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Abstract

An important step in understanding crystal growth patterns involves simulation
of the growth processes using mathematical models. In this paper some commonly
used models in this area are reviewed, and a new simulation model of dendritic
crystal growth based on the Moore and von Neumann neighbourhoods in cellular
automata models are introduced. Simulation examples are employed to find ap-
propriate parameter configurations to generate dendritic crystal growth patterns.
Based on these new modelling results the relationship between tip growth speed

and the parameters of the model are investigated.

1 Introduction

Crystal growth, is one of the most fascinating natural phenomena in pattern forma-
tion, and has attracted considerable theoretical and experimental efforts in an attempt
to develop a better understanding of the growth processes that are controlled by the
environment conditions and the materials. Most studies aim to describe such complex
patterns by extremely simple models, but it is always a challenge to determine mathe-
matical representations directly from experimental data. Therefore, most investigations
adopt an almost opposite approach, which involves simulation of crystal growth dynamics

using postulated simple models. Components of such models may have no relationship



with the real system, but the acceptance criterion is that patterns from the model sim-
ulation and the real system have a high degree of similarity.

The results in this study focus on exploring the underlying relationship between the dy-
namic characteristics of crystal growth and the corresponding environmental conditions,
particularly for dendritic crystals. For instance, it is well known that the cooling tem-
perature plays an important role during crystal growth processes from a supersaturating
solution, but few people know how to achieve a quantitive description of crystal shape
and size by temperature. It is always a big challenge to generate a model relating phys-
ical variables and system outputs directly from real data, because it is often uncertain
how many and which physical variables are involved. Moreover, any slight noise in one
environmental variable may significantly affect the output of system. This can cause an
ill-posed problem which makes identification very difficult. However, if such problems
are solved, this will lead to important new insights into crystal growth processes. Sys-
tem identification of growth patterns is a potentially important tool for unravelling the
complex relationships between these patterns and the system control variables. Ideally,
it should be possible to predict the crystal form from a knowledge of the environment
variables.

In this paper several commonly used simulation models for crystal growth are reviewed
and their application, the advantages and disadvantages are discussed. A new model
based on the Moore and von Neumann neighbourhoods in a cellular automata (CA)
model is then introduced and several examples are discussed.

The paper is organized as follows. An overview of simulation models and discussion are
presented in Sec. 2. Section 3 introduces the new CA model. Examples and an analysis

of growth speed are discussed in Sec. 4. Finally, conclusions are given in Sec. 5.

2 Overviews of Current Models

A wide range of mathematical models have been developed to simulate the growth dy-
namics of crystals [P.Meakin, 2002]. This section describes some fundamental and im-
portant models, which have contributed to our understanding of problems in many areas

of science and technology.



2.1 The Eden Model

The Eden Model, simulation of which can be carried out on almost all lattice types, was
initially developed to investigate the growth of biological cell colonies [Eden, 1956a,b]. At
the start of simulation of the basic Eden Model, one site or cell is selected and "filled”.
An occupied site on the perimeter of the cluster of filled sites is selected randomly,
with equal probabilities, and one of its nearest-neighbour unoccupied perimeter sites is
then selected randomly and filled to represent the growth process. This process can
be repeated many times to generate a sufficiently large cluster. Many variations of the
basic Eden growth model have been developed and investigated for application in physics,

biomedical systems etc. [T.Williams and R.Rjerknes, 1972, P.Meakin, 1983, 1987, 1988].

2.2 The Diffusion-Limited Aggregation Model

The Diffusion-Limited Aggregation (DLA) Model [Witten and Sander, 1981, 1983] still
attracts a high level interest even though it was presented 25 years ago, and is one of
the most striking examples of pattern generation of fractals generated by a simple model
and algorithm. The DLA model has been applied to a wide range of applications in both
the physical and biological sciences as well as applications in other areas [M.Batty, 1991,
Chang and Kan, 2007, Masters, 2004].

In the original DLA model, "particles”, represented by lattice sites, are added, one at a
time, to a growing cluster or aggregate of particles via random walk paths starting outside
the region occupied by the cluster. Normally, a simulation is started by occupying a site
in the center of a square or triangular lattice to represent the "seed”. A site far from
the cluster is then selected, and a random walk is started from the selected site. If
the random walker moves too far from the growing cluster, it is terminated and a new
random walk is started. If the random walker eventually reaches a site that is the nearest
neighbour to a previously occupied site, the random walk is stopped and the unoccupied
perimeter site is filled to represent the growth process. The process of launching random
walkers from outside the region occupied by the growing cluster and terminating them
when they wander too far from the cluster or ”stick” to the growing cluster by reaching
an unoccupied perimeter site is repeated many times to simulate the cluster growth

process.



2.3 Phase Field Model

The model [R.Kobayashi, 1993| introduced here is a kind of phase field model in which
the interface between the liquid and solid has a finite thickness although it is very thin
and is expressed as a steep interval layer of a phase indicating function. The model
includes two variables: one is a phase field p(r,t) and the other is a temperature field
T'(r,t). The variable p(r,t) is an ordering parameter at the position r and time ¢, where
p = 0 indicates a liquid and p = 1 indicates a solid.

The evolution rule of this model can be expressed as:

T2 = —8%(55/2—5) + 6%(55/%) +V - (e2Vp) +p(1—p)(p— 1 +m) (1)
m(T) = (a/m)tan " {y(T, — T)] (2)
o — VT + K% (3)

where ¢ is a small parameter which determines the thickness of the layer, T, is an
equilibrium temperature, and «, v and K are constant variables. Various configurations

of these parameters may produce significantly different dendritical crystals.

2.4 Boolean Model for Snowflake Growth

Wolfram proposed a Boolean model in cellular automata for snowflake growth [S.A.Wolfram,
2002] that evolves on a hexagonal lattice by the following rule. There are two states for
each cell: ice or water. If the considered cell at time step ¢ is ice, the state of this cell at
time step ¢t + 1 remains ice. If the considered cell at time step ¢ is water, the state of this

cell at time step t + 1 will be ice if and only if exactly one of its neighbourhood is ice.

2.5 Discussion

The Eden Model is easy to implement in simulation and is now quite well understood
from a theoretical point of view, but it can not generate dendritic crystal growth patterns.
The DLA Model is very time consuming and far from satisfactorily understood, but it
is used as a basis of understanding many growing patterns because it can produce much
more complex behaviors to simulate real systems. However, both models can not be

identified directly from experiment data, as random walks are a core component of the



model which means no deterministic models can represent them.

The Phase Field Model can generate dendritical crystal patterns and important physical
mechanisms, such as curvature, anisotropy and kinetic effects are implicitly incorporated,
but equations of this model are very difficult to solve, and it is almost impossible to
identify such a PDE model directly from experimental data.

Wolfram’s Boolean Model provides examples of abstract plates and sectors, which offers
the possibility that cellular automata can generate behavior surprisingly similar to a
kind of snowflake growth, and such a simple model can also be used in identification,
but it does not provide global dendrite or stellar growth as each cell can only take on

two values 0 or 1.

3 A New Model

In this section a new method is proposed to simulate dendritic crystal growth processes
using a cellular automata model with a Moore or a von Neumann neighbourhood. Before
descriping the new model, some background information on cellular automata will be
introduced.

A cellular automata is composed of three parts: a neighbourhood, a local transition rule
and a discrete lattice structure. The local transition rule updates all cells synchronously
by assigning to each cell, at a given step, a value that depends only on the neighbourhood.
In Wolfram’s CA world [S.A.Wolfram, 2002], the state of each cell can only take two
values: 0 or 1, which is the reason that the CA’s studied are called binary CA. However,
in the new model the state of each cell can take any real value between 0 and 1, which
indicates that this model can generate much more complex behaviors than binary CA
[Adamatzky, 1994, 2001].

Similar to the method used to describe excitable media using a cellular automata model
[Zhao et al., 2007a,b], the proposed model divides the state of each cell into three states:
solid, near-solid and solution. If the cell value is equal to 1, the cell denotes a solid.
If the cell value is less than 1 and its neighbourhood has at least one solid cell, the
cell is denoted as a near-solid, otherwise the cell is denoted as a solution. The cell value
c(r, t)(0 < ¢(r,t) < 1) can be viewed as a local concentration of solution of the considered

cell, where r denotes position and ¢ denotes the time step.



At the beginning of the simulation, each cell in the lattice is assigned the same initial
value Iy. From a chemical point of view, this means that the material is dissolved in water
with a specific concentration. A seed or seeds can be selected randomly as a solid at
the beginning of the growth. The neighbourhood chosen in the present study is a Moore
or a von Neumann neighbourhood, both of which belong to the square lattice type. If
the status of the considered cell ¢(r, t) is a solid, the value at time ¢ + 1 remains as 1. If
c(r,t) is a near-solid, c(r,t+1), the value at time t+ 1, would be ¢(r, t) plus a constant (3
plus a diffusion term d(r,t). If ¢(r, t) is a solution, the value of ¢(r,t+ 1) would be ¢(r, t)
plus a diffusion term d(r,t) without 5. The diffusion term is a local weighted average
of its neighbourhood by setting all solid and near-solid cells to zero. The motivation of
this model is that particles in solid and near-solid states are permanently stored in the
cell, and particles in solution move toward an average value following the concentration
difference.
Consider a cell ¢(r,t) at position r and time step ¢ with the Moore neighbourhood. The
value at the next time step c(r,t 4+ 1) can then be described by the following CA rule.
1 c(r,t) is a solid
c(rit+1) =< c(rt)+ 0+ 2(—8c(rt) + ZiGPcW) c(P,t)) c(r,t)is a near-solid (4)
c(r,t) + {5 (=8c(r,t) + Ziepc(r,t)

where P, ;) denotes the set of the neighbourhood of ¢(r,t) only when the status is a

c(P,t)) c(r,t) is a solution

solution. The symbol « is the weight of diffusion, which is normally taken as 1. If the
neighbourhood is von Neumann structure, the model can be revised as:
1 c(r,t) is a solid
c(rit+1) =< c(r,t)+ 6+ ¢(—4e(r, t) + >iep,, , C(Pit)) c(rt) is a near-solid (5)
C(T’ t) —I— %(_40(7"7 t) + ZiGPdht)

Five parameters are variable in this model: the lattice type, neighbourhood, initial value

(r;t)

c(P,t)) c(r,t) is a solution

Iy, constant addition 3 and diffusion weight . The influence of each parameter on the

generated patterns will be discussed in the next section.

4 Examples and Discussion

In this section, many simulation examples are employed to reveal various types of for-

mations of dendritic patterns by varying the configuration of the model parameters. All
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the patterns were generated on 300 by 300 square lattices. Simulation starts from a seed
chosen at the center of the pattern, and grows following the rules in Equ.4 or Equ.5 until
a solid cell approaches the boundary or the iteration time reaches 5000. In the patterns,
dark pixels denote the cells close to 1 and light pixels close to 0. The solid cells are
highlighted by the red colour.

Normally, the selection of the lattice type depends on the characteristics of the objective
form. For instance, to simulate ice growth, a hexagonal lattice would be used[S.A.Wolfram,
2002, C.A Reiter, 2005], or a more complicated type of Quasicrystalline structure [Chidyag-
wai and Reiter, 2005]. A square lattice is the most commonly used type because of its
easy implementation and because it is well understood. This paper will only consider
the square lattice.

Neighbourhood selection is one of the most important steps in CA modelling and iden-
tification [Zhao and Billingse, 2006]. Figure 1 shows two patterns generated under the
Moore and von Neumann neighbourhoods respectively by setting I, = 0.3, 8 = 0.0001
and @ = 1. Both patterns demonstrate typical dendritic crystals. The stem in the
pattern with a von Neumann neighbourhood has a Greek-cross structure, but the stem
with a Moore neighbourhood has a St.Andrew’s cross structure, which illustrates that
the skeleton of the simulated crystal depends on the structure of the selected neighbour-
hood. Figure 2 shows two snapshots of a crystal obtained from a N H,Br solidification
experiment. There is a high degree of visual similarity between the simulation and the
real pattern suggesting that the proposed model has encouraging potential to represent
this interesting phenomena.

Figure 3 shows a group of patterns generated by varying the initial value [y and constant
addition § and fixing the Moore neighbourhood and o = 1. The patterns clearly show
that when 5 > 0.005, the crystals are on a plate form regardless of the value of I, and
B < 0.005 and [y < 0.03 give rise to dendritic crystals. In Figure 1.(a), secondary den-
drites and even tertiary dendrites are visible. It is predictable that if the growth space
and time are large enough, higher order dendrites will appear. Moreover, space between
adjacent secondary dendrites tends to decrease for increasing 3. When (8 = 0.005, sec-
ondary dendrites almost disappear. Figure 3.(a),(f),(k),(p) also show that the length of
the secondary dendrites increases following the increment of I, with the same 3. When

Iy > 0.03 sector forms appear again because secondary dendrites are so long that they



(a) (b)

Figure 1: Growth forms on different neighbourhoods by setting Iy = 0.3, 8 = 0.0001 and o = 1. (a)

Moore; (b) von Numann

(a) (b)

Figure 2: Snapshots from a crystal growth experiment using N HyBr.



touch together.

It can also be seen from Figure 3 that the growth speed of the crystals varies from dif-
ferent initial values and constant additions. When § and I, are both small the growth
is very slow, but when both of them are large, the growth is fast. To quantitatively
investigate the relationship between these factors, average tip growth speed was mea-
sured and employed in this section. The average tip speed is defined as the Euclidean
distance from final tip position to the center(the position of the initial seed) divided
by the elapsed time step. Many examples were implemented to establish that the tip
growth speed is almost stable during the evolution when all parameters are fixed. Figure
4 shows tip speed values over time for three examples. Although a slight oscillation oc-
curs in each example, the trend-lines are almost horizonal, which indicates tip speed can
be represented by average tip speed introduced here. Note the patterns generated are
4-fold symmetrical, hence, only the tip of one of four branches was considered. Figure
5.(a) shows the trend of averaged tip speed following increments in Iy with fixed 3, and
Figure 5.(b) shows the trend by varying 3 and fixing Iy. Figure 5 illustrates tip growth
speed is nearly linear with 3 and nearly parabolic to Ij.

To study the effectiveness from diffusion weight « to crystal dendrite forms, many pat-
terns were generated by changing « from 0.6 to 2 when Iy = 0.3, 6 = 0.0001, and these
are shown in Figure 6. Figure 7 shows the tip speed trend following the increments of
«. There is no remarkable rule connecting dendrite length and space between dendrites
with respect to a, but Figure 7 clearly indicates tip growth speed is nearly linear with

respect to a.

5 Conclusions

A new simulation model of dendritic crystal growth based on the Moore and von Neu-
mann neighbourhoods in a cellular automata type model has been introduced. In the
new model, each cell in the lattice can take any real value between 0 and 1 rather than
just binary values, which indicates more complex behaviors can be generated than tra-
ditional CA. By defining the state of each cell into three status, the transition rule can
be described in a polynomial form, as shown in Equ.4, which has the potential to be

understood from a chemical point of view. Simulation results show this model can gen-



X X X

(a) I =0.01,8=0 (b) B =0.0001 (c) 8 =0.001 (d) 8 =0.005 (e) B =0.01

X 2N

(f) Iy =0.02,3=0 (g) 8=0.0001 (h) 8= 0.001 = 0.005 =0.01

XOOK

(k) I, =0.03,6=0 (1) 8 =0.0001 = 0.001 = 0.005 =0.01

(u) Iy =0.08,8=0 (v) 3 =0.0001 (w) 8 =0.001 (x) 3 =0.005 (y) B=0.01

Figure 3: Growth forms on different initial values Iy and constant addition 8 with a Moore neighbour-

hood and o« = 1.
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Figure 4: Trend of tip growth speed by time of three examples. Example 1: § = 0.0001,« = 1, Iy = 0.35;

Example 2: 8 =0.0001,a =1, Iy = 0.3;Example 3: §=0.0001,a = 1,1y = 0.2;
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Figure 5: (a)Trend of tip growth speed following increments of Iy with 8 = 0.0001,« = 1; (b) Trend of

tip growth speed following increments of 8 with Iy = 0.3, = 1.
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(a) «=10.6 (b) a=0.8

() a=14 (f) a=1.6

Figure 6: Growth forms for different diffusion coefficients «, and fixed Iy and £.
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Figure 7: Trend of tip growth speed following increments of o with Iy = 0.3, 5 = 0.0001.
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erate typical dendritic crystal patterns that are very close to real data from experiments
by setting the appropriate model parameters. Normally, the neighbourhood is chosen as
a Moore neighbourhood with 0 < Iy < 0.03 and < 0.005, and the results also show
that the diffusion weight o does not significantly affect the crystal form, but does affect
growth speed.

As a very important parameter in studying crystal growth, tip growth speeds were mea-
sured and analysed under different Iy, 5, a. Results show § and « are nearly linear with
respect to speed, and [ is nearly parabolic with respect to speed. Cooling tempera-
ture and the initial concentration of the solution will also have a significant effect on
the speed of crystal growth and other characteristics of the dendritic form. In future
research, studies the relationship between Iy, 3, « and speed will be studied to further
investigate the impact of these characteristics on dendritic crystal growth from physically

controlled system variables.

Acknowledgment

The authors gratefully acknowledge that part of this work was financed by Engineering
and Physical Sciences Research Council(EPSRC), UK.

References

A. Adamatzky. Identification of Cellular Automata. Taylor Francis, 1994.
A. Adamatzky. Cellular Automata: a discrete university. World Scientific, London, 2001.

C.A.Reiter. A local cellular model for snow crystal growth. Chaos Solutions € Fractals,

23:1111-1119, 2005.

C.C Chang and L.S Kan. Protein folding: An antagonistic reaction of spontaneous
folding and diffusion limited aggregation in nature. Chinese Journal of Physics, 45:

693702, 2007.

Prince Chidyagwai and Clifford A. Reiter. A local cellular model for growth on qua-
sicrystals. Chaos, Solitons and Fractals, 24:803-812, 2005.

13



Murray Eden. A two-dimensional growth process. 4th. Berkeley symposium on mathe-

matics statistics and probability, 4:223-239, 1956a.

Murray Eden. A probabilistics model for morphogenisis. Symposium on imformation

theory in bilogy, 29-31:359-370, 1956b.

BR Masters. Fractal analysis of the vascular tree in the human retina. Annual Review

of Biomedical Engineering, 6:427-452, 2004.

M.Batty. Genrating urban forms from diffusive grwoth. Enviroment and Planning, 23:

511-544, 1991.

P.Meakin. Cluster-growth processes on a two-diemensional lattice. Physical Review, B28:

67186732, 1983.
P.Meakin. Eden grwoth on multifractal lattices. Journal of Physics, A20:779-784, 1987.

P.Meakin. Invasion percolation and eden growth on multifractal lattices. Journal of

Physics, A21:3501-3522, 1988.

P.Meakin. Fractal, scaling and growth far from equilibrium. Cambridge university press,

2002.

R.Kobayashi. Modelling and numerical simualtions of dendritic crystal growth. Phsical

D, 63:410-423, 1993.
S.A.Wolfram. A new kind of science. Champaign: Wolfram Media, 2002.

T.Williams and R.Rjerknes. Stochastic model for abnormal clone spread through epithe-
lial based layer. Nature, 236:19-21, 1972.

T.A. Witten and L.M. Sander. Diffusion-limited aggregation, a kinetic critical phe-
nomenon. Physical Review Letters, 47:1400-1403, 1981.

T.A. Witten and L.M. Sander. Diffusion-limited aggregation. Phisical Review, B22:
5686-5697, 1983.

Y. Zhao and S.A. Billingse. Neighborhood detection using mutual information for the
identification of cellular automata. IEEE Transactions on Systems, MAN, and Cyber-
neticsPart B, 36(2):473-479, 2006.

14



Y. Zhao, S.A. Billings, and A.F. Routh. Identification of excitable media using cellular
automata models. International Journal of Bifurcation and Chaos, 17(1):153-168,
2007a.

Y. Zhao, S.A. Billings, and A.F. Routh. Indetification of the belousov-zhabotinskii
reaction using cellular automata models. International Journal of Bifurcation and

Chaos, 17(5):1687-1701, 2007b.

15



