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Abstract—The concept of generalised frequency 

response functions (GFRFs), which were developed for 
nonlinear system identification and analysis, is extended to 
continuous spatio-temporal dynamical systems normally 
described by partial differential equations (PDEs). The 
paper provides the definitions and interpretation of spatio-
temporal generalised frequency response functions for 
linear and nonlinear spatio-temporal systems, defined over 
unbounded spatial domains, based on an impulse response 
procedure. A new probing method is also developed to 
calculate the GFRFs. Both the Diffusion equation and 
Fisher’s equation are analysed to illustrate the new 
frequency domain methods. 

 
Index Terms—Generalised frequency response, spatio-

temporal systems, Unbounded spatial domain, Volterra 
series representation 

 
 

I. INTRODUCTION 
 
Frequency response analysis is fundamental to and 

provides important insights into the analysis, stability, 
and performance characteristics of control, 
communication, acoustic, and vibration systems, 
particularly linear time-invariant systems (LTIs). Based 
on the Volterra series representation of nonlinear 
relationships, a nonlinear spectral analysis methodology 
has been developed to overcome the limitations of linear 
spectral analysis methods applied to nonlinear 
dynamical systems (Schetzen 1980, Billings and Tsang 
1989a,b, Peyton-Jones and Billings 1989, Billings and 
Peyton-Jones 1990 and the references therein). This 
methodology characterises nonlinear systems based on 
the Fourier transforms of the Volterra kernels to 
produce frequency domain descriptors commonly 
referred to as generalised frequency response functions 
(GFRFs). The GFRFs of a nonlinear temporal system 
provide an intuitive representation of the frequency 
properties of the system and many nonlinear phenomena 
can be studied and explained using this framework. 
Moreover, the GFRFs provide invariant descriptions of 
the underlying system and are independent of the 
excitation. The methodology for analysing and 

computing generalised frequency response functions for 
unknown nonlinear systems has also been developed 
based on a NARMAX description of the nonlinear 
systems (Billings and Tsang 1989a,b, Peyton-Jones and 
Billings 1989, Billings and Peyton-Jones 1990). These 
developments of nonlinear spectral analysis theory have 
overcome many of the limitations that are associated 
with a linear or linearised analysis of nonlinear systems. 
Nonlinear effects such as harmonics, inter-modulation, 
and energy transfer are just not possible in linear 
representations and hence linear methods can never 
fully unravel nonlinear dynamic effects. 

Linear spectral analysis has been extended from an 
analysis of purely temporal dynamical systems to image 
processing techniques such as Fourier optics.  Instead of 
dealing with temporal frequency effects, Fourier optics 
makes use of the spatial frequency domain (ȟ, Ș) as the 
conjugate of the two-dimensional spatial (x,y) domain. 
The two dimensional point spread function and optical 
transfer function are the counterparts of the impulse 
response function and the frequency response function 
in temporal systems (Goodman 2005). All of these 
theories and applications show the importance of 
spectral analysis for both temporal and spatial systems, 
which motivates this investigation of the frequency 
domain analysis for spatio-temporal systems. 

Spatio-temporal systems are a class of dynamic 
systems which evolve over both time and space and 
which are normally described by partial differential 
equations (PDEs) in the continuous case and coupled 
map lattices (CMLs) in the discrete case. These models 
are generally associated with initial and boundary 
conditions, and this together with the problem of 
seeking a solution is usually referred to as an initial-
boundary value problem. Spatio-temporal systems are 
different from conventional dynamic systems in many 
ways. For example, spatio-temporal systems may be 
non-causal with respect to the space variables and the 
state space is infinite dimensional. They are also 
different in the way the dynamics and evolution are 
affected by an external stimulus. For temporal systems 
there is generally a single input-channel which exerts an 
influence on the system dynamics, whilst there is a 
variety of ways that can affect spatio-temporal system 
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dynamics including external control inputs, initial 
conditions, and boundary conditions. These have been 
reflected in the control strategies for spatio-temporal 
systems: distributed control, point-wise control, and 
boundary control.  To investigate the system frequency 
response we should study the (frequency) response of 
the underlying spatio-temporal system with respect to 
the above mentioned control inputs. Input-output and 
frequency approaches for spatio-temporal systems have 
to date focused on linear and time-invariant spatio-
temporal systems based on the derivations of the 
transfer functions. A number of different descriptions of 
transfer function models for spatio-temporal systems 
have been proposed including Curtain and Zwart (1995), 
Curtain and Morris (2009), Rabenstein and Trautmann 
(2002), Garcia-Sanz, Huarte, and Asenjo (2007), 
Billings and Wei (2007), Guo, Billings, Coca, Peng, and 
Lang (2009), among which there are two most 
influential models. The first relates to the one-
dimensional case, where the control to the system is 
assumed to be carried out either through boundary or a 
type of distributed co-location, which means the control 
input is only dependent on the time variable. The output 
of the system is generally taken as a measure at a fixed 
spatial point or an integration of the system over its 
spatial domain. In this way, the transfer function 
between the input and output can be derived as follows: 
initially, Laplace transforming with respect to time t 
yields an (spatial) ordinary differential equation with s 
as parameter. By solving this boundary value problem 
with respect to the spatial variable produces the desired 
transfer function between input and output (Curtain and 
Morris 2009). The second important model is called a 
multi-dimensional transfer function model (Rabenstein 
and Trautmann 2002) for scalar and vector partial 
differential equations. Similar to the first method, 
initially a Laplace transform is applied with respect to 
time to remove the time derivatives and a Sturm-
Liouville transform is applied for the space variable to 
yield a multidimensional transfer function which is the 
sum of the responses with respect to the control input 
variable, the initial conditions, and the boundary 
conditions. The frequency response of the system can 
then be evaluated using these transfer functions. It is 
well known that the transfer functions of purely 
temporal systems or lumped-parameter systems are 
rational functions whilst the transfer functions of spatio-
temporal systems can be irrational. These frequency 
approaches reveal the characteristics of linear spatio-
temporal systems and provide a basis for the control of 
this class of systems. 

In this paper, the transfer functions and frequency 
response approaches are extended and developed to deal 
with nonlinear spatio-temporal systems defined over an 
unbounded spatial domain, in particular ሺെλǡ ൅λሻ(an 
investigation into the case where the spatial domain is 

bounded will be presented in a companion paper (Guo, 
Guo, Billings, Coca, and Lang 2010)). This is achieved 
by adopting a new approach where two types of 
generalised transfer functions (GTFs) and generalised 
frequency response functions (GFRFs) are defined 
based upon unit impulse responses of the system with 
respect to the external excitation and the initial 
conditions. The linear impulse responses are equivalent 
to Green’s functions (Trim 1990) for linear, translation-
invariant systems while the nonlinear impulse responses 
for nonlinear spatio-temporal systems are described 
using a Volterra series representation. New probing 
based algorithms are derived to compute the generalised 
(or nonlinear) frequency response functions for a wide 
class of nonlinear spatio-temporal systems and several 
examples are used to illustrate the new methods. We 
start the investigation with an analysis of the impulse 
and frequency responses for linear, translation-invariant 
spatio-temporal systems in Section 2. The formal 
definitions of the GTFs and GFRFs for nonlinear spatio-
temporal systems are then given in Section 3, together 
with a detailed analysis of these functions. The cases 
where the systems are not spatially translation-invariant 
are also investigated. An effective computation method 
for the calculation of these functions is also included 
and Section 4 illustrates the proposed methods using the 
examples of diffusion equations and Fisher’s equations. 
Conclusions are drawn in Section 5. 

 
II. SPECTRAL ANALYSIS OF LINEAR 

SPATIO-TEMPORAL SYSTEMS 
 

Traditionally, the transfer function of a spatio-
temporal system is defined in a similar way to the 
transfer function of a temporal dynamical system. The 
transfer function describes the time response of a spatio-
temporal system with respect to the excitation input. Let 
U, V, and Y be separable Hilbert (function) spaces and ܣ א ࣦሺܸሻǡ ܤ א ࣦሺܷǡ ܸሻǡ ܥ א ࣦሺܸǡ ܻሻ , and ܦ א ࣦሺܷǡ ܻሻ 
are continuous linear functions (bounded operators) 
between the corresponding function spaces, it has been 
shown (Curtain and Zwart 1995) that a linear, 
translation invariant spatio-temporal system described 
by the following evolution equation 

ሻݐሶሺݒ  ൌ ሻݐሺݒܣ ൅ ሻݐሺݕ ሻݐሺݑܤ ൌ ሻݐሺݒܥ ൅    ሻ                       (1)ݐሺݑܦ
                                      

has a transfer function ܦ ൅ ܫݏሺܥ െ ܤሻିଵܣ  for s with 
real part larger than the exponential growth bound of the 
semigroup generated by A if A generates a strongly 
continuous semigroup. However, the transfer function 
defined here cannot give a complete description for the 
system (1) because the relationship between the system 
evolution and the initial conditions/boundary conditions 
is not defined and explained. In this section, the transfer 



relationships between the system output and the 
excitation input and the initial conditions will be 
discussed for linear, spatio-temporal systems via 
impulse responses of the systems. For simplicity, in this 
initial study, we also restrict our discussion to one 
spatial dimension and scalar systems, which gives ݕሺݔǡ ሻǡݐ ǡݔሺݑ ሻݐ א ܴ, and the unbounded spatial domain ߗ ൌ ሺെλǡ ൅λሻ.  

  
A. Impulse and Frequency Response of Linear, 

Translation-invariant Spatio-temporal Systems 
 
In this section, we will consider linear, translation-

invariant spatio-temporal systems governed by the 
following first order evolution equation 

ǡݔ௧ሺݕ  ሻݐ ൅ ǡݔሺݕܣ ሻݐ ൌ ǡݔሺݑ ሻǡݐ ݐ ൐ Ͳ   ܫ൫ݕሺݔǡ Ͳሻ൯ ൌ ߮ሺݔሻǡ ݔ א ሺെλǡ ൅λሻ  
(2) 

with an open boundary condition, where ݔ is the space 
coordinate variable and ݐ  is the time variable. A is a 
bounded linear operator which can, for example, take 
the form of ݕܣሺݔǡ ሻݐ ൌ ܽ଴ݕሺݔǡ ሻݐ ൅ ܽଵݕ௫ሺݔǡ ሻݐ ൅ܽଶݕ௫௫ሺݔǡ ሻݐ , where ݕ௧ሺݔǡ ሻݐ ǡݔ௫ሺݕ , ሻݐ , and ݕ௫௫ሺݔǡ  ሻݐ
represent the temporal derivative, first and second order 
spatial derivatives, respectively. ܫ  is the linear operator 
for defining the initial conditions. We assume that ݕሺݔǡ ǡݔሺݑ ሻ andݐ ሻݐ  denote the output and the external 
excitation of the system, respectively.  

Due to the linearity, the problem (2) can be split into 
the following two subproblems 
 Inhomogeneous equation with zero initial 

conditions ݕ௧ሺݔǡ ሻݐ ൅ ǡݔሺݕܣ ሻݐ ൌ ǡݔሺݑ ǡݔሺݕ   ሻǡݐ Ͳሻ ൌ Ͳǡ ݔ א ሺെλǡ ൅λሻǡ ݐ ൐ Ͳ        (3) 
and 
 homogeneous equation with nonzero initial 

conditions ݕ௧ሺݔǡ ሻݐ ൅ ǡݔሺݕܣ ሻݐ ൌ Ͳǡ ݕሺݔǡ Ͳሻ ൌ ߮ሺݔሻǡ   ݔ א ሺെλǡ ൅λሻǡ ݐ ൐ Ͳ 
(4) 

If ݕଵሺݔǡ ǡݔଶሺݕ ሻ andݐ  ሻ are the solutions to (3) and (4)ݐ
respectively, then the sum of these two solutions ݕሺݔǡ ሻݐ ൌ ǡݔଵሺݕ ሻݐ ൅ ǡݔଶሺݕ   .ሻ is the solution to (2)ݐ

In general, Green’s function or a fundamental 
solution of the (initial) boundary problem is defined as 
the solution of the problem in response to a unit impulse 
input signal, that is, the Dirac delta function. It follows 
that Green’s function ݄௘ሺݔǡ Ǣݐ ǡߦ ߬ሻ of the system with 
respect to the external excitation is the solution to the 
problem (3) with ݑሺݔǡ ሻݐ ൌ ݔሺߜ െ ǡߦ ݐ െ ߬ሻ 

 ݄௧௘ሺݔǡ Ǣݐ ǡߦ ߬ሻ ൅ ǡݔ௘ሺ݄ܣ Ǣݐ ǡߦ ߬ሻ ൌ ݔሺߜ െ ǡߦ ݐ െ ߬ሻǡ   ݄௘ሺݔǡ ͲǢ ǡߦ ߬ሻ ൌ Ͳǡ ǡݔ ߦ א ሺെλǡ ൅λሻǡ ǡݐ ߬ ൐ Ͳ 
     (5) 

 
Similarly, Green’s function ݄௜ሺݔǡ Ǣݐ ǡߦ ߬ሻ of the system 
with respect to the initial conditions is the solution to 
the problem (4) with ݕሺݔǡ Ͳሻ ൌ ߮ሺݔሻ ൌ ݔሺߜ െ  ሻߦ
 ݄௧௜ ሺݔǡ Ǣݐ ሻߦ ൅ ǡݔ௜ሺ݄ܣ Ǣݐ ሻߦ ൌ Ͳǡ   ݄௜ሺݔǡ ͲǢ ሻߦ ൌ ݔሺߜ െ ሻǡߦ ǡݔ ߦ א ሺെλǡ ൅λሻǡ ݐ ൐ Ͳ 

(6)                   
Note that considering the causality of the temporal 
system, it is a general requirement that ݄ሺݔǡ Ǣݐ ǡߦ ߬ሻ ൌ Ͳ 
for ݐ ൏ ߬. Following the definition of Green’s function 
and the superposition of the solutions, the general 
solution to (2) with an external excitation ݑሺݔǡ  ሻ andݐ
inhomogeneous initial conditions ߮ሺݔሻ can be obtained 
as ݕሺݔǡ ሻݐ ൌ න න ݄௘ሺݔǡ Ǣݐ ǡߦ ߬ሻݑሺߦǡ ߬ሻାஶ

଴
ାஶ

ିஶ ߬݀ߦ݀
൅ න ݄௜ሺݔǡ Ǣݐ ሻାஶߦሻ߮ሺߦ

ିஶ  ߦ݀

 (7) 
In order to introduce the concepts of the unit impulse 

response and the frequency response functions, some 
extra conditions are required. These are defined below. 

Assumption 1. It is assumed that Green’s functions 
for the problem defined in (3) and (4) exist and are 
unique. 

Assumption 2. The underlying spatio-temporal 
system is time and spatially translation invariant. 

Under the assumptions 1 and 2, Green’s functions 
have the following invariance property 

  ݄ሺݔ ൅ ǡߙ ݐ ൅ Ǣߚ ߦ ൅ ǡߙ ߬ ൅ ሻߚ ൌ ݄ሺݔǡ Ǣݐ ǡߦ ߬ሻ 
   (8)                              

under any translations ሺߙǡ ሻߚ  with respect to the 
coordinates ሺݔǡ  ሻ. It follows thatݐ
 ݄ሺݔǡ Ǣݐ ǡߦ ߬ሻ ൌ ݄ሺݔ െ ǡߦ ݐ െ ߬ሻ 

               (9) 
so that (7) takes the following convolution form 
ǡݔሺݕ  ሻݐ ൌ න න ݄௘ሺݔ െ ǡߦ ݐ െ ߬ሻାஶ

଴ ǡߦሺݑ ߬ሻାஶ
ିஶ ߬݀ߦ݀

൅ න ݄௜ሺݔ െ ǡߦ ሻାஶݐ
ିஶ ߮ሺߦሻ݀ߦ 

ൌ න න ݄௘ሺߦǡ ߬ሻାஶ
଴ ݔሺݑ െ ǡߦ ݐ െ ߬ሻାஶ

ିஶ ߬݀ߦ݀
൅ න ݄௜ሺߦǡ ሻାஶݐ

ିஶ ߮ሺݔ െ  ߦሻ݀ߦ

(10) 



Consider the case where the input function is ݑሺݔǡ ሻݐ ൌ݁఑௫݁௦௧  and the initial conditions are ݕሺݔǡ Ͳሻ ൌ ߮ሺݔሻ ൌ݁఑௫, the output is then given by 
ǡݔሺݕ  ሻݐ ൌ න න ݄௘ሺݔ െ ǡߦ ݐ െ ߬ሻାஶ

଴ ǡߦሺݑ ߬ሻାஶ
ିஶ ߬݀ߦ݀

൅ න ݄௜ሺݔ െ ǡߦ ሻାஶݐ
ିஶ ߮ሺߦሻ݀ߦ 

ൌ න න ݄௘ሺݔ െ ǡߦ ݐ െ ߬ሻାஶ
଴ ݁఑క݁௦ఛାஶ

ିஶ ߬݀ߦ݀
൅ න ݄௜ሺݔ െ ǡߦ ሻାஶݐ

ିஶ ݁఑క݀ߦ 

ൌ න න ݄௘ሺߦǡ ߬ሻାஶ
଴ ݁఑ሺ௫ିకሻ݁௦ሺ௧ିఛሻାஶ

ିஶ ߬݀ߦ݀
൅ න ݄௜ሺߦǡ ሻାஶݐ

ିஶ ݁఑ሺ௫ିకሻ݀ߦ 

ൌ  ݁఑௫݁௦௧ න න ݄௘ሺߦǡ ߬ሻାஶ
଴ ݁ି఑క݁ି௦ఛାஶ

ିஶ ߬݀ߦ݀
൅ ݁఑௫ න ݄௜ሺߦǡ ሻାஶݐ

ିஶ ݁ି఑క݀ߦ ൌ  ݁఑௫݁௦௧ܪ௘ሺߢǡ ሻݏ ൅ ݁఑௫ܪ௜ሺߢǡ   ሻݐ
                                                                     (11) 

Clearly,  ܪ௘ሺߢǡ =ሻݏ ׬  ׬ ݄௘ሺߦǡ ߬ሻାஶ଴ ݁ି఑క݁ି௦ఛାஶିஶ ߬݀ߦ݀  is 
the (two-sided) Laplace transform of the function ݄௘ሺߦǡ ߬ሻ , and ܪ௜ሺߢǡ ሻݐ ൌ ׬ ݄௜ሺߦǡ ሻାஶିஶݐ ݁ି఑క݀ߦ  is  the 

two-sided Laplace transform of the function ݄௜ሺߦǡ  ሻݐ
with respect to the variable x. In this paper, the 
functions  ݄௘ሺߦǡ ߬ሻ  and ݄௜ሺߦǡ ሻݐ  will be called the 
impulse response functions, and ܪ௘ሺߢǡ ሻݏ  and ܪ௜ሺߢǡ  ሻݐ
will be called the transfer functions of the system with 
respect to the external excitation and initial conditions, 
respectively. The Fourier transform version of the 
transfer functions is called the frequency response 
function of the system (2).  

Remark 1. Note that the impulse response function, 
the transfer function, and the frequency response 
function with respect to the initial conditions contain a 
time index t which indicates that they are defined at that 
specific time instant.  

Remark 2. From (11), it can be observed that for 
linear, translation-invariant spatio-temporal systems, the 
system's response is the sum of the scaled versions of 
the inputs. Under zero initial conditions, the systems 
have eigenfunctions ݁఑௫݁௦௧  and the corresponding 
eigenvalues ܪ௘ሺߢǡ  ,ሻ. If there is no external excitationݏ
at each time t the systems have eigenfunctions ݁఑௫ and 

eigenvalues ܪ௜ሺߢǡ ሻݐ . This is similar to conventional 
linear time invariant purely temporal systems. 

 
B. Impulse and Frequency Response of Linear, Non-

translation-invariant Spatio-temporal Systems 
 
In this section, we will consider the case where the 

spatio-temporal system is not spatially translation 
invariant. In this case, the system response cannot be 
expressed as the convolution of the Green’s function 
and the input variable like those discussed in the 
previous section. However, similar to the previous 
discussion, the following relationship still holds 
(assume the system is still time-invariant) 

ǡݔሺݕ  ሻݐ ൌ න න ǡݔ௘ሺܩ Ǣݐ ǡߦ ߬ሻݑሺߦǡ ߬ሻାஶ
଴

ାஶ
ିஶ ߬݀ߦ݀

൅ න ǡݔ௜ሺܩ Ǣݐ ሻାஶߦሻ߮ሺߦ
ିஶ  ߦ݀

ൌ න න ǡݔ௘ሺܩ Ǣߦ ߬ሻݑሺߦǡ ݐ െ ߬ሻାஶ
଴

ାஶ
ିஶ ߬݀ߦ݀

൅ න ǡݔ௜ሺܩ Ǣݐ ሻାஶߦሻ߮ሺߦ
ିஶ  ߦ݀

 (12) 
where ܩ௘ሺݔǡ Ǣݐ ǡߦ ߬ሻ  and ܩ௜ሺݔǡ Ǣݐ ሻߦ  are the Green’s 
functions with respect to the external excitation and the 
initial conditions, respectively. A change of variable  ߞ ൌ ݔ െ  results in ߦ
ǡݔሺݕ  ሻݐ ൌ න න ǡݔ௘ሺܩ ݔ െ Ǣߞ ߬ሻݑሺݔ െ ǡߞ ݐ െ ߬ሻାஶ

଴
ାஶ

ିஶ ߬݀ߞ݀
൅ න ǡݔ௜ሺܩ Ǣݐ ݔ െ ݔሻ߮ሺߞ െ ሻାஶߞ

ିஶ  ߞ݀

 (13) 
Denoting ݄ ௘ሺݔǡ ǡߞ ߬ሻ ൌ ǡݔ௘ሺܩ ݔ െ ǡߞ ߬ሻ  and ݄ ௜ሺݔǡ ǡߞ ሻݐ ൌܩ௜ሺݔǡ Ǣݐ ݔ െ  ሻ yieldsߞ
ǡݔሺݕ  ሻݐ ൌ න න ݄௘ሺݔǡ ǡߞ ߬ሻݑሺݔ െ ǡߞ ݐ െ ߬ሻାஶ

଴
ାஶ

ିஶ ߬݀ߞ݀
൅ න ݄௜ሺݔǡ ǡߞ ݔሻ߮ሺݐ െ ሻାஶߞ

ିஶ  ߞ݀

 (14) 
We will call ݄ ௘ሺݔǡ ǡߞ ߬ሻ and ݄ ௜ሺݔǡ ǡߞ  ሻimpulse responseݐ
functions with respect to the external excitation and the 
initial condition. It can be observed that due to the loss 
of the translation invariance, the impulse response 
function has to be related to each specific location 



where the impulse input is applied. Furthermore, 
because ߞ ൌ ݔ െ ߦ , the impulse response can be 
interpreted as the system response at spatial location ݔ 
caused by a spatio-temporal impulse that was applied ߞ 
spatial locations away from the site ݔ. This definition is 
motivated by the time-varying transfer functions 
proposed by Zadeh (1950). The Laplace transforms of 
these two impulse response functions 
ǡݔ௘ሺܪ  ǡߢ ሻݏ ൌ න න ݄௘ሺݔǡ ǡߞ ߬ሻ݁ି఑఍݁ି௦ఛାஶ

଴
ାஶ

ିஶ  ߬݀ߞ݀

ǡݔ௜ሺܪ ǡߢ ሻݐ ൌ න ݄௜ሺݔǡ ǡߞ ሻ݁ି఑఍ାஶݐ
ିஶ  ߞ݀

(15) 
will be called the transfer functions of the spatio-
temporal system (2) with respect to the external 
excitation and the initial condition. The frequency 
domain representation ܪ௘ሺݔǡ ݇ǡ ߱ሻ  and ܪ௜ሺݔǡ ݇ǡ ሻݐ of ܪ௘ሺݔǡ ǡߢ ሻݏ  and ܪ௜ሺݔǡ ǡߢ ሻݐ  will be the frequency 
response functions. The calculation of these frequency 
response functions can be carried out in a similar way as 
in the previous section.  
   Consider the case where the input function is ݑሺݔǡ ሻݐ ൌ ݁௝௞௫݁௝ఠ௧  and the initial conditions are ݕሺݔǡ Ͳሻ ൌ ߮ሺݔሻ ൌ ݁௝௞௫, the output is then given by 
ǡݔሺݕ  ሻݐ ൌ න න ݄௘ሺݔǡ ǡߞ ߬ሻାஶ

଴ ݁௝௞ሺ௫ି఍ሻ݁௝ఠሺ௧ିఛሻାஶ
ିஶ ߬݀ߞ݀

൅ න ݄௜ሺݔǡ ǡߞ ሻାஶݐ
ିஶ ݁௝௞ሺ௫ି఍ሻ݀ߞ 

ൌ  ݁௝௞௫݁௝ఠ௧ න න ݄௘ሺݔǡ ǡߞ ߬ሻାஶ
଴ ݁ି௝௞఍݁ି௝ఠఛାஶ

ିஶ ߬݀ߞ݀
൅ ݁௝௞௫ න ݄௜ሺݔǡ ǡߞ ሻାஶݐ

ିஶ ݁ି௝௞఍݀ߞ ൌ  ݁௝௞௫݁௝ఠ௧ܪ௘ሺݔǡ ݆݇ǡ ݆߱ሻ ൅ ݁௝௞௫ܪ௜ሺݔǡ ݆݇ǡ   ሻݐ
                                                                     (16) 

which shows that ܪ௘ሺݔǡ ݇ǡ ߱ሻ  and ܪ௜ሺݔǡ ݇ǡ ሻݐ  are the 
eigenvalues of the system with corresponding 
eigenfunctions ݁௝௞௫݁௝ఠ௧ and ݁ ௝௞௫, and 
ǡݔ௘ሺܪ  ݇ǡ ߱ሻ ൌ න න ݄௘ሺݔǡ ǡߞ ߬ሻ݁ି௝௞఍݁ି௝ఠఛାஶ

଴
ାஶ

ିஶ  ߬݀ߞ݀

ൌ ǡݔሺݕ  ǡݔሺݑሻݐ  ሻฬ௨ሺ௫ǡ௧ሻୀ௘ೕೖೣ௘ೕഘ೟ݐ
 

ǡݔ௜ሺܪ ݇ǡ ሻݐ ൌ න ݄௜ሺݔǡ ǡߞ ሻ݁ି௝௞఍ାஶݐ
ିஶ ߞ݀ ൌ ǡݔሺݕ  ሻݔሻ߮ሺݐ ฬఝሺ௫ሻୀ௘ೕೖೣ  

(17) 
 

III.  SPECTRAL ANALYSIS OF 
NONLINEAR SPATIO-TEMPORAL 
SYSTEMS 

 
In this section, we extend the idea of impulse 

response functions and frequency response functions for 
linear spatio-temporal systems to the nonlinear cases 
using a Volterra series representation of nonlinear 
relationships.  
 

A. Spatio-temporal Generalised Transfer 
Functions of Nonlinear, Time and Spatially 
Translation Invariant Systems 

 
Consider the following first order nonlinear, time and 

spatially translation invariant evolution equation  
ǡݔ௧ሺݕ  ሻݐ ൅ ǡݔሺݕܣ ሻݐ ൌ ǡݔሺݑ ሻǡݐ ݐ ൐ Ͳ   ܫ൫ݕሺݔǡ Ͳሻ൯ ൌ ߮ሺݔሻǡ ݔ א ሺെλǡ ൅λሻ  

             (18) 
where A is a bounded nonlinear operator which can, for 
example, take a form of ݕܣሺݔǡ ሻݐ ൌ ܽ଴ݕሺݔǡ ǡݔ௫ሺݕሻݐ ሻݐ ൅ܽଶݕ௫௫ሺݔǡ ሻݐ . As in the linear case, define ݕሺݔǡ ሻݐ  and ݑሺݔǡ  ሻto be the output and the external excitation of theݐ
system, respectively. Again, we will investigate the 
impulse responses of the following equations derived 
from equation (18) 
 Inhomogeneous equation with zero initial 

conditions ݕ௧ሺݔǡ ሻݐ ൅ ǡݔሺݕܣ ሻݐ ൌ ǡݔሺݑ ǡݔሺݕ   ሻǡݐ Ͳሻ ൌ Ͳǡ ݔ א ሺെλǡ ൅λሻǡ ݐ ൐ Ͳ        (19) 
and 
 homogeneous equation with nonzero initial 

conditions ݕ௧ሺݔǡ ሻݐ ൅ ǡݔሺݕܣ ሻݐ ൌ Ͳǡ ݕሺݔǡ Ͳሻ ൌ ߮ሺݔሻǡ   ݔ א ሺെλǡ ൅λሻǡ ݐ ൐ Ͳ 
(20) 

 
Remark 3. Due to the nonlinearity of the operators 

involved, the solutions ݕଵሺݔǡ ሻǡݐ ǡݔଶሺݕ  ሻ of (19), (20)ݐ
may not be expressed according to the linear 
convolution between the impulse response functions and 
the inputs as given in (10). The Green’s functions of 
nonlinear operators have been developed to describe the 
above mentioned nonlinear dynamical relationships 
based on slack products of the nonlinear operators 
(Schwartz 1997, Qiao and Ruda 2004). In this paper, we 
take a different approach to deal with this problem. 
More specifically, we will use a Volterra series 



representation, which is capable of describing a more 
general class of nonlinear dynamical systems. 

Following the general nonlinear system and Volterra 
series representation theory (Schetzen 1980) and the 
assumption of time and spatial translation invariance, 
the solutions to (19) and (20) can be expressed as the 
following Volterra series representations 

ǡݔଵሺݕ  ሻݐ ൌ ෍ ǡݔ௡௘ሺݕ ሻஶݐ
௡ୀଵൌ ෍ න ڮ න ݄௡௘ ሺߦଵǡ ڮ ǡ ௡Ǣߦ ߬ଵǡ ڮ ߬௡ሻାஶ

଴
ାஶ

ିஶ ෑ ݔሺݑ െ ௜ߦ ǡ ௡ݐ
௜ୀଵ

ஶ
௡ୀଵെ ߬௜ሻ݀ߦ௜݀߬௜ ݕଶሺݔǡ ሻݐ ൌ ෍ ௡௜ݕ ሺݔǡ ሻஶݐ

௡ୀଵ  

ൌ ෍ න ڮ න ݄௡௜ ሺߦଵǡ ڮ ǡ ௡Ǣߦ ሻݐ ෑ ߮ሺݔ െ ௜௡ߦ௜ሻ݀ߦ
௜ୀଵ

ାஶ
ିஶ

ାஶ
ିஶ

ஶ
௡ୀଵ   

 (21) 
where ݕ௡௘ሺݔǡ ௡௜ݕ ሻ, andݐ ሺݔǡ  ሻ are the nth order outputs ofݐ
the system with 
௡௘ݕ   ሺݔǡ ሻݐ ൌ න ڮ න ݄௡௘ ሺߦଵǡ ڮ ǡ ௡Ǣߦ ߬ଵǡ ڮ ߬௡ሻାஶ

଴
ାஶ

ିஶ ൈ ෑ ݔሺݑ െ ௜ߦ ǡ ݐ െ ߬௜ሻ݀ߦ௜݀߬௜௡
௜ୀଵ   

௡௜ݕ  ሺݔǡ ሻݐ ൌ න ڮ න ݄௡௜ ሺߦଵǡ ڮ ǡ ௡Ǣߦ ሻݐ ෑ ߮ሺݔ െ ௜௡ߦ௜ሻ݀ߦ
௜ୀଵ

ାஶ
ିஶ

ାஶ
ିஶ   

 (22) 
Define the functions ݄ ௡௘ ሺߦଵǡ ڮ ǡ ௡Ǣߦ ߬ଵǡ ڮ ߬௡ሻ , and  ݄௡௜ ሺߦଵǡ ڮ ǡ ௡Ǣߦ ሻݐ as the nth order generalised impulse 

response functions of the system (18) with respect to 
external  signals and initial conditions, respectively. The 
associated Laplace transforms ܪ௡௘ሺߢଵǡ ڮ ǡ ௡Ǣߢ ଵǡݏ ڮ ௡ሻݏ ௡௜ܪ  , ሺߢଵǡ ڮ ǡ ௡Ǣߢ ௡௘ሺ݇ଵǡܪ ሻand the associated Fourier transformsݐ ڮ ǡ ݇௡Ǣ ߱ଵǡ ڮ ߱௡ሻ and ܪ௡௜ ሺ݇ଵǡ ڮ ǡ ݇௡Ǣ  ሻare calledݐ
the  nth order generalised transfer functions and 
frequency response functions of the system with respect 
to external  excitation and initial conditions. 

 Remark 4. Note that in general the solution of (18) 
may not be the sum of the two solutions in (19) and (20) 
because the operators A are nonlinear. This solution 
could take the following general form 

ǡݔሺݕ  ሻݐ ൌ ෍ ǡݔ௡ሺݕ ሻஶݐ
௡ୀଵ  

(23) 
with ݕ௡ሺݔǡ ሻݐ ൌ ௡݂ሺݕ௡௘ሺݔǡ ሻǡݐ ௡௜ݕ ሺݔǡ ሻሻݐ , where ௡݂  is a 
nonlinear map. 

 Remark 5. It is well known that a nonlinear 
relationship can be described as a Volterra series with 
different orders of Volterra kernels which can be 
visualised as nonlinear impulse response functions 
(Marmarelis and Marmarelis 1978, Schetzen 1980). 
Here based on these results, we develop these concepts 
for nonlinear spatio-temporal systems, which is 
consistent with the linear cases (see section 2) and 
conventional temporal dynamical systems.  

Assumption 3. In this paper, it is assumed that the 
generalised impulse functions and the corresponding 
frequency response functions are symmetric with 
respect to all the time frequency and all the spatial 
frequency variables.  

According to the above definition, taking the multiple 
Fourier transform of the nth order generalised impulse 
response function ݄௡௘ ሺߦଵǡ ڮ ǡ ௡Ǣߦ ߬ଵǡ ڮ ߬௡ሻ with respect to 
the external excitation ݑሺݔǡ  ሻ yields the following nthݐ
order generalised frequency response function 

௡௘ሺ݇ଵǡܪ  ڮ ǡ ݇௡Ǣ ߱ଵǡ ڮ ߱௡ሻ ൌ න ڮ න ݄௡௘ ሺߦଵǡ ڮ ǡ ௡Ǣߦ ߬ଵǡ ڮ ǡ ߬௡ሻ ൈ ାஶ
଴

ାஶ
ିஶ  ݁ି௝ሺ௞భకభାڮା௞೙క೙ሻ݁ି௝ሺఠభఛభାڮାఠ೙ఛ೙ሻ݀ߦଵ ڮ ௡݀߬ଵߦ݀ ڮ ݀߬௡ 

(24) 
Note that because of the causality with respect to 

time, we can write the integration for time from  െλ to ൅λ  with ݄௡௘ ሺߦଵǡ ڮ ǡ ௡Ǣߦ ߬ଵǡ ڮ ǡ ߬௡ሻ ൌ Ͳ  for any ߬ ௜ ൏ Ͳ  . 
Conversely, the nth order generalised impulse response 
function ݄௡௘ ሺߦଵǡ ڮ ǡ ௡Ǣߦ ߬ଵǡ ڮ ߬௡ሻ  with respect to the 
external excitation ݑሺݔǡ ሻݐ  can be obtained by the 
inverse Fourier transform 

 ݄௡௘ ሺߦଵǡ ڮ ǡ ௡Ǣߦ ߬ଵǡ ڮ ǡ ߬௡ሻ  ൌ න ڮ න ௡௘ሺ݇ଵǡܪ  ڮ ǡ ݇௡Ǣ ߱ଵǡ ڮ ߱௡ሻାஶ
଴ ൈାஶ

ିஶ  ݁௝ሺ௞భకభାڮା௞೙క೙ሻ݁௝ሺఠభఛభାڮାఠ೙ఛ೙ሻ݀݇ଵ ڮ ݀݇௡݀߱ଵ ڮ ݀߱௡ 
(25) 

When assuming homogeneous initial conditions, the 
nth order output is then 

ǡݔ௡ሺݕ  ሻݐ ൌ ௡௘ݕ  ሺݔǡ ሻൌݐ න ڮ න ݄௡௘ ሺߦଵǡ ڮ ǡ ௡Ǣߦ ߬ଵǡ ڮ ߬௡ሻାஶ
଴

ାஶ
ିஶൈ ෑ ݔሺݑ െ ௜ߦ ǡ ݐ െ ߬௜ሻ݀ߦ௜݀߬௜௡
௜ୀଵ   

 (26) 
Substituting (25) into (26) and carrying out the 

multiple integrals on ߦଵǡ ڮ ǡ ௡Ǣߦ ߬ଵǡ ڮ ߬௡  gives the 
following relation 

 



ǡݔ௡ሺݕ ሻݐ ൌ  න ڮ න ௡௘ሺ݇ଵǡܪ  ڮ ǡ ݇௡Ǣ ߱ଵǡ ڮ ߱௡ሻାஶ
଴

ାஶ
ିஶ   ൈ 

ෑ ܷሺ݇௜ǡ ߱௜ሻ݁௝௞೔௫݁௝ఠ೔௧௡
௜ୀଵ ݀݇ଵ ڮ ݀݇௡݀߱ଵ ڮ ݀߱௡ 

(27) 
where the input spectrum is given by 
  ܷሺ݇ǡ ߱ሻ ൌ න ڮ න ǡߦሺݑ ߬ሻ݁ି௝௞క݁ି௝ఠఛ݀߬݀ߦାஶ

଴
ାஶ

ିஶ  

                 (28) 
with ݇ǡ ߱ the spatial and time frequency respectively. 

Suppose the input functions ݑሺݔǡ ሻݐ ൌ σ ݁௝௞೗௫݁௝ఠ೗௧௅௟ୀଵ  , then from (22) the nth output 
of the system, due to the symmetric property of 
assumption 3,  is given by 

ǡݔ௡ሺݕ  ሻݐ  ൌ න ڮ න ݄௡௘ ሺߦଵǡ ڮ ǡ ௡Ǣߦ ߬ଵǡ ڮ ߬௡ሻାஶ
଴

ାஶ
ିஶ  ൈ 

ෑ  ෍ ݁௝௞೗ሺ௫ିక೔ሻ݁௝ఠ೗ሺ௧ିఛ೔ሻ݀ߦ௜݀߬௜௅
௟ୀଵ

௡
௜ୀଵ  

ൌ න ڮ න ݄௡௘ ሺߦଵǡ ڮ ǡ ௡Ǣߦ ߬ଵǡ ڮ ߬௡ሻ ȉାஶ
଴

ାஶ
ିஶ  

ෑ  ෍ ݁௝௞೗௫݁ି௝௞೗క೔݁௝ఠ೗௧݁ି௝ఠ೗ఛ೔௅
௟ୀଵ ௜݀߬௜௡ߦ݀

௜ୀଵ  

ൌ ෍ ڮ ෍ ෑ  ݁௝௞೗೔௫݁௝ఠ೗೔௧௡
௜ୀଵ

௅
௟೙ୀଵ

௅
௟భୀଵ ȉ 

න ڮ න ݄௡௘ ሺߦଵǡ ڮ ǡ ௡Ǣߦ ߬ଵǡ ڮ ߬௡ሻାஶ
ିஶ ෑ ݁ି௝௞೗೔క೔݁ି௝ఠ೗೔ఛ೔݀ߦ௜݀߬௜௡

௜ୀଵ
ାஶ

ିஶ  

(29) 
Substituting from equation (24) yields 
ǡݔ௡ሺݕ  ሻൌݐ ෍ ڮ ෍ ௡௘൫݇௟భܪ  ǡ ڮ ǡ ݇௟೙ Ǣ ߱௟భ ǡ ڮ ߱௟೙൯ ෑ  ݁௝௞೗೔௫݁௝ఠ೗೔௧௡

௜ୀଵ
௅

௟೙ୀଵ
௅

௟భୀଵ  

(30) 
Similarly, for the spatio-temporal generalised 

frequency response with respect to the initial conditions ߮ሺݔሻ ൌ σ ݁௝௞೗௫௅௟ୀଵ  
ǡݔ௡ሺݕ  ሻݐ ൌ ෍ ڮ ෍ ௡௜ܪ  ൫݇௟భ ǡ ڮ ǡ ݇௟೙ Ǣ ൯ݐ ෑ  ݁௝௞೗೔௫௡

௜ୀଵ
௅

௟೙ୀଵ
௅

௟భୀଵ  

            (31) 
 

B. Spatio-temporal Generalised Transfer 
Functions of Nonlinear Non-Translation-
Invariant Systems 

 
    In this section, the spatio-temporal generalised 
transfer functions for nonlinear, time-invariant but non-
spatially translation invariant systems will be discussed. 
For other cases like time-varying systems, a similar 
discussion can be carried out. 

Due to the loss of the property of the translation 
invariance, the Volterra series representations (21) for 
translation invariant systems are no longer valid. 
However, they can expressed as non-stationary Volterra 
series as follows (Rugh 1981) 

ǡݔଵሺݕ  ሻݐ ൌ ෍ ǡݔ௡௘ሺݕ ሻஶݐ
௡ୀଵൌ ෍ න ڮ න ǡݔ௡௘ሺܩ ଵǡߦ ڮ ǡ ௡Ǣߦ ߬ଵǡ ڮ ߬௡ሻାஶ

଴
ାஶ

ିஶ
ஶ

௡ୀଵൈ ෑ ௜ߦሺݑ ǡ ݐ െ ߬௜ሻ݀ߦ௜݀߬௜௡
௜ୀଵ  

ǡݔଶሺݕ ሻݐ ൌ ෍ ௡௜ݕ ሺݔǡ ሻஶݐ
௡ୀଵ  

ൌ ෍ න ڮ න ௡௜ܩ ሺݔǡ ଵǡߦ ڮ ǡ ௡Ǣߦ ሻݐ ෑ ߮ሺߦ௜ሻ݀ߦ௜௡
௜ୀଵ

ାஶ
ିஶ

ାஶ
ିஶ

ஶ
௡ୀଵ   

 (32) 
where ܩ௡௘ሺݔǡ ଵǡߦ ڮ ǡ ௡Ǣߦ ߬ଵǡ ڮ ߬௡ሻ  and ܩ௡௜ ሺݔǡ ଵǡߦ ڮ ǡ ௡Ǣߦ  ሻݐ
are the nth order non-stationary Volterra kernels with 
respect to the external excitation and the initial 
conditions, respectively. A change of variable  ߞ௜ ൌ ݔ െߦ௜ results in 

ǡݔଵሺݕ  ሻݐ ൌ ෍ ǡݔ௡௘ሺݕ ሻஶݐ
௡ୀଵ ൌ ෍ න ڮ න ǡݔ௡௘ሺܩ ݔ െ ଵǡߞ ڮ ǡ ାஶݔ

଴
ାஶ

ିஶ
ஶ

௡ୀଵെ ௡Ǣߞ ߬ଵǡ ڮ ߬௡ሻൈ ෑ ݔሺݑ െ ௜ߞ ǡ ݐ െ ߬௜ሻ݀ߞ௜݀߬௜௡
௜ୀଵ  

ǡݔଶሺݕ ሻݐ ൌ ෍ ௡௜ݕ ሺݔǡ ሻஶݐ
௡ୀଵ  

ൌ ෍ න ڮ න ௡௜ܩ ሺݔǡ ݔ െ ଵǡߞ ڮ ǡ ݔ െ ௡Ǣߞ ሻାஶݐ
ିஶ

ାஶ
ିஶ

ஶ
௡ୀଵ ൈ ෑ ߮ሺݔ െ ௜௡ߞ௜ሻ݀ߞ

௜ୀଵ   



 (33) 
Similar to the discussion in the previous section, we 
define ݄௡௘ ሺݔǡ ଵǡߞ ڮ ǡ ௡Ǣߞ ߬ଵǡ ڮ ߬௡ሻ ൌ ǡݔ௡௘ሺܩ ݔ െ ଵǡߞ ڮ ǡ ݔ െߞ௡Ǣ ߬ଵǡ ڮ ߬௡ሻ  and ݄௡௜ ሺݔǡ ଵǡߞ ڮ ǡ ௡Ǣߞ ሻݐ ൌ ௡௜ܩ ሺݔǡ ݔ െߞଵǡ ڮ ǡ ݔ െ ௡Ǣߞ ሻݐ  as the nth order generalised impulse 
response functions of the system with respect to the 
external excitation and initial condition. The Laplace 
and Fourier transforms of these impulse response 
functions will be called the nth generalised transfer 
functions and frequency response functions of the 
system with respect to the external excitation and the 
initial conditions 

ǡݔ௡௘ሺܪ  ଵǡߢ ڮ ǡ ௡Ǣߢ ଵǡݏ ڮ ௡ሻݏ ൌ න ڮ න ݄௡௘ ሺݔǡ ଵǡߞ ڮ ǡ ௡Ǣߞ ߬ଵǡ ڮ ǡ ߬௡ሻ ൈ ାஶ
଴

ାஶ
଴  ݁ିሺ఑భ఍భାڮା఑೙఍೙ሻ݁ିሺ௦భఛభାڮା௦೙ఛ೙ሻ݀ߞଵǡ ڮ ǡ ௡݀߬ଵߞ݀ ڮ ݀߬௡ 

௡௜ܪ  ሺݔǡ ଵǡߢ ڮ ǡ ௡Ǣߢ ሻݐ ൌ න ڮ න ݄௡௜ ሺݔǡ ଵǡߞ ڮ ǡ ௡Ǣߞ ଵߞା఑೙఍೙ሻ݀ڮሻ݁ିሺ఑భ఍భାݐ ǡ ڮ ǡ ௡ ାஶߞ݀
଴

ାஶ
଴  

ǡݔ௡௘ሺܪ  ݇ଵǡ ڮ ǡ ݇௡Ǣ ߱ଵǡ ڮ ǡ ߱௡ሻ ൌ න ڮ න ݄௡௘ ሺݔǡ ଵǡߞ ڮ ǡ ௡Ǣߞ ߬ଵǡ ڮ ǡ ߬௡ሻ ൈ ାஶ
ିஶ

ାஶ
ିஶ  ݁ି௝ሺ௞భ఍భାڮା௞೙఍೙ሻ݁ି௝ሺఠభఛభାڮାఠ೙ఛ೙ሻ݀ߞଵǡ ڮ ǡ ௡݀߬ଵߞ݀ ڮ ݀߬௡ 

௡௜ܪ  ሺݔǡ ݇ଵǡ ڮ ǡ ݇௡Ǣ ሻݐ ൌ න ڮ න ݄௡௘ ሺݔǡ ଵǡߞ ڮ ǡ ௡Ǣߞ ଵǡߞା௞೙఍೙ሻ݀ڮሻ݁ି௝ሺ௞భ఍భାݐ ڮ ǡ ௡ ାஶߞ݀
ିஶ

ାஶ
ିஶ  

(34) 
Of course, a similar interpretation to the one given in the 
linear case can also be given for the physical meaning of 
this definition of the generalised impulse response 
functions. To calculate these generalized frequency 
response functions, say  ܪ௡௘ሺݔǡ ݇ଵǡ ڮ ǡ ݇௡Ǣ ߱ଵǡ ڮ ǡ ߱௡ሻ , suppose the input 
functions ݑሺݔǡ ሻݐ ൌ σ ݁௝௞೗௫݁௝ఠ೗௧௅௟ୀଵ  , then from (33) the 
nth output of the system, due to the symmetric property 
of assumption 3,  is given by 

ǡݔ௡ሺݕ  ሻݐ  ൌ න ڮ න ݄௡௘ ሺݔǡ ଵǡߞ ڮ ǡ ௡Ǣߞ ߬ଵǡ ڮ ߬௡ሻାஶ
ିஶ

ାஶ
ିஶ  ൈ 

ෑ  ෍ ݁௝௞೗ሺ௫ି఍೔ሻ݁௝ఠ೗ሺ௧ିఛ೔ሻ݀ߞ௜݀߬௜௅
௟ୀଵ

௡
௜ୀଵ  

ൌ න ڮ න ݄௡௘ ሺݔǡ ଵߞ ǡ ڮ ǡ ௡Ǣߞ ߬ଵǡ ڮ ߬௡ሻ ൈାஶ
ିஶ

ାஶ
ିஶ  

ෑ  ෍ ݁௝௞೗௫݁ି௝௞೗఍೔݁௝ఠ೗௧݁ି௝ఠ೗ఛ೔௅
௟ୀଵ ௜݀߬௜௡ߞ݀

௜ୀଵ  

ൌ ෍ ڮ ෍ ෑ  ݁௝௞೗೔௫݁௝ఠ೗೔௧௡
௜ୀଵ

௅
௟೙ୀଵ

௅
௟భୀଵ ൈ 

න ڮ න ݄௡௘ ൫ݔǡ ͳǡߞ ڮ ǡ Ǣ݊ߞ ߬ଵǡ ڮ ߬௡൯ାஶ
ିஶ ෑ ݁ି௝௞೗೔఍೔݁ି௝ఠ೗೔ఛ೔݀ߞ௜݀߬௜௡

௜ୀଵ
ାஶ

ିஶ  

(35) 
Substituting from equation (34) yields 

ǡݔ௡ሺݕ  ሻൌݐ ෍ ڮ ෍ ǡݔ௡௘൫ܪ  ݇௟భ ǡ ڮ ǡ ݇௟೙ Ǣ ߱௟భ ǡ ڮ ߱௟೙൯ ෑ  ݁௝௞೗೔௫݁௝ఠ೗೔௧௡
௜ୀଵ

௅
௟೙ୀଵ

௅
௟భୀଵ  

(36) 
Similarly, for the spatio-temporal nth order generalised 
frequency response with respect to the initial condition ߮ሺݔሻ ൌ σ ݁௝௞೗௫௅௟ୀଵ  is 

ǡݔ௡ሺݕ  ሻݐ ൌ ෍ ڮ ෍ ௡௜ܪ  ൫ݔǡ ݇௟భ ǡ ڮ ǡ ݇௟೙ Ǣ ൯ݐ ෑ  ݁௝௞೗೔௫௡
௜ୀଵ

௅
௟೙ୀଵ

௅
௟భୀଵ  

            (37) 
 

C. The Calculation of Spatio-temporal 
Generalised Frequency Response Functions 

 
Consider an example nonlinear system described by 

the following first order evolution equation 
ǡݔ௧ሺݕ  ሻݐ ൅ ܽଵሺݔሻݕሺݔǡ ǡݔ௫ሺݕሻݐ ሻݐ ൅ ܽଶሺݔሻݕ௫௫ሺݔǡ ሻൌݐ ǡݔሺݑ ǡݔሺݕ   ሻǡݐ Ͳሻ ൌ ߮ሺݔሻǡ ݔ א ሺെλǡ ൅λሻǡ ݐ ൐ Ͳ 

(38) 
where ܽ ௜ሺݔሻǡ ݅ ൌ ͳǡ ʹ  are spatially-varying coefficients 
so that the system (38) is not spatially translation 
invariant. It follows that the frequency response 
functions to be calculated are ܪ௡௘ሺݔǡ ݇ଵǡ ڮ ǡ ݇௡Ǣ ߱ଵǡ ڮ ǡ ߱௡ሻ and ܪ௡௜ ሺݔǡ ݇ଵǡ ڮ ǡ ݇௡Ǣ   .ሻݐ

To calculate ܪଵ௘ሺݔǡ ݇ǡ ߱ሻ, suppose the input to (38) is  ݑሺݔǡ ሻݐ ൌ ݁௝௞௫݁௝ఠ௧ , from (36) the output and the 
associated temporal and spatial derivatives are then 

ǡݔሺݕ  ሻݐ ൌ ǡݔଵ௘ሺܪ ݇ǡ ߱ሻ݁௝௞௫݁௝ఠ௧ ݕ௧ሺݔǡ ሻݐ ൌ ǡݔଵ௘ሺܪ݆߱ ݇ǡ ߱ሻ݁௝௞௫݁௝ఠ௧ ݕ௫ሺݔǡ ሻݐ ൌ ଵ௫௘ܪ ሺݔǡ ݇ǡ ߱ሻ݁௝௞௫݁௝ఠ௧൅ ǡݔଵ௘ሺܪ݆݇ ݇ǡ ߱ሻ݁௝௞௫݁௝ఠ௧ ݕ௫௫ሺݔǡ ሻݐ ൌ ଵ௫௫௘ܪ ሺݔǡ ݇ǡ ߱ሻ݁௝௞௫݁௝ఠ௧൅ ଵ௫௘ܪ݆݇ʹ ሺݔǡ ݇ǡ ߱ሻ݁௝௞௫݁௝ఠ௧െ ݇ଶܪଵ௘ሺݔǡ ݇ǡ ߱ሻ݁௝௞௫݁௝ఠ௧ 
                                     (39) 



Substituting equation (39) and ݑሺݔǡ ሻݐ ൌ ݁௝௞௫݁௝ఠ௧ 
into equation (38) and equating the coefficients of the 
term ݁ ௝௞௫݁௝ఠ௧ yields 

 ܽଶሺݔሻܪଵ௫௫௘ ሺݔǡ ݇ǡ ߱ሻ ൅ ʹܽଶሺݔሻ݆݇ܪଵ௫௘ ሺݔǡ ݇ǡ ߱ሻ൅ ሺ݆߱ െ ܽଶሺݔሻ݇ଶሻܪଵ௘ሺݔǡ ݇ǡ ߱ሻ ൌ ͳǡ ݕሺݔǡ Ͳሻ ൌ ǡݔଵ௘ሺܪ ݇ǡ ߱ሻ݁௝௞௫ ൌ Ͳ 
                              (40) 

The solution to (40) is the required frequency response 
function ܪଵ௘ሺݔǡ ݇ǡ ߱ሻ. 

To calculate ܪଶ௘ሺݔǡ ݇ଵǡ ݇ଶǢ ߱ଵǡ ߱ଶሻ, suppose the input 
is ݑሺݔǡ ሻݐ ൌ ݁௝௞భ௫݁௝ఠభ௧൅݁௝௞మ௫݁௝ఠమ௧ , again from (36) 
the output is then 

ǡݔሺݕ  ሻൌݐ ǡݔଵ௘ሺܪ ݇ଵǡ ߱ଵሻ݁௝௞భ௫݁௝ఠభ௧ ൅ ǡݔଵ௘ሺܪ ݇ଶǡ ߱ଶሻ݁௝௞మ௫݁௝ఠమ௧൅ ǡݔଶ௘ሺܪʹ ݇ଵǡ ݇ଶǢ ߱ଵǡ ߱ଶሻ݁௝ሺ௞భା௞మሻ௫݁௝ሺఠభାఠమሻ௧൅ ǡݔଶ௘ሺܪ ݇ଵǡ ݇ଵǢ ߱ଵǡ ߱ଵሻ݁௝ଶ௞భ௫݁௝ଶఠభ௧൅ ǡݔଶ௘ሺܪ ݇ଶǡ ݇ଶǢ ߱ଶǡ ߱ଶሻ݁௝ଶ௞మ௫݁௝ଶఠమ௧ 
                                     (41) 

Substituting (41) and the associated temporal derivative ݕ௧ሺݔǡ ሻݐ  and spatial derivatives ݕ௫ሺݔǡ ሻݐ ǡݔ௫௫ሺݕ , ሻݐ  into 
(38) and equating the coefficients of the term ݁௝ሺ௞భା௞మሻ௫݁௝ሺఠభାఠమሻ௧ yields 

 ʹܽଶሺݔሻܪଶ௫௫௘ ሺݔǡ ݇ଶǡ ݇ଶǢ ߱ଶǡ ߱ଶሻ ൅ Ͷܽଶሺݔሻሺ݇ଵ൅ ݇ଶሻܪଶ௫௘ ሺݔǡ ݇ଶǡ ݇ଶǢ ߱ଶǡ ߱ଶሻ ൅ ሺʹ݆ሺ߱ଵ ൅ ߱ଶሻെ ʹܽଶሺݔሻሺ݇ଵ ൅ ݇ଶሻଶሻܪଶ௘ሺݔǡ ݇ଵǡ ݇ଶǢ ߱ଵǡ ߱ଶሻ൅ ܽଵሺݔሻܪଵ௘ሺݔǡ ݇ଵǡ ߱ଵሻܪଵ௫௘ ሺݔǡ ݆݇ଶǡ ݆߱ଶሻ൅ ܽଵሺݔሻܪଵ௫௘ ሺݔǡ ݇ଵǡ ߱ଵሻܪଵ௘ሺݔǡ ݆݇ଶǡ ݆߱ଶሻ൅ ܽଵሺݔሻ݆݇ଶܪଵ௘ሺݔǡ ݇ଵǡ ߱ଵሻܪଵ௘ሺݔǡ ݇ଶǡ ߱ଶሻ൅ ܽଵሺݔሻ݆݇ଵܪଵ௘ሺݔǡ ݇ଵǡ ߱ଵሻܪଵ௘ሺݔǡ ݇ଶǡ ߱ଶሻ ൌ ͳǡ 
ǡݔଶ௘ሺܪ  ݇ଵǡ ݇ଶǢ ߱ଵǡ ߱ଶሻ݁௝ሺ௞భା௞మሻ௫ ൌ Ͳ 

(42) 
The solution to (42) is the required frequency response 
function ܪଶ௘ሺݔǡ ݇ଵǡ ݇ଶǢ ߱ଵǡ ߱ଶሻ . The other nth order 
spatio-temporal generalised frequency response 
functions can be calculated in a similar way. 

 
IV.  NUMERICAL EXAMPLES 

 
A. Linear Spatio-temporal Systems -- Diffusion 

Equation 
 
Consider the following diffusion equation (Debnath 

2005)  
ǡݔ௧ሺݕ  ሻݐ െ ǡݔ௫௫ሺݕܦ ሻݐ ൌ ǡݔሺݑ ǡݔሺݕ   ሻǡݐ Ͳሻ ൌ ߮ሺݔሻǡ ݔ א ሺെλǡ ൅λሻǡ ݐ ൐ Ͳ 

 (43) 
where D is the diffusion coefficient. The problem is to 
calculate the spatio-temporal frequency response 
functions ܪ௘ሺ݇ǡ ߱ሻ and ܪ௜ሺ݇ǡ  .ሻݐ

To calculate the frequency response ܪ௘ሺ݇ǡ ߱ሻ  with 
respect to the external excitation, we consider the 
problem  

ǡݔ௧ሺݕ  ሻݐ െ ǡݔ௫௫ሺݕܦ ሻݐ ൌ ǡݔሺݑ ǡݔሺݕ   ሻǡݐ Ͳሻ ൌ Ͳǡ ݔ א ሺെλǡ ൅λሻǡ ݐ ൐ Ͳ 
(44) 

Suppose the input to (44) is  ݑሺݔǡ ሻݐ ൌ ݁௝௞௫݁௝ఠ௧ , then 
the probing method gives the frequency response 
function as 

௘ሺ݇ǡܪ  ߱ሻ ൌ ͳ݆߱ ൅  ଶ݇ܦ

                                  (45) 
The magnitude and phase of (45) with ܦ ൌ ͳ are shown 
in Fig. 1, where Fig. 1 (a) shows that system (44) works 
as a low-pass filter with respect to both space and time 
frequencies. The frequency domain response depends on 
both space and time frequencies. These interact with 
each other. For example, for a certain spatial frequency ݇଴ ௘ሺ݇଴ǡܪ , ߱ሻ   is a first order linear system and the 
corner frequency of the first order system increases with 
the increase of ݇଴.   

 
 (a) ȁܪ௘ሺ݇଴ǡ ߱ሻȁ 

 
(b) ܪס௘ሺ݇଴ǡ ߱ሻ   

 
Fig. 1 ܪ௘ሺ݇଴ǡ ߱ሻ of Example A   



The frequency response ܪ௜ሺ݇ǡ ሻݐ  is related to the 
following problem 

ǡݔ௧ሺݕ  ሻݐ െ ǡݔ௫௫ሺݕܦ ሻݐ ൌ Ͳǡ   ݕሺݔǡ Ͳሻ ൌ ߮ሺݔሻǡ ݔ א ሺെλǡ ൅λሻǡ ݐ ൐ Ͳ 
                         (46) 

Suppose the input to (46) is  ߮ ሺݔሻ ൌ ݁௝௞௫ , the output 
and the associated temporal and spatial derivatives are 
then 

ǡݔሺݕ  ሻݐ ൌ ௜ሺ݇ǡܪ ǡݔ௧ሺݕ ሻ݁௝௞௫ݐ ሻݐ ൌ ௧௜ሺ݇ǡܪ ǡݔ௫௫ሺݕ ሻ݁௝௞௫ݐ ሻݐ ൌ െ݇ଶܪ௜ሺ݇ǡ ߱ሻ݁௝௞௫ 
                                              (47) 

Substituting (47) and ߮ ሺݔሻ ൌ ݁௝௞௫  into equation (46) 
yields ܪ௧௜ሺ݇ǡ ሻ݁௝௞௫ݐ ൅ ௜ሺ݇ǡܪଶ݇ܦ ሻ݁௝௞௫ݐ ൌ Ͳ 

(48) 
The frequency response function ܪ௜ሺ݇ǡ ሻݐ  can be 
obtained as the solution to the initial value problem (48)  

௜ሺ݇ǡܪ  ሻݐ ൌ ݁ି஽௞మ௧ 
                      (49) 

By taking a inverse Fourier Transform, the impulse 
response function can be obtained as  

 ݄௜ሺݔǡ ሻݐ ൌ ͳξͶݐܦߨ ݁ି ௫మସ஽௧ 
(50) 

Fig. 2 shows that the response excited by initial 
conditions declines with elapsing time. An initial 
condition with a high frequency sharply drops to zero 
while a low frequency initial condition declines with a 
relatively lower speed. 

 

 
 

Fig. 2 ܪ௜ሺ݇ǡ ܦ ሻ withݐ ൌ ͳ of Example A 
 
 
 

 
B. Nonlinear Spatio-temporal Systems – Fisher’s 

Equation 
 
Consider the following Fisher’s equation in 

dimensionless form (Debnath 2005) 
ǡݔ௧ሺݕ  ሻݐ െ ǡݔ௫௫ሺݕܦ ሻݐ െ ǡݔሺݕ ሻ൫ͳݐ െ ǡݔሺݕ ሻ൯ݐ ൌ Ͳǡ   ݕሺݔǡ Ͳሻ ൌ ߮ሺݔሻǡ ݔ א ሺെλǡ ൅λሻǡ ݐ ൐ Ͳ  

                                      (51) 
where D is the diffusion coefficient. In this example, 
only the first and second order generalized frequency 
responses will be calculated. An initial condition ߮ሺݔሻ ൌ ݁௝௞௫ yields 

ଵ௧௜ܪ    ሺ݇ǡ ሻ݁௝௞௫ݐ ൅ ଵ௜ܪଶ݇ܦ ሺ݇ǡ ሻ݁௝௞௫െݐ ଵ௜ܪ ሺ݇ǡ ሻ݁௝௞௫൫ͳݐ െ ଵ௜ܪ ሺ݇ǡ ሻ݁௝௞௫൯ൌݐ Ͳ 
      (52) 

Equating the coefficients of ݁௝௞௫ on both sides yields 
ଵ௧௜ܪ  ሺ݇ǡ ሻݐ ൅ ሺ݇ܦଶ െ ͳሻܪଵ௜ ሺ݇ǡ ሻݐ ൌ Ͳ 

                                                (53) 
so that the first order generalised frequency response is 
ଵ௜ܪ  ሺ݇ǡ ሻݐ ൌ ݁ିሺ஽௞మିଵሻ௧ 

                                                        (54) 
In order to calculate ܪଶ௜ ሺ݇ଵǡ ݇ଶǢ  ሻ, suppose the inputݐ

is ߮ ሺݔሻ ൌ ݁௝௞భ௫൅݁௝௞మ௫, the corresponding output is 
ǡݔሺݕ  ሻݐ ൌ ଵ௜ܪ ሺ݇ଵǡ ሻ݁௝௞భ௫ݐ ൅ ଵ௜ܪ ሺ݇ଶǡ ሻ݁௝௞మ௫൅ݐ ଶ௜ܪʹ ሺ݇ଵǡ ݇ଶǢ ሻ݁௝ሺ௞భା௞మሻ௫൅ݐ ଶ௜ܪ ሺ݇ଵǡ ݇ଵǢ ሻ݁௝ଶ௞భ௫൅ݐ ଶ௜ܪ ሺ݇ଶǡ ݇ଶǢ  ሻ݁௝ଶ௞మ௫ݐ

 (55)                              
The probing method gives 
ଶ௧௜ܪʹ   ሺ݇ଵǡ ݇ଶǢ ሻݐ ൅ ሺʹܦሺ݇ଵ൅݇ଶሻଶ െ ʹሻܪଶ௜ ሺ݇ଵǡ ݇ଶǢ ሻ൅ݐ ଵ௜ܪʹ ሺ݇ଵǡ ଵ௜ܪሻݐ ሺ݇ଶǡ ሻݐ ൌ Ͳ 

 (56) 
Substituting (54) into (56) yields 
ଶ௧௜ܪ  ሺ݇ଵǡ ݇ଶǢ ሻݐ ൅ ሺܦሺ݇ଵ൅݇ଶሻଶ െ ͳሻܪଶ௜ ሺ݇ଵǡ ݇ଶǢ ሻൌݐ െ݁ିሺ஽൫௞భమା௞మమ൯ିଶሻ௧ 

               (57) 
The general solution of (57) can be represented as 
ଶ௜ܪ  ሺ݇ଵǡ ݇ଶǢ ሻݐ ൌ ሺ஽ሺ௞భା௞మሻమିଵሻ௧െି݁ܥ ͳͳ ൅ ଵ݇ଶ݇ܦʹ ݁ିሺ஽൫௞భమା௞మమ൯ିଶሻ௧ 

                  (58) 
According the initial condition ݕሺݔǡ Ͳሻ ൌ ߮ሺݔሻ 
 



ǡݔሺݕ Ͳሻ ൌ ଵ௜ܪ ሺ݇ଵǡ Ͳሻ݁௝௞భ௫ ൅ ଵ௜ܪ ሺ݇ଶǡ Ͳሻ݁௝௞మ௫൅ ଶ௜ܪ ሺ݇ଵǡ ݇ଶǢ Ͳሻ݁௝ሺ௞భା௞మሻ௫ൌ ݁௝௞భ௫൅݁௝௞మ௫ 
(59)                            

The generalised frequency response with respect to 
initial conditions is given by 
ଶ௜ܪ  ሺ݇ଵǡ ݇ଶǢ ሻݐ ൌ ͳͳ ൅ ଵ݇ଶ݇ܦʹ ሺ݁ିሺ஽ሺ௞భା௞మሻమିଵሻ௧െ ݁ି൫஽൫௞భమା௞మమ൯ିଶ൯௧ሻ 

 (60) 
Figs. 3 and 4 show the spatio-temporal generalised 
frequency response functions ܪଵ௜ ሺ݇ǡ ଶ௜ܪ ሻ andݐ ሺ݇ଵǡ ݇ଶǢ  ,ሻݐ
respectively.  

 
Fig. 3 ܪଵ௜ ሺ݇ǡ ܦ ሻ withݐ ൌ ͳ  

 
Figs. 3 and 4 show that the magnitude for both ܪଵ௜ ሺ݇ǡ  ሻݐ
and ܪଶ௜ ሺ݇ଵǡ ݇ଶǢ ሻݐ  increase with elapsing time for low 
frequency initial conditions while they decrease with 
elapsing time for high frequency initial conditions. 
When ܦ ൌ ͳ , the stability condition for ܪଵ௜ ሺ݇ǡ ሻݐ  is ȁ݇ȁ ൒ ͳ and the stability condition for ܪଶ௜ ሺ݇ଵǡ ݇ଶǢ  ሻ isݐ

  ሼሺ݇ଵǡ ݇ଶሻ א ଶǣ ሺ݇ଵ൅݇ଶሻଶܥ ൒ ͳ ܽ݊݀ ݇ଵଶ ൅ ݇ଶଶ ൒ ʹሽ 
(61) 

which have been shown in Fig. 5. 
 

V. CONCLUSIONS 
 
The concept of classical transfer functions and 

frequency responses have been extended to both linear 
and nonlinear spatio-temporal systems which are 
defined over an unbounded spatial domian. It has been 
shown, through a theoretical analysis and numerical 
examples, that the proposed generalised transfer 
functions and frequency response functions are 
consistent with the classical definitions. A new method 
for identifying and computing the generalised frequency 
response functions for spatio-temporal systems has also 
been presented. The definitions and methodology 

introduced in this paper provide a solid basis and 
powerful tools for further investigations of the spectral 
analysis and properties of spatio-temporal systems.  

 
ACKNOWLEDGEMENTS 

  
The authors gratefully acknowledge support from the 

UK Engineering and Physical Sciences Research 
Council (EPSRC) and the European Research Council 
(ERC). 

 
REFERENCES 

 
Bedrosian, E. and Rice, S. O. (1971), The output properties of 

Volterra systems (nonlinear systems with memory) driven by 
harmonic and Gaussian inputs, Proceedings IEEE, Vol. 59, pp. 1688-
1707. 

Billings, S. A. and Wei, H. L. (2007), Characterising linear spatio-
temporal dynamical systems in the frequency domain, Research 
Report 944, The University of Sheffield. 

Billings, S. A. and Peyton-Jones, J. C. (1990), Mapping nonlinear 
integro-differential equations into the frequency domain, Int. J. Cont, 
Vol.52, pp. 863-879. 

Billings, S. A. and Tsang, K. M. (1989a), Spectral analysis for 
non-linear systems, Part I: parametric non-linear spectral analysis, 
Mechanical Systems and Signal Processing, Vol.3, No.4, pp. 319-339. 

Billings, S. A. and Tsang, K. M. (1989b), Spectral analysis for 
non-linear systems, Part II: Interpretation of non-linear frequency 
response functions, Mechanical Systems and Signal Processing, Vol.3, 
No.4, pp. 341-359. 

Curtain, R. F., and Morris, K. (2009), Transfer functions of 
distributed parameter systems: A tutorial, Automatica, Vol, 45, pp. 
1101-1116. 

Curtain, R. F., and Zwart, H. J. (1995), An Introduction to Infinite-
Dimensional Linear Systems theory, New York: Springer-Verlag. 

Debnath, L. (2005), Nonlinear partial differential equations for 
scientists and engineers (2nd ed.), Boston: Birkhauser. 

Garcia-Sanz, M., Huarte, A., and Asenjo, A. (2007), A quantitative 
robust control approach for distributed parameter systems, Int. J. 
Robust Nonlinear Control, Vol. 17, pp. 135–153. 

Goodman, J. (2005), Introduction to Fourier Optics (3rd ed), USA: 
Roberts & Co Publishers. 

Guo, L. Z., Guo, Y. Z., Billings, S. A., Coca, D., and Lang, Z. Q. 
(2010), Spatio-temporal generalised frequency response functions 
over bounded spatial domain, Research Report, The University of 
Sheffield. 

Guo, Y. Z., Billings, S. A., Coca, D., Peng, Z. K., and Lang, Z. Q. 
(2009), Characterising spatio-temporal dynamical systems in the 
frequency domain, Research Report 1000, The University of Sheffield. 

Marmarelis, P. Z. and Marmarelis, V. Z. (1978), Analysis of 
Physiological Systems – the White Noise Approach, New York: 
Plenum Press. 

Peyton-Jones, J. C. and Billings, S. A. (1989), A recursive 
algorithm for computing the frequency response of a class of 
nonlinear difference equation model, Int. J. Cont, Vol.50, pp. 1925-
1940. 

Qiao, B. and Ruda, H. E. (2004), Green functions for nonlinear 
operators and application to quantum computing, Physica A: 
Statistical Mechanics and its Applications, Vol. 334, No. 3-4, pp. 459-
476. 

Rabenstein, R. and Trautmann, L. (2002), Multidimensional 
transfer function models, IEEE Trans. Circu. & Syst.- Fundamental 
Theory and Application, Vol. 49, No.6, pp. 852-861. 

Rugh, W. J. (1981), Nonlinear System Theory – The 
Volterra/Wiener Approach,  London: The Johns Hopkins University 
Press. 



Schetzen, M. (1980), The Volterra and Wiener Theories of 
Nonlinear systems, Chichester: John Wiley. 

Schwartz, C. (1997), Nonlinear operators and their propagators, 
Journal of Mathematical Physics, Vol. 38, No. 1, pp. 484-500.  

Trim, D. W. (1990), Applied Partial Differential Equations, 
Boston: PWS-Kent Publishing Company. 

Zadeh, L. (1950), Frequency analysis of variable network, 
Proceedings of The I.R.E.,  Vol. 38, pp. 291-299.  

 

 
 

(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 4 ܪଶ௜ ሺ݇ଵǡ ݇ଶǢ ܦ ሻ withݐ ൌ ͳ (a) ݐ ൌ ͲǤͳ, (b) ݐ ൌ ͲǤͷ, (c) ݐ ൌ ͳ, (d) ݐ ൌ ʹ 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 The stable region of ܪଶ௜ ሺ݇ଵǡ ݇ଶǢ ሻǡݐ ݐ ൐ Ͳ 
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