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Abstract: In the present study, the concept & thutput Frequency Response Function
(OFRF), recently proposed by the authorsapplied to theoretally investigate the
transmissibility of SDOF passive vibrati isolators with a nonlinear anti-symmetric
damping curve. The results reveal that a nonlinear anti-symmetric damping characteristic
has almost no effect on the transmissibitify SDOF vibrationisolators over both low

and high frequency ranges where the fregigsnare much lower or higher than the
isolator’s resonant frequency. On thénat hand, the introduction of a nonlinear anti-
symmetric damping can significantly reduce tfasmissibility of the vibration isolator
over the resonant frequency region. The resuallicate that nonlineavibration isolators

with an anti-symmetric damping characteristic have great potential to overcome the
dilemma encountered in the design of passivesalirvibration isolatorghat is, increasing

the level of damping to reduce the transnbidity at the resonance could increase the
transmissibility over the range of highdérequencies. These important theoretical
conclusions are then veefil by simulation studies.

1. Introduction

A vibration isolator is a dece that is often inserted between a support base and
equipment to reduce the vibration energy transmission from the support base so as to
protect the equipment from undesired disamces [1]. For a conventional passive
vibration isolator design, #re are two well-known tradeffe regarding the design of
stiffness and damping [2]. In order to obtaifow transmissibility over a wide frequency
range, the elastic stiffness oktisolator should be as smal possible. However, if the
elastic stiffness is too small, this will ledol large static and geastatic displacements



which are likely to be detrimental to thepported equipment. laddition, to reduce
transmissibility at the resonance, it is betteintroduce a higher damping in the isolator.
This may cause deterioration to the trarssihility over the highefrequency range. To
overcome these limitations of conventionadssive isolators, recent developments
involve using the active confréechniques, which generalfall into three categories:
adaptive-passive [3], semi-active [4][5] and fully active [6]. A fully active isolator system
turns out to be very complex. More effortshaeen made in the development of adaptive-
passive and semi-active methods, amongwkthe most popular method is thehook
technique whose name is derived from the fhat it is a passive damper hooked to an
imaginary inertial reference point. Irkyg ook controlled semi-active isolators, the
damping effect can be automatically switched off to produce a desired damping
characteristic that conventidnpassive isolators can not achieve so as to minimize the
transmissibility level over a wide region fsequencies [2][7][8]. A comparison between
different semi-active damping control de&gies has been carried out by Liu and
colleagues [5].

To improve the performance of conventiommssive isolators, geral authors have
developed different types afonlinear vibration isolator&and have investigated the
unique dynamic behaviours, which cannot beistitdased on linear theories [9]~[12]. A
very comprehensive survey of recent depehents of nonlinear vibration isolators has
been contributed by Ibrahim [1,3h which many cited studid44]-[21] reveal that the
introduction of nonlinear damping and stiffness af great benefit inibration isolation.
More recently, using the concept of thet@ut Frequency Response Functions (OFRFs)
[22][23], the authors [24] hee revealed that, for a simgldegree of freedom (SDOF)
vibration isolator, a cubic nonlinear dampin@ucdrcteristic can produce an ideal vibration
isolation such that only the transmissibilibyer the resonant region of frequencies is
modified by the damping effect and the trarssibility over the non-resonant regions of
frequencies remain almost unaffected. le gresent study, these results are extended to
investigate the analytical relationship beem the transmissibility and the nonlinear
damping characteristic parameters of SD@Bration isolators with a nonlinear anti-
symmetric damping curve. This analysis thatizally proves that the introduction of a
nonlinear anti-symmetric damping characterisiio produce the ideal vibration isolation,
that is, ‘There is little damping in the isolation region but considerable damping around

the isolator’s natural frequency” [25] S0 as to achieve a reiged transmissibility over the
isolation range of frequencies and reducegldimation at the resonance at the same
time. Numerical simulation studiege carried out to verifthe theoretical analysis and



demonstrate the considerablegaeering significance of theonclusions reached in this
study. The revelation that the isolatorsttwia nonlinear anti-symmetric damping
characteristic possess ideal vibration isolatproperties provides an important basis for
the development of novel passive swln to vibration isolation problems.

2. SDOF Linear Passive | solators
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Fig. 1, SDOF linear passive isolator

Consider the SDOF linear passigelator shown in Fig 1, where

() = Asin(@) (1)
is the harmonic force acting on the system with frequéacgnd magnitudet, £, (¢)
is the force transmitted to the supporting structure or basez(and the displacement
of massM. The equations of motion of the SD@iBration isolator sgtem are given by

M Z(t)+ Cz(t) + Kz(t) = £,y (¢) = ASin(X)
{fom (1) = Kz (1) + C=(2)

where K and C are the spring and damping characteristic parameters of the system

(2)

respectively.

Eq. (2) can be described in a dimensionless form as follows

{%(T) + (1) + yy (1) = sin(Qr) 3)
Y,(1) = & (1) + 3.(7)
where t=Qyt , Q,=vK/M is the resonant frequency of the system=Q/Q,,
E=CINKM , y(7)= KZ(T/QO)/A s Y2(0) = four (D)1 4.
From Eqg. (3), it can be shown that
Jur® _ROT D _ ()1, (0) = 1,0 @

A A
DenoteT (Q) as the force transmissibility of the SD@®lator system (2) in terms of the

normalized frequency, it is easy to deduce from Eq. (3) that
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= = 1+ jeQ
T(Q) =,/ = I_ﬁz o j@l

where Y,(jQ) is the spectrum of,(r) described byY,(jw) evaluated at frequency

w=Q.
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Fig. 2, Effect of damping on the force transmissibility of system (3)
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Fig. 3, The damping required by a ideal isolator

From Eqg. (5), the effects of damping on thecéotransmissibility can be evaluated. The
results are shown in Fig. 2, which clgandicate that althougkhe introduction of a

higher damping effect reduces the transrhigi around the resonant frequencies, the
higher damping effect, at the same timecreases the transmissibility where the
normalized frequencies are higher thd@ Hz. The damping required by an ideal
vibration isolator is shown ifig. 3, which is frequency-gendent and the basis of the



adaptive passive isolation systems [2]. Howesach a requirement can obviously not be
met simply by a linear passive isolator.

3. SDOF Passive I solatorswith a Nonlinear Anti-symmetric Damping
Characteristic

In addition to active control solutions, it hasheealized that specific nonlinear passive
isolators have the potential to overcome the limitations of linear passive isolators [13].
The objective of the presentudly is to theoretically invegiate the effect of nonlinear
damping characteristic paratees of SDOF vibration isators with a nonlinear anti-
symmetric damping curve on the transmissibility so as to extend the analysis results in
[24] to a more general situation.

3.1 The Model of SDOF Nonlinear Passive Isolators
The considered SDOF nonlinear passsolators are shown in Fig. 4.
fin(t)=A4sin(Qr)
l z(?)

v )T

o~ Q

& =~

X syéi P
L ST

&

Fig. 4, SDOF passive isolator with a tiaear anti-symmetric damping characteristic

For linear passive isolators the damping fargés equal toCz , but the damping force of
the nonlinear passive isolator is described by

0
F=Cx(t)+ 3 Copun 2O (6)

p=1
where C,, ,,,(p=1---,0) are the nonlinear damping chasatstic parameters of the
system. Therefore, the equations of motbthe SDOF nonlinear isolators are given by

M 2(t)+ Cz(t) + EQ:C(ZM 20" + Kz(r) = Asin(Q)
. N (7)
Jour (€) = Kz(1) + C2(2) + Z Cepay [2(f)]2p+1

Denote



C., A%
_ (2p+1) _
%Mr—é;%z £=1,..0)(8)

Then, the SDOF nonlinear isolator systemddh be described as a dimensionless, one
input two output system as
J1(1) + (1) = u(x)

. S . 2p+1 (9)
HORSHOREAORDATINIAC]

From Egs. (7) and (9), it can be shown ttie force transmissilty of the nonlinear
passive isolator is determined by

0
fOUTT(t) B yl(T) * @1(1) + Z‘i(zpu) [yl(t)]zp+1 =) (T) (10)

The force transmissibility’(Q2) of the SDOF nonlinear isolator (9) can also be studied
by investigating the spectrum gif(z) of system (9), that is,

7(Q) = |1, (jQ) (11)
However, unlike the case for linear passive isolators there is currently no simple explicit
analytical expression like Eq. (5) availableigthcan be used to describe the relationship
between the force transmissibility and sysfgamameters for nonlinear passive isolators.

3.2 Representation of the Force Transmissibility of Nonlinear SDOF

Isolators Using the OFRF

The OFRF is a concept recently proposedhsyauthors in [22][23] for the study of the
output frequency responseradnlinear Volterra systems.

Nonlinear Volterra systems represent a walass of nonlineasystems whose input
output relationship can be described by a \fodteseries model over the regime around a
stable equilibrium [26][27]. For nonlineaVolterra systems which can equally be
described by a polynomial type nonlinear differential equation model which has been
widely used for the modeling of practical plog systems, it has been shown in [22][23]
that the system output spectrum can be reptesl by an explicit ggnomial function of

the model parameters which define the system nonlinearity. This result is referred to as
the OFRF, and provides a significant analytical link between the output frequency
response and nonlinear characteristic paraméte a wide range of practical nonlinear
systems.

In the following, the OFRF concept will kegpplied to the case of the one input two

output system (9) to produce an analytigalynomial relationship between the spectrum
Y,(jw) and the system’s nonlinear characteristic paramefgrs,,(p=1---,0) .



BecauseY,(jw) is related to the force transmissibilify(Q) of system (9) via Eq. (11),
the result will, in fact, provide a®@FRF based analytical expression 1{Q) .

According to [28], it is known thathen subject to a sinusoidal input
u(z) =sin(Qr) =cosQr - /2) (22)

the spectra of the outputs of system (9) are given by

N

Y, (jo) :Zi D HD (jay, -, jo,)A(@) - A(w,) 0=1,2) (13)

1
n=1 2 o+t 0, =0

where
e""? whenw =Q
A(@)=1¢e"""* whenw =-Q i(=1,...n) (14)
0 otherwise

N is the maximum order of nonlinearity ineth/olterra series expansion of the system
outputs given by

N © o n
v @ =X [ ez ) Jule -7)dr, V=1,2) (15)
n=1 i=1
with 2 (z,,...,r,) (J=1,2), denoting the " order Volterra kernel, and
HY (joy,eejo,) = [ o By, )e O Vdr, dr, (=1, 2) (16)

defines the:" order Generalised Frequency RespoRanction (GFRF]29] between the
input and the first and secosgstem outputs respectively.

By using the harmonic probing meth[&0], the specific expression & (jaw,,...,j®,)
(/ = 1,2) of the one input two output nonlinehiferential model (9) can be determined
to yield

1

HO(jo)=———
(o) 1+ jew, — o’

(17)

H1(2) (j('ol) = (1+ j(t:(’ol)Hl(l) (j('ol) (18)
H(%)Hl) (ja)l’”.’ja)(ZnJrl)) = _(ja)l+“.+ja)(2n+l))2H(%)n+l) (ja)li"‘1ja)(2n+1))
(n=1--|(N-D/2]) (19)
HZ(fl)(j(’Ol’.“'j('OZn) = HZ(};)(.]O‘)].".]O‘)Zn) = O
(n=1--|N/2]) (20)



where| N /2] is the floor function indicating the largest integer no less tNd@.

Moreover, according to the results recentlyeaed by the authors [22][23], the high
order GFRFSH (), (joy, -, j®,.,) for the nonlinear passive isolator (9) can be

expressed as the following form

(1) . .
H(2n+l) (Ja, -, ]a)(2n+l))
2n+1

[Tes? (o))

— i=1 zglﬁ ...é‘:f(zgu)@(./3“'.1(2Q+1))( D W )
; ) 3 0+ (21+1) JOu s J O o4
L(] )+t Ja)(2n+1) )(./’31""}(2@1) )EJ(2n+1)

(n=1--|(N-D/2]) (21)
where
L(ja)1+.“+ja)n) :_[_(a)l+“.+a)n)2+j(a)l+“.+a)n)§+1:| (22)
and @70 (jo,,---, jo,,.,) represents a function of frequency variablas---,
@, and the system’s linear characteristic parameters, Jyd, is a set ofQ

dimensional nonnegative integer vectors ickih contains the ¢onents of those
monomialsé;® - £%0 which are present in the polomial representation (21).

For example, applying the recursive algorithroposed by the authors in [23], which is
introduced in the Appendix, to system (9) fior 1, 2, 3 respectively yields

J;={(20)}, 75 ={(29.(01)}, /; = {(30),(11)}.

and
L (jay,+, ja;)=0; OL (jwy, -, jas)= By O (je, -, jws)=1;
®§3'0)(j0)1""7ja)7) = B,B; + B:B;; @7(]"1)(ja)1,---,ja)7)= B + B,
where
1 .
B = jwz(l)"'"""jwz(Z) _If z=1
: if Z>2

[L(jwl(l) ot joy g )J
wl(i)’(i =1---,2)e {wl"”’w(2n+l)} (23)

Therefore, the GFRFs up td" drder for system (9) witl® = 2 can, for example, be
determined as follows,

ﬁ[f@Hfl) (jo,)]

HO(w,, -, jo,) == 24
s (Jo, Jj@;) L(ja)1+---+ja)3)§3 (24)




TleH o))

O ... 7 _ _i=l 2
H; (]a)l’ !]a)s) L(jco1+---+j )[5333"'55] (25)

H7(1)(ja)1’ o jog) =

H[JwH”(Jw)]
FgBB +BB)} (26)

L(]a)1+ + jo, )|+ EL (B + B,)

Although the procedure introduced in th@p®ndix seems quite simple, the generated
expression can be extremely complicated wtenorder of the GFRF becomes higher.

However, it is easy to notice from the ab@recedure and the example that, for system
(9), ©% 72 in Eq. (21) can be uniformigxpressed as the following form

n Z n Z ; ;
Us o) (G0 ... i _ B _ SO T F Doz 27
® (2n+2) (] @y y JO o4 ) ; l,:! 1(2Z+1) ; 11:1[ [ I (jwl(l) T jwl(zz+1) ) J ( )

wheren is an integer dependent an

From (13) and the expression f&k? (ja,,....jw,) given by (18), (21) and (27), the
OFREF representation df, () of system (9) can be written as

Lv-1)/2]
Y,(jo) =P (jo)+B(jo)+ ZPM(J'CO) (28)
where
B(jw) = H{? (jo)A(w) (29)
B(jo)= 2392[ Z |:H Hl(l) (o), )Z(wz ):| (30)

P2n+1(ja)) = a)— z |:1n—+[H1(1) (.]a)z)(]a)l)z(wz):|x

2n+1
2 L[]CO] o+ A+, =0 | =1

s .. gl JOyy) T+ D)0z,
(.1'3,--4,.1'(2;)& (2ne1) R ;H lL(j Oyqy + T JOya7.1) )J
(n=2---,|(N-1/2]) (31)
The OFRF (28) represents the spectrum efgticond output of systef®) as an explicit
polynomial function of the system’s nonlineatharacteristic parameters, which,
obviously, can considerably facilitate the analys the effect obystem nonlinearity on
the output frequency responses.

By using Eq. (28), the transmissibility ofettSDOF isolator system (9) as given by Eq.
(11) can further be expressed as

10



L(v-1)/2]

T(Q)=|R(Q)+ D Pa(iQ) (32)
n=1
where
= 1+ jEQ
R(jQ) =S (33)
L(j)
QT HPQHP Q)
P211+1(]Q) = 2n+1 T~
27 L[ Q]
P . .
Js J(20+1) ]wl(l) +eeet ]wl(22+1)
z Z 3 ".§(ZQ+1)Z . .
O+ +03,,1=Q (j3"”’j(2Q+l))E‘](2n+l) 2:11;1[ [L(le(l) Tt le(22+1) )J
§2n+3

- el

Z Z ?{3 65&22911; Zn: ﬁ JOy Tt JO 07,
+

O+ +0p,,1=Q (j3r"'rj(2Q+1) )GJ(2n+1) Z=1i=1 lL(jwl(l) Tt jw/(22+1) )J

(1=12--|(N-1)/2)) (34)

ando, € {-Q,0Q}, k=1...2n+1.
From equations (32) and (34), it is known that wiggn,,, =0,(p =1---,0 i.e)there is
no nonlinear damping, the transmissibility is determined as follows,

1+ j&Q
1+ jEQ - Q2
which is the same as Eqg. (5) and is the expression of transmissibility widely used in
engineering practice for the designliokar SDOF vibration isolators.

7(Q) =\Pl<j§)\=‘ (35)

When nonlinear damping is introduced, i&,,.,, # 0,(p =1---,0 , Bg. (32) indicates
that the transmissibility will be different from the well-known result given by Eq. (35)
and, given the linear damping characteristic paramgtehe difference as described by

the second term in Eq. (32) is a functioinboth the nonlinear éiksymmetric damping
characteristic parameter§,, ,,, (p=1---,0) and the frequency2 . In the next section,

T(Q) given by (32) over the frequency rangestb&<1 and Q >>1, and the effect of
$opnyr (P=1---,0) on the value of(Q) over the frequency range 61 ~1 will be

analyzed to reveal the significant benefits of nonlinear anti-symmetric damping
characteristic on vibration isolation.

11



3.3. Effects of Nonlinear Anti-symmetric Damping on Transmissibility

Consider the SDOF vibrationakator subject to a sinusoid@irce excitation as described
by Eqg. (2), and assume that the outputs efifiolator is dimenenless, one input two
output system representation given by Eq.cé®) be described by the nonlinear Volterra
series model (15) around zero equilibriuithe effect of a nonlear anti-symmetric
damping characteristic on the transmissibilitythed vibration isolator is investigated over
the resonant and non-resonant frequency marggpectively in the following sections.

3.3.1 Transmissibility over the Non-Resonant Frequency Ranges
Over the non-resonant frequency rangess<1 or Q >>1.
Substituting (22) into (34) yields
— 62)1-%—3 -
1Pra ()| = > PN

2n+2
2n+1 2 . = (.
29— Q° + ]59 +1~ O+ + 0,1 =Q (J !(2Q+1))€J(21+1)

JOqy + o+ Oz,
X
;1:! |_ ((91(1) Tt Wz )2 +Jjé ((Uz(l) +oeet wz(zz+1) + 1J‘

N 2n+3
Q z Z /(2Q+1)
— — 2n+2 (2Q+1)

22n+1 — QZ + ]é:Q +].~ O+ 09,,4=Q (J' J(2Q+1))€J(2n+1)
_ (36)
n Z ‘ Jyqy t+ jo
y z 1(1) 1(22+1)
z=1 i=1 ‘_ (a)l(l) teeet a)z(zz+1))2 + Jg(a)l(l) Foeot wl(22+1))+1~
Therefore, wher <<1
o §2n+3 X
. - J +
‘P2n+1(JQ)‘ < ol —2 L= 22 Z _ 253{3 820w
27=-Q7+ jEQ +1~ o +03,0=0 (3 ey B (20
y ” ﬁ ‘ja)l(l) Tt JO 074
Z=1 i ‘ (COI(]_) +---+ (X)l(zer]_))z + ]5(0)1(1) tet a)l(22+l)) 1‘
0z
j /
~ o2+l Z - Z 32 S oo ZH‘le(l) ot JOy 7.
O+ o+ 0,9 =Q (J'sr“xj(zgq))ej(znq) z=1i=1
Q73 ; o ‘le @t T ]w1(22+1
< 2Zi+l Z - Z 533 2QQ+1) ZH
O+ 0,1 =Q (.ISV“‘r.[(2Q+l))E‘](2rz+1) z=1i=1
= 2743
= Q7 re (37)

22ﬁ+1 (2n+1)

where

12



, . [P R oy ()]
® j Jeo 1@ I(22+1)
r(2n+1) z z 3 ‘f (2(2QQ+23 =

O+, =Q (js ""vj(zg+1))EJ(2n+1) Q

is a bounded constant which is dependent:dsut independent of2. So that, when
Q<<1

_2I
P a U< r;iﬂ ~0 (n=12--|N/2-1))(38)
When Q >>1, it is known from (36) that

o §2n+3 j
: (20+1)
‘P2n+1(]Q)‘ < ol =2 = 22 Z B Z (2Q+1)
2 -Q°+ ]§Q +1~ O F05,,1=Q (./ J (20+1) J(z +1)

n Z ‘jw + o4 ja)
% H 1(1) 1(2Z+1)

Z=1i-1 ‘ (a)l(l) Tt wz(zz+1))2 +Jj¢ (a),(l) T wl(22+1)) 1‘

1 20+1,
< Sage > D88 5<JSQQ+1§ZH

ot +02,.0=0 (a1 2040 Y 2oy 7=l ‘ Dy T T Orzay

1
< aigE > Z - Eh Zl

O+ F 0,1 =0 (./ “J (20+1) EJ(z +1)

1 @)

2211+lQ 2n+1 © (2n+1)

(39)

where

Ba- T Te-gpa

O+ + 0,1 =0Q (j “J (20+1) EJ(z +1)
is another bounded constant which is dependent bat independent of). So that,
whenQ >>1

\ﬂmuﬁﬂs——if—FQ ~0  (@=12--[N/2-1]) (40)

22n+l 9 2n+1 © (2n+1) T

ConsequentlylPMl(jﬁ)‘ ~0 for both Q <<1 and Q >>1. Therefore, over the non-
resonance frequency ranges

T(Q) ~|R(jQ) (41)

This conclusion shows thatn@nlinear anti-symmetric damping characteristic has almost
no effect on the transmissibility of SDQ#bration isolators over the frequency ranges

13



where the frequencies are much lower orcminigher than the dadator’'s resonant
frequency.

3.3.2 Transmissibility over the Resonant Frequency Range

This case is more complicatdthn the non-resonance case studied in the last sub-section.

For convenience of analysis and without lo§gyenerality, it is assumed that only the
0" term of the damping nonlinearity in Eq. (7) is nonzero, that is,

#0  when n= é
§(2n+1)

= -1... 42
=0 when n#Q (p=1-.0){42)

For this casep,,.,(jo )n EQ. (34) can be rewritten as

2n+1
2 " L[]a)] O+ + Wy, =0 i=1
10-1 7 1
n/Q ”z H ]a),(l) +- +JC()
(2Q+l)

79 ia [L(sz(1)+ +le(ZQ+l))J

(n=0x 1[N 120)-1])(43)

P211+1(ja)) = a)— Z |:ﬁ Hl(l) (]wz)(]a)l )Z(a)z):|

1(ZQ+1)

Denote
A Q) = B(jQ) (44)
Ay (jo)= ﬁ[]@] WH.Z&)M@ {lj HP (jo)(jo,)A (o, )} 5

10-1 1 ceed 7 _
"&E R ]wl(1)+ +Ja)1(ZQ+1) R

g 79 i1 lL(ja)l(l) +"'+j(“z(26+1))J

Then P, ,(jw) in Eq. (43) can be rewritten as
P2n+l (]C{)) 5(112/QQ+1)A2n+1 (]0)) (I’l = é X {1! "t \_N /(Zé) _]J}) (46)

Using Eq. (45)[T(§)]2 can be expressed as

v 120)-1] _ |vireor _
[T(Q)] A (JQ) + Z Azgn+1 (JQ)§(2Q+1) }l:Al(_jQ) + ZAZQH-l (_jQ)f(nz@l)

2V (20)-1] " . o
- Z éZ(2Q+1) 2Qq+1(jQ)A2§(n_q)+1(_ ]Q) (47)

—\ |2
Evaluatem from (47) to yield
(20+1)

14



d|T(Q) — _ 2N (2014
— cgé: B ]2 = R%Al(JQ)Azé.F]_(_JQ):I—I_ 5(2@_&) Z;‘QZ(ZQ”) zAqu+l(JQ)A2Q(n q)+1( JQ)
(20+1) n
(48)
WhenQ ~1,
dlr@f . _ Avieors] |
d[—§(2Q+1):| ~ R4A1 (.])A2§+1 (_j)]+ §(2§+1) Z 5(2Q+l) 2Qq+1( )A 2§(n—q)+1(_ j) (49)
From (33) and (43), it can be obtained that, wkkes 1
Je+l_—j+¢
A Q) ~ (50)
Js 4
OV~
A2§+1(_]Q) ~ 22§+1§2§+2 (51)
so that
Re[/\ (J)A2Q+1( J)] 22@1—52% <0 (52)

Therefore, wher) ~ 1,
dlr@f 1 v ieora] . |
dé,. - ST 220+1 952Q+3 §(2Q+l) Z 5(2Q+1) zgq+1(J )Azg(n_q) +1(— ]) (53)
(20+) pry

Eq. (53) implies that, whem)~1, there must exist & >0 such that if

(20+1)
0<¢

(20+1) < 6Z(2§+1) !

drf . 1 bviggr, & . .
d 5 B ~ 229+1 §2Q+3 6Z(2Q+1) Z 6Z(zg+1) 2Qq+l(] )Azé(n-q)+1(_ J ) <0 (54)
(20+1) g=0

The important conclusion dedoeid as Eq. (54) indicates traat increasén the nonlinear
anti-symmetric damping characteristic can reduce the transmissibility over the resonant
frequency range.

Next, assume the first two terms of the dargmonlinearity in Eq. (7) are positive and
nonzero, thatis, ané.>0. Denote

A& = % andA(&.&,) = %

According to Eq. (54), there exi§t and &, >0 such that ifé, € (0,£,) and &, € (0,&;),
then A,(&,0) <0 and A, (0.&,) < Q

(55)
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Moreover, as theign-Preserving Property [31] states, there is & > 0 such that if
& €(0,05), thenA,(&;,4 ) has the same sign as(&;,0 . Similarly, there is a3 > 0

such that if&; € (0,0, ) thenA,(&;, &, ) has the same sign as(0,&, . This means that,
if £ ¢€(0,6,)N(0,&,) and&, € (0,5,)N (0,,), then the increase @, and &, can reduce
the transmissibility over the resonant freqeye range. This conclusion can be extended
to the more general case where all termthefdampmg nonllnearlty in equation (54) are
nonzero. Therefore, whe@ ~1, there must exisb 2.1 >0 (Q 1---,0) such that if
0< 5(2@1) < 5(2Q+1) ,

dr@f

85(2@1)
The conclusions reached in Section 3.3 retleat the vibration isolator with a nonlinear
anti-symmetric damping characteristic hasagrpotential to overcome the limitations of
linear vibration isolators, and an effectigeploitation of the capability of the nonlinear
vibration isolator can provala novel passive solution tiwe aforementioned well-known
dilemma associated with the design of passive linear vibration isolators.

<0 (56)

4. Numerical Verification and Discussions

4.1 Numerical Studies

77777777777777777 F7T7r7\7r7777777 |

,,f 0. 1 53_ O 0; 55_ 0. O{Ki /4 R

Transmissibility

FrequencyQ

Fig. 5, the transmissibility of hnonlinear isolator with differedtand a constards
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-+ 4 44

Transmissibility

FrequencyQ

Fig. 6, The transmissibility of éhnonlinear isolator with differedtand a constarg

In order to verify the significant eftts of a nonlinear anti-symmetric damping
characteristic on vibration isolation, whichas been theoretically analysed above,
numerical simulation studies weeconducted by applying thiemge-Kutta method to the

dimensionless, one input two output system (9) with 2 to evaluate the transmissibility
T(Q) . Two sets of results are shown in Fig. 5 and Fig. 6 respectively.

In the results shown in Fig. s is taken as a constaftl and the other nonlinear
damping characteristic paramefers varied from 0.1 to 0.5 in steps of 0.2. In Figé$,

is kept constant at 0.1 agglis varied. Moreover, for a better comparison with the linear
isolator, the transmissibility of thenkar isolator (3) for the two cases¥f£0.1 and¢

=1.0 is also shown in the figures. All results clearly indicate that the introduction of the
nonlinear anti-symmetric damping canot only signifcantly reduce 7'(Q2) and

consequently suppress the viliwa at the resonant frequen€y~1, but these designs
also keepg'(Q)) almost unchanged over the isolation frequency ranges viherel

and Q >>1. These results confirm the theoreticahlgsis results proxkin Section 3.3.
Therefore, the numerical studies have vedfithe important conclusions revealed in
Section 3.3.

The theoretical analysis based on the conee@FRFs and the numerical studies clearly
show the effects of vibration isolatonsith a nonlinear anti-symmetric damping
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characteristic are equivalent to that ofptive passive isolators, which have the ideal
dynamic damping response as shown in BigConsequently, theonlinear isolators can
be used to overcome the dilemma associatittil the design of passive linear vibration
isolators.

4.2 Discussion

The validity of the important properties debexd by Egs. (41) and (56) are based on the
premise that the nonlinear damping charastier of the vibration isolator is anti-
symmetric and the nonlinear characteristic parameters are positive. However, these
premises may not always be true in practi@herefore it is necessary to test the
sensitivity and robustness of the designs wkanexample, the damping characteristic is

not exactly anti-symmetric and some nonlinédamping characteristic parameters are
negative.

ANIA- T

f Olé’2—005¢”3—03wL

e [ |
|
|
|
|
L

10°¢ 0—0—0-097 | 1 ] D

Transmissibility

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

FrequencyQ

Fig. 7, The transmissibility of the nonlindaolator with a non-anti-symmetric damping
characteristic

In order to test the effects of a smaléviation from an anti-symmetry damping
characteristic on the performance of the Im@ar isolator, the damping force of the
nonlinear vibration isolator is coidgred to be of the form below

F,= ng [yl(t)]p (57)
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where the presence of th& power term makes the nonlimedgamping characteristic no
longer anti-asymmetry. Fig. 7 shows thansmissibility of the nonlinear vibration
isolator in this case. Clearly, the increase {gfcan still significantly reduce the
transmissibility around the resonant frequerayion and there ismlost no effect on the
transmissibility over the non-resonant fregeye region. Thereforehe properties given
by Egs. (41) and (56) are $talid in the case where the anti-symmetry requirement for
the nonlinear damping charactedss not exactly satisfied.

***************** r*T*f*‘*w:::::::j,,,,j
<= 0143‘0055‘ NSO
= 0143_0355_-001 I S
> ]
S | |
- IR R . VI R -
9 | |
= | |
2140 o—0—0-00%" y ! !
Eloc ,,,,, - ,,,,,:‘::::‘::‘::‘::‘::::::::7::::::::7,:
e el sl et et Sk el e .. W
10°
FrequencyQ

Fig. 8, The transmissibility of the nonlinear isolator with a negative nonlinear damping
characteristic parameter

To investigate the effects of the non-positialinear damping charasststic parameters
on the vibration isolation performance, tdamping force of the nonlinear vibration
isolator is considered to be of the following form

F = Zé:(zp—l) [yl(t)]zp_l (58)

where &, is negative. The numerical simulatiorsuéis shown in Fig. 8 clearly indicate
that the increase of, can also significantly reducthe transmissibility around the

resonant region and has no effect on thestrassibility over the non-resonant frequency
regions, i.e, the properties given bysE¢41) and (56) are still valid.
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5. Conclusions

The concept of the OFRF has been usethvyestigate the effects of a nonlinear anti-
symmetric damping characteristic on the traigsihility of nonlinear vibration isolators.
The following four important conclusions habeen established by theoretical analysis
and / or numerical simulation studies:

i) A nonlinear anti-symmetric damping chaextitic has almost no effect on the
transmissibility of SDOF vibration isolats over both low and gih frequency ranges
where the frequencies are much lower orcmtigher than the isolator's resonant
frequency.

i) The introduction of a nonlinear anti-symnietdamping into vibation isolators can
significantly reduce the transmissibilibyer the resonant frequency region.

iii) Properties 1) and 2) are valid even ie ttase where the anti-symmetry requirement
for the nonlinear damping charactéidgs not exactly satisfied.

iv) Properties 1) and 2) generally hold whte damping characteristic parameters are
positive but are still valid when some of these parameters are relatively small but
negative.

The performance of nonlinearibration isolators with an anti-symmetric damping
characteristic imply that the effects of suwbnlinear isolators are equivalent to that of
adaptive passive isolators having an ideatjfiency-dependent damping effect which is
significant around the resonant frequen@gion but less significant over the non-
resonant frequency regions. These conclusiares of significant importance for the
design of vibration isolators dbey reveal thathe nonlinear vibratiomsolator with an
anti-symmetric damping characteristic has great potential to overcome the dilemma
associated with the design ofgséve linear vibration isolators.

Results for MDOF systems and other raedatases would be reported in forthcoming
publications.
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Appendix:

The recursive algorithm proposbky the authors [23] can hesed to determine how many
and what monomials involved Bq. (21), as follows:
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Denote the set of all the monaats involved in Eq. (21) a8/ ,,,, , and M, =[1], then

M ,,,,, can be determined as

min(n,Q)
M(2n+l) = U§(2p+l) ®M(2n+1),(2p+1) (A‘l)
p=1

where ® is the Kronecker product , and

\_(n—Z)/zﬁl
U M(Zi—l) ®M(n—2i+l),(Z—l)) and Mn,l = Mn (A-2)

i=1
Similar procedure can be used to determine the corresponding fu@éﬁgﬁfw) for the

M =

nZ

monomial £ ---£/%% . Denote the set of all the functio®} 7=’ (jo,, -, jo 4.1

involved in Eq. (21) a®,,,,,, then®,, .., can be determined as

min(n,Q)
®(2n+l) = U® (20+1),(2p+1) (A-3)
p=1

where
[(n-2z)12}1

0,,= UB(j(Dl teeet j(D(Zi—l))(® 21 ®O (n—2i+1),(Zfl)) with ©,, =0, (A-4)

i=1
For example, applying the methods (Aak)d (A-2) to the isolator (9) witp = 2 up to
the 7" order yields

M3 = [[‘?53] ®[1]] = [‘?53]
M, =gl Mo emUe]oml=[e &)
M, =[&loM,@M;®MU[&]® M @ @M]U[E] @ M, @[] 1] [ ®[1]]

-8 &
The results indicate that, in Eq. (21),

J3={(10)}, 75 ={(2.0).(02)}, /; ={(30,(12)}.
When conducting the procedure¢A-3) and (A-4) to determine®,, , ,

Bljw,qy ++++ jo,, ) will be denoted asB, for the simplicity and also because the

specification of B, will not play a curial role in the following analysis. The results of
® ..,y U to 7" order are given as follows,

0, =[enen]=[]

0, =[B,®0, oMU en @M e ®M]=[B, 1

0,=[B,®B,00,®0,R[1]]U[B,® 0, ®[1] ®[1]]U[B, ® 0, ®[1] ®[1] ®[1] ®[1]]
—[B,B, B.B, B, B;]
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There are two more terms i@, than inM,, and the first two elements @, are
associated with? and the other two arassociated witlf.£, , therefore, in Eq. (21)

O30 (jay, . jo3)= 0 OF(jay, +, joy) = By, O3 (jay, -+, jos)=1;

@53,0)(]-@1’...,]'@7):BaBg+BSBS; ®§ll)(ja)l,...,ja)7):Bg,-l-B3
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