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Abstract A novel modelling scheme that can be used to estimate and track time-varying properties of nonstationary signals is 

investigated. This scheme is based on a class of time-varying AutoRegressive with an eXogenous input (ARX) models where the 

associated time-varying parameters are represented by multi-wavelet basis functions. The orthogonal least square (OLS) 

algorithm is then applied to refine the model parameter estimates of the time-varying ARX model. The main features of the 

multi-wavelet approach is that it enables smooth trends to be tracked but also to capture sharp changes in the time-varying 

process parameters. Simulation studies and applications to real EEG data show that the proposed algorithm can provide 

important transient information on the inherent dynamics of nonstationary processes. 

 

Keywords: TVARX model, wavelet basis functions, model structure detection, recursive least squares (RLS), orthogonal least 

square (OLS), time-dependent spectra, EEG. 

 

I. INTRODUCTION 

Time-varying processes encountered in different engineering applications such as biomedical signal processing 

can be characterised by parametric representations [1]-[4]. Thus, the need to identify TV systems has naturally led to 

a growing interest in these areas. Parameter identification and modelling is now established based on the 

AutoRegressive with an eXogenous input (ARX) model. The ARX model, which can match the structure of many 

real-world processes, is one of the most widely applied linear dynamic models. The popularity and wide application 

of the ARX model comes mainly from its easy-to-compute parameters [5]-[7].  

Many approaches have been proposed to identify time-varying Autoregressive with eXogenous input (TVARX) 
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models. One of the most popular techniques to deal with TV modelling problems is to adopt an adaptive algorithm 

such as the Kalman filter and RLS approaches [8]-[10]. Another method for TV system identification is to expand the 

TV parameters onto a linear or nonlinear combination of a set of basis functions. Consequently, the unknown 

time-varying parameters are then converted into a set of constant coefficients of the basis functions. Hence, the initial 

TV identification and modelling problem is simplified and becomes a deterministic regression selection and 

parameter estimation problem. 

The choice of basis functions can significantly affect the performance of the parameter estimates. 

Conventionally, the basis functions have been chosen to be Chebyshev and Legendre polynomials, prolate spheroidal 

sequences which are the best approximation to bandlimited functions [2], [4], [12]-[13] and wavelet basis that have a 

distinctive property of multi-resolution in both the time and frequency domains [3], [14]-[15]. Basis expansion 

methods have been widely applied to solve various engineering problems. For example, a TVAR model can be 

expanded over a Fourier–Bessel (FB) series to constitute a feature vector for segmentation of the EEG signal, and 

then to find a simple model for the parametric representation of EEG signals [16]. A good choice of the basis 

functions should allow abruptly or rapidly changing parameters to be tracked. 

Wavelets have distinctive approximation properties and are well suited for approximating general nonstationary 

signals [2]-[3], [17]-[20], and thus have been successfully applied to many areas including nonlinear signal 

processing and parametric identification [21]-[25]. However, to our knowledge, not much work has been done to 

exploit the inherent approximation properties of wavelets to identify TV coefficient parameter estimation. The 

objective of this study is to present a novel TVARX modelling approach, where the time-dependent coefficients are 

expanded using a finite set of multi-wavelet basis functions. Based on a multi-wavelet expansion scheme, a new 

method for time-dependent parameter estimation is then proposed. The term ‗multi-wavelet‘ here has a twofold 

meaning. Firstly, the TV coefficients of the ARX model are approximated using several types of wavelet basis 

functions (i.e. the TV parameter estimation involves multiple wavelets). Secondly, these wavelet basis functions are 

combined in a form of multi-resolution wavelet decomposition. The advantage of the proposed method, compared 

with a method involving only a single type of wavelets, is that the multi-wavelet expansion scheme is much more 

flexible in that it exploits the excellent properties of both non-smooth and smooth wavelet basis functions and thus 

can effectively track both rapid and slow variations of TV coefficients. In addition, the expansion of TV parameters 

onto multi-wavelet basis functions is more accurate and effective for dealing with nonstationary signal modelling 

than traditional power spectral estimation approaches and classical time-invariant parameter models. 
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II. PROBLEM FORMULATION 

 

A. Time-Varying ARX Model and Multi-wavelet Coefficient Expansions 

The TVARX  ,p q model for a single-input/output system can be represented as  

           
1 1

p q

i ni n
y t a t y t i b t u t n e t

 
      ,                                (1) 

where t  is the time instant or sampling index of the signal  y t ,  y t i  and  u t n  are the measured response, 

respectively.  ia t  and  nb t  are the TV coefficient functions to be determined in the model; the term  e t  is the 

residual error accommodating the effects of measurement noise, and modelling noise that can be viewed as a 

stationary white noise sequence with zero mean and variance 2
e . The proposed method is to expand the TV 

parameters  ia t  and  nb t  onto multi-wavelet families cardinal B-splines basis functions, 

  : 3,4,5;m
k mm k   , such that the following expression hold: 
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where ,i k  and ,n k  represent the expansion parameters,  : 2 1j
m k m k       for 3,4,5m , 3j   is the wavelet 

scale, 3,  4,r  and 5s  , 1,2, , ,t N and N  is the number of observations of the measurement data, 

respectively. Substituting (2) into (1), it yields,  
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From (3), the original TVARX model in Eq. (1) has now been converted into a time invariant (LTI) regression model 

with respect to the time invariant coefficients  
,
m

i k  and  
,
m

n k . In this study, cardinal B-splines wavelets, which have 

been proved to have a lot of excellent properties, are considered and will be employed for time-varying parameter 

expansion. Detailed discussions about how to build the associated multi-wavelet model using B-splines can be found 

in [2] and [26]. 
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B. Time-Dependent Spectrum Estimation 

Equation (3) can be solved by using linear least squares algorithms. Let  ˆia t ,  n̂b t  be the estimates of  ia t  

and  nb t , and 2ˆe  is the estimate of 2
e . The time-dependent spectral function associated to the TVARX model in 

Eq. (1) is defined as,  
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where 1,j    and sf  is the sampling frequency. Note that the spectral function (4) is continuous with respect to 

the frequency f  and thus can be used to produce spectral estimates at any desired frequency up to the Nyquist 

frequency / 2sf . The frequency resolution is not infinite, but is determined by the underlying model order and the 

associated parameters. 

 

C. Model Identification and Parameter Estimation 

In general, the estimation of LTI system parameters is formulated as an overdetermined problem. Then the least 

squares solution is the optimal estimate of the parameters in the sense of minimum residual error. However, if the 

parameters are time-varying, the problem of parameter estimation becomes underdetermined, and it is much more 

difficult to find the ‗best‘ solution. Expanding the TV parameters onto a linear combination of a set of basis functions 

can solve the underdetermined problem. Consequently, the parameter estimation of unknown variables can be 

reduced to a set of constant coefficients of the basis functions. However, the multi-wavelet expansion model (3) 

involves a large number of candidate model terms that may be highly correlated. The resultant parameter estimates 

may be over-fitted. Experience suggests that most of the candidate model terms can be removed from the model, and 

that only a small number of significant model terms are needed to provide a satisfactory representation for most 

linear and nonlinear dynamical systems. Many approaches have been introduced to eliminate the possible linear 

dependency of candidate model terms by selecting best bases, for example, Kaipio and Karjalainen [27] introduced a 

principal-component-analysis (PCA)-type approximation scheme to select the ‗optimal basis‘. The mutual correlation 

of the coefficients is also taken into account in their approach.  

In this work, TV coefficients are expanded by multi-resolution cardinal B-splines wavelet series, and then the 

forward orthogonal least squares (OLS) algorithm [28]-[31], which have been proven to be a very effective to deal 

with multiple dynamical regressions problems, is applied to determine the forms in model (3). Detailed discussions 
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of the procedure of the forward OLS can be found in [23], [28]-[31]. The TV coefficients  ia t  and  nb t  in Eq. (1) 

can be recovered by the resultant estimates from model (3). 

 

III. SIMULATION EXAMPLE 

Consider a TVARX (2, 2) model below 

                   1 2 1 21 2 1 2y t a t y t a t y t b t u t b t u t e t                                (5) 

where  e t  is zero-mean Gaussian white noise. The TV parameters in Eq. (5) are given by: 
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  2 0.6, 1 ,b t t N                                       (6) 

where the length of data N  is 512. Model (5) was simulated by setting the input  u t  as a Pesudo-Random Binary 

Sequence (PRBS) [32]. The variance of the noise  e t  was chosen to be 0.04, and this made the signal-to-noise ratio 

to be around 13 dB. Both the input and the associated output sequences were recorded and were used for subsequent 

model estimation. 

Figure 1 compares three different methods, that is, the RLS algorithm, the RLS algorithm with B-spline basis 

functions, and the OLS algorithm with B-spline basis functions. Panel (a) shows the results using the RLS estimation 

algorithm (forgetting factor (ff) 0.92) [8]. Panel (b) gives the results of the RLS (ff: 0.998, using B-spline wavelets 

and selecting scale index 3j  ) algorithm and Panel (c) shows the OLS identification results (using B-spline wavelets 

and selecting scale index 3j  ). Obviously, The RLS approach attains smooth but relatively poor estimates that 

cannot track the rapidly changing TV parameters, the parameter estimates are underdetermined. The RLS approach 

with B-spline obtains irregular estimates with large variances (over-fitted), however, compared with RLS method, the 

resultant estimates from the RLS method with B-spline can track the sharp changes of the TV parameters. These 

interesting results have been verified by Li et al., [26]. The OLS method with B-spline appears to outperform the 

RLS approach and the RLS approach with B-spline. The results using the OLS approach with B-spline is impressive 
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because it is able to track three quite different waveforms: the constant value, an abrupt change, and the sinusoidal 

waveform. The proposed method (the OLS with B-spline) can attain smooth estimates while providing rapid tracking. 

The mean absolute error (MAE), normalized root mean squared error (RMSE) and the standard deviations (Std) of 

the parameter estimates (with respect to the true parameters) are estimated and shown in Table 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Compared with the RLS approach and the RLS approach with B-spline estimates, Table 1 statistically confirms 

that the MAE, RMSE and Std estimates produced by the OLS approach with B-spline yield smallest. The MAE and 

RMSE are both defined by 

   
1

1 ˆ ,
N

t

MAE a t a t
N 

                                                (7) 

   
 
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2
1

ˆ1 N

t

a t a t
RMSE

N a t


  ,                                          (8) 

where  â t
 
represents the estimates of coefficients  a t

 
in the TVARX model (3), and N  is the length of the data 

set. 

 

 

Table 1 A comparison of the model performance for TVARX (2, 2) model with SNR 13 dB. 

 

Approach        Estimated coefficient         MAE           RMSE         Std 

 

                         
 1̂a t                 0.0917           2.3104        0.1199    

                          2â t                 0.1030           1.8667        0.1292 

RLS  0.92         1̂b t                  0.1080           1.2315        0.2172  

                          2̂b t                  0.0627           0.7260       0.0863 

 

 1̂a t                  0.2045           3.0639        0.2623   

                          2â t                  0.2047           1.9951       0.2746 

RLS with B-spline      1̂b t                  0.1411            1.3973       0.2084   

 0.9998             2̂b t                  0.1803            1.0434      0.2900 

 

        
 1̂a t  

                
0.0893            2.1750      0.1112   

 2â t                  0.0614            1.3520      0.0865 

OLS with B-spline       1̂b t                   0.0642            0.8638      0.1133   

                          2̂b t                  0.0246            0.2250      0.0305 

 

where   represents the forgetting factor. 
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                                            (a) RLS method 

 
(b) RLS method with B-splines 

 
(c) OLS method with B-splines 

Fig. 1. One implementation of the TVARX (2, 2) system identification results with a SNR of 13 dB using the different approaches. Blue 

curve represents the true value of the TV parameters; red curve indicates the estimation value of the TV parameters. (a) the RLS method;  

(b) the RLS method with B-spline; (c) the OLS method with B-spline. 
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IV. APPLICATION—EEG DATA MODELLING and ANALYSIS 

The proposed TVARX modelling scheme has been applied to analyse dynamic relationships from EEG 

recordings to illustrate the application of the proposed multi-wavelet basis function method based on TV parametric 

modelling. Scalp EEG signals are synchronous discharges from cerebral neurons detected by electrodes attached to 

the scalp. The EEG signals discussed here were recorded with the same 32-channel amplifier system. An XLTEK 32 

channel headbox (Excel-Tech Ltd) with the international 10-20 electrode placement system was used in the Sheffield 

Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, UK. The sampling frequency of the device 

was 500 Hz. Andrzejak et al. [33] has discussed in detail dynamical properties of brain electrical activity from 

different extracranial and intracranial recording regions and from different physiological and pathological brain states. 

The central objective of this paper for the EEG signals is to propose an empirical and data-based modelling 

framework from model identification that can produce an accurate but simple description of the dynamical 

relationships between different recording regions during brain activity. This is a complicated black box system where 

the true model structure is unknown, and thus, needs to be identified from available experimental data. As an 

example, the symmetrical two channels (F3, located over the left superior frontal area of the brain, and F4 located 

over the same area on the right) of EEG recorded from a patient with an absence of seizure epileptic discharge was 

investigated. Channel F3 was treated as the input, denoted by  u t , and Channel F4 was treated as the output, 

denoted by  y t , note that Channel F3 is the signal input and Channel F4 is the signal output, the main reason is that 

the phase of Channel F4 is related to the phase of Channel F3, and other criteria including the change in the ERR 

distribution given in [28] can also verify the input-output relationship between Channel F3 and Channel F4. The 

objective is to learn, from the available Channel F3 and Channel F4 recordings, if an identified TVARX model is 

suitable to describe the dynamical characteristics from the time-dependent spectrum analysis approach. The 

input-output EEG signals of 3500 data points pairs of representing one seizure, with a sampling rate of 500 Hz, 

recorded during 7 seconds, were analysed. 

Similar to the simulation example given in section III, the third, fourth and fifth order B-splines were adopted to 

establish TVARX models for the EEG recordings. Several TVARX models with different model orders were 

estimated using the OLS approach with B-spline, the classical generalized cross-validation (GCV) criteria [31] 

suggested that the model order can be chosen to be 4p   and 3q   when using the B-splines as building blocks to 

represent the time-varying coefficients in the TVARX model. 
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The time-varying coefficients estimated  ia t  with 1,2, ,4i   and  nb t  with 1,2,3n   are depicted in 

Figure 3. Figure 4 shows the recovered signal, recovered by the TVARX model from the estimated time-varying 

coefficients  ia t  and  nb t . The topographical diagram of the time-dependent spectrum estimated from the 

TVARX (4, 3) model is shown in Figure 5, and the 2-D image diagram and the contour plot of the time-dependent 

spectrum produced from the 3-D topographical diagram are given in Figure 6. 

From Figure 5 and Figure 6, the distribution scale of the power spectrum of the EEG signal considered here is 

mainly from zero to around 18 Hz. Two frequency bands can clearly be observed as: (a) the low frequency band 

(about the 3 Hz, namely, a spike at 3-Hz); (b) around 18 Hz represents the high frequency band component. The 

contour plot of the time-dependent spectrum given in Figure 6(b) clearly reflects the distribution of these frequency 

components along with the time course. It is clear that the variations of the time course signals can be observed from 

the contour diagram of the transient spectrum. For instance, the power spectrum is mainly distributed by a 3-Hz spike 

frequency component during the period from 5 to 6s, while the high frequency (around 18 Hz) activity is dominated 

by the time course from 0.2 to 0.3s. Any time-invariant parametric modelling framework such as the commonly 

applied ARX models cannot attain these properties which are only possessed by the TVARX model proposed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The EEG recordings (F3 Channel: Input signal, F4  

Channel: Output signal), for a seizure activity of a patient, recorded 

over 7 seconds, with a sampling rate of 500 Hz. 

 

Fig. 3. Estimates of the time-varying coefficients  ia t  

for 1,2,3,4i   and  nb t  for 1,2,3n   for the EEG signal. 
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V. CONCLUSIONS 

A novel TV parametric modelling approach has been presented based on time-dependent coefficients 

approximated multi-wavelet basis functions to account for the transient spectrum information. The TVARX model in 

this study is completely different from existing TV parametric models where the associated time-dependent 

 
Fig. 4. A comparison between the recovered signal from the 

identified TVARX (4, 3) model and the original observations for the 

EEG signal. Solid (blue) line represents the observations and the 

dashed (red) line represents the signal recovered from the TVARX 

(4, 3) model. For a clear visualization only the data points of the 

period from 0 to 2 seconds are shown.  

Fig. 5. The 3-D topographical map of the time-dependent 

spectrum estimated from the TVARX (4, 3) model for the EEG 

signal. 

 

 

                    (a)                                              (b) 

Fig. 6. The 2-D image and the contour diagram of the time-dependent spectrum produced by the 3-D topographical map.  

(a) the 2-D image;  (b) the contour diagram. 
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coefficients are expanded by multi-wavelet basis functions. In most existing TV parametric models, the 

time-dependent coefficients represented by the basis functions are global, whereas in the new proposed modelling 

method, the basis functions involved are locally defined. Wavelets have been proved to show excellent approximation 

properties [18], therefore, the TV models established by the multi-wavelet basis function expansion scheme can be 

much more adaptable and flexible for tracking the sharp variations of nonstationary biomedical signals such as EEG 

recordings. 

The time-dependent spectrum based on TVARX model, with multi-wavelet basis functions, can reflect the 

global frequency behaviour of the signal and to reveal the local variations of the signal along the time course. One 

advantage of the proposed model, compared with traditional time-invariant models, is that it can capture much more 

transient information of the inherent nonstationary dynamics of the associated processes. 

A further study in this direction is that the authors are currently extending this novel multi-wavelet approach to 

extract more features of EEG signals based on TVARX and a nonlinear ARX modelling method, so that these results 

can be applied for EEG signal diagnostic tasks, classification, and phase synchronization. Accurate detection and 

analysis of the time-dependent spectrum for various types of seizure is a complicated problem requiring analysis of a 

large set of EEG recordings, this will be the subject of a future report. 

 

ACKNOWLEDGEMENTS 

Yang Li knowledges the support provided by the University of Sheffield under the scholarship scheme and the 

authors gratefully acknowledge that this work was supported by the Engineering and Physical Sciences Research 

Council (EPSRC), UK, and European Research Council (ERC). 

 

REFERENCES 
[1] W. Chen, F. N. Chowdhury, ―Simultaneous identification of time-varying parameters and estimation of system states using iterative 

learning observers,‖ International Journal of Systems Science, vol. 38, no. 1, pp. 39-45, Jan. 2007. 

[2] H. L. Wei, and S. A. Billings, ―Identification of time-varying systems using multiresolution wavelet models,‖ International Journal of 

Systems Science, vol. 33, no. 15, pp. 1217-1228, Dec. 2002. 

[3] H. L. Wei, S. A. Billings, and J. Liu, ―Time-varying parametric modelling and time-dependent spectral characterisation with applications 

to EEG signals using multi-wavelets,‖ Int. J. Modelling, Identification and Control, vol. 9, no. 3, pp. 215-224, 2010. 

[4] K. H. Chon, H. Zhao, R. Zou, and K. Ju, ―Multiple Time-varying Dynamics Analysis Using Multiple Sets of Basis Functions,‖ IEEE 

Trans. Biomed. Eng., vol. 52, no. 5, pp. 956-960, May 2005. 

[5] O. Nells, Nonlinear System Identification: From Classical Approach to Neural Networks and Fuzzy Models, Springer-Verlag, Berlin, 

Heidelberg, 2001. 

[6] D. P. Burke, S. P. Kelly, P. d. Chazal, R. B. Reilly, and C. Finucane, ―A Parametric Feature Extraction and Classification Strategy for 
Brain-Computer Interfacing,‖ IEEE Trans. Neural Systems and Rehabilitation Engineering, vol. 13, no. 1, Mar. 2005. 

[7] H. L. Wei, Y. Zheng, Y. Pan, D. Coca, L. M. Li, J. E. W. Mayhew, and S. A. Billings, ―Model Estimation of Cerebral Hemodynamics 
Between Blood Flow and Volume Changes: A Data-Based Modelling Approach,‖ IEEE Trans. Biomed. Eng., vol. 56, no. 6, Jun. 2009. 



 - 13 - 

[8] L. Ljung, and S. Gunnarsson, ―Adaptation and tracking in system identification—A Survey,‖ Automatica, vol. 26, no. 1, pp. 7-21, Jan. 

1990. 

[9] F. N. Chowdhury, ―Input-output modeling of nonlinear systems with time-varying linear models,‖ IEEE Trans. Automatic Control, vol. 45, 

no. 7, pp. 1355-1358, Jul. 2000. 

[10] F. N. Chowdhury, ―A new approach to real-time training of dynamic neural networks,‖ International Journal of Adaptive Control and 

Signal Processing, vol. 17, no. 6, pp. 509-521, Aug. 2003. 

[11] B. Jiang, F. N. Chowdhury, ―Fault estimation and accommodation for linear MIMO discrete-time systems,‖ IEEE Trans. Control Systems 

Technology, vol. 13, no. 3, pp. 493-499, May, 2005. 

[12] M. Niedzwiecki, Identification of Time-Varying Process, New York: Wiley, 2000. 

[13] R. Zou and K. H, Chon, ―Robust algorithm for estimation of time-varying transfer functions,‖ IEEE Trans. Biomed. Eng., vol. 51, no. 2, 

pp. 219-228, Feb. 2004. 

[14] F. Cakrak, P. J. loughlin, ―Multiple window time-varying spectral analysis,‖ IEEE Trans. Signal Processing, vol. 49, no. 2, pp. 448-453, 

Feb. 2001. 

[15] A. K. Ansari, J. J. Bellanger, F. Bartolomei, F. Wendling, and L. Senhadji, ―Time-frequency characterization of interdependencies in 

nonstationary signals: Application to epileptic EEG,‖ IEEE Trans. Biomed. Eng., vol. 52, no. 7, 1218-1226, Jul. 2005. 

[16] R. B. Pachori, P. Sircar, ―EEG signal analysis using FB expansion and second-order linear TVAR process,‖ Signal Processing, vol. 88, no. 

2, pp. 415-420, Feb. 2008. 

[17] H. L. Wei, and S. A. Billings, ―Identification and reconstruction of chaotic systems using multiresolution wavelet decompositions,‖ 
International Journal of Systems Science, vol. 35, no. 9, pp. 511-526, Jul. 2004. 

[18] S. G. Mallat, ―A theory for multiresolution signal decomposition: the wavelet representation,‖ IEEE Trans. Pattern Analysis and Machine 

Intelligence, vol. 11, no. 7, pp. 674-693, Jul. 1989. 

[19] C. K. Chui, An Introduction to Wavelets (Academic Press), 1992. 

[20] H. L. Wei, and S. A. Billings, ―An efficient nonlinear cardinal B-spline model for high tide forecasts at the Venice lagoon,‖ Nonlinear 

Processes in Geophysics, vol. 13, no. 5, pp. 577-584, 2006. 

[21] D. F. Jason, V. B. Bang, and J. V. Algis, ―Wavelet analysis reveals dynamics of rat oscillatory potentials,‖ Journal of Neuroscience 

Methods, vol. 169, no. 1, pp. 191-200, Mar. 2008. 

[22] H. Adeli, Z. Zhou, and N. Dadmehr, ―Analysis of EEG records in an epileptic patient using wavelet transform,‖ Journal of Neuroscience 

Methods, vol. 123, no. 1, pp. 69-87, Feb. 2003. 

[23] H. L. Wei, S. A. Billings and J. Liu, ―Term and variable selection for non-linear system identification,‖ Int. J. Control, vol. 77, no. 1, pp. 

86-110, Jan. 2004. 

[24] S. C. Ng, and P. Raveendran, ―Enhanced mu Rhythm Extraction Using Blind Source Separation and Wavelet Transform,‖ IEEE Trans. 

Biomed. Eng., vol. 56, no. 8, pp. 2024-2034, Aug. 2009. 

[25] M. K. Tsatsanis, and G. B. Giannakis, ―Time-varying system identification and model validation using wavelets,‖ IEEE Trans. Signal 

Processing, vol. 41, no. 12, pp. 3512-3523, Dec. 1993. 

[26] Y. Li, H. L. Wei and S. A., Billings, ―Identification of Time-Varying Systems Using Multi-Wavelet Basis Functions,‖ IEEE Trans. Control 

Systems and Technology, to be published. 

[27] J. P. Kaipio and P. A. Karjalainen, ―Estimation of event-related synchronization changes by a new TVAR method,‖ IEEE Trans. Biomed. 

Eng., vol. 44, no. 8, pp. 649-656, Aug. 1997. 

[28] S. Chen, S. A. Billings, and W. Luo, ―Orthogonal least squares methods and their application to non-linear system identification,‖ Int. J. 

Control, 50, no. 5, pp. 1873-1896, Nov. 1989. 

[29] S. A. Billings, S. Chen, and M. J. Korenberg, ―Identification of MIMO non-linear systems using a forward-regression orthogonal 

estimator,‖ Int. J. Control, vol. 49, no. 6, pp. 2157-2189, Jun. 1989. 

[30] H. L. Wei, and S. A. Billings, ―Model structure selection using an integrated forward orthogonal search algorithm assisted by squared 

correlation and mutual information,‖ Int. J. Modelling, Identification and Control, vol. 3, no. 4, pp. 341-356, 2008. 

[31] S. A. Billings, H. L. Wei, and M. A. Balikhin, ―Generalized multiscale radial basis function networks,‖ Neural Networks, vol. 20, no. 10, 

pp. 1081-1094, Dec. 2007. 

[32] I. Leontaritis, S. A. Billings, ―Experimental-design and identifiability for nonlinear-systems,‖ International Journal of Systems Science, 

vol. 18, no. 1, pp. 189-202, Jan. 1987. 

[33] R. G. Andrzejak, K. Lehnertz, F. Mormann, C. Rieke, P. David, and C. E. Elger, ―Indication of nonlinear deterministic and 
finite-demensional structures in time series of brain electrical activity: Dependence on recording region and brain state,‖ Physical Review 

E, vol. 64, no. 6, Dec. 2001. 


