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Abstract— A novel multiobjective optimisation accelerator is 

introduced that uses direct manipulation in objective space 

together with neural network mappings from objective space to 

decision space. This operator is a portable component that can 

be hybridized with any multiobjective optimisation algorithm. 

The purpose of this Convergence Acceleration Operator (CAO) 

is to enhance the search capability and the speed of convergence 

of the host algorithm. The operator acts directly in objective 

space to suggest improvements to solutions obtained by a 

multiobjective evolutionary algorithm (MOEA). These suggested 

improved objective vectors are then mapped into decision 

variable space and tested. The CAO is incorporated with two 

leading MOEAs, the Non-Dominated Sorting Genetic Algorithm 

(NSGA-II) and the Strength Pareto Evolutionary Algorithm 

(SPEA2) and tested. Results show that the hybridized algorithms 

consistently improve the speed of convergence of the original 

algorithm whilst maintaining the desired distribution of 

solutions. 

 

Index Terms—Evolutionary Multiobjective optimisation, 

Neural Networks.  

 

I. INTRODUCTION 

eal-world problems commonly require the simultaneous 

consideration of multiple, competing performance 

measures. Without loss of generality, a multiobjective 

optimisation problem can be formulated as a minimization of 

a function Z(X), where Z(X) = {Z1(X)...Zn(X)} is a vector of 

objective functions, n is the number of objectives to be 

optimised and X is a vector of decision variables. The 

optimisation problem consists of finding the decision vector, 

or set of vectors, that results in the best solution or set of 

solutions in objective space. For multiobjective problems in 

which objectives are competing, no single optimal solution 

exists, rather a set of candidate solutions known as the 

approximation set [1]. A subset of these decision vectors will 
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be characterised by the fact that no other solution within the 

approximation set offers better objective function values across 

all objectives.  This subset of candidate solutions is said to be 

non-dominated and is known as the Pareto optimal set, from 

which the decision maker ultimately selects an acceptable 

solution. The associated objective vectors form the trade-off 

surface (or Pareto front) in objective space. Figure 1 shows an 

optimisation problem where 3 decision variables are optimised 

with respect to 2 competing objectives, illustrating the 

mapping of a decision vector into objective space and showing 

the Pareto front for this idealised case.  

 

The approximation set offered to the decision maker, is 

required to be as close as possible to the true Pareto front. The 

approximation set is also required to be well spread across 

objective space, presenting the decision maker with a well 

distributed set of solutions within the region(s) of interest 

(ROI) [2]. These two characteristics of an approximation set 

are termed proximity and diversity, respectively, and are 

illustrated in Figure 2. To be of practical use, a multiobjective 

optimisation algorithm must produce an approximation set 

with acceptable proximity and diversity within acceptable 

computational resource and time limits. The time taken by an 

algorithm to perform a given number of search iterations for a 

particular problem is dependent upon the available computing 

power. The performance of a MOEA can then be determined 

by the proximity and diversity of the approximation sets 

produced from a given number of iterations over multiple runs 

of the algorithm [3]. 

 

In many application domains, calculating the true objective 

function may be computationally expensive. Given their 

generational, population-based approach, EAs require a 

significant number of objective function calculations to be 

performed. The use of approximated models using Neural 

Networks (NN), metamodelling techniques, such as Kriging-

based approximations, or response surface models [4], [5] 

provides low computational burden alternatives to full 

objective function evaluation. [6], [7]. 

The population-based nature of Evolutionary Algorithms 

(EAs) makes them well suited to addressing non-

commensurate multiobjective problems as they simultaneously 

explore a family of points in the search space. Traditional 

evolutionary computation (EC) techniques usually consist of 
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an explorative set of procedures operating in decision variable 

space. 

 

Fig. 1.  The multiobjective problem domain. 

 

The operators within these algorithms mimic Darwinian 

biological principles of stochastic selection followed by 

recombination and mutation [8] [9]. Starting either from a 

random population of candidate solutions or from a previously 

known set of solutions in decision variable space, EAs 

calculate the corresponding objective function values, assign 

them fitness scores reflecting their utility in the application 

domain and bias the search towards high-potential areas of the 

space by forcing the “survival-of-the-fittest” solutions. Given 

the stochastic nature of the operators, an evolutionary 

algorithm offers no guarantee of finding optimal solutions 

within a single run. 

 

Fig. 2.  A good set of solutions to a multiobjective optimisation problem in terms 

of proximity, diversity and relevance (i.e. location in ROI) 

 

In this paper, a new convergence accelerator is introduced, 

which maps from objective space to decision variable space (in 

the reverse direction to a meta-modeling technique). This 

operator is a portable component that can be hybridized with 

any MOEA. The purpose of this Convergence Acceleration 

Operator (CAO) is to enhance the performance of the host 

MOEA in terms of the proximity of the approximation set for 

a given number of objective function calculations without 

impeding the active diversification mechanisms of these 

search strategies. In this work, the CAO is hybridized with 

two widely used MOEAs, the Non-Dominated Sorting Genetic 

Algorithm (NSGA-II) [10] and the Strength Pareto 

Evolutionary Algorithm (SPEA2) [11]. EAs operate in 

decision space and perform decision space to objective space 

mapping but tend to fail to exploit direct use of the objective 

space – a lost opportunity. In contrast to this, the CAO 

features an innovative direct search in objective space and 

then uses predictions to map from objective space to decision 

space; in this study this mapping is realised by an artificial 

neural network (NN). Performing local search in the objective 

space was previously introduced in [6], and briefly suggested 

in [12] and [13]. In [12] and [13], the authors proposed two 

methods to accelerate the search of a MOEA by 

approximating the objective function using NN techniques. 

The first method consisted of introducing a metamodel of the 

objective function. A NN was trained with objective function 

data during the first k generations of the optimisation, and 

then used in place of the objective function for the remaining 

generations of the search. The second method suggested 

training a NN to map in the reverse direction (i.e. objective 

vectors as inputs and decision vectors as outputs) and using it 

in a simple local search around the non-dominated solutions 

arising from the previous generation. 

 

This paper is organized as follows: In Section II, the proposed 

CAO operator is introduced and described. Section III 

describes the test procedures used in the comparative testing of 

the standard and CAO-enhanced algorithms. Section IV 

presents results of the tests described in Section III, and 

concluding remarks are provided in Section V. 

II. THE PROPOSED CONVERGENCE ACCELERATION OPERATOR 

A. Overview 

The CAO is a 2-step process, which is illustrated in Figure 

3. When the CAO is launched, it starts by deterministically 

improving the best solutions achieved: these solutions are 

stored in the online archive of the host algorithm. This 

improvement takes place in objective space and produces an 

enhanced version of the archive. The CAO then uses a trained 

neural network mapping procedure to predict the 

corresponding decision vectors for the enhancements to the 

archive. A check of these new decision vectors is made, aimed 

at reflecting any out-of-bounds decision variables arising from 

the mapping back into their allowed domain. The true 

objective values corresponding to all of these new decision 

vectors are calculated. The enhanced and the original archive 

of solutions now compete to populate the new archive for the 

next generation, which will represent the pool from which 

solutions are selected and recombined. The two components of 

the CAO are described in detail in the following sections. 
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Fig. 3.  The Convergence Acceleration Operator in Context 

 

B. Local Improvement in Objective Space 

The first CAO step is a deterministic local improvement 

procedure in the objective space. This is the component 

responsible for speeding up convergence, thereby reducing 

computational effort. It achieves this by steering objective 

values obtained by the MOEA towards an improved Pareto 

front. The objective space local improvement process is 

implemented in this work for n objectives, and is illustrated in 

Figure 4 on a bi-objective problem (n = 2). Note that a 

minimization problem is assumed throughout this work, 

without any loss of generality. 

 

In general, interior solutions, in terms of any specific 

objective (solutions B, C and D in Figure 4) will be improved 

in terms of all the performance measures by steering their 

objective values into a region of improved objective function 

values. The new “improved” values for the objectives are 

determined by linearly interpolating a new value for each 

objective, between its current value and the next best value 

achieved for that objective within the population. This is 

described by 

)),(),((
CDDCDDD

yyhyxxhxZZ −+−+=′          (1) 

where Z(x,y) represents a point in the bi-objective space, ZD’  

is the “improved” objective value and h is the interpolation 

step factor. This process is annotated for solution D in Figure 

4. Compared to solution D, solution C has the next best value 

in terms of Objective 1 while solution E possesses the next 

best value in terms of Objective 2. The size of the step factor 

or objective space improvement in each dimension should be 

carefully chosen; ideally it should depend on the stage of the 

optimisation, the decision maker’s preferences, the regions of 

interests and the proximity of the population to the true Pareto 

front. A larger step factor is recommended for early 

generations of the optimisation, with its value gradually 

decreasing. 

 

Boundary solutions in terms of a certain objective or axis of 

performance (points A and E in Figure 4) are improved in 

terms of the remaining objectives. In other words, solution A 

will be improved in the y-axis direction (Objective 2), thereby 

enhancing its overall quality by improving it in terms of 

Objective 2, and solution E will be improved in the x-axis 

direction (Objective 1), consequently improving its overall 

worth by enhancing it in terms of Objective 1. 

 

 

Fig. 4.  Deterministic improvement of the trade-off surface in objective space 

 

C. Objective Space to Decision Space mapping 

The second component of the CAO consists of a neural 

network trained to map the new solutions thus generated in 

objective space by the first phase of the convergence 

accelerator back to the corresponding decision variable 

vectors.  

 

Hybridizing a NN with an EA is very useful for 

approximating expensive objective functions. This is the meta-

modeling principle [14]. By contrast, in this work, a NN is 

deployed in the CAO to map the proposed objective vectors 

back to their estimated decision variable vectors. This is 

achieved by training a NN, using exact objective vectors as 

inputs and their corresponding decision variable vectors as 

outputs, to approximate a mapping function from the objective 

space to the decision space. The training data is the exact data 

resulting from the objective function values derived within the 

cycle of a MOEA such as NSGA-II [10] or SPEA2 [11]. The 

ability to map objective vectors to decision variables will make 

it possible to search directly in objective space for desired 

combinations of objective values or to devise points of 

attractions to guide the search. 

 

The design of the architecture of the NN was based on a trial-

and-error set of experiments. The standard backpropagation 

algorithm [15] was used for training the NN.  

 

Two possible approaches to training the NN are proposed: 

online and offline training modes. Although the main focus of 

this paper is the online training mode, the offline training 

mode is described briefly. 
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• Online Training Mode: 
 

The online mode consists of concurrently training and 

validating the NN during the execution of the MOEA. Many 

strategies for controlling the use of the CAO in this mode 

might be devised. In this mode, the CAO is a performance 

accelerator that can be launched upon the request of the 

decision maker (DM) during the execution of the optimisation 

process. 

 

• Offline Training Mode: 
 

An alternative use of the NN is to train it with data resulting 

from evaluations of the objective functions arising from a 

single run of a MOEA and then to incorporate it in subsequent 

runs of a MOEA when used in conjunction with the CAO.   

 

This training mode will produce an improved NN since it will 

have been trained on a richer data set. It can subsequently be 

hybridized with any optimiser attempting to solve the same 

problem. Thus, the CAO will benefit succeeding executions of 

the same or other optimisers solving the same problem by 

speeding up the search and has the potential to offer other 

benefits.  This study will form the basis of future work. 

 

D. Summary 

Figure 5 illustrates the actions of the hybridised MOEA which 

includes the CAO. Trajectories 2-5 describe the specific 

actions of the CAO. 

 

Trajectory 1: the mapping between a decision variables vector 

realised by a MOEA and its corresponding computed objective 

values vector.  

 

Trajectory 2: the resulting objective vector – a member of the 

approximation set at generation n - is improved in the 

objective space. 

 

Trajectory 3: a prediction of the decision variables vector 

corresponding to the improved objective vector is made using 

the neural network trained with the exact data obtained during 

earlier evaluations of objective functions during the MOEA 

search. 

 

Trajectory 4: any invalid decision variable vector introduced 

by the NN mapping is rectified by adjusting out-of-bounds 

values of the produced decision variables to their nearest 

values in their domain of definition. 

 

Trajectory 5: finally, the exact objective values vector for 

the proposed decision variables vector is calculated in the 

normal way. These candidate solutions will then compete for 

archive update and insertion with the best solutions currently 

stored in the online archive. 

 

 

Fig. 5.  CAO steps used in generating a single candidate solution 

 

III. TEST FUNCTIONS AND PERFORMANCE METRICS 

The test functions used to examine the effect of the introduced 

CAO scheme are: 

The bi-objective functions: 

• ZDT1 (convex test function),  

• ZDT2 (non-convex test function)  

• ZDT3 (discontinuous test function).  

(These test functions belong to a set of test functions [16] that 

are widely used in Evolutionary Multiobjective Optimisation 

(EMO) research for testing multiobjective optimisers.) 

 

Further, 3- objective, 5-objective and 8-objective versions of 

DTLZ2, a scalable test function introduced in [17] to test the 

effectiveness of MOEAs in dealing with increasing number of 

objectives, are also used. 

 

NSGA-II [10] and SPEA2 [11] are the comparison 

benchmark optimisers. Each is also hybridised - NSGA-

II/CAO, SPEA2/CAO - with the introduction of the CAO into 

their cycles to test its effect. Optimiser configurations used in 

the experiments involving these four optimisers are given in 

Table 1. 
TABLE 1 

OPTIMISER CONFIGURATIONS 

Optimiser Configuration 

Size of Population 

NSGA-II: 135-200 

NSGA-II/CAO: 90 

SPEA2: 135-200 

SPEA2/CAO: 90 

Crossover operator 
Simulated Binary Crossover (SBX) [18] 

Probability: 0.8 

Mutation Operator 
Gaussian Mutation with Probability:  

1/(number of Decision Variables) 

Number of generations 50 

Number of Runs 10 

 

The number of individual objective function evaluations in 

NSGA-II/CAO and SPEA2/CAO increases from 1 to 2 

evaluations per solution for each generation that the CAO is 

executed. In this study, the CAO is introduced from the 26th to 
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the 50th (last) generation allowing the neural network to be 

trained during generations 1-25 of the optimisation process. 

Note that the training of the NN continues throughout the 

entire optimisation process.  

 

In order to compare the algorithms for the same number of 

objective function evaluations, the population size of the 

CAO-hybridized optimisers is reduced to 90 individuals while 

SPEA2 and NSGAII operate on a population of 135 

individuals. For fairness in the comparison, all algorithms are 

executed for the same number of generations (50), thus 

maintaining the same level of global search. It might be 

considered that the larger population size of NSGA-II and 

SPEA2 confers an advantage in their favour. In [19], for 

example, it was suggested that increasing the population size 

is a prospective technique for obtaining a good evolutionary 

many-objective optimisation result. 

  

The following methods are used to analyze the performance of 

the optimisers and their CAO-hybridized versions on the bi-

objective functions: 

 

• The Pareto fronts achieved by the investigated optimisers 

and the true Pareto fronts for all of the bi-objective 

functions used are visually inspected.  

• The generational distance metric [20] is deployed to 

assess the degree of convergence of solutions by 

measuring the closeness of the achieved approximation 

sets to their corresponding true Pareto front. 

• The spread metric [21] is used to assess the diversity of 

the approximation sets achieved by each optimiser.  

• The mean values for the generational distance and spread 

metrics are calculated for each of the 10 runs of each 

optimiser. The significance of the observed results is 

assessed using a randomization testing technique [22], 

described by Purshouse and Fleming [23], whose central 

concept is that an observed result which had arisen by 

chance would not appear unusual in a distribution of 

results obtained through many random relabellings of the 

samples (in this case, the generational distance and 

spread metric values).  

 

The effectiveness of the CAO when tackling the DTLZ test 

functions with 3, 5 and 8 objectives is assessed by using two 

well-established binary metrics:  

 

• The dominated distance metric (D-Metric), which 

computes the dominated distance between two sets of 

objective vectors [24].  

• The “C-metric” of Zitzler et al. [16], which calculates the 

percentage of solutions in a certain approximation set that 

are dominated or equal to any solution in another 

competing approximation set. 

 

In [1] it is shown that binary indicators such as these that 

compare the quality of one approximation set in terms of a 

certain criterion with another approximation set are suitable 

metrics to use in order to conclude that a certain 

approximation set is better than another. 

IV. RESULTS 

The performance and utility of the CAO is investigated in 

this section. The effect of the introduced operator is examined 

by comparing the results achieved by NSGA-II and SPEA2 

(operating on a population of 135 individuals) with the results 

achieved by their hybridised versions, NSGA-II/CAO and 

SPEA2/CAO (operating on a population of 90 individuals). 

The Pareto fronts achieved by NSGA-II and NSGA-II/CAO 

after a single run (50 generations) are illustrated for the test 

functions ZDT1 (Fig.6), ZDT2 (Fig. 8) and ZDT3 (Fig. 10), 

together with their true Pareto fronts. Figures 7, 9 and 11 

show the results of the randomization testing technique which 

illustrates the significance of the spread metric values 

(diversity) and generational distance values (convergence) 

achieved over the 10 runs of the algorithms. It is clear from 

Figures 6, 8 and 10 that NSGA-II/CAO outperforms NSGA-II 

in approximating the true Pareto front of the convex, concave 

and discontinuous test function. 

 
Fig. 6.  Results achieved by NSGA-II and NSGA-II/CAO on ZDT1 

 

In Figures 7, 9 and 11, the observed difference between the 

average calculations of the generational distance values -

measuring the convergence of the solutions and their 

closeness to the true Pareto front- achieved by NSGA-II/CAO 

and NSGA-II, over the 10 runs was calculated and illustrated 

by a black circle. The observed difference between the average 

values of the spread metric measurements depicting the 

diversity of the solutions achieved by NSGA-II/CAO and 

NSGA-II at every run of the algorithms is also calculated and 

presented as a black circle. The grey histograms illustrate the 

occurrence frequency of the resulting differences between 

average values of spread metric values and generational 

distance values shuffled and randomly allocated to the two 

optimisers. This shuffling and random allocation of the two 
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metrics values was repeated 5000 times to test the significance 

of the observed results. A smaller spread metric value or 

generational distance value corresponds, respectively, to a 

better diversity and closeness to the true Pareto front. The real 

observations (black circles) lying to the right of the histograms 

denote a positive difference which favours the CAO 

hybridized optimiser.  

(In this work, B is the CAO hybridized optimiser, in the 

expressions: Mean (Spread_values (A)) - Mean 

(Spread_values (B)) and Mean (GenerationlDistance_values 

(A)) - Mean (GenerationlDistance_values (B)).  

 
Fig. 7.  Randomisation testing of the spread and generational distance metrics on 

ZDT1 (for NSGA-II and NSGA-II/CAO) 

 

 
Fig. 8.  Results achieved by NSGA-II and NSGA-II/CAO on ZDT2 

 

The randomization testing method has demonstrated a 

significant and consistent improvement in the performance of 

the NSGA-II/CAO in terms of convergence towards the true 

Pareto front and diversity over the 10 executions of the two 

algorithms. Note that NSGA-II/CAO consistently produces a 

more diversified approximation set compared to NSGA-II, 

which was operating on a larger population size. 

 
Fig. 9.  Randomisation Testing of the spread and generational distance metrics 

on ZDT2 (for NSGA-II and NSGA-II/CAO) 

 

 

Fig. 10.  Results achieved by NSGA-II and NSGA-II/CAO on ZDT3 

 

Similar observations are made when CAO is integrated in 

SPEA2. In fact, the CAO seemed to introduce even more 

benefits to the performance of SPEA2, which can be seen in 

Figures 12, 14 and 16 for the bi-objective scenarios. The 

results of the randomization testing are illustrated in Figures 

13, 15, and 17, and, again, demonstrate the impact of the 

CAO on one of the best-performing MOEAs. 

 

Tables 1 and 2 illustrate the results highlighting the effect of 

the CAO on optimisation problems with a larger number of 
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objectives. The scalable test function DTLZ2, with 3, 5 and 8 

objectives, was chosen to investigate the performance of the 

CAO. 

 
Fig. 11.  Randomisation Testing of the spread and generational distance metrics 

on ZDT3 (for NSGA-II and NSGA-II/CAO) 

 

 
Fig. 12.  Results achieved by SPEA2 and SPEA2/CAO on ZDT1 

 

 
Fig. 13.  Randomisation Testing of the spread and generational distance metrics 

on ZDT1 (for SPEA2 and SPEA2/CAO) 

 
Fig. 14.  Results achieved by SPEA2 and SPEA2/CAO on ZDT2 

 

 

 
Fig. 15.  Randomisation Testing of the spread and generational distance metrics 

on ZDT2 (for SPEA2 and SPEA2/CAO) 
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Fig. 16.  Results achieved by SPEA2 and SPEA2/CAO on ZDT3 

 

 

In a similar manner to the experimentations carried out on 

the bi-objective problems, the effect of the CAO is investigated 

by contrasting NSGA-II and SPEA2 with their CAO 

hybridized counterparts. In Tables 1 and 2, the dominated 

distance metric (D-Metric) and the C-metric are computed and 

the results are shown for each run of the algorithms. These 

metrics are binary metrics that highlight whether an 

approximation set resulting from an algorithm A is better than 

another approximation set resulting from an algorithm B. A 

negative D-metric (coverage difference of two sets) value 

denotes that the first input of the metric (e.g. Algorithm A in 

D-Metric (A, B)) is better than and dominates most or part of 

its second input (e.g. Algorithm B).  
TABLE 2 

DD-METRIC AND C-METRIC RESULTS FOR DTLZ2 (3) 

A = NSGA-II/CAO AND B = NSGA-II 

Run 
DTLZ2  

(3 Objectives) 

No: D-Metric 

(A, B) .10
-3 

C-Metric 

(A, B) 

C-Metric 

(B, A) 

1 -3.823 8% 2.2% 

2 -1.782 4% 2.2% 

3 -4.436 10% 0% 

4 -4.919 12% 2.2% 

5 -3.156 7% 0% 

6 -7.297 12% 0% 

7 -5.791 13% 0% 

8 -0.554 2% 2.2% 

9 -9.837 16% 0% 

10 -5.320 15% 0% 

Mean 

Value: 
-4.690 9.9% 0.88% 

 

These experiments demonstrate that the fronts achieved by 

SPEA2 and NSGA-II are consistently outperformed by their 

counterparts deploying the CAO. In all cases, the DD-metric 

reveals results favoring NSGA-II/CAO and SPEA2/CAO over 

NSGA-II and SPEA2 for all dimensions of the problems 

investigated. Over the 10 executions of the algorithms, and 

despite operating on smaller population sizes, the solutions 

achieved by NSGA-II/CAO cover an average of 9.9% of the 

solutions achieved by NSGA-II for the 3-objectives problem. 
 

TABLE 3 

DD-METRIC AND C-METRIC RESULTS FOR DTLZ2 (5) 

A = NSGA-II/CAO AND B = NSGA-II 

DTLZ2  

(5 Objectives) Run 

No: D-Metric 

(A, B) .10-3 

C-Metric 

(A, B) 

C-Metric 

(B, A) 

1 -438.29 53% 4.4% 

2 -347.56 47% 3.3% 

3 -499.27 55% 2.2% 

4 -965.20 83% 0% 

5 -786.39 73% 1.1% 

6 -535.95 56% 1.1% 

7 -775.34 71% 2.2% 

8 -295.53 42% 3.3% 

9 -417.08 59% 3.3% 

10 -473.30 62% 2.2% 

Mean 

Value: 
-553.39 60.1% 2.31% 

 

 

 
TABLE 4 

DD-METRIC AND C-METRIC RESULTS FOR DTLZ2 (8) 

A = NSGA-II /CAO AND B = NSGA-II 

DTLZ2  

(8 Objectives) Run 

No: D-Metric 

(A, B) .10-3 

C-Metric 

(A, B) 

C-Metric 

(B, A) 

1 -120.47 7% 0% 

2 -271.31 16% 0% 

3 -28.98 2% 0% 

4 -59.70 5% 2.2% 

5 -253.59 16% 0% 

6 -37.55 6% 0% 

7 -44.95 3% 0% 

8 -424.82 24% 0% 

9 -59.54 5% 0% 

10 -112.40 8% 0% 

Mean 

Value: 
-141.33 9.2% 0.22% 

 

 
Fig. 18.  Randomisation Testing of the spread and generational distance metrics 

on ZDT3 (for SPEA2 and SPEA2/CAO) 
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TABLE 5 

DD-METRIC AND C-METRIC RESULTS FOR DTLZ2 (3) 

A = SPEA2/CAO AND B = SPEA2 

DTLZ2  

(3 Objectives) Run 

No: D-Metric 

(A, B) .10-3 

C-Metric 

(A, B) 

C-Metric 

(B, A) 

1 -3.376 7% 1.1% 

2 -3.729 9% 0% 

3 -3.067 3% 0% 

4 -0.324 4% 1.1% 

5 -2.992 15% 1.1% 

6 -3.992 10% 0% 

7 -1.714 6% 0% 

8 -3.931 11% 1.1% 

9 -1.144 3% 1.1% 

10 -1.136 4% 1.1% 

Mean 

Value: 
-2.540 7.2% 0.66% 

  
 

TABLE 6 

DD-METRIC AND C-METRIC RESULTS FOR DTLZ2 (5) 

A = SPEA2/CAO AND B = SPEA2 

DTLZ2  

(5 Objectives) Run 

No: D-Metric 

(A, B) .10-3 

C-Metric 

(A, B) 

C-Metric 

(B, A) 

1 -12.91 22% 0% 

2 -100.15 22% 0% 

3 -39.58 16% 0% 

4 -103.68 22% 1.1% 

5 -186.58 34% 3.3% 

6 -253.11 4% 0% 

7 -198.26 31% 0% 

8 -238.80 37% 0% 

9 -6.31 9% 0% 

10 -117.82 5% 3.3% 

Mean 

Value: 
-125.72 20.22% 0.77% 

 
TABLE 7 

DD-METRIC AND C-METRIC RESULTS FOR DTLZ2 (8) 

A = SPEA2/CAO AND B = SPEA2 

DTLZ2  

(8 Objectives) Run 

No: D-Metric 

(A, B) .10-3 

C-Metric 

(A, B) 

C-Metric 

(B, A) 

1 -28.92 2% 0% 

2 -389.58 17% 0% 

3 -243.64 11% 0% 

4 -127.51 7% 1.1% 

5 -8.10 1% 0% 

6 -260.31 12% 0% 

7 -246.03 13% 0% 

8 -38.08 2% 0% 

9 -76.08 4% 0% 

10 -52.06 2% 1% 

Mean 

Value: 
-147.03 7.1% 0.21% 

 

On the other hand, NSGA-II only scores an average of 0.88% 

coverage of the results achieved by NSGA-II/CAO, including 

several runs with 0% coverage. Similar C-metric observations 

are made for the 5- and 8-objectives versions of DTLZ2, with 

a remarkable average of 60.1% solutions coverage favouring 

NSGA-II/CAO over NSGA-II for the 5-objectives test 

problem. SPEA2/CAO has out-performs SPEA2 on all three 

versions of DTLZ (Table 2). The highest coverage achieved by 

SPEA2 of the solutions obtained by SPEA2/CAO is 0.77%, 

while SPEA2/CAO covers at least an average of 7.1% of the 

approximation sets achieved by SPEA2. Again, in the 5-

objectives version of DTLZ, SPEA2/CAO exhibits the most 

significant improvement in coverage over SPEA2. This 

feature deserves further study, using tools such as the heat 

maps of Pryke et al. [25], in order to understand why the 

performance on the 5-objectives version might be significant 

for this dimension of problem. 

 

Further experiments were undertaken in an attempt to 

quantify the extent of superiority of the CAO hybridized 

optimisers. It was noted that, on average, the population size 

of NSGA-II and SPEA2 must be increased to a minimum of 

200 individuals (more than twice the population size of 

NSGA-II/CAO and SPEA2/CAO) in order to match the 

quality of the fronts achieved by their hybridized counterparts. 

Thus, SPEA2 and NSGA-II require more objective function 

evaluations (around 750 more evaluations) to match the 

performance of their CAO hybridised equivalent optimiser. 

This conclusion holds for all the test functions used in this 

work. 

 

The set of experiments conducted in this Section 

demonstrate the benefits of the CAO and the improvement it 

confers to two of the most established MOEAs. 

 

V. CONCLUSIONS AND FUTURE WORK 

A portable Convergence Accelerator Operator has been 

proposed for incorporation in existing algorithms for 

evolutionary multiobjective optimisation. This operator works 

by suggesting improved solutions in objective space and using 

neural network mapping schemes to predict the corresponding 

solution points in decision variable space. Two leading 

MOEAs have been hybridised through introduction of the 

CAO and tested on a variety of recognised test problems. 

These test problems consisted of convex, concave and 

discontinuous test functions, with numbers of objectives 

ranging from two to eight. In all cases introduction of the 

CAO led to improved convergence and solution diversity for 

comparable numbers of function evaluations. Indeed, for the 

bi-objective test problems, improved performance in diversity 

is achieved by the hybridised algorithms for smaller 

population sizes than those used by the standard algorithms. 

 

It is important to recognise that the CAO introduces additional 

computational effort through the requirement to train the 

neural network. This computational effort is substantial when 

compared with the execution time associated with computing 

a ZDT function, for example, since these functions are 

trivially simple to compute. The CAO is designed for use in 

real-world problems where objective function computation is 

non-trivial. For example, NN training time proved to be 

approximately 1500 times that of computing the two ZDT1 
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functions. Clearly, one would not advocate use of CAO in 

such situations. However, in a real-world problem such as the 

ALSTOM gasifier problem [26], it was found that NN training 

time proved to be approximately one-hundredth of the time 

required to compute the ALSTOM gasifier problem objectives. 

Moreover, here we have not sought to optimise performance of the 

NN mapping methodology. 

 

Thus, a portable operator has been described that can be 

incorporated into any MOEA to improve its convergence. Its value 

is in application to real-world problems where there is a 

substantial computational cost for objective function evaluation. 

Future work will focus on interactively executing the CAO on 

request by the DM and in the deployment of the operator in a 

progressive preference articulation technique, for example 

[27], to assist in guiding the search towards specific regions of 

interest (ROI). Further, the interpolation step factor used for 

objective space improvement is an application-dependent 

parameter and will be influenced by the landscape of the 

objective space. In the experiments undertaken here, step 

factors ranging from 0.01 up to 0.2 were tried before settling 

for h=0.1 as the step factor to be used for the tests. There is 

scope to explore the use of adaptive step factors as MOEAs 

explore the objective space. 
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