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Abstract 
This paper introduces a method for identifying geometrical models of interface 

evolution, directly from experimental imaging data. These local growth models relate 

normal growth velocity to curvature and its derivatives estimated along the growing 

interface. Such models can reproduce many qualitative features of dendritic crystal 

growth as well as predict quantitatively its early stages of evolution. Numerical 

simulations and experimental crystal growth data are used to demonstrate the 

applicability of this approach.   

Key words: dendritic crystal growth, geometrical models interface evolution, 

curvature-driven growth 

   

 

 

 

1. INTRODUCTION 

There is considerable technological and scientific interest to understand and manipulate pattern formation in 

systems that evolve far-from-equilibrium. Complex patterns formed under far-from-equilibrium conditions are 

encountered in a wide range of systems including hydrodynamical, chemical and biological systems. A large 

number of such patterns are the result of the growth of an interface between two domains driven by two or 

more competing fields. 

An important example of such interfacial pattern formation, arising from the interplay between kinetic growth 

and surface tension, is that of dendritic crystal growth. Over the past decades, a lot of effort has been directed 

towards the development of mathematical models of interfacial crystal growth.  Depending on whether the 

interfacial motion is solely the result of local processes or involve long range diffusional processes, crystal 

growth models can be divided into local models and more sophisticated non-local evolution models, which take 

into account temperature and/or concentration fields. 

Local models of dendritic crystal growth include cellular automata-type models
1-4

, diffusion-limited 

aggregation (DLA) models
5
 and geometric models

6-10
, which describe interfacial growth velocity in terms of 
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the geometric properties of the phase boundary, typically curvature. Of the models that take into account long-

range diffusional effects, phase field models
11,12

 are perhaps the most popular and widely used.   

Whilst numerical computations of dendritic growth can provide extremely realistic simulations of this complex 

phenomenon, which can reproduce qualitatitively the observed behaviour, a major challenge is fine tuning the 

model equations in order to achieve quantitative agreement between the computed solution and experimental 

data.  

This paper introduces an approach for inferring the structure and parameters of geometric models of dendritic 

crystal growth directly from experimental imaging data. Although geometrically motivated models for 

interfacial growth cannot replace detailed evolution models that can predict the long-term dynamics of the 

system, it has been shown
7-9

 that local geometric models can capture the most interesting features of the pattern 

formation and thus can provide valuable information of the underlying mechanisms of crystal growth. 

The reminder of the paper is organized as following. Section 2 introduces the geometrical model of interface 

evolution. Section 3 presents the image processing techniques used to extract basic quantities required for 

model development, the methodology for estimating the model based on the resulting data set and the 

application of the proposed modelling approach to synthetic data as well as experimental imaging data of 

NH4Br growth. Finally, Section 4 summarizes the results.      

 

2. GEOMETRIC GROWTH MODEL 

 

Geometrical models of interface evolution are a class of local models that have been introduced, in a series of 

papers
6-9

, as an alternative to global models of two-phase systems. 

Essentially, geometrical models reduce the dynamics of a two-phase system evolving in a d-dimensional space 

to an evolution equation for the interface which relates the normal component of interface velocity to local 

geometric properties of the interface, namely curvature and its derivatives. 

In two dimensions, at a time t, the crystal is assumed to occupy an open subset Ωt∈IR
2
 with boundary 

represented by an evolving closed curve Ȗ(t) separating its interior and exterior.  

A planar closed curve is a map ݔҧ:[0,S) × (0, T) ĺIR
2
 such that ݔҧ(s,t)=(x(s,t),y(s,t)) is a point on the curve Ȗ(t) 

and  ݔҧ(0,t)= ݔҧ(S,t). The curve is parameterised so that the interior is on the left in the direction of increasing s 

(counter clockwise parameterisation). The unit tangent to the curve is Ƹ߬ ൌ  ҧ௦ȁ and the unit normal, pointingݔҧ௦Ȁȁݔ

inside the curve, is ො݊ ൌ ҧ௦ୄݔ Ȁȁݔҧ௦ୄ ȁ, where ȁݔҧȁ ൌ ሺݔҧ ȉ ҧݔ  ҧǡݔ ҧሻଵȀଶ  denotes the norm ofݔ ȉ  ത  denotes the innerݕ

product of ݔҧ and ݕത , ሺߙଵǡ ଶሻୄߙ ൌ ሺെߙଵǡ ҧ௦ݔ ଶሻ andߙ ൌ  .ݏҧȀ߲ݔ߲

Curvature can be defined as the amount of the degree of bending of a mathematical curve, or the tendency at 

any point to depart from a tangent drawn to the curve at that point. 



For a plane curve the signed curvature is given by ݇ ൌ ҧ௦ݔ ר ҧ௦ȁଷݔҧ௦௦ȁݔ  

where  ݔҧ ר  ത. According to Frenet�sݕ ҧ andݔ ത  denotes the determinant of the 2×2 matrix with column vectorsݕ

formulae, ݇ ො݊ ൌ Ƹ߬௦Ȁȁݔҧ௦ȁ and െ݇ Ƹ߬ ൌ ො݊௦Ȁȁݔҧ௦ȁ. 
The sign of the curvature k(s) indicates the direction in which the unit tangent vector rotates as s increases 

along the curve. If the unit tangent rotates counter clockwise, then k > 0; otherwise k < 0 i.e. the curvature of a 

circle is positive.  

As the crystal grows, its boundary generates a family of curves {Ȗ(t), t∈ [0, T)}. The velocity of the interface 

Ȗ(t) is given by ݀ݔҧ݀ݐ ൌ ܸ ො݊ ൅ ఛܸ Ƹ߬ 
where V is the normal velocity and VĲ is the tangential velocity. Here it is assumed that the growth interface 

propagates with curvature dependent speed. Specifically the normal velocity is assumed to be a function of 

curvature k and orientation angle θ  ො݊ ڄ ݐҧ݀ݔ݀ ൌ ܸሺ݇ǡ  ሻߠ

where θ is defined by cos ߠ ൌ ො݊ ȉ  ො. The tangential velocity has no effect on the shape of evolving curve soݕ

usually VĲ=0. The dependence of normal velocity on the curvature is related to interfacial free energy and 

surface tension effects on the interface whereas the dependence on the orientation of the interface captures 

anisotropic effects. 

The case when V is linear corresponds to the classical mean curvature flow. This simpler model is suitable for 

describing very slow growth. In general however, the dependence of V on the curvature is highly nonlinear.  

In the case of dendritic crystal growth, Brower et al.
7
 (1984) proposed the following geometric model  ܸ ൌ ቀ݇ ൅ ଶ݇ߙ െ ଷ݇ߚ ൅ ߛ డ௞మడ௦మቁ ሾͳ ൅ ߝ cosሺ݉ߠሻሿ                                                    (1) 

where α represents the degree of undercooling, β is related to the minimum bubble size for nucleation and ߛ డ௞మడ௦మ    

is a �surface tension� term. The term proportional with ߝ reflects crystalline anisotropy.  

Numerical studies
8
 have demonstrated that such relatively simple model can reproduce many important 

macroscopic features of dendritic growth when the long range effects (diffusion, heat flow etc) are not 

significant, such as in the early stages of pattern formation,. 

The model can be extended to incorporate global effects by coupling (1) with an evolution equation for the 

temperature or concentration field, for example.    

 



 

3. Estimation of Geometrical Evolution Laws from Data 

The problem addressed here is that of inferring the geometric model of crystal growth (1) directly from real 

time observations.  Besides the pure theoretical interest in interfacial pattern formation, there is a lot of interest 

in controlling the size and the shape of a crystalline product by manipulating the temperature, concentration or 

by the introduction of specific additives. In this context, the systematic design and implementation of an 

automatic control system for regulating crystal morphology would require a mathematical model of the process 

which captures not only the qualitative aspects of the dynamics but also the relevant physical parameters of the 

process, which may be time-varying. For a particular application, the development of such a model based solely 

on first principles calculation is very challenging if not impossible. Deriving accurate parameter information 

requires experimental data and parameter estimation techniques. 

While a detailed global model would provide a more accurate representation of the process this is achieved at 

the expense of a significant computational burden which is not necessarily justified in a specific theoretical 

study or practical application.  As demonstrated in Kessler et al
9 

(1985) local geometrical models provide a 

very useful tool for theoretical analysis and characterization of dendritic growth. On the other hand, in a 

practical model-based control application involving real-time monitoring of growth patterns, by updating the 

local model parameters in real-time, it should be possible to mitigate for the shortcomings of the model, such as 

the absence of long range diffusional effects. 

3.1 Experimental Data Acquisition and Pre-processing for Geometric Feature Extraction  

In this study, 2D dendrite growth patterns of NH4Br crystals were recorded over time using a CCD camera 

connected to a standard PC. The camera was mounted onto a stereographic microscope focused on the NH4Br 

sample that was placed on a temperature-controlled stage. Back lighting was introduced underneath the glass 

stage in order to illuminate and enhance the contrast of the solidifying structure against the surrounding liquid 

media. High quality snapshots were recorded using the CCD camera which, when operating at full speed, could 

record 25 fps (frames per second) with 800 × 600 resolution. The actual sampling rate was set so that the tip 

speed of the fastest growing part of the crystal was roughly one or two pixels per time step. Typically, the 

sampling rate was one frame or half a frame per second. A detailed description of the experimental setup can be 

found in Zhao et al
4
 (2004). 

The recorded 2D images of dendritic crystal growth were subsequently processed to extract curvature and 

velocity measurements along the solid-liquid interface. The initial processing step involves filtering the images 

to reduce measurement noise. In the next stage, image segmentation was performed on every image to separate 

the crystal from the background. This resulted in a binary image in which the pixels corresponding to the object 

and background are encoded as �1�s and �0�s respectively. To the resulting binary image was subsequently 

processed to extract the boundary of the segmented object resulting in a coordinate list representation of the 



solid-liquid interface. 

Traditionally, curvature of a point on a discrete curve can be obtained by finding a circle that �fits� the curve at 

that point. Given any curve Ȗ and a point P on it where the curvature is non-zero, there is a unique circle which 

most closely approximates the curve near P, the so called osculating circle at P. The reciprocal of the radius 

osculating circle is defined as the curvature of the considered point. If the centre of the fitted circle is inside the 

curve, the curvature is positive, otherwise is negative. 

Let P(i,t) be a point that corresponds to the i-th point in the coordinate list of the crystal interface extracted 

from an image at time t. The curvature at this point was calculated by fitting a circle to three points  P(i-h,t) , 

P(i,t), P(i+h,t). The curvature k(i,t) is approximated by the reciprocal radius of the fitted circle ݇ሺ݅ǡ ሻݐ ൌ ͳݎሺ݅ǡ  ሻݐ

In practice the accuracy of the resulting curvature is dependent on the chosen value for h.  

Theoretically, the smaller h is, the more accurate the calculated curvature is.   However, for smaller values of h, 

the effect of measurement/quantisation noise can distort the results considerably. In practice, it is very 

important to find an appropriate value for h which results in relatively accurate estimation of the curvature in 

the presence of noise. Moreover, the optimal value for h is not constant along the boundary. For large 

curvatures the value of h should be smaller than the value used for large curvatures. As the curvature is not 

known a priori, a two-step method for curvature calculation was developed and used in this study. The method 

was first tested using synthetic data generated for the following curve ቀ ͻͺቁଶݔ ൅  ቀ Ͷͷቁଶݕ ൌ ͳ 

 

Essentially the curvature for every boundary point was calculated twice. In the first instance a fixed value for h 

was used to compute an initial rough estimate of curvature ෨݇ . In the second stage, the curvature was re-

calculated using a curvature-dependent h. The mapping h( ෨݇) used in this stage is illustrated in Figure 1b, with 

the initial and re-assigned curvature (for the curve in Figure 1a) shown in Figure 1c. 

[Insert Figures 1 about here] 

The advantage of this approach is illustrated in Figures 1d which show the theoretical and computed curvatures, 

using fixed and curvature-dependent h, for a known closed curve. 

The arc-length (natural) parametrization of the curve is obtained by substituting the index i of every point P(i,t) 

and k(i,t)  in the coordinate list for s, the approximate arc length of the curve starting in P(1,t) and ending in 

P(i,t), which is obtained using a pixel-based estimation approach for a pixel size of 2.13µm, calculated based 

on the real size of the image.    

The estimated curvature k(s,t), parameterised in terms of arch length s, can be used to estimate higher order 



derivatives 
డ௞ሺ௦ǡ௧ሻడ௦ , 

డమ௞ሺ௦ǡ௧ሻడ௦మ . In this work, higher order derivatives of k(s,t) were calculated by first fitting the 

estimated curvature using a quintic smoothing spline. 

  

The centre of the osculating circle fitted at point ݔҧሺݏଵǡ ሻݐ ൌ ሺݔሺݏଵǡ ሻǡݐ ଵǡݏሺݕ ҧ஼௜ݔ ሻሻ, denoted here byݐ ൌሺݔ஼ሺݏଵǡ ሻǡݐ ଵǡݏ஼ሺݕ ଵǡݏҧሺݔ  ሻሻ, lies on the normal line at the pointݐ  ሻ. The angle corresponding to the normal vectorݐ

to the curve in ݔҧሺ݅ǡ ଵǡݏሺߠ ሻ is therefore given byݐ ሻݐ ൌ arctan ቆݕሺݏଵǡ ሻݐ െ ଵǡݏ஼ሺݕ ଵǡݏሺݔሻݐ ሻݐ െ ଵǡݏ஼ሺݔ  ሻቇݐ

Let ݔҧሺݏଶǡ ݐ ൅ ሻݐ∆ ൌ ሺݔሺݏଶǡ ݐ ൅ ሻǡݐ∆ ଶǡݏሺݕ ݐ ൅ ଵǡݏҧሺݔ ሻሻ be the intersection of the normal line evaluated atݐ∆  ሻ onݐ

the curve γ(t) with the curve γ(t+∆ݐ). The normal velocity at ݔҧሺݏଵǡ ሻ is then approximated as ො݊ݐ ڄ ݐҧ݀ݔ݀ ؄ ඥሾݔሺݏଵǡ ሻݐ െ ଶǡݏሺݔ ݐ ൅ ȟݐሻሿଶ ൅ ሾݕሺݏଵǡ ሻݐ െ ଶǡݏሺݕ ݐ ൅ ȟݐሻሿଶ
ݐ∆  

 

 

3.2 Model Estimation 

 

Two cases are considered here. In the first case the structure of the model is know and only the model 

parameters need to be estimated. The second case, investigates the estimation of both model structure and 

parameters.  

Consider again the two-dimensional local interface model
7,8

  

 ො݊ ڄ ௗ௫ҧௗ௧ ൌ ቀ݇ ൅ ଶ݇ߙ െ ଷ݇ߚ ൅ ߛ డ௞మడ௦మቁ ሾͳ ൅ ߝ cosሺ݉ߠሻሿ                                                    (2) 

where α=1,  β=-0.25, δ=1 and ε=0 (no anisotropy). 

The model was simulated numerically using as initial conditions, a perturbed circle  ߠሺݏȀ்ݏሻ ൌ ்ݏݏߨʹ ൅ ߜ݉ sin ൬ʹ்ݏݏ݉ߨ ൰ 

 where  ்ݏ ൌ ଴ݎ ଴ is the arclength of a circle of radiusݎߨʹ ൌ ͳͲ. The resulting evolving spatial pattern, which is 

displayed in Figure 2, resemble the early growth stages of cyclohexanol crystals shown in Ovisienko et al.
13

. 

To evaluate the algorithms for computing curvature and normal growth velocity from data, tip speed and 

corresponding curvature samples were generated with sampling time ∆t=0.0022. 

[Insert Figure 2 about here] 

Assuming that the model structure was known, the coefficients were estimated by ordinary least squares. The 

estimated coefficients α=0.9967, β=−0.2479, δ=1.0003 are in good agreement with the original coefficients, 



which demonstrates the applicability of the image segmentation and geometric feature extraction algorithms. 

In practice however, it is not always possible to postulate precisely the local equations of motion for a 

particular crystal growth experiment. 

Assuming that the normal growth velocity is a polynomial function of curvature and its derivatives,  

ො݊ ڄ ݐҧ݀ݔ݀ ൌ ෍ ௜௡ߙ
ଵ ݇௜ ൅ ߛ ߲݇ଶ߲ݏଶ  

where, for a given polynomial order n, not all polynomial terms are present, the problem is to select the relevant 

polynomial model terms that describe the underlying growth dynamics.     

This model structure selection task was performed using an Orthogonal Forward Regression algorithm
14

. 

Essentially, the candidate model terms are ranked based on their contribution, known as the Error Reduction 

Ratio (ERR), to reducing the variance of the dependent variable.   The terms are selected iteratively in a 

forward manner so that the best model term (largest ERR contribution) of all candidate model terms 

(monomials of degree up to n in k and higher order derivatives). The remaining candidate terms in the model 

set are orthogonalized with respect to the currently selected model subset, after every iteration step.  

This approach was employed to estimate a geometric evolution model based on 2D dendrite growth patterns of 

NH4Br crystals obtained experimentally, as detailed in section 3.1.   

Figures 3a-c show three raw images of the crystal recorded at different time points (∆t, 20∆t, 40∆t where 

∆t=3seconds) whilst the corresponding segmented images and identified boundaries are shown in Figures 3d-f. 

Strictly speaking the crystal has a 3D structure but in this case it is believed that a 2D model provides a good 

approximation of the growth dynamics as the NH4Br solution in this experiment is sandwiched between a 

circular microscope slide and the optical window of the glass stage, using a thin strip of mylar as a separator
4
. 

[Insert Figures 3 about here] 

In order to minimise the effects of crystalline anisotropy, only the bottom-right branch of the crystal, as shown 

in Figures 4a,b was analysed. The approach however could be extended to address anisotropy, in which case 

velocity-curvature data for the entire boundary could be used to derive the model. 

[Insert Figures 4 about here] 

The curvature and normal velocity along the boundary were computed using the algorithms described earlier. 

Figures 5a,b illustrate the curvature and normal velocity estimated along the branch of interest at frame 22. 

[Insert Figures 5 about here] 

The second order derivative of the curvature with respect to arclength s, starting from the top left corner of 

Figure 4b is illustrated in Figure 6. 

[Insert Figure 6 about here] 

The best six model terms, ranked according to their ERR contribution, coefficients are shown in Table 1. 



Model Term ERR 

1 0.83685 ݇ 0.08555 ݇ଷ 0.00558 ߲ଶ݇Ȁ߲ݏଶ 0.00303 ݇ଶ 0.00071 ݇ସ 0.00033 

 

Only the first four terms, with a total ERR of 0.93, were considered significant and selected in the final model. 

The resulting estimated model is given by ො݊ ڄ ݐҧ݀ݔ݀ ൌ ͲǤͲ͹ͳ ൅ ͵Ǥ͵Ͷͻ݇ െ  ͳ͹ͲͻǤͶͻ݇ଷ ൅ ͵Ǥ͸ͷͷ ߲ଶ߲݇ݏଶ  

The presence of a constant term in the model indicates that, in this crystal growth experiment, the zero 

curvature (planar) interfaces are not static.  

The estimated model was used to generate predictions over entire crystal boundary, using the crystal boundary 

in frame 1 as initial condition. Figure 7, which shows the initial crystal boundary in frame 1 and the predicted 

and the observed boundary in frame 42, demonstrates that the simple geometric model inferred from 

experimental imaging data was able to capture the underlying growth characteristics of the crystal.  

[Insert Figure 7 about here] 

The prediction errors at time t were calculated using the formula 

݁ሺݐሻ ൌ ͳܵ ෍ ඥሾݔሺݏǡ ሻݐ െ ǡݏොሺݔ ሻሿଶݐ ൅ ሾݕሺݏǡ ሻݐ െ ǡݏොሺݕ ሻሿଶௌݐ
௦ୀଵ  

where S is the number of prediction points on the boundary. The prediction errors for different prediction 

horizons are illustrated in Figure 8. As expected, the prediction error increases with prediction horizon, mainly 

driven by the crystal anisotropy which was not taken into account by the current model but also due to the 

inherent limitation of geometric models which do not account for long range interactions which become 

significant on longer time scales. Although not perfect, the model could provide a good basis for the 

implementation of model based control strategies, particularly in cases when theoretical models are difficult to 

derive or their complexity makes them unsuitable for real-time control implementation.   

To mitigate for the inherent limitation of geometric models, the model parameters could be updated on-line 

using recursive estimation techniques.    

[Insert Figure 8 about here] 

 



 

 

 

4. Conclusions 

 

This paper introduced for the first time a technique for the identification of geometric models for interfacial 

growth of dendritic crystals directly from time lapse imaging data. Geometric models reduce the dynamics of a 

two-phase system to a local geometric evolution equation in which the normal interface velocity is determined 

by curvature and its derivatives. 

Although such models cannot capture long-range diffusive processes which, for example, account for the 

growth competition between dendritic fingers, local geometric models can reproduce
8,9

 the Mullins-Sekerka 

instability
15

, the classical Ivantsov solution
16

 and many other qualitative features of dendritic growth.  

The models can be used to make quantitative predictions, particularly during early stages of crystal growth or 

over shorter time scales when nonlocal effects can be ignored. Due to their simplicity, these models could be 

particularly useful for implementing advanced real-time model-based control strategies for crystal growth 

processes.  The use of phase-field models in this context is limited by the significant computational effort 

required, particularly when investigating dendritic growth, and by the large number of parameters involved in 

the solution of the evolution equations, which are difficult to determine to obtain sufficiently accurate model 

predictions.     
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Figure 1. a) Simulated curve evolution. b) Mapping used to re-assign h according to estimated curvature; c) 

Initial h (dashed) and re-assigned h (solid) ; d) Comparison of curvatures computed using fixed and variable h  

for given curve.  

 

 

Figure 2. Evolving spatial pattern for the model in equation (2) where α=1,  β=-0.25, δ=1 and ε=0. 



a) 

 b) 



c) 

 d) 



 e) 

 f) 

Figure 3. a-c) NH4Br crystal patterns recorded at ∆t, 20∆t, 40∆t where ∆t=3seconds and d-f) corresponding segmented 

images and identified boundaries. 

 



   a) 

 b) 

Figure 4. a) Selected crystal branch used in estimation and b) detail of the initial boundary (black) and the 

boundary estimated from frame 22 (red).  



a) 

b) 

 

Figure 5. a) Curvature and b) normal velocity estimated along the branch of interest at frame 22. 



 

Figure 6. Derivative of curvature with respect to arclength. 

 

 

Figure 7. Original boundary in frame 42 (blue) and model predicted boundary (red) given, as initial conditions, 

the boundary in frame 1 (black).  



 

Figure 8. Model prediction errors as a function of prediction horizon. 


