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Characterising Spatio-Temporal Dynamical Systems  

in the Frequency Domain 
 

Yuzhu Guo, S. A. Billings, Daniel Coca, Z.K. Peng and Z.Q. Lang 

 

Abstract 

In this paper a new concept, spatio-temporal generalised frequency response functions 

(STGFRF), is introduced for the first time to characterise spatio-temporal dynamical 

systems in the frequency domain. A probing method is developed to calculate the 

STGFRFs for both continuous and discrete spatio-temporal systems. 

 

Keywords: Spatio-temporal systems, spatio-temporal generalised frequency response 

function, probing method. 

 

1 Introduction 

 

Linear spectral analysis for temporal systems has greatly matured and is widely used 

in almost every branch of science and engineering. Frequency domain analysis has 

also been extended to nonlinear dynamical systems. Many important methods have 

been introduced such as the calculation of generalised frequency response functions 

(Billings and Tsang 1989a; Lang et al. 2007), determination of the output frequency 

range (Lang and Billings 1997), characteristics of non-linear generalised frequency 

response functions (Yue et al. 2005) and the introduction of energy transfer filters 

(Billings and Lang 2002). Frequency domain analysis has also been widely used in 

the analysis of spatial systems, especially in image processing, such as in the analysis 

of image filters. 

 

One excellent method to identify the generalised frequency response functions (GFRF) 
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was introduced by Billings and Tsang (1989a; 1989b), which consists of estimating a 

NARMAX description of the system and computing the generalised frequency 

response functions directly from the estimated model using a development of the 

probing method. In this paper a similar method will be developed to obtain analytic 

expressions for spatio-temporal generalised frequency response functions for a class 

of spatio-temporal systems. 

 

The concept of spatio-temporal transfer function was introduced by Billings and 

Wei(2007) and is a natural extension of the ordinary transfer function for classical 

linear time-invariant control systems. A similar concept, the multidimensional transfer 

function was proposed by Rabenstein and Trautmann(2002) and a Sturm-Liouville 

transformation based method was developed to obtain the multi-dimensional transfer 

function from continuous initial-boundary value problems. In this paper a much 

simpler method will be introduced to directly calculate the analytic expression of the 

spatio-temporal generalised frequency response functions from continuous and 

discrete spatio-temporal models. 

 

The frequency response is a measure of a system’s response to a sinusoidal input of 

varying frequency. The frequency response is typically characterised by the 

magnitude and the phase of the system’s response versus frequency, that is, the 

frequency response function. In order to calculate and analyse the frequency response 

function, spatio-temporal systems with external inputs should be considered. An 

example of a spatio-temporal system with an external input is introduced in section 2. 

Section 3 introduces the probing method for the calculation of generalised frequency 

response functions for continuous and discrete temporal systems. Section 4 extends 

this method to spatio-temporal dynamical systems. Boundary-value problems are 

considered in section 5. Two examples are considered in section 6 to graphically show 

the spatio-temporal generalised frequency response functions. Conclusions are finally 

given in section 7. 
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2 Spatio-Temporal Systems with External Inputs 

 

In many cases, spatio-temporal systems are autonomous systems, that is, all the 

systems evolve from an initial condition and only depend on the initial conditions and 

the dynamic characters of the model. The frequency response of a system is defined as 

the steady-state response of the system to a sinusoidal input signal. The magnitude 

and phase of the output signal is a function of the input frequency. In order to 

calculate and analyse the frequency response functions, in this paper spatio-temporal 

systems with external inputs are considered. It will be shown that spatio-temporal 

dynamical systems have many similar features which were observed in temporal 

dynamical systems.  

 

Consider a linear one dimensional spatio-temporal system with an external input.  

 
22 2

2
1 2 02 2

y y y y
y c bu

t t t x
               

 (1) 

where y  and u  are functions of both the spatial coordinate x  and the temporal 

coordinate t , that is, both the output and input signals are spatio-temporal patterns 

denoted as  ,y t x  and  ,u t x  respectively. 

 

Define the input signal as 

    0 0( , ) sin sint xu t x t x   (2) 

where 0 2t   (rad/s) and 0 2x   (rad/s) represent the spatial and temporal 

frequencies of the input separately. The input pattern is shown in Fig 1 (a). 

 

Setting the parameters of system (1) as 1 2 04, 0.5, 1, 0.01, 1c b        and 

simulating the system on a 1024 1024  lattice gave the steady-state output in Fig 1 

(b).  
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(a)        (b) 

Fig 1 Simulation of a spatio-temporal system with input 

(a) the input pattern (b) the output pattern 

Except for a slightly smaller magnitude and phase delay, the output pattern looks 

almost the same as the input pattern. However the frequency domain analysis can 

discover more than these initial spatio-temporal appearances appear to show. 

Calculating the two dimensional Fast Fourier transforms of the input and output yields 

the approximate frequency spectra of the input and out patterns given in Fig 2. The 

spectrum of the input only has a peak at  ,t x    2 , 2   ,  2 , 2   , 

 2 , 2    and  2 , 2    separately, which corresponds to the  temporal 

frequency 0t  and the spatial frequency 0x  of the input signal. However, the 

output spectrum is much richer than the input spectrum. The output pattern has peaks 

at all points    , ,t x t xp q     where ,p q . This is because of the effects of 

the nonlinear term 
2

2

y

t
  
  
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(c)        (d) 

Fig 2 Frequency spectra of input and output patterns 

(a) (c) input spectrum (b) (d) output spectrum 

 

3 The Probing Method 

 

Billings and Tsang(1989a) showed that the harmonic input or probing method can be 

used to determine the nth order generalised frequency response function (GFRF)  of 

a nonlinear system by equating the coefficients of the system output for an input 

defined as 
1

( ) k

n
j t

k
k

u t A e . The response of the system is of the form 

 
1

( ) n
n

y t y t




  where 1

1

1 1 1

( ) , , k kn

n

n

n n
j t

n n k k
k k

y t H e  is the nth order 

output when 1kA   for all 1,2, ,k n . 
1
, ,

nn k kH  is the nth order GFRF. 

The procedure to calculate the generalised frequency response functions is briefly 

reviewed by considering a continuous and a discrete temporal example. For more 

details of the probing method, refer to the papers (Billings and Tsang 1989a; Billings 

and Tsang 1989b; Billings et al. 1990). 

 

3.1 Calculation of Generalised Frequency Response Functions for 

Continuous Temporal Systems 
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Consider a purely temporal continuous dynamical system described by the differential 

equation 

 
22

2
1 2 02

( ) ( )
d y dy dy

y t bu t
dt dt dt

       
 

 (3) 

The procedure begins by defining the probing input as 

 ( ) tj tu t e  (4) 

and the corresponding output as 

 1( ) ( ) tj t
ty t H j e  (5) 

The derivative of ( )y t  can then be written as 

 1( ) tj t
t t

dy
j H j e

dt
 (6) 

Then the second derivative of ( )y t  is 

 
2

2
12
( ) tj t

t t

d y
H j e

dt
 (7) 

Substituting (4) ~ (7) into equation (3) yields 

 
2

1 1 1

2 22 2
2 1 0 1

( ) ( )

( ) ( )

t t

t t t

j t j t
t t t t

j t j t j t
t t t

H j e j H j e

j H j e H j e be
 (8) 

Equating the coefficients of tj te   on both side yields 

 1 2 2
1 0

( )
( )t

t t

b
H j

j j
 (9) 

 1 tH j  is the first order generalised frequency response function which 

characterises the linear portion of the response. In this example, the first order 

generalised frequency response is a typical second order linear system with the natural 

frequency 0  and the damping ratio 1 02  . 

 

Probing with an input with two different frequencies which is given as 

 1 2( ) t tj t j tu t e e  (10) 
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the corresponding response of the system is 

 
1 2

1 21 2

1 1 1 2

2 2
2 1 1 2 2 2 2 1 2

( )

, , 2 ,

t t

t tt t

j t j t
t t

j tj t j t
t t t t t t

y t H j e H j e

H j j e H j j e H j j e
 (11) 

and the first and second order derivatives are 

 

1 2

1 2

1 2

1 1 1 2 1 2

2 2
1 2 1 1 2 2 2 2

1 2 2 1 2

2 , 2 ,

2 ,

t t

t t

t t

j t j t
t t t t

j t j t
t t t t t t

j t
t t t t

dy
j H j e j H j e

dt

j H j j e j H j j e

j H j j e

 (12) 

and 

 

1 2

1 2

1 2

2
2 2
1 1 1 2 1 22

2 22 2
1 2 1 1 2 2 2 2

2

1 2 2 1 2

4 , 4 ,

2 ,

t t

t t

t t

t j t
t t t t

j t j t
t t t t t t

j t
t t t t

d y
H j e H j e

dt

H j j e H j j e

H j j e

 (13) 

Substituting equation (10) ~ (13) into (3) and equating coefficients of 1 2t tj te  yields 

      
   

2 1 2 1 1 1 2
2 1 2 2 2

1 2 1 1 2 0

, t t t t
t t

t t t t

H j H j
H j j

j

    
 

     

    

 (14) 

 2 1 2,t tH j j   is the second order generalised frequency response function which 

characterises the quadratic contribution to the response. An example of 

 2 1 2,t tH j j   is given in Fig 3. 
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(c)        (d) 

Fig 3 The second order generalised frequency response function of system (3) 

(a) (b) magnitude (c) (d) phase 1 2 00.6, 1, 1, 1b       

Following this procedure all the higher order generalised frequency response 

functions can be calculated recursively. 

 

3.2 Calculation of Generalised Frequency Response Functions for 

Discrete Temporal Systems 

 

The probing method can also be applied to calculating the generalised frequency 

response functions from a discrete model. 

 

System (3) can be discretised into a discrete model given in (15) by the forward finite 

difference method with spatial and temporal sample intervals x  and t . 

 
2

1 2 3

2
4 5 1

( 2) ( 1) ( ) ( 1)

( ) ( 1) ( ) ( )

y k a y k a y k a y k

a y k y k a y k b u k

     

   
 (15) 

where 
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 

 

1 1

22
2 1 0

3 2

4 2

5 2

2

1

2

1

2

a t

a t t

a

a

a

b b t



 




  

     

 


 

 

 (16) 

System (15) will now be used to illustrate the probing method for the calculation of 

the generalised frequency response function of discrete systems.  

 

Define the discrete probing input 

 ( ) tj k tu k e  (17) 

and the corresponding output as 

 1( ) ( ) tj k t
d ty k H j e  (18) 

The one step ahead and two step ahead outputs are 

 1
1( 1) ( ) tj k t

d ty k H j e  (19) 

and 

 2
1( 2) ( ) tj k t

d ty k H j e  (20) 

Substituting (17) ̚ (20) into (15) yields 

 

   

    

 

2 1
1 1 1 2 1

2
1 1

3 1 4 1 1

2

5 1 1

( ) ( ) ( )

( ) ( ) ( )

( )

t t t

t tt

t t

j k t j k t j k t
d t d t d t

j k t j k tj k t
d t d t d t

j k t j k t
d t

H j e a H j e a H j e

a H j e a H j e H j e

a H j e b e

  

 

 

  

  



    

   

 

 

 

 

 (21) 

Equating the coefficient of tj k te    yields 

 1
1 2

1 2

( )
t td t j t j t

b
H j

e a e a   
 

 (22) 

1( )d tH j  is the first order generalised frequency response function which describes 

the same system characteristics as ( )d tH j  does. 
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Probing the discrete system with a input with two different frequencies 1t  and 2t  

 1 2( ) t tj k t j k tu k e e  (23) 

The corresponding output can be defined as 

 
1 2 2

2 22

2
1 1 1 2 2 1 1

2
2 2 2 2 1 2

( ) ( ) ( ) ( , )

( , ) 2 ( , )

t t t

t tt

j k t j k t j k t
d t d t d t t

j k tj k t
d t t d t t

y k H j e H j e H j j e

H j j e H j j e
 (24) 

The time advanced outputs are 

 

1 2

2 2

2 2

1 1
1 1 1 2

2 1 2 1
2 1 1 2 2 2

1
2 1 2

( 1) ( ) ( )

( , ) ( , )

2 ( , )

t t

t t

t t

j k t j k t
d t d t

j k t j k t
d t t d t t

j k t
d t t

y k H j e H j e

H j j e H j j e

H j j e

 (25) 

and 

 

1 2

2 2

2 2

2 2
1 1 1 2

2 2 2 2
2 1 1 2 2 2

2
2 1 2

( 2) ( ) ( )

( , ) ( , )

2 ( , )

t t

t t

t t

j k t j k t
d t d t

j k t j k t
d t t d t t

j k t
d t t

y k H j e H j e

H j j e H j j e

H j j e

 (26) 

Substituting (23) ~ (26) into (15) and equating the coefficients of 2 2t tj k te  on both 

sides yields 

 

    
   

1 2 1 2

2 2 2 2

3 4 5 1 1 1 2

2 1 2 2
1 2

2 2 ( ) ( )
( , )

2 2 2

t t t t

t t t t

j t j t j t
d t d t

d t t j t j t

a e a e e a H j H j
H j j

e a e a

   

   

 
 

   

   

  


 
 (27) 

2 1 2( , )d t tH j j   is the second order generalised frequency response function which 

characterises the same features of the system as 2 1 2( , )t tH j j   does. An example of 

2 1 2( , )d t tH j j   is given in Fig 4 which is almost exactly the same as the second 

order generalised frequency response function shown in Fig 3. 
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(a)        (b) 
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(c)        (d) 

Fig 4 The second order generalised frequency response function of system (3) 

1 2 3 4 5 11.994, 0.9941, 1, 2, 1, 0.0001, 0.01a a a a a b t x              

 

4 Calculation of STGFRF for Spatio-temporal Dynamical 

Systems 

 

The probing method will now be developed to calculate the generalised frequency 

response functions of a class of spatio-temporal systems. For a bounded input 

bounded output stable spatio-temporal system, define the probing input as 

1

( , ) tk xk

n
j t j x

k

u t x e  



 , where tk  and xk  are the temporal and spatial frequencies 

separately. The steady-state output of a spatio-temporal system can then be defined as 

1

( , ) ( , )n
n

y t x y t x




 , where  
1 1

1 1 1

( , ) , , , , ,
n n

n

n n
ST

n n tk tk xk xk
k k

y t x H    
 

   is the 

nth order output and  
1 1
, , , , ,

n n

ST
n tk tk xk xkH      is the nth order spatio-temporal 

generalised frequency response function. 

 

4.1 Calculation of STGFRF for Continuous Nonlinear 
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Spatio-temporal systems 

 

Now consider a nonlinear spatio-temporal system given as 

 
22 2

2
1 2 02 2

( , ) ( , )
y y y y

y x t c bu x t
t t t x

               
 (28) 

Probing the system with an input defined as 

 ( , ) t xj t j xu x t e    (29) 

the output can then be defined as 

 1( , ) ( , ) t xj t j xST
t xy t x H j j e      (30) 

Accordingly the temporal and spatial derivatives of the output are 

 1 ( , ) t xj t j xST
t t x

y
j H j j e

t
    




 (31) 

 
2

2
12

( , ) t xj t j xST
t t x

y
H j j e

t
    

 


 (32) 

and 

 
2

2
12

( , ) t xj t j xST
x t x

y
H j j e

x
    

 


 (33) 

Substituting equation (29) ~ (33) into system (28) yields 

  

2
1 1 1

2 2 22 2
2 1 0 1

2
1

( , ) ( , )

( , ) ( , )

( , )

t x t x

t x t x

t

t x t x

j t j x j t j xST ST
t t x t t x

j t j x j t j xST ST
t x t x

j t j x j t j xST
x t x

H j j e j H j j e

H j j e H j j e

c H j j e be

   

   

   

      

      

  

 

 

 

 

 

  

 (34) 

Equating the coefficients of t xj t j xe    on both sides yields 

 1 2 2 2
1 0

( , )ST
t x

x t t

b
H j j

c j
 

    


  
 (35) 

1 ( , )ST
t xH j j   is the first order spatio-temporal generalised frequency response 

function which characterises the linear contribution to the output. Specially, for a 

linear spatio-temporal system, 1 ( , )ST
t xH j j   is the only STGFRF. 

 



 13 

For the nonlinear spatio-temporal system in this case, define the input with two 

different spatial and temporal frequencies given as 

 1 1 2 2( , ) t x t xj t j x j t j xu x t e e       (36) 

The corresponding response is defined as 

 
     

 
 

1 1 2 2

1 2 1 2

1 1

2 2

1 1 1 1 2 2

2 1 1 2 2

2 2
2 1 1 1 1

2 2
2 2 2 2 2

( , ) ( , ) ( , )

2 , , ,

, , ,

, , ,

t x t x

t t x x

t x

t x

j t j x j t j xST ST
t x t x

j t j xST
t x t x

j t j xST
t x t x

j t j xST
t x t x

y t x H j j e H j j e

H j j j j e

H j j j j e

H j j j j e

   

   

 

 

   

   

   

   

 

  





 







 (37) 

and the spatial and temporal derivatives are 

        

 
 

1 1 2 2

1 2 1 2

1 1

2

1 1 1 1 2 1 2 2

1 2 2 1 1 2 2

2 2
1 2 1 1 1 1

2
2 2 2 2 2 2

( , ) ( , )

2 , , ,

2 , , ,

2 , , ,

t x t x

t t x x

t x

t

j t j x j t j xST ST
t t x t t x

j t j xST
t t t x t x

j t j xST
t t x t x

j tST
t t x t x

y
j H j j e j H j j e

t

j H j j j j e

j H j j j j e

j H j j j j e

   

   

 



     

     

    

    

 

  




 


 



 22 xj x

 (38) 

        

 
 

1 1 2 2

1 2 1 2

1 1

2
2 2
1 1 1 1 2 1 2 22

2

1 2 2 1 1 2 2

2 22
1 2 1 1 1 1

22
2 2 2 2 2 2

( , ) ( , )

2 , , ,

4 , , ,

4 , , ,

t x t x

t t x x

t x

j t j x j t j xST ST
t t x t t x

j t j xST
t t t x t x

j t j xST
t t x t x

jST
t t x t x

y
H j j e H j j e

t

H j j j j e

H j j j j e

H j j j j e

   

   

 



     

     

    

    

 

  




  



 



 2 22t xt j x

 (39) 

and 

        

 
 

1 1 2 2

1 2 1 2

1 1

2
2 2
1 1 1 1 2 1 2 22

2

1 2 2 1 1 2 2

2 22
1 2 1 1 1 1

22
2 2 2 2 2 2

( , ) ( , )

2 , , ,

4 , , ,

4 , , ,

t x t x

t t x x

t x

j t j x j t j xST ST
x t x x t x

j t j xST
x x t x t x

j t j xST
x t x t x

jST
x t x t x

y
H j j e H j j e

x

H j j j j e

H j j j j e

H j j j j e

   

   

 



     

     

    

    

 

  




  



 



 2 22t xt j x

 (40) 

Substituting (36) ~ (40) into (28) and the second order spatio-temporal generalised 

frequency response function is 

 

 

     

2 1 1 2 2

2 1 2 1 1 1 1 2 2
2 22

1 2 1 1 2 0 1 2

, , ,

( , ) ( , )

ST
t x t x

t t t x t x

t t t t x x

H j j j j

H j j H j j

j c

   
      

       

      

 (41) 
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4.2 Calculation of STGFRF for Discrete Nonlinear Spatio-Temporal 

Systems 

 

Now the probing method will be developed to calculate the STGFRF for discrete 

nonlinear spatio-tempoal systems. Discretising system (28) using a 

forward-time-centred-space finite difference method yields a discrete spatio-temporal 

system 

 
1 2

2 2
3 4 5

1 2 1

( 2, ) ( 1, ) ( , )

( 1, ) ( 1, ) ( , ) ( , )

( , 1) ( , 1) ( , )

y k h a y k h a y k h

a y k h a y k h y k h a y k h

d y k h d y k h b u k h

   

    

    

 (42) 

where 

 

   
 

 
 

 

1 1

2
22

2 1 0 2

3 2

4 2

5 2

2

1 2 2

2

1

2

2
1

2

a t

c t
a t t

x

a

a

a

c t
d d

x

b b t



 





  


      



 


 


 



 

 (43) 

Firstly, define the discrete probing input as 

 ( , ) t xj k t j h xu k h e      (44) 

and the corresponding output as 

 1( , ) ( , ) t xj k t j h xST
d t xy k h H j j e        (45) 

The forward time-shifted and space-shifted outputs are 

 

1

2
1

1

1

( 1, ) ( , )

( 2, ) ( , )

( , 1) ( , )

( , 1) ( , )

t t x

t t x

x t x

x t x

j t j k t j h xST
d t x

j t j k t j h xST
d t x

j x j k t j h xST
d t x

j x j k t j h xST
d t x

y k h e H j j e

y k h e H j j e

y k h e H j j e

y k h e H j j e

  

  

  

  

 

 

 

 

   

   

   

    

 

 

 

 

 (46) 
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Substituting equation (44) ~ (46) into (42) and equating the coefficients of t xj k t j h xe      

on both sides yields the first order spatio-temporal generalised frequency response 

function 

 1
1 2

1 2 1 2

( , )
t t x x

ST
d t x j t j t j x j x

b
H j j

e a e a d e d e         
   

 (47) 

Probing with inputs consisting of two different frequencies 

    1 2 1 2( , ) t t x xj k t j h xu k h e          (48) 

The output can be defined as 

 
     

 
 

1 1 2 2

1 2 1 2

1 1

2

1 1 1 1 2 2

2 1 1 2 2

2 2
2 1 1 1 1

2
2 2 2 2 2

( , ) ( , ) ( , )

2 , , ,

, , ,

, , ,

t x t x

t t x x

t x

t

j k t j h x j k t j h xST ST
d t x d t x

j k t j h xST
d t x t x

j k t j h xST
d t x t x

j k tST
d t x t x

y k h H j j e H j j e

H j j j j e

H j j j j e

H j j j j e

   

   

 



   

   

   

   

     

    

  

 

 





 22 xj h x 

 (49) 

Substituting the input, output and the associated time-shift and space-shift into (42) 

and equating the coefficients of    1 2 1 2t t x xj k t j h xe          yields 

 

 
    
       

1 2 1 2

1 2 1 2 1 2 1 2

2 1 1 2 2

3 4 5 1 1 1 1 2 2

2
1 2 1 2

, , ,

2 2 ( , ) ( , )

2 2 2 2 2

t t t t

t t t t x x x x

ST
d t x t x

j t j t j t ST ST
d t x d t x

j t j t j x j x

H j j j j

a e a e e a H j j H j j

e a e a d e d e

   

       

   

      

        

  


   

 (50) 

Following this idea, all higher-order spatio-temporal generalised frequency response 

functions can be calculated recursively. 

 

5 Calculation of STGFRF for Boundary-Value Problems 

 

Practical systems will always exist on a finite region so that the physical processes in 

the boundary region have to be considered. In this section the effects of the boundary 

conditions on the spatio-temporal generalised frequency response functions will be 

briefly analysed. The most commonly encountered boundary conditions in the 

solution of partial differential equations are: Dirichlet boundary conditions, Neumann 

boundary conditions and Robin Boundary conditions. 
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Consider a one-dimensional spatio-temporal system ( , )y t x  which evolves in a 

region [0, ]L . A zero boundary condition can be defined as 

 
( ,0) 0

( , ) 0

y t

y t L


 

 (51) 

Probe the system using an input 
1

( , ) tk xk

n
j t j x

k

u t x e  



  and the corresponding output 

is 
1

( , ) ( , )n
n

y t x y t x




  where  
1 1

1 1 1

( , ) , , , , ,
n n

n

n n
ST

n n tk tk xk xk
k k

y t x H    
 

  .  

However, the output has to satisfy the boundary conditions (51). The boundary 

conditions can then be written as 

 1

1

( ,0) ( ,0) 0

( , ) ( , ) 0

n
n

n
n

y t y t

y t L y t L









  

  





 (52) 

The boundary conditions can further be converted to restrictions for the 

spatio-temporal generalised frequency response functions 

 
1 1
, , , , ,

n n

ST
n tk tk xk xkH     . For a linear spatio-temporal system, the conversion 

can be easily realised. 

 

Consider a boundary-value problem 

 

2 2
2

1 0 02 2

( ,0) 0

( , ) 0

y y y
y c bu

t t x
y t

y t L

  
  

       
 


 (53) 

The linear generalised frequency response function of system (53) has the same form 

as the first order generalised frequency response function of system (28) in the last 

section, that is 

 2 2 2
1 0

( , )ST
t x

x t t

b
H j j

c j
 

    


  
 (54) 
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The response of the system for the probing input ( , ) t xj t j xu t x e    is 

  ( , ) , t xj t j xST
t xy t x H j j e      (55) 

The zero boundary conditions can then be rewritten as 

 
 
 

0, 0

, 0

t x

t x

j t jST
t x

j t j LST
t x

H j j e e

H j j e e

 

 

 

 

 



 (56) 

Because tj te   will not always be zero so the boundary condition restrictions are 

 
 
 

0, 0

, 0

x

x

jST
t x

j LST
t x

H j j e

H j j e





 

 

 



 (57) 

 

The complex form of the signal ( , ) xj xST
t xH j j e    represents the practical signal 

   , cos( ) sin( )t x x xH j j A x B x    , where 2 2 1A B  . The boundary conditions 

can now be converted to 

 
   
   

, cos( 0) sin( 0) 0

, cos( ) sin( ) 0

ST
t x x x

ST
t x x x

H j j A B

H j j A L B L

   

   

  


 
 (58) 

 

According to the first equation of (58), 0A  holds. Since 2 2 1A B  , 1B . The 

second boundary condition can then be transferred to 

  , sin( ) 0ST
t x xH j j L     (59) 

 

That is, sin 0xL   or ( , ) 0t xH j j   .  

 

The generalised frequency response function of the linear spatio-temporal system can 

finally be given as  

 2 2 2
1 0( , )

0

xST
x t tt x

b k
when

c j LH j j

otherwise


     

     


 (60) 
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This means for the boundary-value problem, the spatio-temporal system only has a 

discrete spatial frequency spectrum at 

 , 1,2,x

k
k

L

    (61) 

 

6 Illustrative Examples 

 

6.1 STGFRF of a Continuous Spatio-Temporal System 

 

In this section some spatio-temporal systems will be analysed using the 

spatio-temporal generalised frequency response functions obtained in section 4.  

 

Consider the continuous spatio-temporal system (28) in section 4.1. Set the system 

parameters as 1 2 00.6, 1, 1, 1b      . The graph of the first order STGFRF 

1 ( , )ST
t xH j j   is given in Fig 5 which graphically describes the magnitude and 

phase versus the spatial and the temporal frequencies.  
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(c)          (d) 

Fig 5 1 ( , )ST
t xH j j   

(a) (c) magnitude (b) (d) phase 1 2 00.6, 1, 1, 1b       

Fig 5 shows that when x  is fixed, the system behave as a typical under-damped 

second order system over the temporal frequency t . However, the STGFRF 

1 ( , )ST
t xH j j   depends on both the spatial frequency x  and the temporal 

frequency t . When the spatial frequency x  increases, the resonant frequency of 

the second order system increases and the peak of the magnitude gets thinner. 

Simulations show that the larger the diffusion coefficient is, the greater the effect of 

x  becomes. 

 

Given fixed spatial frequencies 1x  and 2x , the second order STGFRF 

 2 1 1 2 2, , ,ST
t x t xH j j j j     over the temporal frequencies 1t  and 2t  is 

graphically shown in Fig 6. The STGFRF  2 1 1 2 2, , ,ST
t x t xH j j j j     has a similar 

shape with the temporal second order GFRF  2 1 2,t tH j j   in Fig 2. 
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(c)                           (d) 

Fig 6  2 1 1 2 2, , ,ST
t x t xH j j j j     

(a) (c) magnitude (b) (d) phase 1 2 0 1 20.6, 1, 1, 1, 10x xb           

 

6.2 STGFRF of a Discrete Spatio-Temporal System 

 

Discretising the continuous system yields the parameters of the discrete system: 

1 2 3 4 5 1 2 11.994, 1.0141, 1, 2, 1, 0.01, 0.0001a a a a a d d b           , where the 

spatial and the temporal interval are 0.01x  , 0.01t  . The discrete STGFRF in 

the last section which can be rewritten as 

 

The 3-D graph and the contour graph of the discrete first order STGFRF 
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1 ( , )ST
d t xH j j   and the second order STGFRF  2 1 1 2 2, , ,ST

d t x t xH j j j j     are given 

in Fig 7 and Fig 8 respectively. Obviously, we obtain magnitudes and phases which 

are very close to the continuous case. However in the discrete version, parameters 1a  

~ 5a  represent the effects of the cell states in past time while parameters 1d  and 2d  

show the effects of the left and right neighbours. The discrete STGFRFs not only 

depend on the states of a cell in past time but also the states of its neighbours. The 

effect of the past states and the neighbourhood can be easily analysed by changing the 

values of the corresponding coefficients. 
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(c)                         (d) 

Fig 7 1 ( , )ST
d t xH j j   (a) (c) magnitude (b) (d) phase 

1 2 3 4 5 1 2 11.994, 1.0141, 1, 2, 1, 0.01, 0.0001a a a a a d d b            
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(c)                         (d) 

Fig 8  2 1 1 2 2, , ,ST
d t x t xH j j j j     (a) (c) magnitude (b) (d) phase 

1 2 3 4 5 1 2 1

1 2

1.994, 1.0141, 1, 2, 1, 0.01, 0.0001,

0.01, 10x x

a a a a a d d b

t x  
          

     
 

 

7 Conclusions 

 

A parametric methodology for the calculation the generalised frequency response 

functions of spatio-temporal systems has been presented for the first time. The 

probing method has been developed to determine the generalised frequency response 

functions from the continuous PDE models and discrete CML models. Several 

examples were used to demonstrate that the new results are correct. 
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Although only one-dimensional spatio-temporal systems are considered in this paper, 

the methods can easily be extended to arbitrary n-dimensional spatio-temporal 

systems. The spatio-temporal generalised frequency response functions open up a new 

avenue for the study of spatio-temporal systems. Combined with the identification 

methods proposed both for continuous spatio-temporal systems and for discrete 

spatio-temporal systems(Billings and Coca 2002; Billings et al. 2006; Coca and 

Billings 2001; Guo and Billings 2006; Pan and Billings 2008), the spatio-temporal 

generalised frequency response functions can be a powerful tool for analysis of 

spatio-temporal systems. 
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