
This is a repository copy of Towards modeling complex robot training tasks through
system identification.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/74646/

Monograph:
Nehmzow, U., Akanyeti, O. and Billings, S.A. (2009) Towards modeling complex robot
training tasks through system identification. Research Report. ACSE Research Report no.
993 . Automatic Control and Systems Engineering, University of Sheffield

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Towards Modeling Complex Robot Training tasks Through
System Identification

Ulrich Nehmzow1, O Akanyeti1,and S A Billings2

1
Dept Computer Science, University of Ulster, Ireland

2
Dept Automatic Control and Systems Engineering, University of Sheffield

Department of Automatic Control and Systems Engineering

The University of Sheffield, Sheffield, S1 3JD, UK

Research Report No. 993

June 2009

Towards Modelling Complex Robot Training Tasks

through System Identification

U. Nehmzow1, O. Akanyeti2 and S.A. Billings3

1School of Computing and Intelligent Systems, University of Ulster, UK.
2Department of Computer Science, University of Essex, UK.

3Department of Automatic Control and Systems Engineering, University of Sheffield, UK.

Abstract

Previous research has shown that sensor-motor tasks in mobile robotics applications can be modelled automatically, using

NARMAX system identification, where the sensory perception of the robot is mapped to the desired motor commands using non-

linear polynomial functions, resulting in a tight coupling between sensing and acting — the robot responds directly to the sensor

stimuli without having internal states or memory.

However, competences such as for instance sequences of actions, where actions depend on each other, require memory and thus

a representation of state. In these cases a simple direct link between sensory perception and the motor commands may not be

enough to accomplish the desired tasks. The contribution to knowledge of this paper is to show how fundamental, simple NARMAX

models of behaviour can be used in a bootstrapping process to generate complex behaviours that were so far beyond reach.

We argue that as the complexity of the task increases, it is important to estimate the current state of the robot and integrate this

information into the system identification process. To achieve this we propose a novel method which relates distinctive locations in

the environment to the state of the robot, using an unsupervised clustering algorithm. Once we estimate the current state of the

robot accurately, we combine the state information with the perception of the robot through a bootstrapping method to generate

more complex robot tasks: We obtain a polynomial model which models the complex task as a function of predefined low level

sensor motor controllers and raw sensory data.

The proposed method has been used to teach Scitos G5 mobile robots a number of complex tasks, such as advanced obstacle

avoidance, or complex route learning.

1. Introduction

Fundamentally, the behaviour of a robot is a result of the
interaction of three factors: i) the robot’s hardware, ii) the
robot’s controller, and iii) the environment the robot is op-
erating in. The robot acquires information from the envi-
ronment through its sensors, which provides the input sig-
nals to the controller. The controller computes the desired
motor commands and the robot performs these commands
in the environment to achieve the desired task [1].

Given that sensing and the actions of a robot are coupled
dynamically, given the sensitivity of robot sensor’s to slight
changes in the environment, robot-environment interaction
exhibits complex, non-linear, often chaotic and usually un-
predictable characteristics [2,3]. Because of this, the task
of robot programming — designing a control program to
achieve a desired behaviour — is difficult. Unlike other en-
gineering disciplines, there is no formal, theory-based de-
sign methodology which the robot programmer can follow

to program a robot to achieve a desired task.
Nevertheless, we have previously shown that the robot

programming process can be automated: sensor-motor
competences in mobile robotics applications can be mod-
elled automatically and algorithmically, using robot train-
ing and system identification methods. The stages of our
method are summarized below:

(i) Acquisition of a training data set. First the program-
mer demonstrates the desired behaviour to the robot
via driving it manually [4,5] or direct human demon-
stration [6,7]. During this run, sensory perception
and the desired velocity commands of the robot are
logged. There is a considerable corpus of robotics
research on robot training, for example training by
verbal instructions [8], using expectations [9] or im-
itation of a human trainer [10]. This work on robot
training is relevant to the experiments presented here,
in that the same method of acquiring training data
is used, but the focus of our experiments is not on
training, but on automatically obtaining low-level be-

Preprint submitted to Elsevier 18 June 2009

haviours and, again automatically, combining these
into more complex behaviours, without the need to
have dedicated robot programming skills.

(ii) Pre-processing of input signals. Having thus obtained
the raw training data, we preprocess the input signals
to reduce the dimensionality of the input space [11]
and also to identify the important sensory readings,
which are highly correlated with the desired motor
commands [12].

(iii) Model estimation. We then model the relationship be-
tween the encoded sensory perception and the actions
of the robot using ARMAX (Auto-Regressive Mov-
ing Average models with eXogenous inputs) [13,14]
and NARMAX (Non-linear ARMAX) [15,16] system
identification methods. These techniques are super-
vised parameter estimation methodologies for identi-
fying both the important model terms and the param-
eters of unknown non-linear dynamic systems. They
produce linear or non-linear polynomial functions to
model the input-output relationship. A single model
is usually enough to identify the whole relationship
successfully.

(iv) Model validation and optimization. Once the sensor-
based controllers are obtained, they are used to drive
the robot in the target environment to validate their
performances. Also at this stage, it is sensible to carry
out sensitivity analysis [17,18] in order to estimate
the influence of individual sensor readings upon the
robot’s global behaviour [19,6]. This would help us to
determine which parameters in the model contribute
the most to output variability and which parameters
are insignificant and can be eliminated from the final
model, leading to more parsimonious models.

(v) Analytical analysis of the obtained models. The rep-
resentation of the task as a transparent, analysable
polynomial model simplifies the identification of the
important factors that affect the robot’s behaviour.
For instance, the error reduction ratio gives an indi-
cation of the importance of individual model terms.
Likewise, variance-based methods of sensitivity anal-
ysis [18,20,21] or entropy-based methods [22] allow
the identification of important input components
(e.g. sensors).

1.1. Motivation: From Simple to Complex Tasks

The method described above has been successfully ap-
plied to generate various sensor-motor tasks, from simple
behaviours, such as wall following [4] or door traversal [19],
to some complicated behaviours, such as following a mov-
ing object [23] and path learning [11].

However as the complexity of task increases, representing
the whole relationship between sensory perception and the
desired motor responses of the robot in one single model
using only raw sensory inputs would lead to large models.
Training such models is extremely difficult, and obtained

models often exhibit brittle performance.
The novel contribution of this paper is to show how the

NARMAX system identification method can be used to
model more complex robot training tasks, such as tasks
where sensor-motor couplings change along a path, or de-
pending on circumstance. To do so, we focus on two funda-
mental ideas:

(i) For complex tasks, the actions of the robot depend
not only on raw sensory perception, but also on the
current state of the robot. Therefore there is a need
to represent the present state of the robot, and to
incorporate it into the model.

(ii) As our goal is to simplify the robot programming pro-
cess such that non-programmers can generate robot
control code, there is still need for a simple method
to generate the motor commands that take the robot
from one state to another, accomplishing the desired
task.

In this paper, we address both issues with a general over-
look. In Section 2 we focus on the state transition problem,
and propose a novel method relating the state of the robot
to distinctive objects seen in the environment: First, the
robot learns to recognize landmarks in the environment,
using standard classification techniques. Once the robot is
capable of localising, using these landmarks, it obtains a
different sensor-motor coupling for each recognized land-
mark.

After estimating which state the robot is in, the next step
is to combine the state information with the perception of
the robot in a general framework to generate the essential
motor commands in order to accomplish the desired com-
plex robot training tasks.

In Section 3, we therefore introduce a bootstrapping
method of generating complex robot training tasks using
polynomial NARMAX models. The method is based on ob-
taining hierarchical polynomial models which model the de-
sired task by combining predefined low level sensor-motor
controllers, raw sensory data and state inputs.

2. State Estimation Through Unsupervised

Learning

In complex tasks it is often the case that the relationship
between perception and the motor response varies along the
robot’s path. We deal with this situation, using two stages:

In the first stage the robot clusters the environment in to
subspaces using standard classification techniques (SOM,
K-means, etc.) based on its own sensory perception. Note
that here we assume that state transitions can be observed
by the robot through its sensors. Then in the second stage
it obtains a model for each cluster separately using system
identification techniques (Figure 1).

With this method, state transitions are related to robot-
environment interaction, which allows the robot to identify
the state changes automatically, using its own perception.
In this paper, the K-means algorithm is used as a classifier,

2

perception
sensor
robot’s

Classifier

response
motor

polynomial 1

response
motor

sensory
perception

response
motor

polynomial 2

perception
sensory

...

sensory
perception

polynomial n

Fig. 1. The proposed method to cope with the state transition
problem while generating robot control programs: a clas-
sifier divides the perception-action space of the robot into
subspaces, and generates a separate model for each subspace.

described in Section 2.1.
It might be instructive at this point to refer briefly to

the work done on simultaneous localisation and mapping
(SLAM). SLAM focusses on precise robot localisation, us-
ing adaptive filtering techniques such as Kalman filters and
Bayesian methods [24], and is a more sophisticated method
of robot self-localisation than simple clustering of a robot’s
sensory perception. We use the clustering to divide the in-
put space to our system identification process, not to lo-
calise precisely, i.e. we do not perform SLAM in the exper-
iments presented here.

2.1. The K-means Classifier

The k-means algorithm [25] is an unsupervised cluster-
ing algorithm which is used to classify a given data set into
k clusters. The main idea is to define one centroid for each
cluster and the algorithm attempts to satisfy two condi-
tions: i) each class has a center which is the mean position
of all the samples in that class and ii) each sample is in the
class whose center it is closest to.

The algorithm starts by partitioning the input points
into k initial sets, either at random or using some heuristic.
It then calculates the mean point (centroid) of each set. A
new partitioning of the data is achieved by associating each
point with its closest centroid. The centroids are then re-
calculated for the new clusters, and the algorithm repeated
until convergence, which is obtained when the points no
longer switch clusters (or centroids are no longer changed).

2.2. Robot Experiments: Experimental Setup

We tested the proposed approach by teaching a SCI-

TOS G5 autonomous mobile robot to perform two different
sensor-motor competences: right wall following and route
learning. The experiments were conducted in the 100 square
meter circular robotics arena of the University of Essex.
The arena is equipped with a Vicon motion tracking sys-

tem which can deliver position data (x, y and z), using re-
flective markers and high speed, high resolution cameras.
The tracking system is capable of sampling the motion up
to 100 Hz with an accuracy of better than 0.1 mm.

The robot is equipped with a Hokuyo laser range finder,
facing the direction of travel, which delivers distance read-
ings up to 4 m. This range sensor has a wide angular range
(240◦) with a radial resolution of 0.36◦ and distance reso-
lution of less than 1 cm. The base of the robot is circular
and and the diameter of the base is 60 cm.

2.3. Experiment 1: Wall Following

The first experiment presents result about teaching a
robot to achieve right wall following behaviour. First, the
programmer drives the robot in the training environment
manually, using a joystick to demonstrate the desired wall
following behaviour to the robot (Figure 2). During this
run, the laser readings li and the motor commands (v and
ω) of the robot were logged in every 250 ms to obtain the
training data set.

Fig. 2. Experiment 1. The trajectory of the robot under the
control of the programmer demonstrating the desired right

wall following behaviour.

Classifying the Robot’s Perception Once the training data
set was obtained, we coarse-coded the laser readings into
11 sectors by averaging 62 readings for each 22◦ intervals,
in order to decrease the dimensionality of the input space to
the K-means algorithm. Coarse-coded laser readings larger
than 1.5 m were clamped to 1.5 m, so that during classifica-
tion the robot would only take into account nearby objects.

We then used the K-means algorithm to recognize 3 dis-
tinctive regions (regions A, B and C) in the training envi-
ronment, using the 11-dimensional laser perception of the
robot. It turns out that region A represents the concave
corners, region B represents the straight walls and region
C represents the convex corners in the environment.

Figure 3 shows the graphical illustration of the three
centroids. The analysis of the figure reveals that for convex
corners (region C), laser readings of the robot are high
except from the right side. Contrarily for concave corners
(region A), the robot has small laser readings this time
except from the left side. And for straight walls (region B)

3

the front readings of the robot also have high values since
there is no wall in front of the robot.

B A
C

magnitude

RIGHT LEFTCENTER index
laser

1 112 3 4 5 6 7 8 9 10
0.5

1.0

1.5

Fig. 3. Experiment 1. The graphical representation of the
three centroids for regions A, B and C given in Table 3.

Once the robot gets a new laser signature (11-
dimensional vector, u1 − u11) from the environment, the
K-means classifier computes the Euclidean distance di

between the new signature and the three centroids (Equa-
tion 1). The smaller the Euclidean distance, the higher
the similarity between the laser perception and the class,
therefore the laser perception is allocated to the class with
the smallest Euclidean distance. Figure 4 shows how the
robot classifies the environment along the route.

di =

11∑

j=1

lij − uj i = 1, 2, 3 (1)

Fig. 4. Experiment 1. The internal map of the robot along
the trajectory of the wall following behaviour.

Obtaining Perception-Action Models Having classified the
environment into 3 regions, the next step was to model the
relationship between the sensory perception of the robot
and the desired motor responses using the NARMAX sys-
tem identification technique for each region separately. To
decrease the input dimensionality to the NARMAX mod-
els, the coarse-coded laser readings were reduced into a two-
element input vector (û1 and û2), where û1 is the minimum
coarse-coded laser reading among all the coarse-coded read-
ings, and û2 is the rightmost coarse-coded laser reading in
the signature.

For each region, two ARMAX models were obtained; one
for the translational velocity (v) and one for the angular
velocity (ω). The results are given in Table 1.

vA(n) = +0.001 + 0.198 · û1

ωA(n) = +1.459 − 2.936 · û1 − 0.632 · û2

vB(n) = −0.002 + 0.205 · û1

ωB(n) = +0.979 − 1.980 · û1

vC(n) = +0.002 + 0.196 · û1 − 0.400 · û2

ωC(n) = +0.182 − 0.510 · û1

Table 1
Experiment 1. The three ARMAX models for the angular
and linear speed of the robot for each identified region, to
achieve wall following behaviour.

Model Validation Having obtained the sensor-based con-
trollers, we let them drive the robot in the train environ-
ment. During the test run, first the K-means algorithm is
used to recognize the location of the robot along the trajec-
tory, and then to select the polynomial modelled for that
particular region to drive the robot. The results showed
that the robot is able to follow the wall accurately without
losing the track or bumping into the walls (Figure 5).

Fig. 5. Experiment 1. The trajectory of the robot under the
control of three ARMAX models given in Table 1.

2.4. Experiment 2: Route Learning

The second experiment is more complex than the first
one. Here, the robot has to follow a particular route in a
more complex environment, where the causal relationship
between the sensory perception of the robot and the mo-
tor responses varies along the trajectory (Figure 6). As in
the previous experiment, first the programmer drives the
robot manually using a joystick to demonstrate the desired
route to the robot and during this run, laser perception of
the robot (u1 − u11) and the desired motor responses were
logged every 250 ms.

4

Fig. 6. Experiment 2. The desired route for the robot to
learn. The programmer drives the robot manually, using a
joystick to demonstrate the desired route to the robot

Having obtained the training data set, we used the K-
means algorithm to divide the perception space of the robot
into five clusters, A, B, C, D and E.

Figure 7 shows the graphical illustration of these five
centroids.

laser
index

magnitude

A

B

C E

D

(m)

1 2 3 4 5 6 7 8 9 10 11
0.5

1.2

1.0

Fig. 7. Experiment 2. Graphical illustration of each centroid.

The internal map of the robot along the desired route
which shows how the sensory data is clustered into 5 classes
is illustrated in Figure 8.

6

0 0

7

0

1

B

B

B

D

E

E

A

A
C

Fig. 8. Experiment 2. The internal map of the robot which
clusters the environment into 5 different regions.

Once we had classified the sensory perception of the
robot into distinctive classes, we then obtained one AR-
MAX model for each cluster, which links the laser readings
(u1 − u11) of the robot to the desired angular velocity (ω)
(to simplify the experiments, we clamped the linear veloc-
ity of the robot at 0.15 m/s). The models for each cluster
A, B, C, D and E are given in Tables 2 and 3 respectively.
These tables also present the error reduction ratio (ERR)

value of each term presented in the polynomial, where the
ERR values provide an indication of the contribution that
each term in the model makes to the desired output vari-
ance.

Region A Region B Region C

ERR ωA = ERR ωB = ERR ωC =

0.00 −0.053 0.00 −0.477 0.00 +1.208

1.27 −0.048 · u1(n) 4.34 −0.533 · u1(n) 21.12 −0.436 · u1(n)

0.84 −0.051 · u2(n) 1.50 +0.053 · u2(n) 1.38 −0.028 · u2(n)

0.26 +0.057 · u3(n) 0.73 +0.027 · u3(n) 4.66 +0.708 · u3(n)

1.00 −0.064 · u4(n) 3.18 −0.318 · u4(n) 14.79 −0.500 · u4(n)

0.42 −0.029 · u5(n) 0.13 +0.155 · u5(n) 1.65 −0.048 · u5(n)

30.98 −0.487 · u6(n) 34.54 +0.399 · u6(n) 0.00 +0.000 · u6(n)

1.03 +0.595 · u7(n) 8.94 +0.077 · u7(n) 0.26 +0.046 · u7(n)

3.42 +0.148 · u8(n) 3.34 +0.264 · u8(n) 0.60 −0.110 · u8(n)

0.00 +0.000 · u9(n) 0.39 +0.135 · u9(n) 0.26 +0.046 · u9(n)

0.38 +0.028 · u10(n) 0.71 −0.100 · u10(n) 13.24 −0.886 · u10(n)

4.41 −0.145 · u11(n) 4.60 +0.264 · u11(n) 0.08 −0.091 · u11(n)

Table 2

Experiment 2. The polynomial ARMAX models which relate
the laser readings of the robot (u1 to u11) to the angular

velocity (ω) in regions A, B and C respectively.

Region D Region E

ERR ωD = ERR ωE =

0.00 +7.443 0.00 −2.612

5.04 −0.040 · u1(n) 5.10 +0.006 · u1(n)

12.27 +0.652 · u2(n) 0.59 +0.503 · u2(n)

0.46 −1.029 · u3(n) 16.14 +0.459 · u3(n)

0.00 +0.000 · u4(n) 0.15 −0.059 · u4(n)

0.00 +0.000 · u5(n) 3.09 +0.001 · u5(n)

3.85 −0.052 · u6(n) 1.37 +1.080 · u6(n)

21.91 −2.293 · u7(n) 0.88 +0.063 · u7(n)

1.68 −3.967 · u8(n) 5.62 +0.102 · u8(n)

2.42 +0.373 · u9(n) 8.68 +1.012 · u9(n)

0.21 +0.112 · u10(n) 1.14 +0.542 · u10(n)

1.23 −0.190 · u11(n) 3.18 −0.583 · u11(n)

Table 3

Experiment 2. The polynomial ARMAX models which relate
the laser readings of the robot (u1 to u11) to the angular

velocity (ω) in regions D and E.

Model Validations Having obtained 5 polynomial AR-
MAX models, one for each cluster, we then tested them by
letting them drive the robot in the training environment.
Starting the robot anywhere along the desired trajectory,
first the K-means algorithm classifies the environment
according to the sensory perception of the robot. Once
the robot recognizes the region it is in, it then selects the

5

correct polynomial obtained specifically for that region to
drive the robot. Once the robot reaches the next region,
the second polynomial is activated and the procedure goes
on in this way.

The results show that the robot was successfull following
the desired route without losing the track or crashing into
obstacles. Note that when we tried to model the sensor-
motor relationship with a single polynomial — rather than
dividing the environment into subregions and obtaining one
polynomial for each region — the resultant model failed to
drive the robot successfully along the desired route.

Fig. 9. Experiment 2. The trajectory of the robot under the
control of the polynomial ARMAX models given in Tables 2

and 3.

3. Modelling Complex Robot Training Tasks

through Bootstrapping System Identification

In the previous section we discussed that it is important
to have information about the present state of the robot to
determine the robot’s next action. We therefore introduced
a novel code generation method based on first recognizing
distinctive landmarks in the environment, using unsuper-
vised clustering algorithms, and then generating a different
sensor-motor model for each landmark, using system iden-
tification.

However, it is possible that for some of these landmarks,
the desired task is still too complex to be modelled with a di-
rect link between raw sensory data and the motor response
of the robot. In these cases it is common that the raw input
readings are preprocessed with the aid of the programmer
to extract higher level information from the sensory data in
order to simplify the problem even further. However, pre-
processing makes the code-generation process programmer-
dependent, and as it is a manual, non-deterministic pro-
cess, may result in suboptimal models.

We argue that it is important to have a formal, algorith-

mic method to extract high level input information, mini-
mizing the use of human knowledge. We therefore propose
a bootstrapping behaviour generation method which uses
low level behaviours and the information about the cur-
rent state of the robot to generate more complex ones. The
method has three phases:

Phase 1 For obtaining simple sensor-motor controllers, we
use the main modelling approach given in Section 1. Some
examples of such low level reactive-controllers are obstacle-
avoidance, door traversal, wall-following, etc.

Phase 2 The controllers obtained in phase 1 are loaded
into the robot in order to form a behaviour repertoire in
the robot’s memory. We then obtain a NARMAX model,
which models the new task as a function of these previously
acquired behaviours. Here, the selection of behaviours is
done using state variables which contain information about
the state of the environment and the robot (see Figure 10).

Behaviour
Repertoire

Variables
State

Perception
Sensor
Raw Polynomial

NARMAX

Model

Motor

Response

Fig. 10. The bootstrapping method of generating complex
robot training tasks.

Phase 3 Once we have obtained the NARMAX model, we
test it on the robot in order to validate its performance.
If the new controller is successful it is added to the reper-
toire so that it can be used to generate even higher level
controllers in the future.

The viability of the proposed method is demonstrated
by a set of real robot experiments where a Scitos G5 mo-
bile robot was trained methodically to accomplish various
sensor-motor tasks starting from simple obstacle avoidance
to complex route learning.

3.1. Experiment 3. Modelling Advanced Obstacle

Avoidance Behaviour

In the third experiment, we trained the robot to avoid
obstacles towards the “obvious” side, as shown in Figure 11;
if robot has more space on the right side, it turns to right,
and if there is more space on the left, it turns to left.

OBSTACLE

ROBOT

OBSTACLE

ROBOT

Fig. 11. Experiment 3. The desired obstacle avoidance be-
haviour.

To obtain the training data, the programmer drove the
robot in the training environment (Figure 12) avoiding ob-
stacles by turning the robot to the side having more space.
During the experiments, the robot was started from the ini-
tial position S and stopped at the destination point F for

6

16 times. During each run, laser readings and the motor
commands of the robot were logged in every 250 ms.

Fig. 12. Experiment 3. The trajectory of the robot, guided
by the programmer. The robot was started from point S and
avoided boxes along the route until it reached the destina-
tion point F.

Having obtained the training data, we coarse-coded laser
readings into 11 sectors by averaging 62 readings for each
22◦ interval. Coarse-coded laser readings were clipped at
1.5 m to avoid models taking far-away obstacles into ac-
count, as these irrelevant to obstacle avoidance.

We then modelled the angular velocity ωo of the robot as
a function of coarse-coded laser readings (u1 − u11) using
ARMAX system identification. The obtained model was a
linear polynomial with 6 terms (Table 4).

ω(n) = +0.183 − 0.187 · u4(n) − 0.137 · u5(n)

−0.021 · u6(n) − 0.045 · u7(n) + 0.265 · u8(n)

Table 4
Experiment 3. The ARMAX model which links the laser per-

ception to the angular velocity of the robot to achieve ad-

vanced obstacle avoidance behaviour.

Model Validation We tested the steering speed model on
the robot in three different test environments. During the
experiments the linear speed of the robot was clamped to
0.1 m/s.

In the first test environment, the robot was started from
20 different initial positions in front of two boxes put next
to each other and was expected to avoid them towards the
“obvious” side. The results (Figure 13 show that the robot
was able to avoid obstacles as desired 1 .

In the second (Figure 13b) and third (Figure 13c) test en-
vironments, we tested if the obtained angular speed model
captured the real essence of obstacle avoidance behaviour.
The robot was started in front of the boxes arranged to sim-
ulate a right and a left corner and in both cases the robot
was successfull in avoiding the corners by turning the “ob-
vious” side. Note that for both environment the robot was
started from 16 different initial positions.

1 In three runs out of 20 the robot was not able to choose a side
and failed to escape from the boxes (visible in figure 13a). A possible
solution to this problem would be to train a linear speed model as
well.

(a) (b) (c)

Fig. 13. Experiment 3. The three environments where the ob-
tained angular speed model ωo given in table 4 was tested
for obstacle avoidance behaviour.

3.2. Experiment 4: Obstacle Avoidance based on Object

Colour

In a fourth experiment, we trained the robot in such a way
that it determined the turning direction according to the
colour of the obstacle, rather than choosing the “obvious”
side: while the robot approaches an obstacle, it identifies
the colour of the obstacle, and avoids red obstacles by a
right turn, green obstacles by a left turn.

To obtain the training data set, we drove the robot in two
environments. The first one contained boxes of red colour,
resulting in right-turn obstacle avoidance (Figure 14a), the
second environment contained green boxes, resulting in left-
turn obstacle avoidance (Figure 14b). In each environment,
we conducted the experiments 10 times starting the robot
from initial point S, stopping at the final point F.

(a) (b)

Fig. 14. Experiment 4. The trajectories of the robot in two
training environments. The first one, shown on the left, con-

tained boxes of red colour, resulting in right-turn obstacle

avoidance, the second environment, shown on the right, con-
tained green boxes, resulting in left-turn obstacle avoidance.

During the experiments, we logged the coarse-coded laser
readings and the motor responses of the robot as well as
the colour index ci (ci = 1 for green, ci = 2 for red boxes)
of the closest obstacle to the robot every 250 ms.

After logging this perception-action data, we modelled
the angular speed ωt of the robot as a function of the coarse-
coded laser readings (u1 − u11) and the colour index of the
detected obstacle (ci), using NARMAX system identifica-
tion. The NARMAX model contained 21 terms (Table 5).

The resultant polynomial model ωt is essentially the com-
bination of two polynomials, where each polynomial turns
the robot to a different direction, and the transition be-
tween the two is performed using the terms including state
variable ci (the last two rows in Table 5).

7

ωt(n) = +3.839 − 0.661 · u4(n) − 0.212 · u5(n)

+0.650 · u7(n) − 2.413 · u8(n) − 0.093 · u4(n)2

+0.150 · u5(n)2 − 0.002 · u7(n)2 + 0.050 · u8(n)2

−0.202 · u4(n) · u5(n) − 0.098 · u4(n) · u6(n)

−0.546 · u4(n) · u7(n) + 1.121 · u4(n) · u8(n)

−0.249 · u5(n) · u6(n) + 0.076 · u5(n) · u7(n)

−0.129 · u6(n) · u7(n) + 0.130 · u6(n) · u8(n)

−1.469 · ci(n) + 0.263 · ci(n) · u5(n)

+0.369 · ci(n) · u6(n) + 0.280 · ci(n) ∗ u7(n)

Table 5
Experiment 4. The NARMAX model for the angular speed of
the robot for colour-encoded obstacle avoidance.

Model Validation As before we validated the performance
of the obtained angular speed model by testing it on the
robot. We put the robot in front of red and green boxes and
let the model drive the robot. For each coloured box, the
model was tested 16 times and the resultant trajectories
of the robot are given in Figure 15. They confirm that the
model given in Table 5 achieves the desired behaviour.

(a) (b)

Fig. 15. Experiment 4. The resultant trajectories of the robot
guided by the angular speed model ωt given in Table 4 when

it is confronting the: (a) red coloured boxes and (b) green
coloured boxes.

In order to quantify the performance of the angular speed
model ωt, we computed the strength of the association be-
tween the colour of the detected obstacle and the direc-
tion of the corresponding turning speed of the robot using
Cramer’s V test. To do so, we checked the sign of the resul-
tant turning speed according to the colour of the detected
obstacle during the test runs. When the robot detected a
green obstacle, the resultant ωt > 0 (indicating to turn left)
97.651% of the time, and when the detected obstacle is red,
ωt < 0 (indicating to turn right) 98.837% of the time. The
results showed that there is a significant correlation (V =
0.96, note that V varies between 0 and 1, corresponding to
“no association” and “perfect association” respectively).

3.3. Experiment 5. Colour Encoded Route Learning

Behaviour

The previous experiment demonstrates how different be-
haviours can be embodied in a single polynomial where the
transition between behaviours is done using state variables

containing information about the current state of the envi-
ronment. We will now show that this can be used to achieve
more complex tasks.

Scaling up from the 3rd and 4th experiment, the fifth
task was to generate a polynomial which can guide the
robot to follow a particular route in order to reach a desired
object. The experimental scenario is given in Figure 16,
the environment is populated with red and green boxes in
order to guide the robot to the destination point F , where
the target object, a blue pillar, is present.

60 cm
100 cm

ROBOT

PILLAR

RED BOX

GREEN BOX

GREEN BOX

RED BOX

GREEN BOX

F

S

Fig. 16. Experiment 5. The experimental scenario where the
desired task is to teach the robot to follow a particular
route in order to reach the blue pillar at point F.

To collect the training data, the programmer drove the
robot manually in the target environment (Figure 17) 10
times starting the robot from the initial position S and
stopping the robot in front of the blue pillar (destination
point F). During the training, laser readings, camera im-
ages and the motor commands of the robot were logged in
every 250 ms.

Fig. 17. Experiment 5. The trajectories of the robot guided
manually by the human operator in order to obtain the train-
ing data.

Bootstrapping from Low-Level Controllers After logging
the training data we processed the laser readings and the
raw images to extract three low level controllers which were
then be fed to the polynomial NARMAX models as inputs.
These controllers are:

(i) Obstacle avoidance controller The first controller
in the behaviour repertoire guides the robot to avoid
obstacles. Here we used the polynomial model ωo

given in Table 4 obtained in experiment 3.

8

(ii) Colour encoded turning controller The second
behaviour turns the robot to the right if the colour of
the detected object is red, and to the left if the colour
is green. Here we used the polynomial model ωt given
in table 5, obtained during experiment 4.

(iii) Object seeking controller We also implemented a
simple object seeking controller which looks for the
nearest object in front of the robot and guides the
robot towards it.

Having identified the controllers, we also obtained three
state variables which will help the system identification pro-
cess to link the low level controllers to achieve the desired
task:

(i) di defines if the target object is detected or not; d = 0
represents target object is not detected, and di = 1
represents target object is detected.

(ii) oi defines if there is an obstacle close to the robot;
oi = 0 represents there is no obstacle detected, and
oi = 1 represents the presence of an obstacle.

(iii) ci states the colour of the detected obstacle; ci = 1
represents green, ci = 2 represents red, and ci = 0
represents all other colours.

We then obtained two polynomial models; one for the
linear speed vr and one for the angular speed ωr of the
robot — as a function of the predefined behaviours (ωo, ωt

and ωw) and the state variables (di, oi and ci) (Figure 18).
The obtained models are given in Table 6.

ωr

cioi di]

ωo ωt ωw]

[

[
NARMAX

model

Fig. 18. Experiment 5. The bootstrapping method of generat-
ing complex route learning behaviour using predefined low

level controllers; obstacle avoidance (ωo), left/right turn-
ing (ωt) and object seeking (ωw). In order to link the be-
haviours we also present three state variables indicating the

presence of the target object (di), presence of the obstacles
(oi) and the colour of the detected obstacles (ci).

vr(n) = +0.100 − 0.100 · di(n)

ωr(n) = +0.100 · d(n) + 1.000 · ωw(n)

−1.000 · oi(n) · ωw(n) + 1.000 · oi(n) · ωo(n)

−1.000 · oi(n) · ci(n) · ωo(n) + 1.000 · oi(n) · ci(n) · ωt(n)

+1.000 · di(n) · oi(n) · ωw(n) − 1.000 · di(n) · oi(n) · ωo(n)

+1.000 · di(n) · oi(n) · ci(n) · ωo(n)

−1.000 · di(n) · oi(n) · ci(n) · ωt(n)

Table 6
Experiment 5. The polynomial models for the linear vr and
angular speed ωr of the robot.

3.3.0.1. Model Validation Having obtained the percep-
tion models vr and ωr, we tested them on the robot. We
let the models drive the robot in the target environment
10 times. Figure 19 shows the resultant trajectories, where
in each run the robot was successful to reach the target
object.

Fig. 19. Experiment 5. The trajectories of the robot under

the control of the perception models given in Table 6.

3.4. Extended Bootsrapping Method

In experiment 3 we demonstrated how simple NARMAX
models can be used to achieve more complex tasks. One
interesting question here is “what happens if the low level
controllers found in the behaviour repertoire are not ade-
quate to generate the desired task?”

To address this question, we extended the proposed
method by adding raw sensory perception to the modelling
process. In this way, we let the polynomial model combine
raw sensory data with the low-level controllers automat-
ically. Again, the transition between the controllers and
the raw sensory data is controlled according to the state of
the environment and the robot (Figure 20).

Behaviour
Repertoire

Perception
Sensor
Raw

Model

NARMAX

Polynomial

Variables
State

Motor
Response

Fig. 20. The extended bootstrapping method of generating
complex robot training tasks. In the extended version we
also give raw sensory data as inputs to the system.

3.5. Experiment 6. Complex Route Following combined

with Door Traversal Behaviour

To demonstrate the extended method, we taught the
robot to follow a complex route of different stages (Fig-
ure 21). First, the robot has to reach a blue pillar by cor-
rectly following the coloured objects. Once it reaches the

9

pillar, it has to wait with zero linear and angular speeds
until the pillar is removed from the environment (stage 2).
Once the pillar is removed, the robot must complete the
route by traversing the two consecutive door-like openings
to reach the destination point F.

GREEN BOX

RED BOX

PILLAR1m

1m

2m2m

ROBOT

S

F

W

BOX

BOX

BOX

BOX

Fig. 21. Experiment 6. The experimental scenario for the de-

sired complex route learning task.

As before we obtained the training data by driving the
robot manually in the target environment shown in Fig-
ure 22. Starting the robot at initial position S, first we drove
the robot to point W. Then the robot was stopped in front
of the pillar until the pillar was removed by the human oper-
ator. We then continued driving the robot to pass through
two consecutive door-like openings. The experiments were
repeated 10 times and for each run we logged the laser per-
ception, camera images and the motor commands of the
robot in every 250 ms.

Fig. 22. Experiment 6. The trajectories of the robot under
the manual control of the human operator for training data

collection.

Obtaining Sensor Based Models After logging the training
data, we fed the raw perception data to low-level controllers
present in the behaviour repertoire of the robot to generate
higher level inputs for the desired task. But this time we also
coarse-coded the laser readings into 11 sectors (u1 − u11)
by averaging 62 readings for each 22◦ in order to enrich the
system inputs, since there is no dedicated door traversing
controller in the behaviour repertoire of the robot. Also for
the transition between the behaviours, we computed a state
flag si which indicates if the blue pillar is removed from the
front of the robot (si = 1) or not (si = 0).

We then obtained two NARMAX models, expressing
vc and ωc as a function of coarse-coded laser readings
(u1 . . . u11), route following controllers vr and ωr obtained

in Section 3.3, and state variable si. The obtained models
are given in Table 7.

vc(n) = +vr + 0.1 · si(n)

ωc(n) = −0.033 + 1.016 · ωr(n) + 0.144 · u4(n)

−0.088 · u5(n) + 0.004 · u6(n) − 0.131 · u7(n)

+0.014 · u8(n) + 0.208 · ω
2

r(n) − 0.026 · u
2

4
(n)

+0.029 · u
2

5
(n) + 0.062 · u

2

7
(n)2 − 0.025 · u4(n) · u8(n)

+0.394 · si(n) − 1.051 · si(n) · ωr(n)

−0.145 · si(n) · u4(n) − 0.060 · si(n) · u5(n)

−0.040 · si(n) · u6(n) + 0.026 · si(n) · u7(n)

Table 7
Experiment 6. The polynomial models for the linear and angu-
lar speed of the robot for complex route learning and door
traversal behaviour. The last three rows show the terms in-
cluding state variable si.

Model Analysis and Validation Once we obtained the sen-
sor based models, we used them drive the robot in the tar-
get environment in order to validate the performance. Fig-
ure 23 shows the trajectories of the robot for 10 runs, where
the robot completed the track successfully in each attempt.

Fig. 23. Experiment 6. The trajectory of the robot under the

control of the perception models given in Table 7.

Transparent Models Having transparent models like the
ones given in Table 7 has a number of advantages, for exam-
ple the possibility to analyse the robot behaviour formally.
Here, for instance, one can see that the model of Table 7
ωc has two components. The first one is the colour-based
route following behaviour which was previously obtained
in section 3.3, taking the control of the robot when state
flag si equals 0. The second behaviour is a door traversal
controller activated when si = 1.

The separability of the behaviours enabled us to add door
traversal controller to the behaviour repertoire of the robot.
In this way we do not only obtain models to achieve the
desired task, but we also extract new low level controllers
from the polynomial model in order to enrich the behaviour
repertoire of the robot.

10

4. Conclusion

This paper demonstrates, in theory and practical
robotics experiments, how system identification can be used
to generate complex robot training tasks, i.e. tasks that
are context-dependent, and require memory for successful
completion. Those tasks cannot normally represented by
a single model, and we show how several models can be
combined into one by a simple bootstrapping method.

In Section 2, we emphasize the importance of detecting
these transitions and propose a novel method to estimate
them. The method relates distinctive locations in the en-
vironment to the state of the robot, using an unsupervised
clustering algorithm.

Once we estimate the current state of the robot accu-
rately, the next step is to combine this state information
with the perception of the robot to generate the essential
motor commands, to accomplish the desired complex robot
training tasks. One way of addressing this issue is to gener-
ate a separate sensor-motor couplings for each state of the
robot. The viability of this method has been demonstrated
by modelling right wall following and complex route learn-
ing behaviours.

However there are cases where for some of these land-
marks, the desired task is still too complex to be modelled
with a direct link between raw sensory data and the mo-
tor response of the robot. Therefore, in Section 3, we intro-
duce a bootstrapping method of generating complex robot
training tasks using polynomial NARMAX structures. The
method is based on obtaining hierarchical polynomial mod-
els which model the desired task by combining predefined
low level sensor motor controllers and raw sensory data.

This allows us to combine different low level controllers
in a single polynomial to achieve more complex tasks. The
transition between these controllers is done using state vari-
ables which contain information about the state of the en-
vironment. To demonstrate the viability of the proposed
method, we generated a complex route following polyno-
mial which computes the desired motor responses of the
robot based on the inputs from low level controllers (such as
obstacle avoidance and colour encoded turning controllers).

The method also allows as to combine the raw sensory
data of the robot with the previously defined low level con-
trollers. This does not only produce robust high level con-
trollers to achieve the desired task, but also enables us to
extract new low-level controllers from the generated con-
troller. The obtained polynomial model for the complex
route learning behaviour includes a door traversal con-
troller generated automatically using raw sensory data for
the second part of the desired route.

Future Work In Section 2, we estimate the the state of
the robot based on its current sensory perception assuming
that state information is observable through robot sensors.

However there are cases where multiple states are indis-
tinguishable to the robot because of the perceptual simi-

larities (perceptual aliasing [26]).
In these kind of situations, state estimation can not be

based on only the current sensory perception of the robot,
but some extra information is needed. One way of dealing
with the perceptual aliasing problem is to incorporate an
expectation model — a model which estimates the next
state of the robot based on the previous states and the ac-
tions of the robot — into the recognition of locations (Fig-
ure 24). With the incorporation of the expectation model,
the robot would have a rough idea about which state it is
going to and would be able to combine this information
with its current sensory readings to estimate the next state
accurately. Therefore we are currently investigating ways of
developing a formal method to obtain expectation models
automatically and incorporating them into the state esti-
mation process.

State Estimator
Sensory

Perception

S(t)

S(t)

Commands
Motor

Model

Expectation

S(t−1,t−2,...,t−N)

Fig. 24. The incorporation of the expectation model to the

process of estimating the current state of the robot. The
expectation model predicts the next state Ŝ(t) of the robot,

based on the previous states and the actions of the robot. The
state estimation model then combines the current sensory
readings of the robot with the expected state information
to predict the next state S(t) of the robot.

Furthermore we are working on the integration of the
state estimation process with robot training and the NAR-
MAX system identification methods in a single framework
in order to develop a formal method of generating com-
plex robot training tasks automatically and algorithmically
without needing explicit knowledge of robot programming.
The work already carried out and that proposed forms part
of our ongoing research in universities of Ulster, Essex and
Sheffield.

Acknowledgments

We express our thanks to Emre Özbilge for his contribu-
tion to the experimental work presented in this paper.

11

References

[1] U. Nehmzow, Mobile Robotics: A practical introduction, 2nd ed.
Springer Verlag, 2003.

[2] ——, “Quantitative analysis of robot-environment interaction –
towards “scientific mobile robotics”,” International Journal of
Robotics and Autonomous Systems, vol. 44, pp. 55–68, 2003.

[3] U. Nehmzow and K. Walker, “The behaviour of mobile robot is

chaotic,” AISB Journal, vol. 1(4), pp. 373–388, 2003.

[4] T. Kyriacou, U. Nehmzow, R. Iglesias, and S. A. Billings,
“Task characterization and cross-platform programming through
system identification.” International Journal of Advanced
Robotic Systems, vol. 2, pp. 317–324, 2005.

[5] R. Iglesias, T. Kyriacou, U. Nehmzow, and S. Billings, “Robot
programming through a combination of manual training and

system identification,” in Proc. of ECMR 05 - European
Conference on Mobile Robots 2005. Springer Verlag, 2005.

[6] U. Nehmzow, O. Akanyeti, C. Weinrich, T. Kyriacou, and
S. Billings, “Robot programming by demonstration through

system identification,” in IROS, San Diego, USA, 2007.

[7] O. Akanyeti, U. Nehmzow, C. Weinrich, T. Kyriacou, and

S. Billings, “Programming mobile robots by demonstration
through system identification,” in ECMR, Freiburg, Germany,

2007.

[8] S. Lauria, G. Bugmann, T. Kyriacou, J. Bos, and E. Klein,
“Training personal robots using natural language instruction,”
IEEE Intelligent System, vol. 16, pp. 38–45, 2001.

[9] A. Dearden and Y. Demiris, “Learning forward models for
robots,” in Proceedings of the International Joint Conference on

Artificial Intelligence, Edinburgh, UK, 2005, pp. 1440–1445.

[10] A. Billard and G. Hayes, “Learning to communicate through
imitation in autonomous robots,” in In 7th International
Conference on Artificial Neural Networks. Springer-Verlag,
1997, pp. 763–768.

[11] O. Akanyeti, U. Nehmzow, and S. Billings, “Robot training

using system identification,” Int. J. Robotics and Autonomous
Systems, 2008, (in press).

[12] R. Iglesias, U. Nehmzow, and S. Billings, “Model identification
and analysis in robot training,” in Proc. of TAROS 2007,
(Towards Autonomous Robotic Systems). Springer Verlag, 2007,
pp. 40–47.

[13] P. Eykhoff, System Identification: parameter and state
estimation. London: Wiley-Interscience, 1974.

[14] ——, Trends and Progress in System Identification. Pergamon
Press, 1981.

[15] S. Chen and S. Billings, “Representations of non-linear systems:
The narmax model,” International Journal of Control, vol. 49,
pp. 1013–1032, 1989.

[16] S. Billings and S. Chen, “The determination of multivariable
nonlinear models for dynamical systems,” in Neural Network
Systems, Techniques and Applications, C. Leonides, Ed.
Academic press, 1998, pp. 231–278.

[17] I. Sobol, “Sensitivity estimates for
nonlinear mathematical models,” Mathematical Modelling and
Computational Experiments (MMCE), vol. 1, pp. 407–414, 1993.

[18] K. Chan, A. Saltelli, and S. Tarantola, “Sensitivity analysis of
model output: Variance-based methods make the difference,”
in Proc. of 1997 Winter Simulation Conference, (Towards
Autonomous Robotic Systems), 1997, pp. 261–268.

[19] R. Iglesias, U. Nehmzow, T. Kyriacou, and S. Billings,

“Modelling and characterization of a mobile robot’s operation,”
in CAEPIA 2005, 11th conference of the Spanish association for
Artificial Intelligence, Santiago de Compostela, Spain, 2005.

[20] A. Saltelli, K. Chan, and E. M. Scott, Sensitivity analysis.
Wiley, 2000.

[21] U. Nehmzow, O. Akanyeti, and S. Billings, “A proposal of a

methodology for the analysis of robot-environment interaction

through system identification,” in TAROS, Edinburgh, Scotland,
2008.

[22] U. Nehmzow, Robot Behaviour — Design, Description, Analysis
and Modelling. Heidelberg, New York, London: Springer, 2009.

[23] O. Akanyeti, T. Kyriacou, U. Nehmzow, R. Iglesias, and
S. Billings, “Visual task identification and characterization using
polynomial models,” Int. J. Robotics and Autonomous Systems,
vol. 55, pp. 711–719, 2007.

[24] H. I. Christensen, “Slam paper repository,” 2005. [Online].
Available: http://www.cas.kth.se/SLAM/slam-papers.html

[25] J. B. MacQueen, “Some methods for classification and

analysis of multivariate observations,” in Proc. of 5-
th Berkeley Symposium on Mathematical Statistics and

Probability, Berkeley, USA, 1967, pp. 281–297.
[26] S. D. Whitehead and D. H. Ballard, “Learning to perceive and

act by trial and error,” Machine Learning, vol. 7(1), pp. 45–83,

1991.

12

