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Spatio-temporal Generalised Freguency
Response Functions over Bounded Spatial
Domains

L.Z. Guo, Y. Z. Guo, S. A. Billings, D. Coca, and Z. Q. Lang

Abstract—In a companion paper (Guo, Guo, Billings,
Coca, and Lang 2010), the concept of frequency response
functions (GFRFs) has been extended to describe the
characteristics of spatio-temporal dynamical systems over
an unbounded spatial domain from a frequency domain
point of view. In this paper, a similar point of view will be
taken to investigate spatial-temporal dynamical systems
over a bounded spatial domain in the frequency domain.
The main difference is that due to the bounded spatial
domain, the property of trandation invariance with
respect to the spatial domain is not valid any more. In
order to overcome this, the paper provides a new
definition of impulse response functions, which is different
from the standard impulse definitions. The definitions and
interpretation of spatio-temporal generalised frequency
response functions are given for linear and nonlinear
spatio-temporal systems based on this newly defined
impulse response function. Examples are provided to
illustrate the new frequency domain methods.

Index Terms—Generalised frequency response, spatio-
temporal systems, bounded spatial domain, Volterra series
representation

.  INTRODUCTION

In a companion paper (Guo, Guo, Billings, Coca, and
Lang 2010), it has been shown that the concept of
generalised frequency response functions (GFRFs) can
be extended to describe the characteristics of spatio-
temporal dynamical systems over an unbounded spatial
domain from a frequency domain point of view.
Generalised impulse response functions, generalised
transfer functions, and generalised frequency response
functions can be defined for linear/nonlinear spatio-
temporal systems over an unbounded spatial domain,
which are consistent with their traditional meanings.
The reason why this could be done is that the underlying
system is both time and spatia translation invariant,
which requires the spatial domain is infinite/lunbounded.
With these properties, the impulse response functions
can be defined properly and the Laplace or Fourier
transformations can be applied without any difficulties.
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This naturally leads to the definition of transfer
functions or frequency response functions for spatio-
tempora systems over an unbounded spatial domain.
Similar ideas can also be found in Dudgeon and
Mersereau (1984). However, this approach cannot be
used to do the frequency analysis for spatio-temporal
dynamical systems over a finite/bounded spatial domain.
As discussed in Guo, Guo, Billings, Coca, and Lang
(2010), a number of different descriptions of the transfer
function and frequency response models for spatio-
temporal systems, which can deal with a finite/bounded
spatiadl domain have been proposed including Curtain
and Zwart (1995), Curtain and Morris (2009),
Rabenstein and Trautmann (2002), Garcia-Sanz, Huarte,
and Asenjo (2007), Billings and Wei (2007), but most
of them are only suitable for linear spatio-temporal
systems rather than nonlinear systems. In this paper,
motivated by Zadeh (1950), the transfer functions and
frequency response approaches are developed and
extended to deal with nonlinear spatio-temporal systems
over a bounded spatial domain. This is achieved by
adopting a new definition of the (generalised) impulse
response functions of the system with respect to an
excitation signal through external inputs, initia
conditions or boundaries. This definition of the impulse
response functions is different from the traditional
methods in the sense that it indicates the position where
the impulse signal is applied explicitly. It allows us to
deal with the bounded spatial domain in an effective
way and leads to the definition of (generalised)
frequency response functions in a natural way. The
paper is organised as follows. An analysis of the
impulse and frequency responses for linear spatio-
temporal systems over bounded spatial domain is given
in Section 2, which includes three different types of
impul se response and frequency response functions and
how to calculate them. The forma definitions of the
GTFs and GFRFs for nonlinear spatio-temporal systems
over afinite spatial domain are then given in Section 3,
together with a detailed analysis of these functions.
Section 4 illustrates the proposed methods using some
numerical examples of linear and nonlinear spatio-
temporal systems. Conclusions are drawn in Section 5.



1. SPECTRAL ANALYSISOF LINEAR
SPATIO-TEMPORAL SYSTEMS

In this section, we will consider linear, time-
invariant spatio-temporal systems governed by the
following first order evolution equation

ye(x, t) + Ay(x, t) = ulx, t),
I(y(x, O)) =px),x €Q
B(y(x,t)) =9(xt),x €00t >0 (1)

where x is the space coordinate variable defined on a
bounded domain Q with aboundary 9Q and t isthe time
variable. A is a bounded linear operator which can, for
example, take the form of Ay(x,t) = ayy(x,t) +
a1V, (%, t) + azyxx (%, t), where y,(x,t), yx(x,t), and
Ve (X, t) represent the tempora derivative, first and
second order spatial derivatives, respectively. I and B
are the linear operators for defining the initial and
boundary conditions. We assume that y(x,t) and
u(x, t) denote the output and the external excitation of
the system, respectively. For simplicity, in this initial
study, we restrict our discussion to one spatid
dimension and scalar systems, which gives 2 = [a, b].
In this case, certain boundary conditions are required to
obtain a unique solution to (1). The genera form of the
boundary conditionsis

B(y(xb' t)) = lp(xb! t), Xp = 4, b (2)

which includes four commonly wused boundary
conditions:  Dirichlet  ( B(y(xp,t)) = y(xp,t) ),
Newmann  ( B(y(xb, t)) =vy,(xp,t) ), Robin

( B(y(xp, ) = byy(xp, 1) + by (x5, 1) ), X, = a@,b
and periodic (y(a,t) = y(b,t)). The initia-boundary
value problem is then given as

yt (x’ t) + AY(x, t) = u(x' t)’

y(x,0) =¢x), x€(ab),
B(y(a,t) = ¢(a,t), B(y(b,1)) = ¥(b,t), t >0
©)
which can be split into four sub-problems
. homogeneous equation with zero initial

conditions and inhomogeneous boundary conditions at a

V. (x, t) + Ay(x,t) = 0,
y(x,0) =0,x € (a,b),
B(y(a,t)) = ¢(a,t),B(y(b,t)) =0,t > 0
(4)
. homogeneous equation with zero initial
conditions and inhomogeneous boundary conditions at b

ye(x, t) + Ay(x,t) =0,
v(x,0) =0,x € (a,b),

B(y(a,t)) = 0,B(y(b,)) = (b,t), t >0 (5)
. homogeneous equation with nonzero initial
conditions and homogeneous boundary conditions

ye(x,t) + Ay(x,t) = 0,
y(x,0) = ¢(x),x € (a,b),
B(y(a,t)) =0,B(y(b,t)) =0,t >0

(6)
. Inhomogeneous equation with zero initia
conditions and homogeneous boundary conditions
vy (x, t) + Ay(x, t) = u(x, t),
y(x,0) =0, x € (a, b),
B(y(a,t)) =0,B(y(b,t)) =0,t >0
(7)

If yi(x,t), y,(x,t) , y3(x,t) ,and y,(x,t) are the
solutions to (4)-(7), then superposition shows that the
solution to (3) is the sum of these four solutions
y(x,t) = y1(x,0) + ¥, (x, t) + y3(x, ) + yu(x, t) due
to the linearity. The problem here is to derive the
impulse response functions and frequency response
functions of the system (3) over (a, b). In what follows,
we will discuss them separately.

A. Impulse and Frequency Responses With Respect To
Boundary Conditions

The impulse and frequency responses with respect to
boundary conditions are related to problem (4) and (5).
In this section, we will discuss problem (4) while (5)
can be treated in a similar manner. Setting ¥ (a,t) =
6(t — 1) in(4) givesasolution to (4) as h®(x, t; T)

h(x,t;7) + Ah%(x, t;T) =0,
B(h“(a, t; T)) =6(t—1), x€(ab),t,t>0

)
It follows that given a general boundary condition
B(y(a,t)) =¢(a,t) and consdering the time-
invariance, the solution to (4) will be
+0oo
y(x,t) = J’ h®(x, t; DY (a, 1)dT
0
+0o0
= J- h®(x,t — t)Y(a,t)dr
0
+ o0
= J- h*(x,)Y(a, t — t)dr
0
9)

which means the solution to (4) is the convolution of
h%(x,t, ) and ¥ (a, t)with respect to time. The function
h%(x,t,7) is obviously the system response at timet
caused by an impulse applied at time 7 and at boundary
point a. Therefore, it will be referred to as the impulse
response function of the system (3) with respect to
boundary conditions.
If the function i (a, t) is of the following form



¥(a,t) = et

(10)
Substituting (10) into (9) gives
+m . . .
y(x,t) = f h%(x,7)e™/%%dtr /%t = H%(x, w) e/t
0
(1)

which shows that the output y(x, t) is a scaled version
of the input ¥(a,t) = e/“t, which means e/*t is the
eigenfunction of (4) with eigenvaue H%(x,w) .
Therefore, it is natural to define

+oo
H%(x, w) =f h%(x,7)e 7®Tdr

@D
$@

Y(at)=el®t

(12)
as the frequency response of the system (3) with respect
to its boundary conditions.

It is also interesting to notice that as a function of
gpatial variable x, H*(x,w) may be expanded in a
Fourier series as a periodic function with a period of
l=b—-a

+oco
H(x,w) = Z HE (w)e/@m/Dkx
k=—o0
(13)
where
1 (b .
HX(w) = Tf H(x, w)e J@T/Dkx gx |k € Z
a

(14)

B. Impulse and Frequency Responses With Respect To
Initial Conditions

To derive the impulse and freguency responses with
respect to initial conditions, consider (6) with an
impulse initial condition

ye(x,t) + Ay(x,t) = 0,
y(x, O' () = 6(36' - O»x'( € (a, b)r
B(y(a,t)) =0,B(y(b,t)) =0,t >0
(15)
Denote y(x, t; {) the solution to (15), and then for a
general initial condition y(x,0) = ¢(x), the solution to
(6) isgiven by

b
ﬂnw=fy@uOMO@

(16)
Notice that ¢ € (a,b) is a spatia position where the
impulse is applied. Let § =x—{ be the relative
position of ¢ with reference to position x. A change of
variablein (16) resultsin

x—

ﬂ%0=f B (x, & O (x — £)dE
b

17)
where hi(x,&t) 2 y(x,t;x — &) =y(x,t;{) . The
function hi(x, &;t) may be interpreted as the response
of the system (3) at time t and spatial location x caused
by an impulse applied ¢ spatia locations with reference
to the site x at time 0. We will define this function
hi(x,t; ) as the impulse response of the system (3)
with respect to initial conditions, which depends on
spatial location.

The impulse function hi(x,&;t),x € (a,b),é €
(x—b,x—a) has a Fourier series expansion
considered as a periodic function of £ € (x — b,x — a)
asfollows

+00
hi(x, &t) = Z Hi(x,t)e/@m/OK | =p—q
k=—o0
(18)
where
. 1r*e . ;
Hi(x, k; t) =7f hi(x, & t)e @D g |k e 7
x—b
(19)
If the function ¢ (x) is of the following form
<p(x) — ej(27r/l)k(x—a)
(20)

which can be considered as being defined over (a, b) or
aperiodic extension, substituting (20) into (17) yields

x—a

y(x, t) = J hi (x,¢; t)e—j(Zﬂ/l)kidf e 2m/Dk(x-a)

-b
i — lHi(x, k; t)ej(21r/l)k(x—a)
(21)

which shows that e/?m/Dk(x-a) jg the eigenfunction of
(6) with eigenvalue [H!(x, k; t). Therefore, it is natural
to define

x—

a
UG ki) = [ Gt §)eEmone dg

x—b
_y&t)
‘P(x) qD(x)=ej(27!/l)k(x—z7.)’

keZ

(22)
as the frequency response of the system (3) with respect
to its initial condition, which is the ratio of the system
output to the harmonic initial excitation.

C. Impulse and Frequency Responses With Respect To
External Excitations

The impulse and frequency responses with respect to
external excitation can be derived following the similar



argument in previous sections. Now consider the
problem (7) with an impul se excitation

yt(x' t) + A}’(x' t) = S(X - (!t - T)r
y(x,0) =0, x € (a, b),
B(y(a,t)) = 0,B(y(b,t)) =0,t >0
(23)
Denote y(x,t;{,7) the solution to (23), then for a
general externa excitation u(x,t), the solution to (7)
will be

b o)
y(x,6) = f f (& 6.4 D, Ddrdd
a 0

b oo
_ f f ¥, ¢, Du((, t — T)drd]
a Y0

(24)
due to the assumption of time-invariance. As for the
spatial variable, again let £ = x — ¢ be the relative
position of ¢ with reference to position x and a change
of variablein (24) resultsin

x—b oo
y(x,t) = f f he(x, &, Dulx — &t — t)dtdé
x—a YO0

(25)
where h®(x, &, 1) 2 y(x,x — &, 1) = y(x,{, ). We will
define this function h®(x, &, 7) as the impulse response
of the system (3) with respect to external excitation,
which depends on spatial location due to the loss of
spatial invariance.

If the external excitation u(x,t) is of the following
form
u(x’ t) — ej(Zn/l)k(x—a)ejwt

(26)

substituting (26) into (25) yields

y(x,t)

x—=b oo
— f f he(x' f, ‘r)e‘j“”dr e—j(Zn/l)k{’dfej(ZTI/l)k(x—a)ejcut
x—a /-

x—b
= j He(x, &, w) eI CT/DKE g o) @ /Dk(x-a) g jort
x—a
— lHe(x,k; w)ej(ZH/L)k(x—a)ejwt

(27)
where
HoG§ @) = [ heGog e e
x—b0 )
HE (x,k; ) = f HE (x, £, w) e 1 @m/0KE 4
x—a
(28)
From (28), it can be observed that H¢(x, k; w) are the

Fourier coefficients of the Fourier series expansion of
the function H¢ (x, &, w)

+o0
He(x, & w) = Z He(x, k; w)el@m/DKE 1 =ph —q

n=—oo

(29)
Therefore, from (27) one has
x=b ]
IH® (x, k; w) =f He(x, &, w) e J@m/DKE g
xX—a
x,t
= G, k€eZ
u(x, t) W) =el CT/Dk(x=0) gjt
(30)

We will cal H¢(x, k;w) the frequency response
function of the system (3) with respect to externa
excitation.

D. Computation of the Linear Frequency Response
Functions

In this section a ssimple example will be used to show
how to calculate the frequency response functions
discussed in previous sections.

Consider a linear system described by the following
first order evolution equation with a Neumann boundary
condition

ye(x,t) + aoy(x, 1) + a1y (%, £) + ay Y (x, 1)

=u(x,t),
y(x,0) = p(x), x € (0,1),
¥(0,8) =0, y(t)=9(), t>0
(31)

where q;,i =0,1,2 are constants. The frequency
response functions to be caculated are H!'(x,w) ,
Hi(x, k; t), and H® (x, k; w).

To calculate H'(x, w), suppose Y (t) = e/“t, from
(11) the output and the associated temporal and spatial
derivatives are then

y(x,t) = H'(x, w)e/*t
ye(x, t) = joH' (x, w)e/**
Ve (2, t) = Hy(x, w)e/®*
Yex (x,8) = Halcx (x, w)ejwt
(32)
Substituting equation (32) and Y(t) = e/*t into
equation (31) withu(x,t) = 0, p(x) = 0 yields

JwH (x, w)e’®t + agH' (x, w)e/®t + a; HL(x, w)e/®t
— ayHL, (x, w)el®t = 0
HL(0,w)e/®t =0, HL(l,w)e/®t =e/®tt >0
(33)
The frequency response function H'(x,jw) can be
obtained as the solution to the following two-point
boundary value problem

aszlcx(x, w) — alH)lc(x: w) — (ag +jw)Hl(x, w) =0



HL(0,0) =0, H.(lLw)=1
(34)
with the following characteristic equation

p(k) = ak* — a;k — (ap + jw)
(35)
To caculate Hi(x, k; t), suppose ¢(x) = e/@m/Dix,
from (21) the output and the associated temporal and
spatial derivatives are then

y(x,t) = IH (x, k; t) e/ @m/Dkx
ye(x,t) = IH: (x, k; t) el @m/Ukx
v, (x,t) = IHL(x, k; t)el 3r/Dkx
+ jr/DnlH (x, k; t) el Gm/Dkx
yxx(xv t) = lH)icx(x' k; t)ej(2n/l)kx
+ 2j2r/DnlHL(x, k; t)el @m/Dix
— 2m/D)?k2IH (x, k; t) el 2m/Dkx
(36)
Substituting equation (36) and ¢ (x) = e/@™/Dkx into
equation (31) withu(x,t) = 0,y (t) = 0 yields

Hi(x, k; t) + (ap + a,j2m/Dk
—a,2r/D)?k*)H (x, k; t)
+(a; + a,2j2m/DE)HL(x, k; t) + a,He (x, k; t) = 0,
Hi(x,k;0) = 1/1, x € (0,D),
HL(0,k; t) + j(2m/DKH(0,k; t) = 0,
Hi(Lk;t) + jQr/DkH (L, k; t) = 0
(37)

The frequency response function Hi(x, k;t) can be
obtained as the solution to the initial boundary value
problem (37).

To calculate Hé (x, k; ), assume the input to (21) is
u(x, t) = e/ @m/Vkxgjot from (27) the output and the
associated temporal and spatial derivatives are then

y(x, t) = IHE (x, k; w)el ?m/Dkxgjot
ye(x,t) = jwlHE (x, k; w)el Gm/Vkx gjwt
¥, 1) = (LHS (x, k; w)e Cn/Dkxg ot

+j(2n

JDkIHE (x, k; w)elGm/Dkxygjot
Yex (%, 8) = (LHZ (%, k; w)ej(Zn/l)kx

+ 2j (2 /DkLHE (x, k; w) el B/ Dkx

- (Q2n

/l)zklee (x, k; w)ej(Zn/l)kx)ejwt

(38)

Substituting equation (38) and u(x, t) = e/ @m/Dkxgjwt
into equation (31) with ¢(x) = 0,y (t) = 0 yields

H (x, k; 0) + (aq + apj 2 /Dk)Hy (x, k; w)
+ (agjw + a,j2r/Dk
—a,2r/D*k?)He (x, k; w) = 1,
HE(0,k; w) +j(2r/D)kHE(0, k; w) = 0,
HE(L ks ) + j2r/DkHE( k; ) = 0

(39)
The frequency response function HE(x,w) can be
obtained as the solution to the boundary value problem
(39) with a characteristic equation

p(B) = a7 + (a; + apj2n/Dk)B + agjw
+ a,j2n/Dk — ay2n/ D2k k € Z

(40)
[1l. SPECTRAL ANALY SIS OF
NONLINEAR SPATIO-TEMPORAL
SYSTEMS

In this section, we extend the idea of impulse
response functions and frequency response functions for
linear spatio-temporal systems over a bounded spatial
domain to the nonlinear cases using a Volterra series
representation of the nonlinear relationships.

Consider the following first order nonlinear evolution
equation with initial conditions | and boundary
conditions B

yt(xt t) + A}’(x, t) = u(x, t):

I(y(x,0)) = p(x), x € (a,b),
B(y(a,t)) =v¥(a,t),B(y(b,t)) =9(b,t), t >0
(41)
where A is a bounded nonlinear operator which can, for
example, take a form of Ay(x,t) = y2(x,t) + Ve (x, 1).
Asin the linear case, define y(x, t) and u(x, t)to be the
output and the external excitation of the system,
respectively. Similar to the linear case, we will aso
investigate the impulse responses of the following

equations derived from equation (41)

. homogeneous equation with zero initia
conditions and inhomogeneous boundary conditions at a

yt(x! t) + A}’(x, t) = Or
y(x,0) = 0,x € (a,b),
B(y(a, t)) = Y(a, t),B(y(b, t)) =0,t>0
(42)
. homogeneous equation with zero initia
conditions and inhomogeneous boundary conditions at b

yt(xr t) + A}’(x, t) = Or
v(x,0) =0,x € (a,b),
B(y(a,t)) = 0,B(y(b,t)) = ¢(b,t), t >0
(43)
. homogeneous equation with nonzero initial
conditions and homogeneous boundary conditions

ye(x,t) + Ay(x,t) = 0,
y(x,0) = ¢(x),x € (a,b),
B(y(a,t)) =0,B(y(b,t)) =0,t >0
(44)



. Inhomogeneous equation with zero initia
conditions and homogeneous boundary conditions

ye(x,0) + Ay(x, t) = u(x, t),
v(x,0) =0, x € (a, b),
B(y(a,t)) = 0,B(y(b,t)) =0,t >0
(45)
Remark 1. Due to the nonlinearity of the operators
involved, the solutions y,(x,t),y,(x,t), y;(x,t)
v, (x,t) of (42), (43), (44), and (45) may not be
expressed according to the linear convolution between
the impulse response functions and the inputs because
there are nonlinear (dynamical) relations between the
input and output. In this paper, we will use a Volterra
series representation to describe these nonlinear
relationships.
Following the general nonlinear system and Volterra

series representation theory (Schetzen 1980, Rugh 1981),

the four solutions can be expressed as the Volterra series
representations

A Z e

ST

n=1

(o0}

f h&(x; Tq, Tn)l_[d)(a t —1;)dt;

°“"§

OO

(68 = ) W

n=1
+ 00 400

= Zoj J hb(x; Ty, 1) ll;[l,b(b, t —1)dr;

n=

[y

(o0}

y3(x,6) = Z Y6, 0

o x-b x-b .

z f h%(X,fl,...,fn;t)H(p(x_fi)dfi
Valx, t) = Z yE(x, t)

i f foh S CF SPRIEI S5 JPRE rn)nu(x

gulfx al)dfld‘[l

(46)
where y¢(x,t), vi(x,t), y2(x,t), and y2(x,t) are the
nth order outputs of the system with

+oo n
vt o = [ [ Heonew [ o -
0 i=1

0

+0o0 +00

o= - f W7y, rn)ﬂw(bt vz,

0

x—b
o= [ - fhl(x ) fn.t)l—[q)(x
x—a
sﬂ)ds‘l
x—b
o= | - fh CRIN AL m]—[u(x
x—a
fu — 7;)d&;dT;
(47)
Define the functions he(x, &, -+, &L Ty Th)
h;.l(xlfll“'lfn;t) ) and h%(x;Tli"'Tn) and
hb(x; 1, 1,) @ the nth order generalised impulse

response functions of the system with respect to external
signals, initia conditions, and boundary conditions,
respectively. In this paper, it is assumed that the
generalised impulse functions are symmetric with
respect to al the time and all the spatial variables. In
what follows we will derive the generalised frequency
response functions for each of them.

Remark 2. The first two Volterra series
representations in (46) and (47) come from the
assumption that the system (41) is time-invariant while
the last two representations follow the same approach as
discussed in the previous section. Because the spatial
domain is bounded, the system (41) is not spatially
trandation invariant or is not stationary so that we again
use relative locations & =x—{, ¢, =x—(,
instead of the absolute locations {y,-+,{, for the
impulse inputs as discussed in sections 11.B and I1.C.

Remark 3. Note that in general the solution of (41)
may not be the sum of the four solutions in (46) because
the operators A, |, and B are nonlinear. This solution
could take the following general form

Y0 =) (0

(48)
with y, Cx, ) = fu (it (x, 0, 7 (x, £), v (3, ), 35 (%, 1)),
where f,, isanonlinear map.

Remark 4. It is well known that a nonlinear
relationship can be described as a Volterra series with
different orders of Volterra kernels which can be
visualised as nonlinear impulse response functions
(Marmarelis and Marmarelis 1978, Schetzen 1980,
Rugh 1981). Here based on these results, we develop
these concepts for nonlinear spatio-tempora systems,
which is consistent with the linear cases (see section 1)
and conventional temporal dynamical systems.



A. Generalised Frequency Responses With
Respect To Boundary Conditions
If the function y(a, t) is of the following form
L .
w(a' t) = Z e]wlt
=1
(49)

Substituting (49) into the first equation of (47) gives
(due to the assumption of symmetry)

+00 +00

o= [ [ heon,m)x

0 0
n L
jwi(t—T;
| | E eJwi( l)dTi
i=1 l=1
+ o0

+00

=f f R (x; Ty, -+ Tp) X

..~
1l
[y
~
1l
[y

+00 400 n
f f h&(x; 74, --Tn)l_[e'j“”f‘dr
0 0 i=1
L L n
= Z Z Hrcll(x, W, wln) 1_[ ejwzlt
L=1 Ip=1 i=1
(50)
Where
HE (x; wq, -+ wy) =
+00 400
f f h%(x;‘[ll'”lrn) X
0 0
e_j(w1T1+"'+wnT‘n)dT1 cee dTn
(51)

We will call HZ(x;wq, -, w,) the nth generaised
frequency response function of the nonlinear spatio-
temporal system (41) with respect to boundary
conditions. H? (x; w,, -+, w,) can be defined following
asimilar argument.

B. Generalised Frequency Responses With
Respect To Initial Conditions

For the sake of simplicity, it will be assumed that a = 0
so that the spatial domain is (0, b). If the function ¢ (x)
is of the following form

L
(p(x) = Zl_le](zn/b)klx, kl ez

(52)
which can be considered as being defined over (0, b) or
a periodic extension, substituting (52) into the third
equation in (47) yields

x—b x—b n L
= f f hi(x, &p, e, Es B) nz eJ@r/b)ki(x—§1) dé;
x—a x—a i=1 =1

L n
= p" Z .. z Hril(x, ke ks t) 1_[ ol @n/b)kyx
=1 i=1

L
;=1
(53)
Where

Hril(x' kl' Yy kn; t)
-b

1 x—b n
== f f h;'l(x,fl’...,fn;t)l_[e—j(Zn/b)kifidfi’
- i=1

X
xX—a xX—a
ki, k,€Z
(54)
Therefore, H: (x, ky, -+, ky; t) in (54) can be understood
as the coefficients of the multidimensional Fourier
series representation of the impul se response function

hn (81,7, 8ns £)
+00 n

= z H,i(x,kl,m,kn;t)ﬂef(m/b)szi
i=1

K, kp=—00 i=
(55)
We will call H:(x,kq,-,k,;t) the nth generalised
frequency response function of the nonlinear spatio-
temporal system (41) with respect to initial conditions.

C. Generalised Frequency Responses With
Respect To External Excitation

Again if it is assumed that a = 0 so that the spatial
domain is (0,b). If the function u(x,t) is of the
following form

L
u(x,t) = Z eJ@r/Dkx gjorx | € 7
1=1

(56)
substituting (56) into the fourth equation in (47) yields

x—b +co

o= [ [ hGn i) X

x—a 0
n L
H Z eI @m/Dki(~E) gjo1(t=TD) 4. 47,
. =1
i=1



L

L
= bn Z z H;?L(x' kll"”'kln; a)ll’...wln)
11=1

lp=1
n

y | | oI @n/bkyx ot

i=1

(57)
where
H‘rel(x: kll; ) kn; W1, (Un)
X— +00
1
= b_" J- f he(x, &1, &Ens Ty, o Ty)
n x—a 0
X 1_[ e J@r/DkiSig—jotiqE.d T,
i=1
ki, k,€Z
(58)
If welet

h‘fl(x' 51' Yy fn; W1y, a)n)
+o0 +o00

éf .“J- hfl(xlfll.“ifn:rli.“‘[n)
0 0

X e—j(wl‘fl"’"""wnl’n)d-[l dTn
(59)
HE(x, ky, -+, kp; wq, - wy) in (58) can be understood as
the coefficients of the multidimensional Fourier series
representation of the function in (59)

h%(x, flr 'fn; wWq, " wn)
+00

n
= HE(x, ky, -, ks 1, -+ wp) ef@r/b)ki§;

(60)
We will cal HE(x, ky, -, ky 0, w,) the nth
generalised frequency response function of the
nonlinear spatio-tempora system (41) with respect to
external excitation. H (x,kq,, ky; w4, w,) can be
considered to be obtained from Fourier transform for the
time variable and then Fourier series expansion for the
spatial variable.

D. The  Calculation of Spatio-temporal
Generalised Frequency Response Functions

Consider an example nonlinear system described by
the following first order evolution equation with
Dirichlet boundary condition

yt (X, t) + ‘11)’(36. t)yx(x: t) + azyxx(x' t) = u(x: t):
y(x,0) =¢x), x€(0,b),
y(0,t) =0, y(b,t) =), t>0

(61)

where a;,i = 1,2 are constants. The frequency response
functions to be caculated are HE(x;wq, -, w,) ,
Hril(x! kl! Y kn; t) , and Hﬁ(x‘ kll Ty kn; wWq, ", wn) )
corresponding to the problems (43), (44), and (45). The
calculation of these nth spatio-temporal generalised
transfer functions can be carried out using a
development of the probing method (Billings and Tsang
19893, Peyton-Jones and Billings 1989, Billings and
Peyton-Jones 1990, Bedrosian and Rice 1971).
To calculate H?(x; w), suppose ¥ (t) = e/t and
from (50)
y(x,t) = H (x; w)e®t
ye(x,t) = joH? (x; w)e/®t
v, (x, ) = HP, (x; w)e®t
Yix (X, 1) = fox (x; w)ejwt
(62)
Substituting equation (62) and Y(t) = e/“t into
equation (61) withu(x,t) = 0, (x) = 0, and equating
the coefficients of the term e/“tyields

a,H?, . (x; ) + joH? (x; ) = 0
HY (0;w) = 0,HY (b; w) = 1
(63)
The first order generalised frequency response function
H? (x; w) can then be obtained as the solution to the
boundary value problem (63).
To caculate H? (x; wy, w,), Suppose the input is
PY(t) = e/1t + e/ @2t ggain from (50)

y(x,t) = HY (x, w)e/ 1" + HY (x, wp) e/ 2*
+ 2HY (x; w4, w,) el (@rt@2)t
(64)
Substituting (64) and the associated temporal derivative
v:(x,t) and spatial derivatives y, (x,t), v, (x,t) and
equating the coefficients of the term e/(@1+@2)t yields

20, HY, (0 01, 03) + 2j(w1 + w)HY (x5 0y, ;)
+ a1Hf (x, 0)1)fo(3€']'(1)2)
+ a1fo(x' w1)Hf(x'jw2) =0
Hf(O, w;y) =0, Hf(O, w,) =0, Hf(O; wy,wy) =0
HY (b, w;) = 0, HP (b, w,) = 0,2H? (b; w,, w,) = 1
(65)
It follows that H?(x;w,,w,) is the solution to the
boundary value problems (65).
To caculate Hi(x k;t)
e/ @r/Dkxand from (53)

suppose (1) =

y(x,t) = bHi(x, k; t)e/@m/b)kx
v (x,t) = bHL, (x, k; t) el @m/b)kx
v, (x,t) = bHL (x, k; t) e @m/bliex
+ bj(2m/b)kHi (x, k; t) el Gm/bkx
Vox (6, 1) = bHL . (x, k; £)e] B/DIkx
+ 2bj(2m/b)kHL, (x, k; t)el 2m/b)kx
— b(2m/b)2k?HL (x, k; t)el Gm/D)kx



(66)
Inserting (66) into (61) with u(x,t) =0,y (x) = 0 and
equating the coefficients of the term be/ @™/D)kx yidlds

Hi(x, k; t) + a,Hiy, (x, k; £)
+ 2a,j(2m/b)kH}, (x, k; t)
— a,(2m/b)?k2HL(x, k; t) = 0,
H{(x,k; 0) = 1/b,
Hi(0,k;t) =0,
Hi(b, k;t) =0
(67)

The solution to the initial-boundary value problem (67)
is the required first order generalised frequency
response function Hi(x,k;t) . The second order
frequency response function Hi(x,k,, k,;t) can be
obtained by using ¢(t) = A(e/@m/PIkix 4 @i @m/bIkax)
as test signal, where A > 1 is the magnitude. Now from
the definition (47), the respective components of the
response are then

x—b

Y o) = f B e, & D (x — £)dé,

x—b
=A f hi(x, 61; t) (ej(ZTL'/b)kl(x_fl)

X
+ e/ @r/Dka(x=E1))q g,
= Hi(x, ky; t)bAel @m/Dkax
+ Hi(x, ky; t)bAel @m/Dkzx

x—b x-b 2
viwo= [ [ Beaao] [ew- s
x X i=1
x—b x—b

ZAZJ f hy (x, &1, 82 £) e/ CT/PY1 80

+ e}'(zxﬂ/b)xkz(?(—fﬂ) (ef(ZU/b)lﬁ(X—fz)

+ ei('zir/b)kz(x—fz)) df1dfg

= Hi(x,ky, ky; t) (bA)2e/ /D) Kkatky)x
+ 2 Hy (x, ey by £) (A) e G/ iz
+ Hi(x, ky ky; t)(bA)2 el 2m/D) k2 tkz)x

(68)

Y0 = ) w0

(69)
Without loss of generdlity, it is assumed that k, < k,
are positive integers. Substituting (69) with (68) and its
associated derivatives and equating coefficients of the
term (bA)%e/ /D) k1+k2)x giyes

2 Hi (x, ky, kpst) + 2ay Hiy (X, ky, Keps ) +
4a,j(2m/b)(ky + ky) Hi, (x, ky, ky; t) — 2a,(2m/
b)?(ky + k2)? Hy(x, ky, ko; £) +
a, Hi(x, by t)HE (x, ko t)
+ a; HE (%, ky s ) HE(x, kg t)
+ a1j(2?T/b)(k1 )
+ ko )Hi (x, ky; ) Hi(x, by t) = 0,

. 1 . .
Hi(x, kl; 0) = E,H{(x, kz; 0) = 1/b, Hé(x, kl,kz; 0)

=0,
HE(0,ky; t) + HE(O, kys t) + 2b HE(0, ky, ks t) = 0,
Hi(b, ky;t) + Hi(b, ky; t) + 2b Hi(b, ky, kyst) = 0
(70)
It follows that the second order generalised frequency
response function H:(x, kq, k,; t) will be the solution to
theinitial-boundary value problem (70).
The other order gpatio-temporal generalised
frequency response functions can be calculated
following a similar procedure.

V. NUMERICAL EXAMPLES

A. Linear Spatio-temporal Systems -- Diffusion
Equation

Consider the following diffusion equation (Debnath
2005) with Dirichlet boundary conditions

yt(xt t) - Dyxx(x’ t) = u(x; t)'
y(x,0) =¢k), x€(ab)
y(a,t) =y),yb,t)=0, t>0
(71)
where D isthe positive diffusion coefficient. According
to the analysis in section 2, system (71) can be divided
into three subsystems with the corresponding frequency
response functions H'(x,w) , H'(x, k;t) , and
Hé(x, k; w).
To caculate the boundary frequency response
H'(x, w), suppose an input of () = e/, then

joH (x,w)e/“t — DHL, (x, w)e/®t = 0

(72)
whose solution is given by
H (x, ) AT
W) =—F——
(73)

Fig. 1 shows that the response excited by a boundary
condition depends on both the frequency of the
boundary condition and the spatial coordinate. The low
frequency boundary conditions drop much faster than
the high frequency boundary conditions do. Obviously,



the result of example 1 discussed in Curtain and Morris
(2009) isa specia case of the result here.

The frequency response Hi(x, k, t) is related to the
following problem

Yt(x' t) - DYxx(xv t) =0,
y(x,0) = p(x),x € (a,b),
y(a,t) =0, yb,t)=0,t>0
(74)
For smplicity, weset a = 0,b = 1,D = 1. Suppose the
input to (74) is @(x) = /2™ * | the output and the
associated temporal and spatial derivatives are then

y(x,t) = H'(x, k, t)e/2™*
ye(x, t) = Hi(x, k, t)e/2™*
Ve (X, ) = chx(x' k, t)es2mkx j47TkH)ic(x, k, t)el2mkx
— 47T2k2Hi(x, k, t)efz""x
(75)
Substituting (75) and ¢ (x) = e/2™* into eguation (74)
yields

Hi(x, k, t) — Hi (x, ke, t) — jankHL(x, k, t)
+ 4m%k?Hi (x, k, t) = 0,
Hi(x, k,0) =1,
HY(0,k,t) = 0,H (1,k,t) =0
x€(0,1),t>0
(76)
The initial-boundary value problem (76) can be solved
by separation of variables, whose solution is

+o0
Hi(x, k,t) = e~ J2mkx Z C,, sinwmx - e~ (™Mt
m=1
(77)
where C,, satisfy
1
Cpp = ZI e/?™% sin tmx dx = j&pm
0
(78)

O2xm istheKronecker delta

Magnitude of Ha

20 x

40 a

B0
wi({radss)

(a) Magnitude of H(x, )

Phase of Ha{deqree)
(=]

-0

0
"

wi(rad/s)

(b) Phase of H(x, w)

60

Fig. 1 H*(x, w)

To calculate the frequency response H (x, k, w) with
respect to the external excitation, we consider the
problem

yt(x; t) - D)’xx(x, t) = u(x, t):

y(x,0) =0, x € (a,b),
y(a,t) =0, y(b,t) =0, t>0

(79)

Agan we set a=0,b=1,D=1 to simplify the

computation. Suppose the input to (79) is u(x,t) =

e/2mkxgj®t the output and the associated temporal and

spatial derivatives are then

y(x,t) = Hé(x, k, w)e/?™* i@t
ye(x,t) = jwH®(x, k, w)e/?™* et
Vi (%, 1) = Hix (%, k, ) /> It
+ jamkHE (x, k, w)e/?™x gjwt
_ 47T2k2He (x’ k, w)ejZn:kxejmt
(80)

Substituting  (80) into
equation (79) yields

and  u(x,t) = el2mkxgjot

HE (x, k, w) + jankHE (x, k, )
— (4m2k? + jw)H® (x, k, w) = —1,
x €(0,1)
H®(0,k,w)=0,H°(1,k,0) =0
(81)
The solution to the boundary value problem (81) is the
required frequency response function

Hé(x, k, =— 1 AeVw/2xtj(-2mk+Jw/2)x
ko) = T e T4
+ Be—x/w/2x+j(—2nk—,/w/2)x
(82)
where


http://en.wikipedia.org/wiki/Kronecker_delta

1 1—e~ w/2—jJw/2

A=— X
Am2k2 + jo  gVw2+ijwz _ g—Jw/2-jfw/2

1 1—e w/2+jJw/2
B = X
42k + jo  gJw2+ijoz _ g—Jw/2-jjw/2

(83)
B. Nonlinear Spatio-temporal Systems

Consider again the nonlinear system (61) described
in section I11.D with parameters a; = 1,a, =1, and
b =1, whichis

Ve(x,8) + y(x, Oy (x, 1) + e (, 1) = ulx, 1),

y(x,0) =0, x € (0,1),

y(0,t) =0, y(1,t)=0, t>0

(84)

We are going to calculate the first and second order

generalised frequency response functions H; (x, k; w)

and Hf (x, kq, k25 w1, 05).

To calculate Hy (x, k, w), suppose the input to (84) is

u(x, t) = e/2™xej®t then the output and the associated
temporal and spatial derivatives are

y(x,t) = HE (x, k, w)e/?™x gjwt
ye(x,t) = jwHE (x, k, w)e/?™* ot
Ve (x, ) = HE, (x, k, w)e/2™xelot
+ j2mkHE (x, k, w)e 2™ *ewt
Vix (x,t) = Hlexx (x, k, w)ej2nkxejwt
+ jAmkHE, (x, k, w)e 2™*gwt
— (2mk)?HE (x, k, w)e/?™kx gjwt
(85)

Substituting equation (85) and u(x,t) = e/2™kxgjwt
into equation (84) and equating the coefficients of the
term e/2™¥ gJ@t yiglds

Hi o (x, k, w) + jankH:, (x, k, w)
+ (o — 2rk)*)HE (x, k, w) = 1,
H{(0,k,w) =0,H{(1,k,w) =0
(86)
The solution to (86) is the required frequency response
function

Hle(x’ k, w) — + Ae—1/w/2x+j(—2nk+‘/w/2)x
Jjw — 4m?k?
+ Be\/w/2x+j(—2nk—1/w/2)x
(87)
where

1 1— ew/w/z—j w/2
=— X
jw —4m2k?  p-Jw/ztjJe2z _ gfw/2-jfw/2

5 1 1—e~ w/2+jJw/2
= X
jw —4n2k?  o-Jw/ztjJe/2 _ gfw/2-j /2

(88)

To caculate HS (x, k4, k; w,, w,), suppose the input

is  u(x,t) = A(e/?mhixgiwit 4 pj2mkaX gjwat) A>

1,k, > k; > 0. Following the earlier discussion, the
response isthen

y(x,t)

= HE(x, kq, w,)Ae/?™k1x gj@rt

+ HE(x, ky, w,) Aei?™k2X gJ @2t

+ 2HE (x, kq, ky; 01, w,) A% eI Ratka)x g(01+ @)t

+ HS(x, ky, ky; wq, wp)A2e/2Tka+k)x gj2et

+ HS(x, ky, ky; @y, w,) A%/ (katk2)X gj20at

(89)

Substituting (89) and the associated temporal derivative
v:(x,t) and spatial derivatives y,(x,t), y.(x,t) and
equating the  coefficients  of the  term
AZejZE(k1+k2)xej(w1+w2)t ylelds

HE o (X, kg, ko 03, @3)
+j4m(ky + k) HS, (X, ky, ko3 w4, w3)
+( (1 + wy) — (2m)? (ky
+ kZ)Z)Hze (x, kll k2l (l)]_, (l)z)

1
= E (1 - Hle (x, kl' wl)Hlex(x' k2' (1.)2)

- Hlex(x' kl' wl)Hle (x! k2' wZ)
—Jj2m(ky
+ kZ)Hle (x' kl! wl)Hle (xF k2' (Uz)),

H3(0,ky, ky; w1, w3) = Hy (1,ky, Ky 01, w,) =0

(90)
The characteristic equation of (90) is
= (2m)? (kg + k2)?)
(91)

V. CONCLUSIONS

A new (generalised) impulse response function has
been defined for linear or nonlinear spatio-temporal
dynamical systems over finite intervals. It has been
shown, through a theoretical analysis and numerical
examples, that the newly introduced impulse response
functions can be used to deal with the finite spatial
extension of spatio-tempora systems in an effective
way. The (generalised) frequency response functions
can be derived through these impul se response functions
viaa Fourier series representation. While the definitions
and methodology introduced in this paper provide a
solid basis and powerful tools for further investigations
of the spectral analysis, further studies about the



computation of these functions and their interpretations
are necessary.
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