(jw]9'“9jw2n+l)
\52 2n+13(]a)1» 5 @)

2n+1(]a)1 -+ ja)2n+1)

(1+§1'(ja)1 ot jwyn,))

+‘52H2n+1,3(jw1:"': jo,n.)

(jwl+"'+jw2n+1)2 . .
e H @y s | Oy,
52 L2n+1(j ]+"‘+j 2n+1) 2n+1,3(J 1 j 2n 1)

Using (A14) yields for n>0

H2yn+1(ja)la"'aja)2n+l)

(jo +-- +jw2 )’ 22“ H - Al6
- _ n+ H R ‘ 4+t ; ( )
6{:2 LGﬂ(ja)l +ja)2n+1)rl ~ (JwXH JwX+ )(JwXH J(OX#—‘)

Zr =2n+1

This completes the proof. O
Appendix B: Proof of Lemma 2

When the system input is a multi-tone function described by

u(t) :ZK:|Fi|cos(a)it+4Fi) (B1)

the system output frequency response function can be obtained according to [7],

N

. 1 . .

Y(Jw)=22—n D H (o jo F (@) Flo,) (B2)
n=1 O+t O =0

ifa)e{a)k,k:il,---,iK}

Fle'F
where F(w)= Fi
0 else

and o, =sign(k)a, .

Using the GFRFs determined by equations (4-8) for the relationship from u(t) to y(t), the
system output spectrum can then be determined by substituting (8) in (B2) gives

Ny
. 1 .
Y(lw): Z 22n+l ZHan(Ja)kl"”’Ja)kznu)F(wkl)”.F(wkmu)
n=0 O+t O, =0
/ (B3)
Z 22n+1 Z f_zn‘*l(ja)kl"”’ ja)kznu)F(a)kl)”.F(wanq)
n=0 O+t o, =0

For the specific input function (1b), it can be obtained from (B2) that
F(o,)=-jkF,, for k =*1, 0, =kw,and | =1,---,n
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where Fq4 is the magnitude of the input signal, i.e., Fg =1. Note that the condition
o, +--+o, =omeans that there are n frequencies o, = -0 and n+1 frequencies o, = o .

Hence,
F(wk, ) F(a)k2n_, )= (—de)an k1 """ k2n+1 =-j an -(Fy )an '(—l)n = _j(Fd )Zn+l

Also consider f,,,(jo,, -, jo,,,)in the sum under the condition w, +--+w, =,

1?2n+](ja)la”'7 jw2n+1)

O+t O =0
n-1

(CioH o)) -(joH (o))" (10 [ [(ag ++ o))
i=1

Ly (jo)- Lj,(jwl(l) +eeet jwuj,))"'l-j",,(jwu]) teeet jwl(jn,,))

Clissinag)
jie{2k+1|1<k<n-1}

_ ((—jw)Hf(—jw))”-(ijﬁ(jw))"”-(jw)zﬁ jo +t o,
L. (jo) i Ly o+ +joy)

Clissinag)
jie{2k+1|1<k<n-1}

- ¥

Clisainag)
jie{2k+1[1<ksn-1}

. o 02 (i . _ )
G| (joH (o) (0 2 ja, + jo,

Lyna (j@) i=1 le(ja)|(l)+~'+ja)|(j‘))

__|(ja))H1x(ja))|2n.(ja)Hlx(J'CU))'(J.CU)2 . Z o et o,
B L, (jo)

Csnct) o Ly o+ + o)

jie{2k+1|1<ksn-1}

Substituting these equations into (B3), (9a-c) can be obtained. This completes the proof.
m
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