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L. Z. Guo, Y. Z. Guo, S. A. Billings, D. Coca, and Z. Q. Lang

Abstract—The concept of generalised frequency
response functions (GFRFs), which were developed for
nonlinear system identification and analysis, is extended to
continuous spatio-temporal dynamical systems normally
described by partial differential equations (PDEs). The
paper providesthe definitions and interpretation of spatio-
temporal generalised frequency response functions for
linear and nonlinear spatio-temporal systems, defined over
unbounded spatial domains, based on an impulse response
procedure. A new probing method is also developed to
calculate the GFRFs. Both the Diffusion equation and
Fisher’s equation are analysed to illustrate the new

computing generalised frequency response functions for
unknown nonlinear systems has also been developed
based on a NARMAX description of the nonlinear
systems (Billings and Tsang 1989a,b, Peyton-Jones and
Billings 1989, Billings and Peyton-Jones 1990). These
developments of nonlinear spectral analysis theory have
overcome many of the limitations that are associated
with a linear or linearised analysis of nonlinear systems.
Nonlinear effects such as harmonics, inter-modulation,
and energy transfer are just not possible in linear
representations and hence linear methods can never

frequency domain methods. fully unravel nonlinear dynamic effects.

Linear spectral analysis has been extended from an
analysis of purely temporal dynamical systems to image
processing techniques such as Fourier optics. Instead of
dealing with temporal frequency effects, Fourier optics
makes use of the sgia frequency domain (&, 1) as the
conjugate of the two-dimensional spatial (x,y) domain.
The two dimensional point spread function and optical

Frequency response analysis is fundamental to apdnsfer function are the counterparts of the impulse
provides important insights into the analysis, stabilitysesponse function and the frequency response function
and performance  characteristics of  controlin temporal systems (Goodman 2005). All of these
communication, acoustic, and vibration systemsheories and applications show the importance of
particularly linear time-invariant systems (LTIs). Base&pectral analysis for both temporal and spatial systems,
on the Volterra series representation of nonlineaghich motivates this investigation of the frequency
relationships, a nonlinear spectral analysis methodologyymain analysis for spatio-temporal systems.
has been developed to overcome the limitations of linear Spatio-temporal systems are a class of dynamic
spectral analysis methods applied to nonlineaystems which evolve over both time and space and
dynamical systems (Schetzen 1980, Billings and Tsanghich are normally described by partial differential
1989a,b, Peyton-Jones and Billings 1989, Billings andquations (PDESs) in the continuous case and coupled
Peyton-Jones 1990 and the references therein). Thifp lattices (CMLs) in the discrete case. These models
methodology characterises nonlinear systems based @@ generally associated with initial and boundary
the Fourier transforms of the Volterra kernels t@onditions, and this together with the problem of
produce frequency domain descriptors commonlgeeking a solution is usually referred to as an initial-
referred to as generalised frequency response functidfisundary value problem. Spatio-temporal systems are
(GFRFs). The GFRFs of a nonlinear temporal systedifferent from conventional dynamic systems in many
provide an intuitive representation of the frequencways. For example, spatio-temporal systems may be
properties of the system and many nonlinear phenomenan-causal with respect to the space variables and the
can be studied and explained using this frameworktate space is infinite dimensional. They are also
Moreover, the GFRFs provide invariant descriptions dfifferent in the way the dynamics and evolution are
the underlying system and are independent of thgfected by an external stimulus. For temporal systems
excitation. The methodology for analysing andhere is generally a single input-channel which exerts an
influence on the system dynamics, whilst there is a
variety of ways that can affect spatio-temporal system

Index Terms—Generalised frequency response, spatio-
temporal systems, Unbounded spatial domain, Volterra
seriesrepresentation

.  INTRODUCTION
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dynamics including external control inputs, initialbounded will be presented in a companion paper (Guo,
conditions, and boundary conditions. These have be&@uo, Billings, Coca, and Lang 2010)). This is achieved
reflected in the control strategies for spatio-temporddy adopting a new approach where two types of
systems: distributed control, point-wise control, andeneralised transfer functions (GTFs) and generalised
boundary control. To investigate the system frequendyequency response functions (GFRFs) are defined
response we should study the (frequency) response liEfsed upon unit impulse responses of the system with
the underlying spatio-temporal system with respect t@spect to the external excitation and the initial
the above mentioned control inputs. Input-output anconditions. The linear impulse responses are equivalent
frequency approaches for spatio-temporal systems haweGreen’s functions (Trim 1990) for linear, translation-
to date focused on linear and time-invariant spatioavariant systems while the nonlinear impulse responses
temporal systems based on the derivations of tHer nonlinear spatio-temporal systems are described
transfer functions. A number of different descriptions ofising a Volterra series representation. New probing
transfer function models for spatio-temporal systemisased algorithms are derived to compute the generalised
have been proposed including Curtain and Zwart (199%)r nonlinear) frequency response functions for a wide
Curtain and Morris (2009), Rabenstein and Trautmarsiass of nonlinear spatio-temporal systems and several
(2002), Garcia-Sanz, Huarte, and Asenjo (2007gxamples are used to illustrate the new methods. We
Billings and Wei (2007), Guo, Billings, Coca, Peng, andtart the investigation with an analysis of the impulse
Lang (2009), among which there are two mosand frequency responses for linear, translation-invariant
influential models. The first relates to the onespatio-temporal systems in Section 2. The formal
dimensional case, where the control to the system dgfinitions of the GTFs and GFRFs for nonlinear spatio-
assumed to be carried out either through boundary otemporal systems are then given in Section 3, together
type of distributed co-location, which means the contralith a detailed analysis of these functions. The cases
input is only dependent on the time variable. The outpwihere the systems are not spatially translation-invariant
of the system is generally taken as a measure at a fixae also investigated. An effective computation method
spatial point or an integration of the system over itbor the calculation of these functions is also included
spatial domain. In this way, the transfer functiorand Section 4 illustrates the proposed methods using the
between the input and output can be derived as followsxamplesof diffusion equations and Fisher’s equations.
initially, Laplace transforming with respect to time tConclusions are drawn in Section 5.
yields an (spatial) ordinary differential equation with s
as parameter. By solving this boundary value problem . SPECTRAL ANALYSIS OF LINEAR
with respect to the spatial variable produces the desired SPATIO-TEMPORAL SYSTEMS
transfer function between input and output (Curtain and
Morris 2009). The second important model is called a Traditionally, the transfer function of spatio-
multi-dimensional transfer function model (Rabensteitemporal system is defined in a similar way to the
and Trautmann 2002) for scalar and vector partigtansfer function ofa temporal dynamical system. The
differential equations. Similar to the first methodtransfer function describes the time response of a spatio-
initially a Laplace transform is applied with respect tademporal system with respect to the excitation input. Let
time to remove the time derivatives and a Sturmd, V, and Y be separable Hilbert (functjospaces and
Liouville transform is applied for the space variable tal € L(V),B € L(U,V),C € L(V,Y), andD € L(U,Y)
yield a multidimensional transfer function which is theare continuous linear functions (bounded operators)
sum of the responses with respect to the control inpbetween the corresponding function spaces, it has been
variable, the initial conditions, and the boundarshown (Curtain and Zwart 1995) that a linear,
conditions. The frequency response of the system ca@anslation invariant spatio-temporal system described
then be evaluated using these transfer functions. It liy the following evolution equation
well known that the transfer functions of purely
temporal systems or luregparameter systems are v(t) = Av(t) + Bu(t)
rational functions whilst the transfer functions of spatio- y(t) = Cv(t) + Du(t) 1)
temporal systems can be irrational. These frequency
approaches reveal the characteristics of linear spatisas a transfer functioP + C(sl — A)™B for s with
temporal systems and provide a basis for the control afal part larger than the exponential growth bound of the
this class of systems. semigroup generated by A if A generates a strongly
In this paper, the transfer functions and frequencyontinuous semigroup. However, the transfer function
response approaches are extended and developed to defihed here cannot give a complete description for the
with nonlinear spatio-temporal systems defined over aystem (1) because the relationship between the system
unbounded spatial domain, in particu{aroo, +o0)(an evolution and the initial conditions/boundary conditions
investigationinto the case where the spatial domain i not defined and explained. In this section, the transfer



relationships between the system output and the

excitation input and the initial conditions will be Similarly, Green’s function hi(x,t; &, t) of the system
discussed for linear, spatio-temporal systems viaith respect to the initial conditions is the solution to
impulse responses of the systems. For simplicity, in thike problem (4) withy(x,0) = @(x) = §(x — &)

initial study, we also restrict our discussion to one

spatial dimension and scalar systems, which gives hi(x, t; &) + ARl (x,t;&) = 0,
y(x,t),u(x,t) € R, and the unbounded spatial domain pi(x, 0; & =68x—9), x,& € (—00,4),t >0

Note that considering the causality of the temporal
A Impulse and Frequency Response of Lineakystem, it is a general requirement thét, t; €,7) = 0
Translation-invariant Spatio-temporal Systems  for ¢ < . Following the definition of Green’s function
and the superposition of the solutions, the general
In this section, we will consider linear, translationsgjytion to (2) with an external excitatior{x, t) and
invariant spatio-temporal systems governed by thghomogeneous initial conditions(x) can be obtained

following first order evolution equation as
+00 +00
yt(x, t) + Ay(x, t) = u(x, t), t>0 y(x’ t) — J f he(x' t; 5, r)u(f, T) dEdT
I(y(x,0)) = ¢(x),x € (—,+) g
) e
with an open boundary condition, wherés the space + f Ri(x, t;€)(&) dE
coordinate variable antdis the time variable. A is a A
bounded linear operator which can, for example, take (7)
the form of Ay(x,¢) = agy(x,t) + a;y,(x, t) + In order to introduce the concepts of the unit impulse

A, Yxx(x, 1) , Where y,(x,t) , ¥(x,t), andy,(x,t) response and the frequency response functions, some
represent the temporal derivative, first and second ordgktra conditions are required. These are defined below.
spatial derivatives, respectively is the linear operator  Assumption 1. It is assumed that Green’s functions

for defining the initial conditions. We assume thafor the problem defined in (3) and (4) exist and are
y(x,t) andu(x,t) denote the output and the externalinique.

excitation of the system, respectively. Assumption 2. The underlying spatio-temporal
Due to the linearity, the problem (2) can be split intgystem is time and spatialtranslation invariant.
the following two subproblems Under the assumptions 1 and 2, Green’s functions
. Inhomogeneous equation with zero initialhave the following invariance property
conditions
v (x,t) + Ay(x, t) = u(x, t), hx+at+pB;E+at+pB)="h(xt;¢1)
y(x,0) =0, x € (—00,4+),t >0 3) (8)
and under any translationga, ) with respect to the

o homogeneous equation with nonzero initiatoordinategx, t). It follows that

conditions
ve(x,t) + Ay(x,t) = 0, h(x,t;é, 1) =h(x —&t—1)
y(x, 0) = (P(x): x € (—OO, +OO), t>0 (9)
(4) sothat (7) takes the following convolution form

If y;(x,t) andy,(x,t) are the solutions to (3) and (4)
respectively, then the sum of these two solutions +oo oo
y(x,t) = y,(x,t) + y,(x, t) is the solution to (2) y(x, t) = J- f he(x — &t —t)u(é,t)dédr

In general, Green’s function or a fundamental 2
solution of the (initial) boundary problem is defined as +oo
the solution of the problem in response to a unit impulse + J’ hi(x — &,t) p(§)dE
input signal, that is, the Dirac delta function. It follows .
that Green’s function h¢(x,t; &, 7) of the system with +00 400
respect to the external excitation is the solution to the = J- f Re(¢,7) u(x — &,t — 1) dédt
problem (3) withu(x,t) = §(x — &,t — 1) R

— 00

hé(x,t;6,7) + AR (x, t;&,1) = 6(x — &, — 1), ; iy
he(x,0;¢,7) =0, x &€ (—0,+0),t,7>0 +_£ h'(§, ) o(x = §)dS

(5) (10)



Consider the case where the input functien(ix,t) = eigenvaluesH!(k,t). This is similar to conventional
e™est and the initial conditions ang(x,0) = ¢(x) = linear time invariant purely temporal systems.
e'*, the output is then given by
B. Impulse and Frequency Response of Linear, Non-
too oo translation-invariant Spatio-temporal Systems

y(x, t) = f f hée(x — &t —t)u(é, 1) dédr

In this sectionwe will consider the case where the

+oo spatio-temporal system is not spatially translation
+ f hi(x —&,t) p(&)dé invariant. In this case, the system response cannot be
2 expressed as the convolution of the Green’s function
+00 +00 and the input variable like those discussed in the
_ f f he (x — &,t — 1) eXée% dedr previous section. However, similar to the previous
discussion, the following relationship still holds
w0 +00 (assume the system is still time-invariant)
+ j hi(x — & t) e*¥dé oo oo
+o0 400 - y(x,t) = f J Gé(x, t; €, Du(§, 1) dédr
= f J- he(f,r)e"("‘f)es(t‘ﬂdfdr - 0
w0 o + [ cwspeea
+ j Ri(E, t) e**=9dg rotw
rore - [ | esoutc-odsr
= elXest J. f he(&, 1) e Ce~ST dédr —o 0
e o + [ Gwsoe@a
KX hi ot —;cfd —®
e [ R0 eas 2

where G¢(x,t;&,7) and Gi(x,t;&) are the Green’s
(11) functions with respect to the external excitation and the
0 rtoo . initial conditions, respectively. A change of variable
Clearly, He(x,s)= [*% [**he(¢,7) e~ e~ dédr is pectively g

) ~ {=x—¢&resultsin
the (two-sided) Laplace transform of the function
he(€,7), and Hi(k,t) = [*7Ri(E,¢) e ¥ dE is  the +o0 +00

two-sided Laplace transform of the functiah(é,t) y(x,t) = j J Gé(x,x —;Dulx — {,t —1)d{dt
with respect to the variable x. In this paper, the % 0

= e"eStHe(k,s) + e H' (i, t)

functions h¢(¢,7) and hi(¢,t) will be called the i

impulse response functions, afd(k,s) andH'(k, t) + J G, tx—Dolx —{)d
will be called the transfer functions of the system with S

respect to the external excitation and initial conditions, (23)

respectively. The Fourier transform version of théenotingh®(x,{,7) = G°(x,x — {,7) andhi(x,{,t) =
transfer functions is called the frequency responsg(x,t;x — ) yields
function of the system (2).

Remark 1. Note that the impulse response function, to+®
the transfer function, and the frequency response y(x,t) = f f he(x,{, Du(x — ¢, t — 1) dldt
function with respect to the initial conditions contain a 5
time index t which indicates that they are defined at that

+00
specific time instant. + f hi(x,{, e(x — ) d{

—00

Remark 2. From (11), it can be observed that for
linear, translation-invariant spatio-temporal systems, the (14)

system's response is the sum of the scaled versions\@§ il call he(x,,7) andhi(x, ¢, t)impulse response

the inputs. Under zero '?t't'al conditions, the systemgnciions with respect to the external excitation and the
have elgenf‘l;lnctlonSe e® and the corresponding jnjtial condition. It can be observed that due to the loss
eigenvaluesi®(k,s). If there is no external excitation, of the translation invariance, the impulse response
at each time t the systems have eigenfuncdfiand  fynction has to be related to each specific location



where the impulse input is applied. Furthermore,

+o00
because = x — ¢ , the impulse response can beH!(x,k,t) = f h"(x,(,t)e‘f"qdizw
interpreted as the system response at spatial location o ¢ (x) p(x)=elkx
caused by a spatio-temporal impulse that was applied a7
spatial locations away from the site This definition is
motivated by the time-varying transfer functions [ll. SPECTRAL ANALYSIS OF
proposed by Zadeh (1950). The Laplace transforms of NONLINEAR SPATIO-TEMPORAL
these two impulse response functions SYSTEMS
toote In this section, we extend the idea of impulse
Hé(x,k,s) = f J. he(x,¢,1)e e 5T d{dt response functions and frequency response functions for
A linear spatio-temporal systems to the nonlinear cases
+eo using a Volterra series representation of nonlinear
Hi(x,k t) = f Ri(x, ¢, t)e ™ dg relationships.

- (15) A Spatio-temporal Generalised Transfer
will be called the transfer functions of the spatio- Functions of Nonlinear, Time and Spatially
temporal system (2) with respect to the external Translation Invariant Systems
excitation and the initial condition. The frequency
domain representatiodi®(x, k, w) and Hi(x,k,t) of Consider the following first order nonlinear, time and

He(x,x,s) and Hi(x,x,t) will be the frequency spatially translation invariant evolution equation
response functions. The calculation of these frequency

response functions can be carried out in a similar way as ye(x, ) + Ay(x, t) = u(x,t),t >0
in the previous section. I(y(x,0)) = p(x),x € (—0o, +0)
Consider the case where the input functiom i ((R3)

u(x,t) = ef**ej®t and the initial conditions are where Ais a bounded nonlinear operator which can, for

y(x,0) = @(x) = e/**, the output is then given by example, take a form ofy(x,t) = agy(x, )y, (x,t) +
a, V. (x,t). As in the linear case, defingx,t) and

+oo +00 u(x, t)to be the output and the external excitation of the
y(x,t) = f f he(x,{,7) ek Delot=0 grgr system, respectively. Again, we will investigate the
R impulse responses of the following equations derived
+o0 from equation 18)
+ f hi(x, ¢, t) e/kx=Dqq e  Inhomogeneous equation with zero initial
A conditions
+00 +00 ye(x, t) + Ay(x, t) = u(x, t),
= elkxgiwt f he(x,,7) e eIt dedr y(x,0) =0, x € (—o0,+00),t >0 (29
—o0 0 and . . e
+00 . homogeneous equation with nonzero initial
+ elkx f hi(x, 0 8) e~ d conditions
K . 6.0) ¢ ve(x,t) + Ay(x,t) = 0,
— ej"xef“’tHe(x,jk,jw) + ejkai(x,jk, t) y(x,0) = p(x), x € (—o,4+),t >0
(16) (20

which shows tha#H®(x, k,w) and H (x, k,t) are the
eigenvalues of the system with correspondin%
eigenfunctiong’/**e/*t ande’/**, and

Remark 3. Due to the nonlinearity of the operators
volved, the solutiong, (x,t), y,(x,t) of (19), (20)
may not be expressed according to the linear
+o0 400 convolution between the impulse response functions and
- - the inputs as given in (10Yhe Green’s functions of
e = e —Jjk¢ p—jwt . .
HE (e, ke, w) = f f heCx, ¢, e/ e™I%" dldr nonlinear operators have been developed to describe the

—® Ot above mentioned nonlinear dynamical relationships
=y(x, ) based on slack products of the nonlinear operators
u(x, O )=eitxgiot (Schwartz 1997, Qiao and Ruda 2004). In this paper, we

take a different approach to deal withisttiproblem.
More specifically, we will use a Volterra series



representation, which is capabdé describing a more Remark 5. It is well known that a nonlinear
general class of nonlinear dynamical systems. relationship can be described as a Volterra series with
Following the general nonlinear system and Volterrdifferent orders of Volterra kernels which can be
series representation theory (Schetzen 1980) and thisualised as nonlinear impulse response functions
assumption of time and spatial translation invariancéMarmarelis and Marmarelis 1978, Schetzen 1980)
the solutions to (19) and (20) can be expressed as tHere based on these results, we develop these concepts
following Volterra series representations for nonlinear spatio-temporal systems, which is
consistent with the linear cases (see section 2) and

> conventional temporal dynamical systems.
yi(x,t) = ZYﬁ(x, t) Assumption 3. In this paper, it is assumed that the
o =1 generalised impulse functions and the corresponding

e n frequency response functions are symmetric with
=Z J- f hfl(fp'",fn:fl,-"fn)nu(x—fi,t respect to all the time frequency and all the spatial
= 0 i=1 frequency variables

n=1_c
—1;)dé;dT; According to the above definition, taking the multiple
2 Fourier transform of the"horder generalised impulse
y2(x,t) = Z yn(x, 1) response functioh (¢,, -+, &,; T4, -+ T,,) With respect to
o e " he . the external excitation(x, t) yields the following i
_ order generalised frequency response function
=3 [ [ H o] oe -0
=l w o i=1 HE(ky, - ks g, ) =
(2]_) +00  +oo
wherey¢ (x,t), andy..(x,t) are the nth order outputs of f f RE(Ey, -+, &Eni Tyy o) Tp) X
the system with o
v e e Jkifrttkndn) g—j(@r1TatFonTn)qg ... d& dr, -+ d1,
(24)
yn (x,t) = f f [={ CSPREEIE S5 SPRLEE ) Note that because of the causality with respect to
o0 time, we can write the integration for time fromoo to
+oo with h& (&, , &5 71,0+, T,) =0 for anyr; <0 .
X H”(x =St —T)ddr; Conversely, the 'iorder generalised impulse response
+oo =1 function h&(&,, -, &, 71, T,) With respect to the

+00

; ; k external excitationu(x,t) can be obtained by the
Y Cot)= [ | ha(§y, o 6nit) 1_[ ¢(x = $JdSi  jnverse Fourier transform
—oo i=1

—00

(22) hé .es e T =
Define the functionshs(&,, -, &,; 7y, Tn) , and n( 'i’&; Vo’ n)
hi (&, -, &t) as the B order generalised impulse f f He (ke v foos

) ) ) - X “ee RN ’w’...w X
response functions of the system (18) with respect to n(y et n)
extern_al signals and initial conditions, respectively. Theej(klgl+T.‘ﬁkn;n‘§ej(a,lfﬁ...mnfn)dk
associated Laplace transforri§(ic,, -, kp; S1, " Sp), !

Hri}(’fl"""‘n;t)and the assoiciated Fourier transforms \ynan assuming homogeneous initial conditions, the
HE (kq, "é,kn; W1, Wy) andHn(kl, ek t)are_ called nih order output is then
the ' order generalised transfer functions and

- dkydw, - dw,
(25)

frequency response functions of the system with respect _ e
to external excitation and initial conditions. PACDRSIICD) 4o +oo
Remark 4. Note that in general the solution dfg _ f f hE(Ey) -+ B Tr, - T)
may not be the sum of the two solutionsi@)(and (20) nob o T
because the operators A are nonlinear. This solution w0
could take the following general form % 1_[ ulx — &, t — 7,)dé&,dt;
o i=1
(26)
yet) = Z yn(x,t) Substituting 25) into (26) and carrying out the
n=1 23 multiple integrals oné&,, -, §&,; 14, T, gives the

. : . following relation
With 3, (6 t) = £ (6,6, ¥i (o £)) , where £, is a J
nonlinear map.



+00 400

B. Spatio-temporal Generalised Transfer
Yu(lx,t) = f f HE(ky, o ks g, ) X Functions of Nonlinear Non-Translation-
Invariant Systems
HU(ki, w;)elkFelvit die, - dk,dw, -+ dw, In this section, the spatio-temporal generalised
i=1 transfer functions for nonlinear, time-invariant but non-
(27)  spatially translation invariant systems will be discussed.
where the input spectrum is given by For other cases like time-varying systems, a similar

discussion can be carried out.
+eo Due to the loss of the property of the translation
Utk,w) = f J. u(&,v)e *eiotgedr invariance, theVolterra series representations (21) for
translation invariant systems are no longer valid.
(28) However, they can expressed as non-stationary Volterra
with k, w the spatial and time frequency respectively. series as follows (Rugh 1981)

Suppose the input functions
u(x,t) = Yk, e/ki¥ei@it  then from 22) the nth output
of the system due to the symmetric property of:(%, t)—ZJ’n(X t)

assumption 3, is given by

i jm fc A RN

X nu(fi; t —1)dé;dr;

1_[ Z efkiE=8)giot-10q ¢, dr, i=1

ACHOEDIEER)

Yult,£) = fm f B (a6 Ty T) X

f f hx (61: . fnl Tyt ) o tx n=1+°° n
. T = [ [ awsguo] [ocods
n ejklxe_jk[fiejwlte_jwl'[i dfld‘[l n=1 - - i=1 (32)
=1 l:1L L n where Gﬁ(xfp'“,fn:‘fp'“‘fn) and Gril(xigl""'gn; t)
_ Z Z H ek gyt are the nth order non-stationary Volterra kernels with
— —~ 1 respect to the external excitation and the initial
+o 4o b=t m=ti=t conditions, respectively. A change of varialile= x —

[ - f B G i T mﬂe Hfig-ionngg gy, Siresultsin

- (29 RN
Substituting from equatior24) yields yi(x,t) = Z Vi (x, 1)

Xt >
Yn (%, 1) Zf fGe(xx Cx
z 3 gl s wln)ﬂ G
T

1=1 Ip=1 (11‘}; Ty,
(30)
Similarly, for the spatio-temporal generalised X Hu(x — it —T)dddr;
frequency response with respect to the initial conditions i=1
L Jjkix
9 () = Bz e ya(e,) = Zyn<x 3
n=1
o) + 00 +0o0
J’n(x t)— Z Z Hl(kll'" kln t)l_[ }le =Z j J- G;‘L(x’x—gl’...‘x_qn;t)
=1 In=1 =1 —co e
1

X 1_[ @(x — §)dg;
i=1



(33) n L
Similar to the discussion in the previous section, we l—[ Ze”‘l" “Jkibigiwite=ionti 4. dr;
define hg(x, ¢y, -, (s Te, o T) = GE(e, x — g, o0, X — i=1 1=1
Zn;Tl"“Tn) and h;z(xv {1""'511:0 = Grlz(x:x_ i i

n

. . jk x ]w t
¢y, x — {y; t) as the nth order generalised impulse i X

response functions of the system with respect to the
external excitation and initial condition. The Laplace’s” e .

and Fourier transforms of these impulse responsg f hﬁ(x'(y""(nifl""Tn)neﬂk"'(ie_m”r"dfidfi
functions will be called the nth generalised transfere - =1

functions and frequency response functions of the (39)
system with respect to the external excitation and t@ubstltutmg from equatiordd) yields

initial conditions

i=1
+00

yn(x t)
He ) PO ; RS =
€(x, Ky - Kn+£1 Sn) Z Z He(x kll""' Swy,, wln)l_[ Jlix got
f f h;, (X (1:" (nv‘[l:" Tn) X =1 In=1 (36)

Similarly, for the spatio-temporal nth order generalised
frequency response with respect to the initial condition
p(x) = Xz, e/ is

(K1€1+ +Kn{n)e_(517-'1+ +5nTn)d(1 , d(nd‘[l dTn

Hj (X KI""'Kn; t) =

+ oo

i . —(k181++Kknln)
0

0

=1  Ilp=1
37
Hﬁ(x'klﬂ'”'kn;wl'"'vwn) = ( )
+00 +00
C. The Calculation of Spatio-temporal
ha (%, Gy Gni Ty e Tn) X Generalised Frequency Response Functions
el +k”(”)e_](wm+ Hontdg, e, dg,dry - dty Consider an example nonlinear system described by

. the following first order evolution equation
Hy(x, kq, o ks t) =
+00 +00

I Ye(x, t) + a; () y (x, D)y (x, 1) + a5 (X)) yxe (x, 1)
f f he(x,qy, -,y t)e j(k181+ +kn(n)d(1’...,d(n = u(x, t),
“®o - y(x,0) = p(x), x € (—,+m), t>0
(34) (38)

Of course, a similar interpretation to the one given in thgherea; (x),i = 1,2 are spatially-varying coefficients
linear case can also be given for the physical meaning§§ that the system (38) is not spatially translation
this definition of the generalised impulse responsgyariant It follows that the frequency response
functions. To calculate these generalized frequengynctions to be calculated are
iy e functions, S8Y HE (x, ey, -+, ki 1, @) ANAHL (6, ey, Ko ).

Hy G kg, oo s w0, @n) -, SUppose  the  input 1o calculateHs (x, k, w), suppose the input to (38) is
functionsu(x, t) = ¥, e/**e/1* , then from 83) the  (x ¢) = e/k*ejot  from (36) the output and the
nth output of the system due to the symmetric properfissociated temporal and spatial derivatives are then

of assumption 3, is given by

y(x,t) = Hf (x, k, w)e/k*el®t

+00 +00 . ;
ye(x,t) = jwHE (x, k, w)e/**e/®t
yn(x,t) = f f h7(x, 81,00y Cs Ty e T) X v, (x, ) = HE, (x, k, w)e/*¥ eIt -
n e + jkHE (x, k, w)e/kel@t
_ jkx ,jwt
jaG=3) giot=T gz dr, Yex (6,6) = Hige (3, K, 0)e e —
H Z eI Gy, + 2JKHE (x, k, @)e<reiot

— k2HE (x, k, w)el**el®t

f f RE(x, Cyy oy O3 Ty, o Tp) X (39)

— 00



Substituting equation 39) and u(x,t) = e/k*e/®t To calculate the frequency respor$®(k, w) with
into equation (8) and equating the coefficients of the respect to the external excitation, we consider the

terme/k* e/t yields problem
a, () HY o (x, k, w) + 2a,(x)jkHf (x, k, ) Ve (%, 6) = Dy (x, 1) = ulx, t),
+ (o — a,(x)k?)HE (x, k, w) = 1, y(x,0) =0, X € (—0,+),t >0
y(x,0) = Hf (x, k, w)e/*™ = 0 (44)

(40) Suppose the input tod4) is u(x,t) = e/**e/*t, then
The solution to (40) is the required frequency respongge probing method gives the frequency response
function H¢ (x, k, w). function as
To calculatefs (x, k4, k,; w4, w,), suppose the input
is u(x,t) = efkixejort yeikaXgj@2t = ggain from 86)

. He(k,w) = ————
the output is then (k, ) jw + Dk?

(45)
y(x,t) The magnitude and phase dbf with D = 1 are shown
= Hf(x, kq, wy)e/¥1¥e @1t + HE (x, k,, w,)e/*2¥ej®2t  in Fig. 1, where Fig. 1 (a) shows that systed) (vorks
+ 2HE (%, ky, ky; w0y, w,) e/ Katka)xgi(wrtwr)t as a low-pass filter with respect to both space and time
+ HE(x, by, Ky 0y, wp) eI 2K1%ei201t frequencies. The frequency domain response depends on
F HE(x, ky, Ky} 0, ) @I2K2% @202 both space and time frequencies. These interact with

(41) each other. For example, for a certain spatial frequency
Substituting 41) and the associated temporal derivativéo- H®(ko,w) is a first order linear system and the
y,(x,t) and spatial derivativeg, (x,t), ., (x,t) into  COrner frequency of the first order system increases with

(38) and equating the coefficients of the ternih€ increase ak,.
eJk1tka)x pj(w1+wz)t yields

2a, () Hzx (X, kg, ko5 3, 03) + 4ay (x) (ky
+ ko) Hzy (X, ko, kg o, 02) + (2)(w1 + )
= 2a,(x) (ky + k) H3 (x, ke, ko 01, @)
+ a, (x)Hle (x' kl! wl)Hlex(xlijlij)

+ a; (x)Hlex(x' kl' wl)Hle (xlijlij)

+ ay () jko HE (x, ky, w1) HY (x, k3, @5)

+ ay () jk,HY (x, ky, w1 )HY (x, ko, 02) = 1,

Magnitude of He (dB)

Hf(x, kl' kz; wl, wz)ej(k1+k2)x = O

(42) 0

The solution to (42) is the required frequency response time frequency log(v) oo spatial fraquency k
function H (x, k4, ky; wy, w,) . The other nth order @ |HE (ko w)|
spatio-temporal  generalised frequency response
functions can be calculated in a similar way.

IV. NUMERICAL EXAMPLES O

=20

A Linear Spatio-temporal Systems Diffusion
Equation

0.

-60

Phasge of He(degree)

Consider the following diffusion equation (Debnath a0y
2005 109
10

yt(x' t) - Dyxx(x: t) = u(x: t):
y(x,0) = @(x), x€(—00,+00),t>0

i}

spatial frequency k

(43) lag(w)
where D is the diffusion coefficient. The problem is to (b) 2H® (ky, )
calculate the spatio-temporal frequency response

functionsH® (k, w) andH'(k, t). Fig. 1H®(k,, ) of Example A



The frequency respongéi(k,t) is related to the
following problem B. Nonlinear Spatio-temporal SystemsFisher’s
Equation
Yt(xlt)_Dyxx(xvt) = 0! . . . . .
y(x,0) = @(x),x € (=00, 400),t >0 Consider the following Fisher’s equation in
(46) dimensionless form (Debnath 2005)
Suppose the input t4§) is ¢@(x) = e/**, the output
and the associated temporal and spatial derivatives arey;(x,t) — Dy, (x,t) — y(x, t)(l —y(x, t)) =0,

then y(x,0) = p(x), X € (—o,4),t >0
(51
y(x,t) = Hi(k, t)e/** where D is the diffusion coefficient. In this example,
ye(x,t) = Hi(k, t)el** only the first and second order generalized frequency
Ver (6, 1) = —k2H(k, w)el** responses will be calculated. An initial condition

47 o) = e/ yields
Substituting 47) and¢(x) = e/¥* into equation 46)

yields Hi (k,t)e/*™ + Dk?Hi(k, t)e/**
Hi(k,t)e/*™ + Dk?Hi(k,t)e/*™ = 0 — Hi(k,t)e/*™ (1 — Hi(k, t)e*)
(48) =0
The frequency response functiol!(k,t) can be (52
obtained as the solution to the initial value probld®) ( Equating the coefficients @** on both sides yields
Hi(k,t) = e Pkt Hi (k,t) + (Dk? — DHi(k,t) = 0
(49) (53

By taking a inverse Fourier Transform, the impulseo that the first order generalised frequency response is
response function can be obtained as

Hi(k,t) = e=(PK*-D

. 1 x?
ht(x,t) = e 4Dt i . '54)
VanDt In order to calculatél;(kq, k,; t), suppose the input

(50) is@(x) = e/k1*+e/k2X the corresponding output is
Fig. 2 shows that the response excited by initial

conditions declines with elapsing time. An initial y(x,t) = Hi(k,, t)el*1* + Hi(k,, t)elk2*
condition with a high frequency sharply drops to zero + 2H (ky, ky; t)ed Catka)x
while a low frequency initial condition declines with a + HZL:(kltkl; t)ej.zklx
relatively lower speed. + Hi(k,, ky; t)e)?ke

(59
The probing method gives

2H},(ky, ky; t) + (2D (ky+ky)? — 2)Hi(ky, ky; ©)
+ 2H!(ky, )Hi(ky, t) = 0
(56)
Substituting $4) into (56) yields

H5,(ky, ko ) + (D (ky+k2)? — DHL(ky, ko t)
= —e_(D(k%"'k%)_Z)t

(57)

The general solution ob{) can be represented as

Hi(ky, ky; t) = Ce~@Uatiz)®~1t

time t
spatial freguency k 1

= o—D(ki+KE)-2)t
_ , _ 1+ 2Dk, k,
Fig. 2H'(k,t) with D = 1 of Example A (58)

According the initial conditiory(x, 0) = ¢(x)



y(x,0) = Hi(k;,0)e/*1* + Hi(k,, 0)e/*2*
+ Hé(kl, kz; O)ej(k1+k2)x
— ejk1x+ejk2x
(59
The generalised frequency response with respect
initial conditions is given by

i 1

Hj(ky, kyst) = TToDh b (e~ Plkitie)? -1t
12

_ e—(D(k%+k§)—2)t)

(60)

introduced in this paper provide a solid basis and
powerful tools for further investigations of the spectral
analysis and properties of spatio-temporal systems
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