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Detecting and Tracking Time-varying

Causality with Applications to EEG Data

Y. Zhao, S. A. Billings, H. L. Wei , P.G. Sarrigiannis

Abstract—This paper introduces a novel method called
the ERR-Causality, or Error Reduction Ratio Causality
test, that can be used to detect and track causal relation-
ships between two signals using a new adaptive forward
orthogonal least squares (Adaptive-Forward-OLS) algo-
rithm. In comparison to the traditional Granger method,
one advantage of the new ERR-Causality test is that it
can effectively detect the time-varying direction of linear
or nonlinear causality between two signals without fitting
a complete model. Another important advantage is that
the ERR-Causality test can detect both the direction of
interactions and estimate the relative time shift between
the two signals. Several numerical examples are provided
to illustrate the effectiveness of the new method for causal
relationship detection between two signals. An important
real application, relating to the analysis of the causality
of EEG signals from different cortical sites which can be
very useful for understanding brain activity during an
epileptic seizure by inspecting the high-resolution time-
varying directed information flow, is also discussed.

Index Terms—Causality, Granger, EEG, Time-varying,
OLS

I. INTRODUCTION

The detection of hidden interdependencies between

the components of complex dynamic systems is an

important problem that arises in many research fields.

There are several ways to tackle this problem based on

using either an explicit generative model that embraces

the known nonlinear causal architecture [1], or by simply

establishing statistical dependencies between two signals

using coherence, phase synchronization, or the Granger

causality test. The latter approaches are usually more

viable and many methods based on these ideas have

been developed recently and applied to the analysis of

electrophysiological signals, such as directed coherence

and partial directed coherence [2, 3, 4]. However cross

correlation methods have two possible drawbacks, one

is the requirement for reasonably long data sets, and the

other is that correlation may only detect causality of two

signals with linear interactions. The minimal required

data window size to achieve correct results is important

because too wide a window will decrease the temporal

resolution of the analysis, which can be fatal if the casual

relationship changes rapidly over time, and too narrow
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a window reduces the statistical reliability.

Signals sampled from the real world are rarely stationary

and well behaved, and casual interactions and couplings

can typically appear, disappear and reappear, and may

become weaker or grow stronger over time. Moreover,

most complex systems exhibit nonlinear dynamic be-

haviours, which may lead to a possible failure of the

cross correlation method. Another established way to

solve the causality detection problem is by mutually

predicting selected observable measurements based on

multivariate autoregressive modelling. Many methods

based on this idea have been proposed recently and one

of the best established methods is based on the Granger

causality test [5]. The key idea of this method is that

if a signal X causes a signal Y, the knowledge of the

past of both X and Y should improve the prediction of

the presence of Y in comparison with the knowledge

of the past of Y alone. Many new methods have been

developed which extend this idea [6, 7, 8]. However,

all these methods require that the system model is fully

known or that an unbiased model can be fitted to the

data sets before the Granger test can be applied. This is

far from straightforward when the underlying system re-

lationships are nonlinear and dynamic and the measured

observations are noisy because, unless a complete and

full model which accounts for any potentially nonlinear

noise effects is estimated, the Granger test results will

be compromised.

In the present study a new causality test is introduced

which overcomes most of the disadvantages of existing

methods. The new causality detection method will be

referred to as the ERR-Causality or Error Reduction

Ratio-Causality test. The key advantage of the new test

is that it can be applied to nonlinear dynamic systems,

and unlike the Granger based tests, the new method does

not depend on the full knowledge or estimation of a

complete and unbiased system model. By exploiting an

important property of the error reduction ratio (ERR)

test that is part of the orthogonal least squares (OLS)

algorithm it is shown that the causal flow can be detected

even when the model is incomplete. This is a significant

advantage when the underlying system is nonlinear and

dynamic and the measurements may be noisy, because

a complete and full model including a nonlinear noise

model, which would normally be required to yield un-

biased model estimates is not required and indeed not

even the full parameter estimates are used in the test.

These advantages mean the test is relatively easy to

apply and can be used to track fast transitions between

causal effects to detect the direction of linear or nonlinear

casual interactions, the strength of these interactions,

and to provide an estimate of the time shift between

two directional signals. Three numerical examples are
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used to illustrate the application of the new test and to

show the performance of the method in comparison with

other methods. Finally the application of the new method

to real high resolution Electroencephalography (EEG)

recordings is described and it is shown how the new test

can be used to exploit the flow sequence of brain signals

which may help to locate the source [9] and understand

brain activity during an epileptic seizure.

II. METHODS

Let X =
{

x(t)
}

and Y =
{

y(t)
}

be two signals,

t = 1, ...,M , where M is the data length. The aim of this

paper is to measure the casual interaction over time be-

tween these two signals. The results can be, for example,

at a specific time, the signal X causes Y , Y causes X ,

no interaction or bi-directional interaction between them.

For a complex system, the causality is often time-varying

and the interaction is often dynamic and nonlinear, which

makes the problem more challenging. This section begins

with a brief review of the cross correlation and the

Granger causality tests associated with this problem, and

then presents a new ERR-Causality test.

A. Cross correlation

The cross correlation is the most commonly used

method to detect causal interactions between the signals

X and Y , and is defined as

φxy(τ) =

M
∑

t=τ+1

(

x(t)− x
)(

y(t+ τ)− y
)

[ M
∑

t=1

(

x(t)− x
)2 M

∑

t=1

(

y(t)− y
)2

]1/2
, (1)

where τ = 0,±1,±2, ...,±(M − 1) and x, y denote the

means of X,Y respectively. If a well defined peak at lag

τ can be observed in the cross correlation function, this

indicates that the signal X lags behind the signal Y if

τ > 0, which means that X causes Y from the causality

point of view. Or if the signal X lags the signal Y when

τ < 0, this means Y causes X . If no well defined

peak can be observed, no causality is detected. This

method is easy to understand and to implement, and no

knowledge of the exact model underlying the interaction

is required. However, there are three potential problems.

Firstly, correlation may not detect the nonlinear causality

between two signals, however most complex real systems

are likely to be nonlinear. Secondly, this method can not

detect a complicated causality, such as a bi-directional

interaction. Thirdly, this method requires relatively long

data sets to achieve accurate results, which means the

reaction to rapidly changing casuality over time is rela-

tively slow.

B. Granger Causality

A well established approach to detect causality in both

linear and nonlinear systems is the Granger causality test

[5]. To calculate the Granger causality of X to Y , a

model has to be pre-established which defines the rela-

tionship between the output Y and its past information

Y − and the past information of the input X−, expressed

as:

Y = f(Y −, X−) (2)

Based on the sampled data the parameters in the model

f(Y −, X−) have to be estimated and then the predic-

tions of Y based on Y − alone, and on Y − and X−

are generated. In both cases, the accuracy of predic-

tion may be expressed by the variance of the predic-

tion errors for two-dimensional modelling var(Y |Y −),
var(Y |Y −, X−). The Granger causality of X to Y ,

GX→Y , is defined by

GX→Y = ln
var(Y |Y −)

var(Y |Y −, X−)
(3)

The Granger causality of Y to X is defined by

GY→X = ln
var(X|X−)

var(X|X−, Y −)
(4)

The advantages of this method are that if the model

structure is chosen appropriately, it can tackle both linear

and nonlinear systems. The test is also able to detect

a bi-directional causality because the causalities from

Y to X and from X to Y are calculated separately.

The required window size of sampled data depends on

the dynamical properties of the original signals, and the

complexity of the chosen model structure. One possible

problem for this method is that if the model structure

is not chosen appropriately, for example, the model

is missing a significant term or terms, the calculated

Granger causality may not be reliable, which will be

demonstrated in the second simulation example in sec-

tion III-B. Because this test is based on an accurate

model then noise models may need to be estimated to

ensure the model is unbiased. For nonlinear relationships

this will often require a nonlinear noise model. Fitting

complete nonlinear dynamics system and noise models is

a significant overload for this test. Moreover, this method

can only detect the direction of signal flow, but is not

able to provide a quantitative insight into the time shift

between the two signals.

C. Adaptive-Forward-OLS

The orthogonal least squares (OLS) algorithm [10, 11,

12], is a popular approach that has been widely used

in nonlinear system identification where the orthogonal

least squares searches through all the possible candidate
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model terms to select the most significant model terms

which are then included to build models term by term.

The significance of each of the selected model terms

is measured by an index, called the error reduction ratio

(ERR), which indicates how much (in percentages) of the

variance change in the system response can be accounted

for by including the relevant model terms. Complex

nonlinear dynamic models and nonlinear noise models

can all be identified using this algorithm.

This section introduces an Adaptive-Forward-OLS algo-

rithm which will be used later by modifying the well

known forward-regression version of OLS [10]. Consider

the linear regression function

y(t) =
N
∑

i=1

pi(t)θi, t = 1, ...,M (5)

where y(t) is the dependent variable or the term to

regress upon, pi(t) are regressors, θi are unknown pa-

rameters to be estimated and M denotes the number of

data points in the data set. Equation (5) can be written

as

Y = PΘ (6)

where

Y =







y(1)
...

y(M)






, P =







PT (1)
...

PT (M)






,Θ =







θ(1)
...

θ(N)







(7)

and

PT (t) =
(

p1(t), ..., pN (t)
)

(8)

Matrix P can be decomposed as P = W ×A where

W =







w1(1) ... wN (1)
...

...
...

w1(M) ... wN (M)






(9)

is an orthogonal matrix because

WTW = Diag

[

M
∑

t=1

w2
1(t), ...,

M
∑

t=1

w2
N (t)

]

(10)

and A is an upper triangular matrix with unity diagonal

elements

A =















1 a12 a13 · · · a1N
1 a23 · · · a2N

. . .
. . .

...

1 aN−1N

1















(11)

Therefore, (6) can be rewritten as

Y = WG (12)

where

G = AΘ = [g1, ..., gN ]T (13)

The estimation of the original parameters can be com-

puted from

θ̂N = ĝN
θ̂l = ĝi −

∑N
k=i+1 aikθ̂k, i = N − 1, ..., 1

}

(14)

In traditional forward OLS, the cut off value of ERR,

Coff , to stop the search procedure and determine the

number of significant terms can be difficult to select,

especially when the level of noise is unknown. Recently,

several criteria based on ERR have been developed to

monitor and stop the search procedure [13, 14, 15].

This paper introduces an algorithm named the Adaptive-

Forward-OLS by utilizing the penalized error-to-signal

ratio

PESRn =
1

(1− λn/M)2

(

1−
n
∑

i=1

[err]i

)

(15)

to monitor the regressor search procedure, where n
denotes the number of selected terms and M denotes

the total number of sampled data. The search procedure

stops when PESRn arrives at a minimum. The effect of

the adjustable parameter λ on the results is discussed in

[16], which suggested that λ should be chosen between

5 and 10. The value of λ is chosen as 6 for all the

examples in this paper based on experience, but other

values in this range have also be tested and the results

remained correct and unchanged.

The whole procedure of the Adaptive-Forward-OLS al-

gorithm can be summarized as follows.

(a) a11 = 1, w1(t) = p1(t), and ĝ1 =

∑

M

t=1
w1(t)y(t)

∑

M

t=1
w2

1
(t)

.

(b) For k = 2, ..., N : aik =

∑

M

t=1
wi(t)pk(t)

∑

M

t=1
w2

i
(t)

,i =

1, ..., k − 1, akk = 1
wk(t) = pk(t) −

∑k−1
i=1 aikwi(t), and ĝk =

∑

M

t=1
wk(t)y(t)

∑

M

t=1
w2

k
(t)

. ERR is used as a criterion for model

structure selection, and is defined as

[err]k =
ĝ2k

∑M
t=1 w

2
k(t)

∑M
t=1 y

2(t)
(16)

(c) Compute PESRk using (15). The search procedure

stops when PESRk arrives at a minimum.

Noise modelling which will often be required to ensure

unbiased models, and is described in [17, 18].

D. A New Granger Causality Test based on the

Adaptive-Forward-OLS algorithm

In this section a new modification of the Granger test

will be introduced based on the modelling algorithm in
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section II-C above. When applying the Granger test, the

model is either pre-known, which is often impossible

especially for real systems, or the model structure has

to be detected and a model estimated as the initial step.

It has been shown [19] that the estimator introduced in

section II-C combines structure determination, parameter

estimation and noise modelling, and when coupled with

model validity tests, is particularly powerful in identify-

ing parsimonious models for structure-unknown systems.

The Adaptive-Forward-OLS algorithm therefore can be a

part of the Granger method to improve the identification

performance and hence enhance the detection capability

of the Granger test.

E. The ERR-Causality Test

The new ERR-Causality test is introduced in this

section by tackling the problem another way to detect

causality between two signals without the identification

of a full or complete model. It is shown that this test

has significant advantages compared to existing tests and

can be readily applied to linear and nonlinear dynamic

systems even with noise corrupted measurements.

Consider a bivariate Autoregressive (ARX) model

x(t) =
∑px

i=1 aix(t− i) +
∑py

j=1 cjy(t− j) + ex(t)

y(t) =
∑qy

i=1 biy(t− i) +
∑qx

j=1 djx(t− j) + ey(t)
(17)

where ex(t), ey(t) denote noise sequences, which can

be either white noise or coloured noise. Obviously, if

cj ̸= 0, j ∈ {1, ..., py} and dj ̸= 0, j ∈ {1, ..., qx},

this is a typical bi-directional system, which means X
causes Y , and at the same time Y causes X . Consider

initially the causality from X to Y . A NARX (Non-

linear Auto-Regressive with eXogenous inputs) model

[20] constructed using basic function expansions using

a linear-in-the parameters form is introduced to express

Y

y(t) =

N
∑

i=1

θiφi(t) + e(t) (18)

where θi are unknown parameters, N is the number of

the total potential model terms involved, and φi(t) =
φi(ϕ(t)) are model terms generated from a candidate

term set, for example, ϕ(t) can be

ϕ(t) = {1, y(t−1), ..., y(t−ny), x(t−1), ..., x(t−nx)}
T

(19)

which includes some simple linear components from the

past information of X and Y .

Instead of generating a complete model that has to

pass the validity tests, the ERR-Causality test can be

summarized in the following.

Initially, construct a candidate term set which typically

includes past information of Y , and past information

of X . Apply the Adaptive-Forward-OLS algorithm and

computer ERR and PESR values. If the selected signif-

icant terms by the Adaptive-Forward-OLS algorithm in

section II-C includes any term from the past information

of X , this indicates the signal X causes Y during the

considered time duration [t − h/2, t + h/2], where h
denotes the sampling window size. The ERR-Causality

from X to Y at time t, expressed as FX→Y (t), is then

defined as 1. If no component from the past information

of X is included in the selected significant terms, this

indicates that X has no interaction with Y during

[t−h/2, t+h/2], and FX→Y (t) is defined to be 0. The

strength of FX→Y (t) can be estimated by the summed

ERR values of all the selected terms from X−, the

maximum strength being 1.

The selection of the candidate term set can be much

more complicated than (19), and will depend on the

pre-known information of the considered system. For

example, (20) shows a candidate term set with some

non-linear components.

ϕ(t) = { y(t− 1), y(t− 2), ..., y(t− ny),
x(t− 1), x(t− 2), ..., x(t− nx),
y(t− 1)x(t− 1), ..., y(t− 1)x(t− nx),
y2(t− 1), y2(t− 2), ..., y2(t− ny),
x2(t− 1), x2(t− 2), ..., x2(t− nx)}

T

(20)

If any significant term that includes any component from

the past information of X is chosen in the ERR-Causality

test, this method, theoretically, is able to observe the

causality from X to Y , even though ϕ(t) may not

include a complete set of all the correct terms of the

system. This advantage is based on the fact that the

order of the ERR values or the order of term selection

produced by the Adaptive-Forward-OLS algorithm is

correct even when a complete model is not estimated.

This important result, which is fundamental to the ERR-

Causality test, will be proved next.

Consider the model

y(t) =
N
∑

i=1

wi(t)gi + ζ(t), t = 1, ...,M (21)

where the first N terms represent all the correct model

terms and ζ(t) is a white noise sequence with zero mean.

Assume only Np terms are selected and the other terms

are not considered in ϕ(t). Note that noise terms can be

included in the N terms in the model (21), which should

then reduce ζ(t) to be white. Then (21) can be expressed

as

y(t) =

Np
∑

i=1

wi(t)gi +
N
∑

j=Np+1

wj(t)gj + ζ(t) (22)
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Now (22) can be rewritten as

y(t) =

Np
∑

i=1

wi(t)gi + e(t) (23)

where

e(t) =
N
∑

j=Np+1

wj(t)gj + ζ(t) (24)

represents missing model terms and can be viewed as

coloured noise and may not be zero mean. Squaring both

sides of (23) and taking the expected value gives

E
[

y2(t)
]

= E
[

∑Np

i=1 w
2
i (t)g

2
i

]

+

2E
[

∑Np

i=1 wi(t)gie(t)
]

+

E
[

e2(t)
]

(25)

Obviously,

E

[( Np
∑

i=1

wi(t)gi

)2]

= E

[ Np
∑

i=1

w2
i (t)g

2
i

]

(26)

because w(i) are orthogonal, w(i)w(j) = 0 (i ̸= j).
Then (25) can be rewritten as

1

M

M
∑

t=1

y2(t)−

Np
∑

i=1

1

M

M
∑

t=1

w2
i (t)g

2
i = α (27)

where

α = 2E

[ Np
∑

i=1

wi(t)gie(t)

]

+ E
[

e2(t)
]

(28)

Replacing e(t) in (28) by (24)

α = 2E

[

∑Np

i=1 wi(t)gi

(

∑N
j=Np+1 wj(t)gj + ζ(t)

)

]

+E

[

(

∑N
j=Np+1 wj(t)gj + ζ(t)

)2
]

= 0 + 0 + E

[

∑N
j=Np+1 w

2
j (t)g

2
j

]

+ E
[

ζ2(t)
]

= 1
M

∑M
t=1

∑N
j=Np+1 w

2
j (t)g

2
j +

1
M

∑M
t=1 ζ

2(t)
(29)

Substituting α back into (27) and dividing
1
M

∑M
t=1 y

2(t) to both side produces

1−

∑

Np

i=1

1
M

∑

M

t=1
w2

i (t)g
2
i

1
M

∑

M

t=1
y2(t)

=

1
M

∑

M

t=1

∑

N

j=Np+1
w2

j (t)g
2
j+

1
M

∑

M

t=1
ζ2(t)

1
M

∑

M

t=1
y2(t)

(30)

Based on the definition of ERR in (16), finally this yields

1−

Np
∑

i=1

[err]i =
N
∑

j=Np+1

[err]j +
σ2
ζ

σ2
y

(31)

where σζ , σy denote the standard deviation of ζ(t), y(t)
respectively. Equation (31) implies that the ERR values

for the selected terms can be calculated quite indepen-

dently of the un-selected terms of the correct term set.

Hence, the proposed ERR-Causality method can always

provide a correct order of significant terms without fitting

a complete model. In other words, even when not all

the significant terms are included in ϕ(t), this method

should still detect the causality. Notice also that it is

only the ERR values that are used in the test, there is no

requirement to fit a complete model or no requirement

to even estimate all the model parameters. The ERR-

Causality test is therefore a more powerful and robust

causality detection method, and moreover, many time

consuming calculations can be considerably avoided or

reduced because the search procedure is monitored by

PESR and no further parameter estimation is required.

Notice that the method automatically defaults to select

just linear terms if the relationship is linear but can also

accommodate complete nonlinear dynamics relationships

without full model estimation.

III. SIMULATION STUDIES

This section discusses the efficiency and performance

of the proposed new method by comparing results with

the cross correlation and the Granger test method. The

first example demonstrates the procedure including how

to select significant terms and measure the value of ERR-

Causality. The second and third examples demonstrate

the advantages of the new method and the flexibility of

term selection and reaction speed to causality changing

over time.

A. Example 1

Consider an ARX model expressed as

y(t) = b1y(t−1)+b2y(t−2)+d1x(t−1)+d2x(t−2)+ζ(t)
(32)

where ζ(t) is a white noise of zero mean and a standard

deviation σ = 0.05. In the first test, the parameters were

set as b1 = −0.6, b2 = 0.2, d1 = 0.2, d2 = 0.1, which

indicates Y depends on the past information of itself and

X , or from the causality point of view, Y is caused by

X . The model was simulated by setting the signal x(t) as

a random sequence uniformly distributed in [−0.5, 0.5]
and 1000 data point were collected after the system

behaviour had settled down. The initial candidate term

set ϕ(t) was chosen as

{1, y(t−1), y(t−2), y(t−3), x(t−1), x(t−2), x(t−3)}T

(33)

The results of term selection associated with the PESR

values from the Adaptive-Forward-OLS algorithm are

October 20, 2011 DRAFT
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TABLE I
THE LIST OF SORTED TERMS ASSOCIATED WITH PESR VALUES FOR

THE FIRST TEST OF EXAMPLE 1.

Order Terms [err]i PESR

1 x(t− 1) 0.33937 0.66863
2 y(t− 1) 0.28525 0.38456
3 x(t− 2) 0.09888 0.28673
4 y(t-2) 0.02875 0.26009

5 1 0.00140 0.26182
6 x(t− 3) 0.00069 0.26435
7 y(t− 3) 0.00021 0.26743

shown in TABLE I. It can be clearly seen that PESR

arrives at the minimum 0.26009 when the number of

selected terms is 4, which indicates the first 4 selected

terms are significant and all the others can be discarded.

Note in practice when using the Adaptive-Forward-OLS

algorithm, the search procedure will stop after the first 5
terms, but the results of all terms are listed in TABLE I

to show the trend of PESR in more detail. Because the

past information of X , x(t−1) and x(t−2) are included

in the selected terms, the value of ERR-Causality from

X to Y , FX→Y , is detected as 1, and the corresponding

strength is 0.43825 (the sum of ERR values for x(t−1)
and x(t − 2)). Notice that the maximum strength is 1
because the ERR values for all terms sum to 1.

In the second test, the parameters were set as b1 =
−0.6, b2 = 0.2, d1 = 0, d2 = 0, which indicates there is

no interaction between X and Y . The initial conditions

and the candidate term set were exactly the same as those

in the first test and the results are shown in TABLE II.

It is shown that PESR arrives at the minimum 0.38921

TABLE II
THE LIST OF SORTED TERMS ASSOCIATED WITH PESR VALUES FOR

THE SECOND TEST OF EXAMPLE 1

Order Terms [err]i PESR

1 y(t− 1) 0.60121 0.40362
2 y(t-2) 0.01886 0.38921

3 x(t− 2) 0.00067 0.39329
4 x(t− 1) 0.00031 0.39781
5 x(t− 3) 0.00010 0.40264
6 y(t− 3) 0.00006 0.40761
7 1 0.00005 0.41268

when the number of selected terms is 2, which indicates

only the first 2 terms are significant and all others can

be discarded. Because the selected terms contain no past

information of X , based on the definitions in this paper,

the value of ERR-Causality from X to Y , FX→Y is

detected as 0 with a strength of 0.
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Fig. 1. (a) The original signal x(t) and y(t) for Example 2. (b) The
true causality of the signal X to Y and the signal Y to X over time,
which shows FX→Y = 1 during interval 100−300 and FY →X = 1
during interval 500− 700.

B. Example 2

This example aims to demonstrate the flexibility of the

proposed new method in term selection in comparison

with that of the Granger method. A total number of

1000 data points were generated using a time-varying

model based on the definition in TABLE III, where

ζy(t), ζx(t) were white noise sequences with zero mean

and a standard deviation σ = 0.1, and r(t) denotes a

random data sequence uniformly distributed in [−1, 1].
To save space, the notation y(t−1) is simplified as y−1,

and so on. Fig. 1.(a) shows the simulated signals of X
and Y , and the true time-varying causality is shown in

Fig. 1.(b), both of which and the model clearly indicate:

the signal X causes Y at time 100− 300; the signal Y
causes X at time 500− 700; with no causality at other

times.

In the first test the Granger test was applied. Considering

the causality from X to Y , this method used a nonlinear
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TABLE III
THE TIME-VARYING MODEL FOR EXAMPLE 2

t x(t) y(t)
0− 100 r(t) r(t)
101− 300 r(t) −0.07x−1 + 0.32x−2

− x−1x−2 + ζy(t)
301− 500 r(t) r(t)
501− 700 −0.07y−1 + 0.32y−2

− y−1y−2 + ζx(t) r(t)
701− 1000 r(t) r(t)

model

y(t) = a(t) +
∑3

i=1 bi(t)y(t− i) +
∑3

i=1 ci(t)x(t− i)

+
∑3

i=1

∑3
j=i dij(t)y(t− i)y(t− j)

+
∑3

i=1

∑3
j=i fij(t)x(t− i)x(t− j)

+
∑3

i=1

∑3
j=i hij(t)x(t− i)y(t− j) + ζy(t)

(34)

where parameters a, b, c, d, f, h are no longer constants,

but functions of time. The window size was chosen as

50 and the detected time-varying Granger causality is

illustrated in Fig. 2.(a), where an accurate causality can

be achieved if an appropriate threshold is used. This

is essentially all implementation of the new algorithm

described in section II-D.

Now a scenario when some key model terms are missed

in the model structure is considered. By removing all the

nonlinear terms in (34), the model

y(t) = a(t) +
∑3

i=1 bi(t)y(t− i) +
∑3

i=1 ci(t)x(t− i)
+ζy(t)

(35)

was used and the detected time-varying Granger causal-

ity is illustrated by Fig. 2.(b), where the measurability of

causality is significantly decreased and accurate results

can not be achieved. This failure arises due to the large

contribution of the term x(t− 1)x(t− 2) in the original

model. The absence of this term in the model can

dramatically change the signal to noise ratio (SNR) in

Y and results in a very poor prediction of Y even when

the past information of X is considered. This shows the

disadvantage of any test based on a knowledge of a full

and complete model.

The second test applied the ERR-Causality method.
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Fig. 2. (a) The detected time-varying Granger causality based on the
model (34) for Example 2, where the causality is distinctive. (b) The
detected time-varying Granger causality based on the model (35) for
Example 2, where the causality is not distinctive.

Initially, the candidate terms set was chosen as
{

1,
x(t− 1), x(t− 2), x(t− 3), y(t− 1), y(t− 2), y(t− 3),
x2(t− 1), x(t− 1)x(t− 2), x(t− 1)x(t− 3), x2(t− 2),
x(t− 2)x(t− 3), x2(t− 3),
y2(t− 1), y(t− 1)y(t− 2), y(t− 1)y(t− 3), y2(t− 2),
y(t− 2)y(t− 3), y2(t− 3),
x(t− 1)y(t− 1), x(t− 1)y(t− 2), x(t− 1)y(t− 3),
x(t− 2)y(t− 1), x(t− 2)y(t− 2), x(t− 2)y(t− 3),

x(t− 3)y(t− 1), x(t− 3)y(t− 2), x(t− 3)y(t− 3)
}T

(36)October 20, 2011 DRAFT



8

which has 28 members. The detected time-varying ERR-

Causality is illustrated in Fig. 3.(a) which clearly shows

the results are consistent with the expected causality.

The corresponding strength is shown in Fig. 3.(b),

which illustrates the consistently strong strength during

interactions. To study the flexibility of the new ERR-

Causality test in term selection, the candidate term set

was deliberately chosen to be insufficient

{

1, x(t− 1), x(t− 2), x(t− 3), y(t− 1)

, y(t− 2), y(t− 3)
}T (37)

where all nonlinear terms have been removed and now

only 7 linear terms were considered. The detected values

of the ERR-Causality test, illustrated in Fig. 3.(c), are

relatively accurate even though a significant nonlinear

term with a large contribution was not considered, and

a complete parameter set was not estimated. The corre-

sponding strength of the causality is shown in Fig. 3.(d),

which illustrates the strength during interactions is not

as strong as shown in Fig. 3.(b) due to the absence of the

non-linear term, but is still distinctive enough to reflect

the original causality. A comparison between Fig. 2.(b)

and Fig. 3.(c) shows the robustness of the ERR-Causality

test compared to the Granger test. It is well understood

that the estimation accuracy for both methods can be

improved with an increasing number of trials, but for a

real system, multi-trials is often impossible.

Note, the start and end positions of Y causes X and X
causes Y in Fig. 3 are not exactly the same as the original

model, which is not surprising because the window size

determines the reaction speed of causality detection. A

selection of small window size means a fast reaction

to the change of causality over time, but may lead to

insufficient data to achieve an accurate result. Conversely

a selection of a large window size can improve the

accuracy of causality detection, but may significantly

slow down the reaction to the change of causality over

time.

C. Example 3

This example aims to explore the application of the

proposed method in the estimation of the time shift

between two signals, and compares the performance to

the cross correlation method using the same window

size. Assuming X causes Y at time t, the time shift is

approximated by the time lag of the first term from past

information of X appearing in the detected significant

terms ranked by ERR. For example, if x(t − 3) is the

first selected term, the time shift of X causing Y at time

t is 3 times the sample interval. The contribution of the

first term can also be used to approximate the strength

of the causality at that time shift.

0 1 2 3 4
-2

-1

0

1

2

Time(s)

 x(t)
 y(t)

Fig. 4. The generated signal x(t) and y(t) for Example 3.

Consider two signals

x(t) = sin(2πf1t) + 0.2sin(2πf2t) + ζx(t)
y(t) = sin(2πf1t+ β) + 0.2sin(2πf2t) + ζy(t)

(38)

Because the next example involves real EEG data, two

common frequencies which appear in real EEG ex-

periments were introduced in this simulation. One is

the dominant frequency from EEG, which is typically

around 2− 3Hz, and will be denoted by f1; another is

50Hz induced from electrical interference, denoted by

f2. Obviously, y(t) has a fixed phase shift β in front

of x(t) at all time. From the causality point of view, Y
causes X at all time with a fixed time shift, which can

be expressed τ = β
2π×f1

. Model (38) was simulated by

setting the parameters f1 = 2.5Hz, f2 = 50Hz,∆t =
0.004sec, β = 0.2π and ζx(t) and ζy(t) are white noise.

It can be calculated that the original time shift τ equals

40ms. Fig. 4 shows the signals X and Y with noise

standard deviation σ
(

ζx(t)
)

= 0.2 and σ
(

ζy(t)
)

= 0.2.

The candidate terms set for the ERR-Causality test was

chosen as
{

1, x(t−∆t), ..., x(t− 15∆t), y(t−∆t),

..., y(t− 15∆t)
}T (39)

The detected time shifts from the ERR-Causality test

and the cross correlation method using different window

sizes are shown in Fig. 5, where it is expected that the

accuracy of estimated τ for both methods will improve

with an increase in window size. Comparison of the

results with the same window size for the two methods

clearly indicates that the ERR-Causality test requires less

samples of data to achieve the same accuracy for τ . This

means that the ERR-Causality test has faster reactions

to the change of time shift over time than that of the

cross correlation method. Several tests suggested that

the selection of a window size of 0.5 − 0.8 times the

period of the dominant wave always produces the best

performance.

IV. APPLICATION TO EEG DATA

Recently, more and more studies have investigated

the problem of causal effects in neural data [21, 22],

the investigation of which is usually carried out by
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Fig. 3. (a)-(b) The detected time-varying causality with corresponding strength based on the candidate terms set (36) using the ERR-Causality
test for Example 2. (c)-(d) The detected time-varying causality with corresponding strength based on the candidate terms set (37) using the
ERR-Causality test for Example 2.

correlation and coherence measures [23, 24, 25] or

phase synchronisation measures [26, 27]. These methods

measure the strength of the interactions between signals,

but no insight into the directionality of information flow

is produced. The Granger method has also been used

to understand the directed interactions between neural

assemblies [6], but again no quantitative description

has been presented to measure the information flow.

In this example, a data set consisting of an epileptic

sample of scalp EEGs recorded by the EEG Laboratory

of Neurophysiology, Sheffield Teaching Hospitals NHS

Foundation Trust, Royal Hallamshire Hospital, were

studied to find out the directional flow of signals col-

lected from different cortical sites, and to determine the

corresponding quantitative measurements of time shift

to try to better understand the functional organization of

the brain during an epileptic seizure.

In this example, to simplify the problem, only dominant

causality is considered at a specific time by comparing

the strength of both causalities.

A. Data acquisition

Scalp EEG signals are synchronous discharges from

cerebral neurons detected by electrodes attached to the

scalp. A NeuroScan Medical System (NeuroSoft Inc.,

Sterling, VA) with the international 10-20 electrode cou-

pling system was used. The sampling rate of the device

was 500 Hz. A total of 32 EEG series were recorded

in parallel from 32 electrodes located on an epileptic

seizure patient’s scalp using the same 32 channel am-

plifier system using bipole montage reference channels.

This example considered four bipolar montages:F7-F3,

T5-O1, F8-F4, T6-O2, which are located in different

sites of the brain, as illustrated by Fig. 6. The montage

F7-F3 represents the voltage difference between the

channel F7 and F3. The purpose of this example is to de-

tect the causality associated with the corresponding time

shift between the signals from the front and back site

October 20, 2011 DRAFT
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Fig. 5. (a)-(c): The detected time shift of Y in front of X using the cross correlation method with different sizes of window h; (d)-(f): The
detected time shift of Y in front X using the ERR-Causality test with different sizes of window h.

200 202 204 206 208 210 212 214 216 218 220 222 224 226
-300

0

300

T5
-O

1(
v)

Time(s)

Seizure

200 202 204 206 208 210 212 214 216 218 220 222 224 226

0

500

F7
-F

3(
v)

Time(s)

Fig. 7. The recorded EEG signals from the left brain.

of the brain. A comprehensive seizure of a patient was

sampled (13000 data points) starts from the 200th sec

to the 226th sec. Two experiments were implemented,

in the first the montages F7-F3 and T5-O1, two signals

from the left brain, were sampled after noise removal and

the data are shown in Fig. 7. Fig. 7 clearly shows the
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Fig. 6. Distribution of EEG channels in the brain.

epileptic seizure where regular oscillation starts at the

203rd sec and ends at the 223rd sec. Apply the ERR-

Causality test, the candidate term set was chosen as

{

1, x(t−∆t), ..., x(t− 20∆t), y(t−∆t),

..., y(t− 20∆t)
}T (40)

and ∆t = 2ms. The window size was chosen as 300,

which will depend on the dominant frequency of the

signals as suggested in Example 3. Fig. 8.(a) shows the

contribution of the first term from the past information

of the other signal detected by the proposed approach,

where the black scattering denotes the strength of the

signal F7-F3 causing T5-O1, and the red scattering

denotes the strength of the signal T5-O1 causing F7-

F3. The corresponding values of ERR-Causality test

between these two signals are shown in Fig. 8.(b).

Inspection of both figures shows that during the time

interval 200.5 − 202 sec, before the epileptic seizure,

F7-F3 causing T5-O1 dominates the interactions. During

the time interval 202 − 223 sec, T5-O1 causing F7-

F3 dominates the interaction, although F7-F3 causing

T5-O1 appears occasionally with very short duration,

especially during 202 − 212 sec the strength of T5-

O1 causing F7-F3 is relatively higher and the causality

is more consistent than that during 212 − 223 sec.

During the time interval 223−226 sec, after the seizure,

two causalities appear alternatively with relatively small

strength. The detected time shift of the signal T5-O1 in

front of F7-F3 is shown in Fig. 8.(c). It is observed that,

during the stable procedure of the epileptic seizure (time

intervals 203 − 223 sec), the detected time shift of the

signal T5-O1 in front of F7-F3 is very consistent (the av-

erage value is about 28ms), although a few gaps appear

indicating when the opposite causality is detected. From

the causality point of view, this observation indicates the

signal T5-O1 may cause F7-F3 during the seizure with

an averaged time shift of about 28ms.

In the second experiment, the montages F8-F4 and T6-

O2, two signals from the right brain, were sampled after

noise removal and the data are shown in Fig. 9. Using the

same settings of the parameters, the results produced by

the new approach are illustrated by Fig. 10. Fig. 10.(a)

shows the contribution of the first term from the past

information of the other signal detected by the proposed

approach, where the black scattering denotes the strength

of the signal F8-F4 causing T6-O2, and the red scattering

denotes the strength of the signal T6-O2 causing F8-

F4. The corresponding values of ERR-Causality test

between these two signals are shown in Fig. 10.(b).

Inspection of both figures shows that during the time

interval 200 − 202 sec, before the epileptic seizure,

two causalities appear alternatively with relatively small

strength. During the time interval 202 − 223 sec, T6-

O2 causing F8-F4 completely dominates the interaction

with relatively higher strength. During the time interval

223 − 226 sec, after the seizure, two causalities appear

alternatively again with relatively small strength. The

detected time shift of the signal T6-O2 in front of F8-F4

is shown in Fig. 10.(c). The observations are very similar

as those of the first experiment. During the stable interval

of the seizure, the detected time shift of the signal T6-O2

in front of F8-F4 is relatively consistent. Before the start

and after the end of the seizure the time shift appears

to be chaotic or random. This observation indicates the

signal T6-O2 may cause F8-F4 during the seizure with

an averaged time shift of about 23ms.

Four more epileptic seizures from the same patient have

also been studied and the observations of causality are

very similar, and the averaged time shifts during the

seizure are very close, as shown in TABLE IV, which

demonstrates that the time shift of the considered two

signals is within the range of 25− 32ms.

TABLE IV
THE DETECTED AVERAGED TIME SHIFT FOR 5 SEIZURES FROM THE

SAME PATIENT.

Interval τ (T5-O1 → F7-F3) τ (T6-O2 → F8-F4)

14− 40s 27.46ms 25.19ms
202− 223s 28.03ms 22.90ms
560− 583s 30.04ms 27.90ms
1361− 1386s 31.31ms 30.32ms
1674− 1694s 31.16ms 29.55ms

All above results produced by the ERR-Causality test

indicate the signals from the back brain dominantly

causes the signals from the front brain during an epileptic

seizure for the studied patient. Moreover, the time shifts

of the signal in the left back brain which is in front of

the signal in the left front brain were observed to be very

October 20, 2011 DRAFT



12

200 202 204 206 208 210 212 214 216 218 220 222 224 226
0.0

0.2

0.4

0.6

0.8

1.0  F7F3->T5O1
 T5O1->F7F3

S
tre

ng
th

Time(s)

(a)

200 202 204 206 208 210 212 214 216 218 220 222 224 226

0

1

 FF7F3->T5O1

 FT5O1->F7F3

E
R
R
-C

au
sa

lit
y

Time(s)

(b)

200 202 204 206 208 210 212 214 216 218 220 222 224 226

0

10

20

30

40

50

T5O1->F7F3

Ti
m

e 
sh

ift
(m

s)

Time(s)

(c)

Fig. 8. The results produced by the presented approach for the signal F7-F3 and T5-O1. (a) The strength of the ERR-Causality, where the black
scattering represents F7-F3 causing T5-O1 and the red scattering represents T5-O1 causing F7-F3; (b) The detected map of the time-varying
casuality, where black denotes F7-F3 causing T5-O1 and red denotes T5-O1 causing F7-F3; (c) The detected time-varying time shift of the
signal T5-O1 in front of F7-F3.

close to the time shifts of the signal in the right back

brain in front of the signal in the right front brain. For all

five epileptic seizures studied in this example, τ (F7-F3

→ T5-O1) are slightly different, but consistently longer

than τ (F8-F4 → T6-O2).

The observations extracted from EEG data are very

interesting and may provide significant potential in future

studies of brain activity during an epileptic seizure.

V. CONCLUSIONS

We have shown that the new ERR-Causality test

can detect the time-varying causality of two signals,

a measure of the corresponding coupling strength, and

estimate the time shift. Both the ERR-Causality test and

the Granger test can detect causality accurately if the

candidate terms are chosen appropriately. However, the

ERR-Causality test has a better performance if some

model terms are omitted and estimates of the full pa-

rameter set in the model is not required. It has also been

demonstrated in Example 3 that the new method has a

faster reaction to the change of causality over time than

the cross correlation method. The performance of the

Granger test was not compared because it is not able

to detect the time shift. The application of the ERR-
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Fig. 9. The recorded EEG signals from the right brain.

Causality test to detect the directed interaction between

EEG signals has been presented in the last example.

By analysing the detected causality map along with the

strength and the estimated time shifts, it has been found

that the dominant causality is very consistent during

epileptic seizure, but the dominant causality before and

at the end of seizure are random. Furthermore, the

estimated time shifts of the signals from the back brain

causing the signals from the front brain are in the range

of 25−32ms for the studied patient. These observations

show that the proposed method could be a very important

tool to help understand the functional organization of

the brain during an epileptic seizure by providing an

insight into directionality of information flow. The results

showing the causality between signals from the back

brain and the front brain are highly encouraging, and

a full map of signal flow will be developed in future

publications.
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Fig. 10. The results produced by the presented approach for the signal F8-F4 and T6-O2. (a) The strength of the ERR-Causality, where
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