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Abstract 

The identification problem for excitable media is investigated in this paper. A new 

scalar coupled map lattice (SCML) model is introduced and the orthogonal least squares 

algorithm is employed to determinate the structure of the SCML model and to estimate 

the associated parameters. A simulated pattern and a pattern observed directly from a 

real Belousov-Zhabotinsky reaction are identified. The identified SCML models are 

shown to possess almost the same local dynamics as the original systems and are able to 

provide good long term predictions. 

 

Keywords: Identification, excitable media, scalar coupled map lattice models, 

orthogonal least squares. 

 

1 Introduction 

Excitable media widely exists in chemical, physical and biological systems. A variety of 

patterns have been observed in excitable media such as: solitary, target-like patterns, 

spiral waves, and so on. These phenomena result from the interplay between local 

dynamics and diffusive transport. Therefore, excitable media are usually described 

using a reaction-diffusion equation. The reaction part provides the local dynamics and 

the diffusion part provides propagation of information.  
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A general reaction diffusion system has the form 

 2 ( , )
t


  


u

D u f u p  (1) 

where u is a vector representing quantities of the components. The first term on the right 

hand side represents diffusion, with D a matrix of diffusion coefficients, and the second 

term represents local dynamics with kinetic parameters p (Maini et al. 1997). 

Cells in excitable media can be characterised by three states: resting, excited and 

refractory. A cell in a resting state is stable for a small perturbation while a perturbation 

with strength greater than a certain threshold can cause this cell to undergo a large 

excursion. Usually, the shape of the generated response does not depend on the 

perturbation strength, as long as the perturbation exceeds the threshold. After this strong 

response, the system returns to its initial resting state. A subsequent excitation can be 

generated after a suitable length of time, called the refractory period, has passed. (Zykov 

2008)  

Mapping the continuous coupled partial differential equations into a discrete lattice 

produces the coupled map lattice model. Owing to the computational efficiency and 

richness of their dynamical behaviour, CML models have been widely used to study 

excitable media (Kaneko 1990). Cellular automata models which simplify the dynamic 

description of a system by mapping the systems behaviour onto a few discrete states can 

also be used to describe excitable media systems. In cellular automata models, the 

continuous effects of diffusion are mapped to simple rules based on neighbourhood 

interactions. Cellular neural networks (CNN) have also been shown to be another 

powerful model for the simulation of excitable media (Jankowski and Wanczuk 1994). 

Excitable media have been extensively studied in many diverse fields including 

theoretical analysis, experiments and numerical simulations. However, most of these 

studies are focused on forward problems. That is, known models are used to describe 

and analyse the dynamical behaviours of excitable media systems. But in practice these 

models will often not be known. Finding the models is difficult and is referred to as the 

backward or the inverse problem. Therefore, identification of a model directly from 

observed spatio-temporal patterns is crucial for the study of excitable media. Until now, 
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only a few results have been published on the inverse problem. Coca and Billings 

identified a spatiotemporal system directly from data using a coupled map lattice 

model(2001). Pan and Billings identified the Turing patterns using a similar 

model(2008). In both papers the prediction patterns were highly consistent to the 

original patterns. However, all information about the components which were involved 

in the evolution of the pattern was assumed to be measurable. This may be impractical 

for many real systems, such as, patterns in the Belousov-Zhabotinsky reaction and skin 

patterns on various fishes and shells, for example. 

Zhao and Billings et al. identified a practical pattern acquired from a real 

Belousov-Zhabotinsky reaction using a type of cellular automata model, the 

Greenberg-Hasting model (GHM)(2007a). On the one hand, the GHM is a simple 

cellular automata model for the simulation of excitable media, on the other hand only 

three key parameters can be controlled when the neighbourhood is determined. 

Accordingly, it may be difficult to obtain a precise description of practical systems 

based on this model. Wei and Billings et al. identified a practical BZ pattern using a 

lattice dynamical wavelet neural network (LDWNN) model(2009). As in the GHM 

model used by Zhao and Billings, only one measured component was included in the 

LDWNN model, and only short term predictions were analysed. 

In this paper excitable media are simulated in section 2 using both PDE and cellular 

automata models. A brand new model is proposed in section 3 for the identification of 

excitable media, the new model will be called the scalar coupled map lattice model 

(SCML). As a coupled map lattice model, this model is easy to use for the simulation of 

the system. Only one component measured directly from the spatio-temporal patterns is 

included, however the new model appears to be very useful in the identification of 

practical systems. By combining the new model with the powerful orthogonal least 

squares algorithm (Billings et al. 1989; Chen et al. 1989), a new identification method is 

proposed in section 4. A numerically simulated pattern from a coupled PDE model and a 

pattern acquired from a real chemical reaction are identified to illustrate this new 

method. The conclusions are finally given in section 5. 
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2 Simulations of Excitable Media 

In this section two partial differential equation models and a cellular automata model 

are simulated to demonstrate what model properties produce typical patterns, and 

dynamical behaviours of excitable media. 

2.1 Discretisation Method and Boundary Conditions 

Traditionally, excitable media have been simulated by discretisation of the governing 

Partial Differential Equations (PDE). The forward-time centred space (FTCS) 

discretisation method is the simplest and most commonly used discreteisation method. 

The first-order temporal derivative can be discretised as 

 
( , ) ( , ) ( , )u x t u x t t u x t

t t

  


 
 (2) 

For the spatial derivative, use 

 
( , ) ( , ) ( , )u x t u x x t u x t

x x

  


 
 (3) 

 
2

2 2

( , ) ( , ) 2 ( , ) ( , )

( )

u x t u x x t u x t u x x t

x x

     


 
 (4) 

Further, the Laplace operator can be discretised on the grid lattice sites as equation 

(5) for a von Neumann neighbourhood. 

 

 
  

2

2

( , , )

1
( 1, , ) ( 1, , ) ( , 1, ) ( , 1, ) 4 ( , , )

u i j t

u i j t u i j t u i j t u i j t u i j t
x

 

       


 (5) 

where  ,i j  represents the spatial coordinate and t represents the time instant. 

Different definitions of the boundary conditions for coupled partial differential 

equations can be used in simulations. Three of these boundary conditions which are 

commonly used in the simulations are: zero boundary conditions, periodic boundary 

conditions, and zero-flux boundary conditions. 

2.2 Simulation of FitzHugh-Nagumo Model 

A simple mathematical model for excitable media is the FitzHugh-Nagumo (FHN) 

model (FitzHugh 1955) of excitation in nerve and muscle tissue:  
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2

2

( 1)( )

( )

t u

t v

u D u u u u v

v D v u v



   

      


    
 (6) 

The variables  ,u v interact locally according to the ordinary differential equations 

( , )
du

f u v
dt

  and ( , )
dv

g u v
dt

 , where ( , ) ( 1)( )f u v u u u v     , 

( , ) ( )g u v u v      . The nullclines for function f  and g have the characteristic 

shape shown in Fig 1 (a) (the solid curves). In this model, there is a resting state (fixed 

point) where the nullclines intersect. A small perturbation is damped out (the dotted 

curve in Fig 1), but a perturbation over a certain threshold triggers a long excursion (the 

dashed curve in Fig 1). This is the typical dynamical behaviour of excitable media. Fig 

1 (b) shows the response of the system for perturbations with different strengths. 
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(a)         (b) 

Fig 1 Local dynamics of the FitzHugh-Nagumo model 

with 0.1, 0.5, 1.6, 0, 0.01          

(a) the nullclines of model(6) (b) dynamical behaviours of model (6) 

Model (6) was then discretised using the FTCS method, where a von Neumann 

neighbourhood was selected to describe the diffusion of the components and the 

temporal sampling constant and spatial sampling constant were set as 1dt   and 

1dx . The other model parameters were set as 0.01  , 0.1  , 0.5  , 1.6  , 

0   and the diffusion coefficients of components u and v as 0.2uD   and 0vD  . 

The simulation was run on a 200 200  lattice with a periodic boundary condition. The 

simulation started from a zero initial state disturbed by several bar-shaped noises with 



 7 

different values, which is shown as the first figure in Fig 2. The snap shots of the 

simulated pattern are shown in Fig 2. Typical spiral patterns were generated using 

model (6). 
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Fig 2 Simulation of the FHN model (component u) 

1, 1, 0.01, 0.1, 0.5, 1.6, 0, 0.2, 0u vdt dx D D              

For different choices of the parameters, model (6) can exhibit different 

spatio-temporal patterns. Keeping all the parameters fixed but resetting the parameter 

  to 0.1   , and simulating the FHN model on the same lattice with an initial 

condition given in the first figure of Fig 3 produced typical expanding target patterns. 

Snap shots of the simulated patterns are shown in Fig 3 
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Fig 3 Simulation of the FHN model (component u) 

1, 1, 0.01, 0.1, 0.5, 1.6, 0, 0.04, 0u vdt dx D D               

2.3 Simulation of the Oregonator Model 

The Oregonator Model was derived from the chemical kinetics of the famous 

Belousov-Zhabotinsky reaction and is widely used for the analysis of excitable media. A 

two component Oregonator model is given as 

 

( )
(1 )

( )t u

t w

q u
u D u u u f w

q u

w D w u w

       
    

 (7) 

Set the parameters of the Oregonator model as 0.04, 0.008q    and 2 / 3f  , the 

diffusion coefficients as 0.1uD   and 0wD  . Discretise the Oregonator model using 

0.01, 1dt dx   and simulate the discrete model on a 200 200  square lattice. Using 

the first figure in Fig 4 as the initial condition where a zero initial condition is disturbed 

by some spot-shape noises, snap shots of the simulated pattern are shown in Fig 4. 

Target shaped patterns are produced and observed. 
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Fig 4 Simulation of the Oregonator model (component u) 

0.01, 1, 0.04, 0.008, 2 / 3, 0.1, 0dt dx q f Du Dw        

2.4 Simulation of Cellular Automata Model 

The Greenberg-Hasting Model (GHM), which was introduced by Greenberg and 

Hasting (1978; 1978) is the most common CA form of model for excitable media. 

Recently, this model has be used to identify the BZ pattern by Zhao and Billings(2007a; 

2007b). In this model, three key parameters can be controlled to generate complex 

patterns: the number of states, the number of excited states and the threshold for 

excitation. 

For an n-state spatio-temporal system which is described using a GHM model, all 

the states, denoted as  0,1, , 1n , are in one of the three states: excitable (resting), 

excited or refractory. Here, we use 0 to represent an excitable state, 1n  represents the 

excited state, and the states between the excitable state and excited state are refractory. 

Denote a cell at spatial coordinate  ,i j  and the time step t  as ,
t
i jc  and the 

neighbourhood of the cell as ,( )t
i jc . Define the number of excited cells in the 

neighbourhood as ,( )t
i jc . 

The transition rule of the GHM model is given as 
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, ,
1

, , ,

1 0

1 0 ( )

0

t t
i j i j

t t t
i j i j i j e

c if c

c n if c and c n

otherwise



  
   



 (8) 

where en  represents the threshold of excitation. 

Set the number of states as 7 where state 0 represents the resting state, 2 ~ 5 the 

refractory state, and 6 represents the excited state. The threshold for excitation is set as 

6, namely, an excitable cell changes its state to an excited state at the next step when 

there are at least 6 cells in its neighbourhood that are in an excited state. Here a Moore 

neighbourhood of range 3 was used, that is    1
, , : 3, 3t t

i j k lc c k i l j      . This 

GHM model was simulated on a 200 200  square lattice with a periodic boundary 

condition. The simulation was started from a random initial condition and the generated 

pattern is shown in Fig 5. Typically spirals are observed in the simulated patterns. 
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Fig 5 Simulated pattern of the GHM model 

3. Scalar CML Model 

In the last section, coupled PDEs and cellular automata were used to simulate excitable 

patterns. However both coupled PDEs and cellular automata may not be suitable for the 

identification of practical excitable media. Cellular automata models may be too simple 

to describe a practical system because only very limited parameters in the models can be 
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identified. 

Excitable media are most naturally represented as partial differential equations, 

where the evolution of cells in the excitable media is modelled by coupled differential 

equations. The number of differential equations required to represent a cell in the 

system may be large. For example, the DiFrancesco-Nobel model of Purkinje fibers has 

14 dimensions and over a hundred parameters (Difrancesco and Noble 1985). In an 

excitable media model at least two components are needed: an excitation variable and a 

recovery variable, that is, u is a vector of at least two variables. Ignoring the effects of 

diffusion, the variables interact locally according to the ordinary differential equations 

 ( , )
d

dt


u
f u p  (9) 

For a variable u  of vector u , 0u   shows all the fixed points in the u u  plane. In 

an oscillatory pattern, another variable v is needed to drive u off the stable fixed points. 

Here, u is the excitation variable and v acts as the recovery variable. 

Descretising the partial differential equations produces a coupled map lattice model 

(CML). A general CML model for an autonomous system can be expressed as  

 ( , ) ( , )u um nt f p q tu x u x  (10) 

In the above equation, t is the one dimensional discrete temporal coordinate; x is a d 

dimensional discrete spatial coordinate; p and q are spatial and temporal shift operators 

(Billings and Coca 2002; Coca and Billings 2001). The discrete CML models usually 

have the same number of variables as the partial differential system. 

Using these partial differential equations and coupled map lattice models in which 

several coupled components are included to identify a practical excitable media system, 

complete information about these coupled components should be measurable. However, 

for a practical system, only one component is measurable and the measured data 

denoted as z are usually a complex nonlinear function of the original component vector 

u, that is, ( )z z u . 

In this section a new coupled map lattice model is introduced where only one 

measured component is used. The scalar coupled map lattice model (SCML) can be 

defined as 
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   2( ) , dr mmz t f p z p z   (11) 

In the above model, z represents the only component measured from practical 

patterns; p is a temporal shift operator; 2  is the Laplace operator, which represents 

the diffusion of component z; f  is a nonlinear function of z at previous times, and the 

diffusion of z at previous times. 

To illustrate the existence of the SCML model, consider a two component 

reaction-diffusion system given in (12). 

 
2

2

( , )

( , )

t u

t v

u D u f u v

v D v g u v

   


  
 (12) 

In the first equation of (12) an implicit function from u to v exists. Give this 

function explicitly as 

  2, ,h tv f u u u   (13) 

Calculating the first order temporal derivative yields 

     2 2 2, , , , ,t h t ht t t
v f u u u f u u u u

t


    


 (14) 

Substituting (13) and (14) into the second equation of (12) produces 

    2 ,ht v h hf D f g u f    (15) 

In equation (15), only component u and its temporal and spatial derivatives are 

included. Letting the measurement component z u  yields what will be called a scalar 

coupled map lattice model. 

Two examples, the FitzHugh-Nagumo model and the Oragonator model will be 

analysed. Firstly consider the FHN model given in equation (6). The first equation can 

be explicitly written as 

 2 ( 1)( )u tv D u u u u u       (16) 

Calculating the first order time derivative of both sides produces 

  2 23 2(1 )t u t t t ttt
v D u u u uu u u         (17) 

Substituting equation (16) and (17) into the second equation yields 
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 

   

2 3 2

2

3 2(1 ) ( ) (1 )

0

tt t

u t

u u u u u u

u D u

     

   

       

     
 (18) 

Repeating the same process for the Oregonator model given in (7) yields the one 

component version of this model as 

 2 0t tAB AB B u AB     (19) 

where  3 2 2( ) (1 ) ( )t t uA u uu qu u q u qu D u q u           and ( ) ( )B u fq fu  . 

The above analysis shows that a reaction-diffusion coupled PDE model can be 

rewritten in a one component form. Disceretising these continuous one component 

models yields the SCML models defined in (11). Although the scalar model which is 

derived from a simple mathematical development looks no different to the coupled 

PDEs, this kind of model has an important meaning for the identification of 

spatio-temporal patterns because for a practical spatio-temporal system not all the 

components which are involved in the evolution of a cell can be measured from the 

acquired data. For most practical spatio-temporal patterns, for example, the chemical 

BZ pattern or skin patterns on fishes and shells, only one component can be observed 

and the measured component may be a complex nonlinear function of those effects 

which actually affects the evolution of the patterns. 

Simultaneously, the scalar models derived from the original PDEs also give some 

important guidance on the identification of the spatio-temporal patterns: (1) the terms 

with second order derivative should be included in the final model. That means terms 

with at least second order time-lags should be included in a discrete SCML model; (2) 

the spatial derivatives and the first order time derivative of these spatial derivatives 

should be included in the final model. That is, the diffusion term at time before t-1 

should be considered in an SCML model. 

4 Identification of Excitable Media Patterns 

The last section showed that a SCML model can be developed from coupled PDE forms 

of models. However, for experimental or naturally occurring excited media, even the 

PDE form of such models is often unknown. One reasonable method is to reconstruct 
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the dynamics of multi-component systems directly from the observed patterns. Takens 

embedding theorem (1981) showed that 2n+1 time-delayed versions of one observation 

function would suffice to embed an n-dimensional phase space. That is, an 

n-dimensional dynamical system can be reconstructed using only one observed variable 

and associated time delays. A similar idea can be used in the SCML model where both 

the time delays of the measurement variable and its diffusion are used. In this section 

the orthogonal least squares algorithm is employed as the main methodology to 

determine the structure of the SCML model and to estimate the associated parameters. 

4.1 Identification of Simulated Patterns 

In this section a 2-D simulated pattern is identified. The data used for the identification 

was generated by simulating the FitzHug-Nagumo model with 

0.1, 0.5, 1.6, 0, 0.01         . The simulated pattern was sampled with the 

spatial and temporal sampling intervals 2t   and 1x  . Fig 6 shows the snap shots 

of the sampled pattern. 
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Fig 6 The pattern generated using the FHN model (component u) 

0.1, 0.5, 1.6, 0, 0.01          

An SCML model was then used to identify this pattern. Select the measurement 

function as z u . Assume the form of the function (11) is not known but that the 
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function can be approximated by a third-order nonlinear polynomial form of model. 

Construct the 3rd-order nonlinear polynomial model set. A von Neumann neighbourhood 

was considered to describe the diffusion effects and a second order time lag was 

selected as discussed in the last section. The orthogonal least squares algorithm(Billings 

et al. 1989; Chen et al. 1989) was then applied to the data to select the significant model 

terms. The corresponding parameters are then estimated based on the selected terms. 

The identification results are given in Table 1. Notice that 2 ( 1)z t   and 2 ( 2)z t   

have been selected as specific terms in the model as suggested by the analysis in section 

3. 

Table 1 Model selection for the FHN system 

Terms ERR’s Coefficients 

( 1)z t   0.984331 1.7981 

( 2)z t   0.013315 -0.82041 

2 ( 1)az t   0.001306 0.459467 

2 ( 2)bz t   3.26E-05 -0.42561 

3 ( 2)z t   1.14E-06 1.65721 

2 ( 2)z t   2.47E-05 -1.83072 

2 ( 1)z t   1.87E-05 1.88849 

3( 1)z t   0.000861 -1.70921 

a   2
, , 1 , 1 1, 1, ,( 1) ( 1) ( 1) ( 1) ( 1) 4 ( 1)i j i j i j i j i j i jz t z t z t z t z t z t                

b   2
, , 1 , 1 1, 1, ,( 2) ( 2) ( 2) ( 2) ( 2) 4 ( 2)i j i j i j i j i j i jz t z t z t z t z t z t                

The identified model can be written as follows 

 

3

2 2 3

2 2

( ) 1.7981 ( 1) 0.820409 ( 2) 1.65721 ( 2)

1.83072 ( 2) 1.88849 ( 1) 1.70921 ( 1)

0.459467 ( 1) 0.42561 ( 2)

z t z t z t z t

z t z t z t

z t z t

     

     

     

 (20) 

Using the configuration at time instant t=60 and t=61 as the initial state of the 
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system, the model predictions of model (20) are show in Fig 7. The predicted pattern is 

almost exactly the same as the original pattern generated using the FHN model 

equations even for t=300. 
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Fig 7 Model prediction output of SCML model (20) 

4.2 Identification of a Practical Belousov-Zhabotinsky Pattern 

The Belousov-Zhabotinsky (BZ) reaction has been widely used as a prototype system 

for the study of chemical oscillations and pattern formation for several decades. The BZ 

reaction-diffusion system has been utilised primarily to understand the dynamics of 

patterns consisting of travelling waves, including target patterns and spiral waves. Fig 8 

shows snap shots of a pattern acquired from a real Belousov-Zhabotinsky reaction. 
t=1 t=14 t=27 t=40

t=53 t=66 t=79 t=92

 



 17 

Fig 8 Snap shots of the acquired data 

The experiments were completed by Dr. Y. Zhao with collaborators from colleagues 

in the Chemical Engineering Department. The patterns acquired from the practical BZ 

reaction are stored as RGB images. An LW pixel image is an LW3 data array that 

defines red, green and blue colour components for each individual pixel. Selecting a cell 

from the pattern, Figure 9 shows the changes of colour components over time at this 

point. These lines represent the dynamical changes of the cell state. 
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Fig 9 Red, green and blue colour component of a pixel in the BZ reaction 

In Fig 9, the blue intensity of the cells lays out a similar shape as the local dynamics 

in an excitable medium. Accordingly the blue component of the acquired pattern is 

selected as the measurement component z for the identification. Snap shots of the blue 

component of the acquired pattern are given in Fig 10. Part of the blue component data 

were then used for the identification and the first two figures in Fig 11 were used as the 

initial states for the model prediction. 
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Fig 10 Blue component of the acquired BZ patterns 

Because the patterns were severely noisy from the experimental environment 

together with occasional bubbles which were generated in the chemical reaction, not all 

the data can be used for the identification. A method has to be introduced to select good 

data which can be used. Selecting two data sets, denoted as data set (a) and date set (b), 

from the blue component pattern. The phase portraits of the two data sets are plotted in 

Fig 11. For the data set (a) there appears to be no clear functional relationship, or if 

there is it is extremely noisy, while data set (b) shows a clearer relationship between 

( )z t , ( 1)z t   and ( 2)z t  . In other words, it is more likely that a function 

 ( ) ( 1), ( 2)z t f z t z t    can be found from data set (b) than from data set (a). 

Consequently, the phase portrait can be used for the selection of the data set. Data set (b) 

was selected for the identification of the model. 
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(a)           (b) 

Fig 11 Data collected from the acquired B-Z pattern 

(a) The improperly chosen data (b) The properly chosen data 

The SCML model was used to identify the practical pattern. Obviously we have no 

idea about the structure of the model because this is a real data set. Assume the model 

can be approximated by a fourth-order polynomial model and construct the fourth-order 

nonlinear model set. A von Neumann neighbourhood was used to describe the diffusion 

of the components. Following the reasoning from the last section, a second-order time 

lag of the cell states and the diffusion was considered. Applying the orthogonal least 

squares algorithm to data set (b), the most significant terms were selected from the 

fourth-order full term set. The results are shown in Table 2. 

Table 2 Model selection for the BZ system 

Terms ERR’s Coefficients 

( 1)z t   0.95414 0.95013 

( 2)z t   0.0224055 -0.0424791 

2 ( 1)az t   0.0085178 0.743265 

4 ( 1)z t   0.000947576 1.86899E-05 

3( 1) ( 2)z t z t   0.00332102 -5.73529E-05 

2 ( 2)bz t   0.00018247 -0.354318 

2 2( 1) ( 2)z t z t   0.000055963 6.28918E-05 

3( 1)z t   8.25933E-06 -0.00310803 

2 ( 1)z t   0.000166008 0.118357 

( 1) ( 2)z t z t   4.36405E-05 -0.185982 

2 ( 1) ( 2)z t z t   0.000953827 0.00779509 

4 ( 2)z t   5.29455E-05 3.0084E-06 
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3( 1) ( 2)z t z t   0.00014928 -2.71051E-05 

2( 1) ( 2)z t z t   4.19106E-05 -0.0068082 

3 ( 2)z t   0.00104672 0.00207884 

2 ( 2)z t   0.000561697 0.0712825 

a   2
, , 1 , 1 1, 1, ,( 1) ( 1) ( 1) ( 1) ( 1) 4 ( 1)i j i j i j i j i j i jz t z t z t z t z t z t                

b   2
, , 1 , 1 1, 1, ,( 2) ( 2) ( 2) ( 2) ( 2) 4 ( 2)i j i j i j i j i j i jz t z t z t z t z t z t                

The final SCML model is given as 

 

2

5 4 5 3

2 5 2 2

3 2

( ) 0.95013 ( 1) 0.0424791 ( 2) 0.743265 ( 1)

1.86899 10 ( 1) 5.73529 10 ( 1) ( 2)

0.354318 ( 2) 6.28918 10 ( 1) ( 2)

0.00310803 ( 1) 0.118357 ( 1) 0.185982 ( 1) ( 2)

0.0

z t z t z t z t

z t z t z t

z t z t z t

z t z t z t z t

 



      

      

      

      

 2 6 4

5 3 2

3 2

0779509 ( 1) ( 2) 3.0084 10 ( 2)

2.71051 10 ( 1) ( 2) 0.0068082 ( 1) ( 2)

0.00207884 ( 2) 0.0712825 ( 2)

z t z t z t

z t z t z t z t

z t z t





    

      

   

 (21) 

Ignoring the diffusion part of model (21), the local dynamics of the SCML model is 

shown in Fig 12. Because the model does not include a constant term, the state of cell 

( )z t  will remain zero (the resting state) when a zero initial condition is set. For a small 

perturbation, the state of the system is damped out while a perturbation which is large 

enough triggers a long excursion and finally a return to the resting state. The excited 

curve has a similar shape and amplitude to the blue curve in Fig 9. 
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Fig 12 Local dynamics of the identified model 
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Using the configurations at t=23 and t=24 as the initial conditions, the model 

prediction output patterns are shown in Fig 13.  Compared with the practical pattern in 

Fig 10, the long time predicted pattern keeps the same shape and a similar propagation 

speed. 
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Fig 13 Model prediction output of model (21) 

When the identified SCML model is simulated on a 240 180  square lattice with a 

zero-flux boundary condition starting from a random initial state, typical spiral patterns 

are observed in the patterns which are shown in Fig 14. By slightly changing the 

parameters, this model can exhibit various spatio-temporal patterns. 
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Fig 14 Simulation of SCML model (21) 
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5 Conclusions 

As an important class of spatio-temporal system, excitable media have received a lot of 

attention. In this paper, a scalar coupled map lattice (SCML) model was for the first 

time proposed to identify this class of spatio-temporal systems. Both simulated patterns 

and real practical patterns observed from a real BZ chemical reaction were successfully 

identified by applying the OLS algorithm to the new SCML models. The identified 

SCML models appear to possess the same local dynamical features as the original 

patterns and are able to generate target patterns and spirals which are commonly 

observed in excitable media.  

The identification of the SCML model directly from an observed pattern led to 

many interesting observations. Firstly, the identification process demonstrated that the 

full details of real dynamics of spatio-temporal systems are not necessary to identify a 

microscopic model with similar macroscopic behaviours. Secondly, the SCML model 

provides an alternative choice for the numerical simulation of excitable media besides 

partial differential equations and cellular automata. Thirdly, the identification method 

builds a direct connection between practical systems and models. Although only 

travelling wave patterns have been considered in this chapter, the method may also be 

used for the identification of stationary patterns, such as Turing patterns. 

Acknowledgment 

The authors gratefully acknowledge support from the UK Engineering and Physical 

Sciences Research Council (EPSRC) and the European Research Council (ERC). 

 

References 

Billings, S. A., Chen, S., and Korenberg, M. J. (1989). "IDENTIFICATION OF MIMO NON-LINEAR 

SYSTEMS USING A FORWARD-REGRESSION ORTHOGONAL ESTIMATOR." 

International Journal of Control, 49(6), 2157-2189. 

Billings, S. A., and Coca, D. (2002). "Identification of coupled map lattice models of deterministic 

distributed parameter systems." International Journal of Systems Science, 33(8), 623-634. 

Chen, S., Billings, S. A., and Luo, W. (1989). "ORTHOGONAL LEAST-SQUARES METHODS AND 



 23 

THEIR APPLICATION TO NON-LINEAR SYSTEM-IDENTIFICATION." International 

Journal of Control, 50(5), 1873-1896. 

Coca, D., and Billings, S. A. (2001). "Identification of coupled map lattice models of complex 

spatio-temporal patterns." Physics Letters, Section A: General, Atomic and Solid State Physics, 

287(1-2), 65-73. 

Difrancesco, D., and Noble, D. (1985). "A MODEL OF CARDIAC ELECTRICAL-ACTIVITY 

INCORPORATING IONIC PUMPS AND CONCENTRATION CHANGES." Philosophical 

Transactions of the Royal Society of London Series B-Biological Sciences, 307(1133), 353-398. 

FitzHugh, R. (1955). "Mathematical models of threshold phenomena in the nerve membrane." Bulletin of 

Mathematical Biology, 17(4), 257-278. 

Greenberg, J. M., Hassard, B. D., and Hastings, S. P. (1978). "PATTERN FORMATION AND PERIODIC 

STRUCTURES IN SYSTEMS MODELED BY REACTION-DIFFUSION EQUATIONS." 

Bulletin of the American Mathematical Society, 84(6), 1296-1327. 

Greenberg, J. M., and Hastings, S. P. (1978). "SPATIAL PATTERNS FOR DISCRETE MODELS OF 

DIFFUSION IN EXCITABLE MEDIA." Siam Journal on Applied Mathematics, 34(3), 515-523. 

Jankowski, S., and Wanczuk, R. "CNN models of complex pattern formation in excitable media." 

Cellular Neural Networks and their Applications, 1994. CNNA-94., Proceedings of the Third 

IEEE International Workshop on, 333-338. 

Kaneko, K. (1990). "Simulating Physics with Coupled Map Lattices ". 

Maini, P. K., Painter, K. J., and Chau, H. N. P. (1997). "Spatial pattern formation in chemical and 

biological systems." Journal of the Chemical Society-Faraday Transactions, 93(20), 3601-3610. 

Pan, Y., and Billings, S. A. (2008). "The identification of complex spatiotemporal patterns using Coupled 

Map Lattice models." International Journal of Bifurcation and Chaos, 18(4), 997-1013. 

Takens, F. (1981). "Detecting strange attractors in turbulence." Dynamical Systems and Turbulence, 

Warwick 1980, 366-381. 

Wei, H. L., Billings, S. A., Zhao, Y. F., and Guo, L. Z. (2009). "Lattice Dynamical Wavelet Neural 

Networks Implemented Using Particle Swarm Optimization for Spatio-Temporal System 

Identification." IEEE Transactions on Neural Networks, 20(1), 181-185. 

Zhao, Y., Billings, S. A., and Routh, A. F. (2007a). "Identification of excitable media using cellular 

automata models." International Journal of Bifurcation and Chaos, 17(1), 153-168. 

Zhao, Y., Billings, S. A., and Routh, A. F. (2007b). "Identification of the Belousov-Zhabotinskii reaction 

using cellular automata models." International Journal of Bifurcation and Chaos, 17, 

1687-1701. 

Zykov, V. S. (2008). "Excitable media." Scholarpedia, 3(5), 1834. 

 

 


