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Abstract

This paper describes the identification of a temperature dependent FitzHugh-

Nagumo model directly from experimental observations with controlled inputs. By

studying the steady states and the trajectory of the phase of the variables, the sta-

bility of the model is analysed and a rule to generate oscillation waves is proposed.

The dependence of the oscillation frequency and propagation speed on the model

parameters is then investigated to seek the appropriate control variables, which

then become functions of temperature in the identified model. The results show

that the proposed approach can provide a good representation of the dynamics of

the oscillatory behaviour of a BZ reaction.

1 Introduction

The Belousov-Zhabotinskii (BZ) chemical reaction has been well established as a proto-

type system for studies of reaction-diffusion phenomena and pattern formation. Many

models have been developed to describe the rich properties including exhibiting interest-

ing temporal oscillations and spatial patterns [FitzHugh, 1955; Glansdorff and Prigogine,

1971; Field and Noyes, 1974; Gray and Scott, 1983; Chou et al., 2007]. Recently, more
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†Department of Chemical and Process Engineering, University of Sheffield, UK.
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investigators have studied the identification of models of the BZ reaction directly from

experimental data. A Cellular Automata (CA) model was presented in [Zhao et al.,

2007] to describe the propagation behaviour in a BZ reaction where the value of the

brightness of each pixel was limited to finite states. Guo [Guo et al., 2010] introduced a

Coupled Map Lattice (CML) model, where the diffusion and reaction parts were sepa-

rated. A revised FitzHugh-Nagumo (R-FHN) model was proposed in [Zhao et al., 2010]

by establishing the dependence of the wave profile and propagation speed on the model

parameters. These identified models can describe a rich variety of BZ patterns such as

spiral waves, oscillating waves or Turing patterns etc. However, very little attention has

been paid to identify the observations of a BZ reaction with controlled inputs, which

can be light [Kaminaga et al., 2006], temperature [Ito et al., 2003; Vanag and Epstein,

2008], initial concentration of the ingredients [Bansagi et al., 2009] or manual interference

[Adamatzkya et al., 2004]. It is very important to be able to identify a mathematical

model directly from experimental data where the parameters or terms are functions of

the controllable physical variables. By utilizing such a model, specific behaviours of real

spatio-temporal systems can be designed by controlling the model parameters. This also

helps in predicting patterns which exist under extreme physical conditions and which

may be difficult to reproduce in the laboratory, which could be highly attractive in sev-

eral applications.

Temperature is one vital parameter that has a significant influence on the dynamics of

the chemical oscillations [Zhabotinskii, 1964; Koros, 1974] in the BZ reaction. Recently,

from the chemical point of view, [Pullela et al., 2009] presented a five-step temperature

dependent Oregonator model to describe the BZ reaction, but this study was only fo-

cused on simulations in theory. By investigating a variety of observations over changing

temperature from 20◦C to 45◦C in the BZ reaction, this paper describes the identification

of a temperature dependent FitzHugh-Nagumo (TD-FHN) model from real experimental

data, in terms of the chemical oscillation frequency and propagation speed.

The paper is organized as follows. A TD-FHN model is presented in Section 2 together

with an associated stability analysis. Section 3 introduces the routine to identify the

parameters of the model based on experimental data. Finally, the conclusions are given

in Section 4.
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2 Temperature Dependent FitzHugh-Nagumo Model

A traditional FitzHugh-Nagumo model(FHN) can be expressed as:

∂u
∂t

= f(u, v) = u(a − u)(u − 1) − v + ∇2u

∂v
∂t

= g(u, v) = bu − γv
(1)

where u, v are two variables; f(u, v) and g(u, v) are the reaction terms that determine the

dynamics of the system; 0 < a < 1/2, b ≥ 0 and γ ≥ 0 are three key parameters; and ∇2

is the Laplacian Operator. The term ∇2u is associated with the diffusion characteristics.

Recently, Zhao [Zhao et al., 2010] presented a revised or R-FHN model to describe the

behaviour of wave formation in a BZ reaction that is identifiable directly from experi-

mental data by introducing a diffusion term Dv(k)∇2v for the variable v. The diffusion

coefficient Dv(k), a function of the curvature of the wavefront, can be identified from the

propagation speed. The parameter γ is determined from the profile of the steady state

wave and a, b are chosen to achieve the steady wave.

It has been observed that in a BZ reaction oscillating waves always arise even without

manual interference. Both the traditional FHN model and the revised or R-FHN model

can describe only one travelling wave. It is therefore important to seek a model that can

describe not only propagation characteristics for a single wave but also for oscillating

waves. To solve this problem, this paper introduces a new Temperature Dependent or

TD-FHN model that is given by

∂u
∂t

= u(a − u)(u − 1) − v + Du(T )∇2u

∂v
∂t

= b(T )u − γv + Dv∇
2u

(2)

where T is the reaction temperature which influences the diffusion coefficient Du and the

parameter b. The method to determine γ is the same as described in the R-FHN model.

Based on different temperatures, to determine the other four parameters a, b, Dv, Du,

two characteristics of the wave formation are considered in this paper: the oscillation

frequency and propagation speed.

2.1 Chemical Oscillation Behaviours

A wave that represents an excursion from a steady state and back to it, will be called

a pulse wave and can be excited if a certain threshold perturbation is exceeded. Figure
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1.(a) shows the phase portrait of a typical wave produced by a traditional FHN model.

Starting from an initial value (u0, v0) = (0.2, 0), denoted by A in Figure 1.(a), the

trajectory of (u, v) follows the curve in the sequence A → B → C → D → E until

it reaches the steady state (us, vs) = (0, 0). To excite such a wave, the initial values

must be larger than a threshold, or (u, v) reverses back to the steady state very quickly.

The temporal evolution of the variables u and v of the excited wave are illustrated by

Figure 1.(b) and (c) respectively. There are two factors that determine if the model
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Figure 1: (a) Phase portrait of a wave for a FHN model with a = 0.1, b = 0.005, γ = 0.016 with the

initial values (u0, v0) = (0.2, 0); (b) Temporal evolution of u corresponding to the phase-space behaviour

in (a); (b) Temporal evolution of v corresponding to the phase-space behaviour in (a).

can exhibit oscillation behaviour: the steady states, and the trajectory contour of (u, v).

The condition to generate an oscillation is to keep the trajectory contour away from the

steady states as far as possible.

The null clines for the two variables u, v can be written as:

f(u, v) = u(a − u)(u − 1) − v = 0

g(u, v) = bu − γv = 0
(3)

The steady states can be determined by solving the equation

u(a − u)(u − 1) =
b

γ
u (4)

Since Eq. (4) is a cubic equation, it can have either one or three real solutions. Hence,

the number of steady states is only determined by a and b
γ
.

Because the parameters b and γ are much less than a, the variable u changes much faster

than v. Thus, the trajectory contour of (u, v) mainly depends on the curve f(u, v) = 0,

where a is the only parameter. There are three solutions for f(u, v) = 0 when v = 0:
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u = 0, u = a and u = 1. In the traditional FHN model, a is set between zero and 0.5.

Figure 2.(a) shows the null clines for u, v when a = 0.1, where the model obviously has

only one steady state (us, vs) = (0, 0). The trajectory contour of the final stage follows

f(u, v) = 0 and eventually enters the steady state, as illustrated by the red curve. Thus

the system is monostable. If b
γ

is decreased, there may be three steady states, as shown

in Figure 2.(b). The trajectory contour may eventually enter the steady state S3 or the

steady state S1 depending on the initial values, as illustrated by the red curves. Thus,

the system is bistable. The above results are also applicable for the case when a = 0.
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Figure 2: (a) Null clines for u, v when a = 0.1 and b
γ

is chosen to produce one steady states; (b)Null

clines for u, v when a = 0.1 and b
γ

is chosen to produce three steady states.

Hence, it is impossible to exhibit oscillatory behaviours if a ≥ 0 no matter how many

steady states the model has.

If a < 0 and there is only one steady state, as shown in Figure 3.(a). Starting from

the point A, the system moves slowly along the null cline as v decreases from A to B.

Upon reaching B, u will rapidly increase as the system jumps to the other branch of

the f(u, v) = 0 null cline (C). This branch is in the positive region of g(u, v) , so the

system will move along the u-null cline towards D as v slowly increases. Upon reaching

D, the system again jumps to the other branch of the u-null cline and makes a rapid

transition to E. It then proceeds back towards to A, and the oscillation occurs. If a is

decreased and b
γ

is fixed, there may be three steady states, as illustrated by Figure 3.(b).

The trajectory contour may enter into the steady state S1 or S3, which means that the

system is bistable. Hence if b
γ

is fixed, to exhibit oscillatory behaviours, the parameter
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Figure 3: (a) Null clines for u, v of the model that has one steady state and corresponding phase portrait

when a = −0.06, b = 0.005, γ = 0.016 with the initial values (u0, v0) = (0.2, 0); (b)Null clines for u, v

of the model that has three steady states and corresponding phase portrait when a = −0.220, b =

0.005, γ = 0.016 with the initial values (u0, v0) = (0.2, 0).

a in the TD-FHN model must satisfy

a2 < a < a1 < 0 (5)

Note, if a < 0 but is very close to zero, the trajectory contour may be too close to the

steady state to exhibit the oscillation, which is the reason to introduce a1. The values of

a1, a2 depend on the value of b
γ
. Figure 4 summarizes the distribution of the three major

regions based on different values of the parameters. The blue curve is determined by the

number of solutions for Eq. (4).

It is well known that the chemical oscillation frequency in BZ reactions changes under

different temperatures. It is therefore important to investigate how to control the fre-

quency of oscillations using the parameters in the Temperature Dependent or TD-FHN

model. As the parameter γ can be determined by the profile of the wave, this paper

studies the dependence of the oscillation frequency on a and b. Figure 5.(a) shows a 3D

surface of oscillation frequency for different values of a and b. Note the selection of a

has to be limited between a1 and a2 along with all tested values of b to generate valid

oscillatory waves. Inspection of the surface shows that both parameters have influence

on the oscillatory frequency, but b plays a more important role than a. Moreover, to

generate oscillation behaviours, the range of selection of a is very limited, which means

that the rate of the maximum and the minimum frequency that this model can produce
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Figure 4: Distribution of stability for the FHN model. Shown here are three major regions of stability

under different values of a and b
γ
.

is relatively small if a is chosen as the control variable. In this paper, b will therefore

be chosen as the variable to control the frequency. Once the dependence of b on the fre-

quency is established, it is straightforward to identify the function b(T ) directly from the

experimental data by utilizing the dependence of chemical frequency on the temperature.

Figure 6 shows three snapshots of the temporal evolution of the variable v with different

values of b and fixed a and γ. Figure 5.(b) shows that b as a function of frequency when
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Figure 5: (a) Dependence of the oscillatory frequency on the parameter b and a; (b) Dependence of the

oscillatory frequency on b when a = −0.2 and the estimated polynomial model fit.

a = −0.2 and also shows that a second order polynomial model produced an excellent
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Figure 6: Temporal evolution of v based on different values of b with a = −0.2 and γ = 0.016. (a)b =

0.005; (b)b = 0.015; (c)b = 0.03.

fit to this relationship. The polynomial model is given by

b = 0.001 + 0.6442fs + 51.903f2

s (6)

where fs denotes the oscillation frequency generated by the TD-FHN model.

2.2 Propagation Speed

Propagation speed of a diffusion field is one of the most important characteristics of a

reaction-diffusion system, and has been widely used to study the propagation behaviour

of BZ reactions [Aliev, 1994]. In the R-FHN model, an extra term Dv∇
2v was introduced

to control the propagation speed, where Dv is a function of k, the curvature of the

wavefront. It has been observed that compared with the average speed, the offset of the

speed contributed by the variety of curvatures is relatively small. Hence, in this paper,

the propagation speed is assumed to be a function of temperature T only.

Zhao [Zhao et al., 2010] observed that at room temperature, the ratio of the maximum

and the minimum propagation speed for the BZ reaction is only 1.26. This can be

accommodated by the R-FHN model which can have a ratio of 1.46. However, because

the experimental temperature of the BZ reactions discussed in this paper was changed

in the range from 15◦C to 45◦C, a significant difference in the propagation speed has

been observed where the max-min ratio can reach up to 4, which indicates the method of

using Dv to control the propagation speed is not appropriate in this particular case. To

overcome this problem, the TD-FHN model introduced in this paper uses the diffusion
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term associated with the variable u with a variable diffusion coefficient Du(T ) to control

the propagation speed, and Dv is set to zero. Simulation results suggest this method can

provide a wider range of propagation speeds.

Now consider the dependence of the propagation speed cs of the simulation model on the

parameters b and Du. Assume a = −0.2, γ = 0.016, Du = 1. By varying the values of b,

the dependence of the propagation speed on the b can be illustrated in Figure 7.(a). A

linear model was fitted to describe the relationship between b and c and is written as:

cs = 0.9893 − 4.4405b (7)

Assume a = −0.2, γ = 0.016,b= 0.005. By varying the values of Du, the dependence

of the propagation speed on the Du can be illustrated by Figure 7.(b). A second order

polynomial model was fitted to describe the relationship between Du and c and is written

as:

cs = 0.3012 + 0.7392Du − 0.0994D2

u (8)

or

Du = −0.0062 − 0.0109cs + 1.1092c2

s (9)
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Figure 7: (a) Dependence of the propagation speed cs on the b for the TD-FHN model when a =

−0.2, γ = 0.016, Du = 1; (b)Dependence of the propagation speed cs on the Du for the TD-FHN model

when a = −0.2, γ = 0.016, b = 0.005.

If Du is changed from 0.1 to 3, Eq. (8) shows that the ratio of maximum speed and

minimum speed contributed by Du can reach up to 4.81, which is sufficiently wide to

cover the speed range of the real data. As the parameter b has been used to control

the oscillation frequency, its influence on the propagation speed is inevitable. Hence,
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to accurately control the speed using Du, the contribution of speed from b must be

considered.

3 Identification from BZ Experimental Data

The apparatus set-up used for the temperature controlled BZ reactions is illustrated in

Figure 8. The chemical processor was prepared in a thin layer, the temperature was

controlled by a thermostatic water circulator, and the recipe was adapted from [Winfree,

1972]. Before dropping the mixed solution in the dish, 15 minutes was allowed so that

the dish can reach the designed temperature as close as possible. Before the experiment

was commenced, a thermometer was employed to measure the difference between the

actual temperature of the dish surface and the designed temperature in the thermostatic

water circulator because the dish was open to the air. It has been observed that there

is a 4 − 5◦C difference between them. All values of temperature discussed in this paper

relate to the actual temperatures of the solution. The data were acquired using a CCD

camera with a resolution of 768 × 576 pixels in 24 bit true color levels. The sample

rate was chosen as 5 frames per second (fps) controlled by a computer. A typical image

represents an area of size 69.12mm × 51.84mm with a resolution of 0.09mm per pixel.

For one group of data, starting right after the first excitation was observed, about 200

seconds of data were recorded to capture the initial excitation stage and the subsequent

oscillation behaviour. Six different temperatures (15◦C, 20◦C, 25◦C, 30◦C, 35◦C, 45◦C)

were implemented and the experiments for each temperature were repeated three times.

The blue component of a pixel, which always has better performance in distinguishing

the wavefront and the background compared with the green and red components for the

BZ reaction, was extracted from the raw images to describe the waves.

Before identification, it is important to define the spatio and temporal calibrations,

which is crucial to generate a model with physical meaning. Assume ts is the time

in the simulation model, tr is the time in the real world; ds is the spatial unit in the

simulation model and dr is the spatial unit in the real world. The coefficient of the

temporal calibration kt and the coefficient of the spatial calibration kd can be written as

kt = ts/tr

kd = ds/dr

(10)
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Figure 8: Schematic representation of experimental set-up used in the temperature controlled BZ reac-

tion.

The determination of the unknown parameters based on the observations will be consid-

ered in the following sections.

3.1 Chemical Oscillation Frequency

To generate a temporal evolution graph for a considered position (xp, yp) in the image,

the values of the blue component for all acquired sequential images of a group in that

position were recorded. Figure 9.(a)-(f) show six graphs of temporal evolution of ex-

perimental data for each tested temperature. The oscillation frequency for the waves,

denoted by fr, was calculated by counting the number of valid waves during a fixed time

interval. The measured frequencies were averaged by processing three groups of data

under each temperature, and the results are shown in the second row of Table 1 and also

illustrated by Figure 10, which clearly indicates the frequency is nonlinear in tempera-

ture. To quantitatively establish the relationship between temperature and frequency,

an exponential model was fitted and is written as:

fr = 0.006eT/14.0894 (11)

Note the sampled temperatures were limited within 15◦ and 45◦. Equation (11) has not

been tested outside of this range.
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Figure 9: Six temporal evolutions for a considered position (xp, yp) of the BZ reactions under different

temperatures.

15
 20
 25
 30
 35
 40
 45

0.00


0.04


0.08


0.12


0.16


F
re

qu
en

cy
(1

/s
)


Temperature(
o
C)


Figure 10: Measured frequencies for different temperatures and corresponding exponential fitting.
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The coefficient of temporal calibration kt must be determined before establishing the

relationship between temperature and the parameter b. Consider

fr

fs

= kt (12)

where fr denotes the oscillatory frequency in the real world and fs denotes the oscillatory

frequency in the simulation model. Figure 5.(b) shows that fs is typically located between

0.05 ∼ 0.032 and Table 1 shows the frequency from the real data lies between 0.02Hz ∼

0.16Hz. Hence, for this example, kt is set as 5. The parameter b can finally be written

as a function of temperature T by substituting Eq. (11) into Eq. (6), to given

b(T ) = 0.001 + 7.7304 × 10−4eT/14.0894 + 7.474 × 10−5eT/7.0447 (13)

The third row of Table 1 shows the corresponding estimated values of b for different

temperatures using Eq. (13).

Table 1: Measured oscillation frequencies and corresponding estimated values of b for different temper-

atures

T (◦C) Measured fr(hz) b

15 0.01698 0.00387

20 0.02789 0.00547

25 0.03419 0.00816

30 0.05695 0.01278

35 0.06270 0.02102

45 0.14706 0.06428

3.2 Propagation Speed

The propagation speed was measured for each group of data and was averaged for each

group under the same temperature. The results are shown in the second row of Table

2, which clearly shows that the speed increases following an increment in temperature.

Before identification, the coefficient of spatio calibration kd must be determined. Based

on Eq. (10), the relationship between the propagation speed in the real world (cr) and

in the simulation model (cm) is given by

cs =
kd

kt

cr (14)
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Inspection of the second row of Table 2 shows that the real propagation speed is limited

to be between [0.06866mm/s, 0.26091mm/s]. In this paper kd will therefore be chosen

as 25, which indicates that the range of the propagation speed required for the TD-FHN

model should be in the range of [0.3433, 1.30455] which is within the working range of

the proposed model, as shown in Figure 7.(b).

The next objective is to determine Du(T ) based on the above results. Assuming b = 0.005

as the reference, the offset of propagation speed contributed by b can be calculated based

on Eq. (7) and the results are shown in the third row of Table 2. The values of Du can

then be estimated from Eq. (9), and the results are shown in the fourth row of Table 2.

The dependence of Du on the temperature is illustrated by in 11, where a second order

Table 2: Measured propagation speeds, speed offset contributed by b and corresponding estimated values

of Du for different temperatures from experimental data

T (◦C) Detected Speed cr(mm/s) Speed Offset from b Estimated Du

15 0.06866 0.00100 0.11705

20 0.10450 -0.00042 0.29335

25 0.14353 -0.00281 0.57966

30 0.20238 -0.00691 1.19706

35 0.23634 -0.01423 1.72109

45 0.26091 -0.05264 2.70313

polynomial model was fitted and can be expressed as

Du(T ) = −0.52292 + 0.0212T + 0.00115T 2 (15)

3.3 Model Validation

By analysing the characteristics of the oscillatory frequency and propagation speed of

the BZ reaction, the dependence of b and Du in the proposed TD-FHN model have been

identified using two polynomial models. Combining all the previous results the identified
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TD-FHN model can finally be described as

∂u
∂t

= u(a − u)(u − 1) − v + Du(T )∇2u

∂v
∂t

= b(T )u − γv

b(T ) = 0.001 + 7.7304 × 10−4eT/14.0894 + 7.474 × 10−5eT/7.0447

Du(T ) = −0.52292 + 0.0212T + 0.00115T 2

(16)

where 15 ≤ T ≤ 45, a = −0.2 and γ = 0.016.

To validate the model, the oscillation frequency and propagation speed were recon-

structed using Eq. (16) and the results are shown in Figure 12, which clearly shows

the identified model has captured the key properties of the BZ reaction under controlled

temperatures.

4 Conclusions

System identification of excitable media is a potentially important tool for unravelling

the complex relationships between the observed patterns and the system control vari-

ables. This paper has introduced for the first time a method for the identification of a

Temperature Dependent or TD-FHN model for the oscillatory waves of experimentally

observed BZ reactions directly from time lapse imaging data. An important contribution

of the paper, has been to embed a physical variable into a purely mathematical model,
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Figure 11: Dependence of Du on the temperature of the BZ reaction and corresponding polynomial

fitting.
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Figure 12: (a) Comparison of the reconstructed and measured oscillation frequency over temperature;

(b) Comparison of the reconstructed and measured propagation speed over temperature.

which opens the way to identify the widely used simulation models for reaction-diffusion

systems from experimental observations with controlled inputs.

Initially, the method to generate oscillatory waves was proposed along with the corre-

sponding stability analysis. With different values of the parameters, the system can be

either monostable, oscillatory, or bistable. By studying the dynamics of the oscillation

frequency and propagation speed under different temperatures, two key parameters b and

Du were identified as functions of the temperature. Finally, a TD-FHN model expressed

as Eq. (16) has been produced to describe the dynamics of propagating oscillating waves

in a BZ reaction under controlled temperature experiments. Results of the validation

show that the curves of the reconstructed dependence of frequency and speed on the

temperature are very close to the measured data, which indicates the method proposed

in this paper is highly encouraging.
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