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Abstract: When analysing the nonlinear Duffing oscillator, the weak nonlinearity is 
basically dependent on the amplitude range of the input excitation. The nonlinear 
differential equation models of such nonlinear oscillators, which can be transformed 
into the frequency domain, can generally only provide Volterra modelling and 
analysis in the frequency-domain over a fraction of the entire framework of weak 
nonlinearity. This paper discusses the problem of using a new non-parametric routine 
to extend the capability of Volterra analysis, in the frequency domain, to weakly 
nonlinear Duffing systems at a wider range of excitation amplitude range which the 
current underlying nonlinear differential equation models fail to address.   

Keywords:  Volterra series, GFRF’s, non-parametric methods 

 
1 Introduction 
The Volterra series, associated with so-called weakly nonlinear systems, is a direct 
generalisation of the linear convolution integral and has been very useful in the 
representation, analysis and design of nonlinear systems, both in the time and the 
frequency domain. For the last few decades, Volterra theory has been extensively 
studied. Summaries of the major contributions can be found in Schetzen(1980), 
Billings (1980), Rugh(1981) , Sandberg(1984), Doyle III, et al, (2002). 

Based on the Volterra series representation, Generalised Frequency Response 
Functions (GFRF’s) provide an intuitive representation of nonlinear systems in the 
frequency-domain, similar to the Frequency Response Function for linear systems.  
Many nonlinear phenomena can be interpreted using the GFRF’s. Most of the 
applications of  Volterra theory are found in the field of mechanical engineering and 
electrical engineering, where the well-known Duffing system is among the most 
extensively studied.  

The Duffing oscillator, described by a cubic nonlinear differential equation, can be 
transformed into the frequency-domain to obtain the GFRF’s. The resulting GFRF’s, 
however, are only valid in providing the Volterra representation in the frequency-
domain within a certain region of excitation amplitude and therefore will generally 
provide limited capacity in performing any frequency-domain analysis. In this paper a 
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new non-parametric method is proposed to construct piecewise GFRF’s within the 
framework of weak nonlinearity but outside the convergence radius of the original 
Duffing model. Consequently, the new results extend the well used results based on 
weakly nonlinear effects to apply to a much broader class of nonlinear systems.    

This paper is organised as follows. In section 2 the Volterra/frequency modelling for 
Duffing oscillators is reviewed and forms the basis of the results in the later sections. 
In section 3, the new method is presented. In section 4, a numerical example is used to 
compare the new method with the parametric method and to demonstrate the 
application of the new method, and finally in section 5 conclusions are given.  

 

2 Volterra modelling for nonlinear systems in the time and frequency domain 
 

Consider a symmetric Duffing oscillator, with cubic nonlinearity, subject to a 
sinusoidal excitation as 

       )()()()()( 3

31 tutyktyktyctym                                  (1) 

where )cos()( tAtu   and 31  and ,, kkcm are the mass, the damping, the linear 

stiffness and nonlinear stiffness respectively. 

System (1) can be defined by the nonlinear mapping  

)]([)( tuty ȉ                                                        (2) 

In the framework of weak nonlinearity, (2) can be further described by Volterra(1930) 
series modelling as  
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and  )(tyn  is the ‘n-th order output’ of the system 
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where ][ nT is called the ‘nth-order Volterra operator’, and ),,( 1 nnh    is called the 

‘nth-order kernel’ or ‘nth-order impulse response function’. If n=1, this reduces to the 
familiar linear convolution integral. In this sense, the Volterra model is a direct 
generalisation of the linear convolution integral, therefore providing an intuitive 
representation in a simple and easy to apply way.  

A valid Volterra series representation means valid Generalised Frequency Response 
Functions(GFRF’s) exist. The GFRF’s are obtained by taking the multi-dimensional 
Fourier transform of )(nh :  

nnnnnnn ddjhH     
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

 11111 ))(exp(),,(),,(      (4) 

The generalised frequency response functions have proved to be an important analysis 
and design tool for characterising nonlinear phenomena. For the nonlinear differential 
equation (1), the GFRF’s can be obtained by mapping (1) into the frequency-domain 
using the probing method (Billings and Peyton Jones, 1990). Because (1) has only an 
odd order nonlinearity in the response, the even order GFRF’s are equal to zero. 
Therefore the first 3 orders of GFRF’s for (1) can be expressed as 



 3 

 
)()()()(),,(

0),(,
1

)(

321131211133213

212

1

21

33

22

11

22

11

sssHsHsHsHksssH

ssH
kcsms

sH

js
js
js

js
js

js


























         (5)  

The discrete time domain counterpart of the continuous time domain SISO Volterra 
expression (3) is 

                      


1
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where   
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In practice only the first few kernels are used on the assumption that the contribution 
of the higher order kernels falls off rapidly. A weakly nonlinear system means that the 
systems can be adequately represented by a Volterra series with just a few terms, in 
which cases truncated versions of (3) and (6) are adopted. A truncated discrete time 
Volterra series is also called a NX (Nonlinear model with eXogenous inputs) model.  

In practice, nonlinear system identification in the frequency-domain to determine the 
GFRF’s, involves using parametric or non-parametric estimation methods. The 
parametric method involves fitting a parametric discrete time model, e.g., NARX or 
NX model, and then mapping this into the frequency-domain (Peyton Jones and 
Billings, 1989). Traditionally the non-parametric method involves estimating the 
GFRF’s using extensions of traditional spectral analysis based on the frequency-
domain Volterra model (Kim and Powers, 1988; Nam and  Powers, 1994). Recently a 
new non-parametric method was proposed using the time-domain excitation-response 
samples directly (Li and Billings, 2010b) and hence avoiding all the computations 
associated with Fourier based methods. In the following sections, this new non-
parametric method is improved to accommodate the Volterra modelling in the 
frequency-domain for the excitation range where the original GFRF’s in (5) from the 
underlying system (1) fail. This means that the analysis procedure can be 
consequently extended to apply to a much broader class of systems and nonlinear 
behaviours. The advantage of the new non-parametric method versus the parametric 
method is also discussed.  

 

3   Estimation of GFRF’s for Duffing oscillators over different ranges of 
excitation amplitude 

The ideal situation is that the GFRF’s in (5) can provide important analysis in the 
frequency-domain over the whole weak nonlinearity range. However, this is not true 
in general. A number of criteria have been proposed for the estimation of the upper 
limit of the excitation amplitude so that the GFRF’s in (5) can provide a valid Volterra 
representation (Tomlinson, et al, 1996; Peng and Lang, 2007;Li  and Billings, 2010a).  

The upper limits revealed by the above criteria are, however, not the overall upper 
boundary of the weak nonlinearity of a Duffing oscillator, but the boundary that 
underlying differential equation model can provide in terms of Volterra analysis. In 
fact for many Duffing systems the GFRF’s from the underlying differential equation 
model may only cover a small part of the weakly nonlinear region, and the objective 
of this study is to construct the GFRF’s for the under-represented region.  

Assume that the sinusoidal excitation is  
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with ),( AUALA where AUAL, represent the lower and upper limits of an 
amplitude range where the weakly nonlinear system can not be analyzed by  the 
GFRF’s derived from the underlying system model. Further assume that the weakly 
nonlinear oscillator for the amplitude range ),( AUALA  can be expressed by the 

first three Volterra kernels. Then the first order response )(1 ty can be derived by 
(Schetzen, 1980)  
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Similarly the third order response )(3 ty  can be determined as 
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where ),,(),,(),,(
~

333  jIRH  and ),,(),,(
~

313   RH  

),,(31   jI .  

The overall expression of the response using the first three Volterra kernel terms, by 

combining  (8) and (9), is given as  
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where )(te represents the truncation error.  

When the system (1) is simulated the excitation-response can be collected at sampling 

intervals at kTt  , ,,,2,1 Nk   then equation (10) can be expressed in a discrete 

time format as 
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where the unknown parameters are  
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 and the regressors are  
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The unknown parameters ][ 4321  T  can be estimated from (11) using a 

standard Least Square(LS) method.  

It is assumed that 31

~
 and 

~
HH  remain invariant over a certain amplitude 

range ),( AUALA , then the constant estimates  ˆ
1R , 31R̂  and 1Î , 31

ˆ I  can be 

separated from the estimates of 21
ˆ and ˆ  in (12) by the following procedure.  

Setting the excitation amplitude  
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The estimates of 33
ˆ and ˆ IR  can then be obtained by  
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The co-ordination of the fixed IR ˆ andˆ in (14)—(15) plays the key role in the 

satisfactory approximation of first order harmonic components in the response over 

the specified amplitude range as in (11). Apart from the estimation of the GFRF’s, 

other essential information is the significance of the nonlinearity. One way of doing 

this is to use a new method to calculate the relative contribution of each order of 

kernel in the response in terms of energy, which can be done using the following 

orthogonalization procedure.  

Consider a signal that consists of a number of components as 

                                                              ey
K

i
i 

1
                                                  (17) 

where e is the modelling error. 

An auxiliary model of (17) can be constructed as 

ewgy
K

i
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                                                  (18) 

where Kiwi ,,1,  satisfy the orthogonal property as 

jiww j

T

i  ,0                                                              (19) 

The orthogonalization procedure from (17) to (19) can be constructed using, for 

example, the classical Gram-Schmidt method (Björck, 1967).   

Therefore from (18) the energy of y  can be expressed as 

eewwgyy T
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The energy contribution of the individual component can be defined in percentage as 
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Now back to our problem. Once the estimates of the GFRF’s of (1) over a certain 

amplitude range ),( AUALA  are obtained using the procedure (11)—(16), the 

response at the particular excitation amplitude iA can be re-arranged with respect to 

contributors of each order to the GFRF as 
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It is not possible to compute the energy contribution of individual real and imaginary 

parts of each order of GFRF’s because both the real part of )(
~

1 H , 1R̂ , and 

),,(
~

3  H , 31R̂ , relate to the same sinusoidal component )cos( kT . It is the same 

situation for the imaginary part of )(
~

1 H  and ),,(
~

3  H . A direct employment of 

the orthogonalization procedure in (17)—(20) to (22) will result in a singularity 

problem. Thus (22) needs to be further wrapped as 
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The energy contributions of each term i  which corresponds to the relevant kernels 

can now be derived using the orthogonalization procedure described in (17)—(20).  

By repeating the procedure (7)—(16) over each segment of the excitation amplitude 

range where the GFRF’s can be approximately considered invariant, piecewise 

GFRF’s for the whole range of interest can be constructed. The size of each amplitude 

segment is determined basically upon the accuracy requirement. The smaller the size 

of the segment the smaller the truncation errors over this segment. For qualitative 

analysis purpose, the size can be accordingly stretched.   

 
4  Numerical illustrations and analysis 

The coefficients of the Duffing oscillator used in the numerical study are 

5.0,1,2.0,1 31  kkcm                                              (25) 
The GFRF’s for the underlying system (25) can be computed using (5) and are given 
in Table 1. 

  
 )(1 H  -0.5125 - 0.0922 j 

),,(3  H  0.0044+0.0016 j 

),,(3 H  -4.2792e-05-  3.1797e-05 j 
Table 1. The GFRF’s from the original system (25) at sec/7.1 rad  

Li and Billings (2010a) show that the upper limit of a valid Volterra series 

representation by the original GFRF’s in Table 1 can be given in terms of the )(1 H  

and the nonlinear coefficients 3k as 

]))(3([2)( 2
3

13  HkAL                                         (26) 

The response diagram of system (25) excited at 7.1 rad/sec is shown in Figure 1, 

together with the upper limit point 4485.1)(
7.1



LA .  
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Figure 1. The response diagram of system (25) at 7.1  rad/sec 

It is very clear that as the excitation amplitude increases to around A=1.5, a 

discontinuity in the response amplitude occurs. The criterion (26) can very accurately 

predict this discontinuity, and its implication suggests that this is the upper limit 

below which the original GFRF’s in (5) can be expected to provide a valid Volterra 

representation/analysis. Due to the analytic nature of the Volterra series representation, 

the GFRF’s in (5) can no longer provide a valid frequency-domain representation and 

analysis after this jump at around A=1.5.  

To gain insight into the dynamics of system (25) (Aguirre and Billings, 1995a,1995b) 

in the frequency-domain, a response spectrum map(RSM) (Billings and Boaghe, 

2001), which can be considered as the frequency-domain counterpart of the 

bifurcation diagram and in this case the response diagram in Figure 1, is produced in 

Figure 2. 

 

Figure 2. The response spectrum map of system (25) at 7.1  rad/sec 
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An inspection of Figure 2 reveals that for the excitation range after the jump, that is 

1.5<A< 16.6, the frequency components in the response remain the same, an important 

characteristic of weak nonlinearity. This suggests that there could be a valid Volterra 

representation during this range. It also implies that the GFRF’s in (5) by the original 

system (25) can only provide a Volterra representation/analysis over a fraction of the 

whole weakly nonlinear range. The object of the present study is to find out the 

unknown GFRF’s for the amplitude range 1.5<A< 16.6.   

As mentioned in Section 2 there are generally two classes of methods for estimating 

the GFRF’s out of excitation-response measurements, the parametric and the non-

parametric methods. Both methods work very well for the excitation amplitude range 

before the jump. However, as the amplitude increases above the jump point, the 

situation changes. To show this, select the first segment of the excitation amplitude 

range as )6.2,5.1()1( A . First, the capacity of the parametric method is investigated. 

The system (25) was excited at the excitation amplitude A= 2.1 and frequency 

sec/7.1 rad . A parametric NX model can be fitted using the collected response-

excitation data set as 

)3()2(237950-             

 )3(278920)2(12042)3(18693  )(
2

3

k- uk-  u.

k- u. k-  u. -k-  u.ky 
                 (27) 

The GFRF’s can be obtained by mapping the nonlinear difference model (27) into 
frequency-domain (Peyton Jones and Billings, 1989), shown in Table 2. 

 
 )(

~
1 H  0.9870 - 0.4654j 

),,(
~

3  H  0.0386 - 0.0179j 

),,(
~

3 H  0.0140 - 0.0448j 
 

Table 2. GFRF’s by NX model (27) at sec/7.1 rad  
A clear numerical measure of the closeness of fit between the synthesized response 

and the real response can be obtained by using the Normalised Root Mean Square 
Error defined as  

 
 


2

2

))()((

))(ˆ)((

kyky

kyky
NRMSE

meanrea l

rea l                                   (28) 

where )(ˆ ky is the synthesized response using (11) with the GFRF’s in Table 1,  

)(kyrea l  is the real response and )(kymea n is the mean value of the real data set )(kyrea l . 

Figure 3 (dashed line) shows the NRMSE along the )6.2,5.1()1( A . It is very clear 

from Figure 3 that the GFRF’s from (27) can provide an extremely accurate 

representation at the excitation amplitude point A= 2.1, but the NRMSE quickly 
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becomes unacceptable as the amplitude moves away from  A= 2.1. This suggests that 

the GFRF’s obtained from the parametric modelling is amplitude-variant, so in order 

to obtain a desired GFRF coverage for the whole segment  )6.2,5.1()1( A , a large 

amount of parametric models, similar to the one in (27),  have to be fitted at each 

amplitude point. This is of course a significant inconvenience from the application 

point of view. 

 

Figure 3. The NRMSE: dashed—parametric result using GFRF’s from Table 1 and 

Solid—non-parametric result using GFRF’s from Table 2. 

Now assuming that the GFRF’s are amplitude-invariant within )6.2,5.1()1( A ,  and 

the new non-parametric procedure introduced in Section 3 is applied. The estimated 

constant GFRF’s for the whole segment )6.2,5.1()1( A  are given in Table 3.    

 )(
~

1 H  1.4882 - 0.9999j 

),,(
~

3  H  -0.1087 + 0.1340j 

),,(
~

3 H  0.0106 - 0.0495j 
 
Table 3. GFRF’s by new non-parametric method for )6.2,5.1()1( A at sec/7.1 rad  

 
The comparisons of synthesized response and the real response at the representative 

amplitudes, plotted in Figure 4, show satisfactory estimation accuracy. The NRMSE 

along the )6.2,5.1()1( A , shown in Figure 3 (Solid), remains small at all amplitude 

points, indicating that the fixed GFRF’s in Table 2 can provide an overall 

representation within the whole segment.   
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Figure 4.  Comparisons of synthesized response and the real response at (a) A=1.6 and (b) 

A=2.6 using the GFRF’s from non-parametric method in Table 2 

Above: synthesized up to 1st order GFRF’s; Bottom: synthesized up to 3rd order GFRF’s 

 

A repetition of the new non-parametric method over the new amplitude segments 

)2.4,6.2()2( A and )6.6,2.4()3( A produces the new piecewise GFRF’s as in Tables 

4 and 5. 

 
 )(

~
1 H  1.0874 - 0.4340 j 

),,(
~

3  H  -0.0334 + 0.0217 j 

),,(
~

3  H  0.0100 - 0.0116 j 
 

Table 4. GFRF’s by new non-parametric method for )2.4,6.2()2( A at sec/7.1 rad  
 

 )(
~

1 H  0.7649 - 0.2007 j 

),,(
~

3  H  -0.0095 + 0.0039 j 

),,(
~

3  H  0.7649 - 0.2007 j 
 
Table 5. GFRF’s by new non-parametric method for )6.6,2.4()3( A at sec/7.1 rad  

 

This piecewise GFRF estimation procedure can be carried on until A reaches 16.6. 

The overall GFRF’s, illustrated in Figure 5, shows that after a big ‘jump’ of the 

magnitudes of the GFRF’s at A=1.5, the GFRF’s gradually decrease as the excitation  

amplitude increases. The combined effects of decreasing GFRF’s and the increasing A 
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will provide a very good prediction of the slowly increasing response amplitude as 

shown in Figure 1. 

 

 

Figure 5. The overall piecewise GFRF’s 

The significance of the nonlinearity can be calculated using the procedure in (17)—

(24), in terms of the energy contribution of each kernels. Table 6 compares the result 

before and after jump.  

   
Energy Contributions  (  %) 

A=1.4 A=2.1 

)(
~

1 H  99.9175 97.5324    

),,(
~

3  H  0.0812 2.2902 

),,(
~

3 H  0.0013 0.1756 
Table 6. The comparison of the energy contribution before and after jump 

Table 6 gives some important information. First, the sums of the contributions by all 

kernels in both cases are almost 100%, indicating that up to 3rd order Volterra models 

are sufficient in representing the system over these ranges, and also that the estimates 

of the GFRF’s after the jump are quite accurate. Second, the system before the jump is 

overwhelmingly dominated by the linear kernel, with negligible contributions from 

the nonlinear terms. While there is a significant increase of contribution from the 

cubic GFRF after the jump. Also note that there are significant changes of relative 

values of the GFRF’s in Table 1 and 3. Both type of changes point to a fact that the 

jump is an increase in nonlinearity and also a significant dynamical change. However, 
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this change is still un-structural because after the jump the dynamic representation can 

still be described by the symmetric Duffing oscillator format (1) due to the same 

frequency components and Volterra kernels involved. The coefficients of the new 

asymmetric Duffing equations can be derived approximately by the following formula 

based on (5)   

)(
~

)(
~

)(
~

)(
~

),,(
~

ˆ

]
)(

~
1

Re[ˆ

]
)(

~
1

Im[
1ˆ

1ˆ

1111

3

3

2

1

1

1




















HHHH

H
k

H
k

H
c

m

                              (29) 

where the )(
~

1 H and ),,(
~

3  H are the estimates in Table 3—5.  

The symmetric Duffing oscillator expressions derived approximately from (29) over 

the different amplitudes segment are given as 

)6.2,5.1()cos()(0209.0)(353.3)(1830.0)( )1()1(3  AtAtytytyty        (30) 

)2.4,6.2()cos()(0206.0)(6833.3)(1862.0)( )2()2(3  AtAtytytyty       (31) 

and  

)6.6,2.4()cos()(0240.0)(113.4)(1880.0)( )3()3(3  AtAtytytyty        (32) 

There were significant changes in the damping, the linear stiffness and cubic 

nonlinear stiffness respectively before and after the jump, by comparing the true 

underlying system coefficients in (25) and the auxiliary model coefficients in (30)—

(32), but relatively small changes in terms of mechanical dynamics after the jump 

between (30) to (32). These changes could provide some insights into the dynamical 

behaviours and supply additional information in the design and control aspects of the 

Duffing system over the concerned ranges.   

There will be a structural dynamical change, as from Figure 2, occurring when the 

excitation amplitude A reaches 16.6, where there are both even and odd order 

harmonics present in the response, indicating that an asymmetric Duffing equation in 

a format as in (33), which has the linear, quadratic and cubic stiffness terms, is 

required for the system representation.  

)cos()()()()()( 3

3

2

21 tAtyktyktyktyctym                          (33) 

The identification and modelling of the latter structural change will be investigated in 

later studies. 
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4 Conclusions 
The Volterra series representation has been widely applied in the modelling, design, 
analysis and control of weakly nonlinear systems.  Many applications of Volterra 
series modelling were carried out in the frequency-domain based on the Generalised 
Frequency Response Functions (Worden and Manson, 2005; Tawfiq and Vinh, 2004). 
It is quite common that the Generalised Frequency Response Functions obtained by 
mapping a Duffing equation into the frequency-domain are valid only over part of the 
whole weakly nonlinearity framework. A new method has been developed in this 
paper to address the estimation of GFRF’s in a piecewise manner for Duffing type 
oscillators for the under-represented weakly nonlinear region. In addition a new 
procedure to assess the energy contributions of each order kernel was introduced. The 
new non-parametric method has the advantage of constructing the amplitude-invariant 
GFRF’s over a certain excitation range, avoiding building large sets of time-domain 
models needed by parametric methods.  This makes the Volterra modelling in the 
frequency-domain efficient and provides a platform for the application of Volterra 
series theory over the region under consideration.  
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