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Abstract: It is well known that there is a dynamic relationship between cerebral blood flow (CBF) and 

cerebral blood volume (CBV). With increasing applications of functional magnetic resonance imaging 

(fMRI), where the blood oxygen level dependent (BOLD) signals are recorded, the understanding and 

accurate modelling of the hemodynamic relationship between CBF and CBV becomes increasingly 

important. This study presents an empirical and data-based modelling framework for model 

identification from CBF and CBV experimental data. It is shown that the relationship between the 

changes in CBF and CBV can be described using a parsimonious autoregressive with exogenous input 

model (ARX) structure. It is observed that neither the ordinary least squares (LS) method nor the 

classical total least squares (TLS) method can produce accurate estimates from the original noisy CBF 

and CBV data, in that the resultant ARX models may be unstable and thus cannot generate stable 

model predicted outputs. A regularized total least squares (RTLS) method is employed and extended  

to solve such an error-in-the-variables problem. Quantitative results show that the RTLS method 

works very well on the noisy CBF and CBV data. Finally, a combination of RTLS with a filtering 

method can lead to a parsimonious but very effective model that can characterize the relationship 

between the changes in CBF and CBV.  

Keywords:  cerebral blood flow, cerebral blood volume, system identification, parameter estimation, 

nonlinear autoregressive with exogenous input model, total least squares, regularization. 
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1.   Introduction 

It is well known that there is a dynamic relationship between cerebral blood flow (CBF) and 

cerebral blood volume (CBV) (Grubb et al., 1974; Buxton et al., 1998; Mandeville et al., 1999; Jones 

et al., 2001, 2002; Kong et al., 2004; Zheng et al., 2005). With the increasing applications of position 

emission tomography (PET) and functional magnetic resonance imaging (fMRI), where the 

understanding of the blood oxygen level dependent (BOLD) signal plays a key role, it is becoming 

increasing important to establish an accurate quantitative description of the dynamics relating CBF 

and CBV. The quantitative description of the relationship between changes in blood flow (volume flux 

per unit time through a tissue volume element) and blood volume was first presented by Grubb et al. 

(1974), where it was suggested that the relationship between the two variants can be described using a 

function obeying a simple power-law, that is, , with 
αCBFCBV ∝ α  a constant. This has been 

extensively applied when modelling hemodynamic response to activation. However, due to the fact 

that this power-law relationship has been derived merely based on steady-state measurements, the 

generalization and application to activation scenarios involving transient changes may not be valid. 

Buxton et al. (1998) developed a biomechanical differential equation model, called the Balloon model, 

to describe how evoked changes in blood flow were transformed into a BOLD signal. Mandeville et al. 

(1999) studied the relationship between the blood flow and volume changes and presented a model in 

terms of resistance and capacitance in the context of the standard windkessel theory. Friston et al. 

(2000, 2002) proposed a unified alternative representation on the basis of Volterra kernel theory, by 

combining system identification and model-based approaches, to describe nonlinear responses in fMRI 

including the modelling of the hemodynamic relationship between CBF and CBV.  

Due to the complexity of the inherent neural hemodynamics for which no or very limited a priori 

information about the biophysical mechanisms (the model structure and the associated model 

parameters) is available, analytical or theoretical modelling approaches alone may not be adequate to 

obtain sufficiently reliable mathematical models to describe cerebral hemodynamics between CBF and 

CBV. As an alternative, empirical and data-based modelling approaches, which make use of both 

biophysical observations and identification and information techniques, provides a complementary but 

very powerful tool for modelling such complex systems. Regression models, including the general 

linear model (GLM), autoregressive with exogenous model (ARX), nonlinear regression and nonlinear 

network models, are among the most popular classes of representations for characterising and 

understanding the dynamics of fMRI responses and related signals, see for example Friston et al. 

(1995), Worsley and Friston (1995), Worsley et al. (1997), Panerai et al. (2000), Woolrich  et al. 

(2001), Mitsis et al. (2004), Riera et al. (2004) and Baraldi et al. (2007), and the references therein. 

Among the existing modelling techniques, linear-in-the-parameters regression models, which 

include the ordinary linear regression model as a special case, are an important class of representations 

for signal processing and system identification. One obvious advantage of employing linear-in-the-
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parameters models is that they are easy to operate, because compared with nonlinear-in-the-parameters 

models, such models are easier to interpret physically, simpler to analyze mathematically and quicker 

to compute numerically using least squares based algorithms (Billings et al., 2007). In the classical 

least squares (LS) approach, which is the most commonly used method for solving linear regression 

problems, the measurements of the design matrix formed by the �input� variables (independent 

variables) are assumed to be �clean� or �noise-free� (no errors); or, the errors on the measurements of 

the independent variables are much smaller compared with those imposed on the �output� variables 

(dependent variables) and can therefore be ignored. In many cases, however, these assumptions may 

be unrealistic. When the classical least squares approach is applied to solve linear regression problems, 

where these assumptions are violated, the resultant least squares estimates for the associated model 

parameters are inevitably biased. To overcome this drawback of the ordinary least squares algorithm, 

Golub and Van Loan (1973, 1980) developed an efficient numerical tool, called total least squares 

(TLS), for solving linear regression problems, where the effects of errors on both the dependent 

variables and the independent variables (and thus the design matrix) are taken into account. However, 

unlike the ordinary least squares algorithm where the solution can be written in a compact form, the 

application of the total least squares algorithm involves nonlinear optimization for parameter 

estimation. 

The central objective of this work is to propose an empirical and data-based modelling approach 

that can produce an accurate but simple description of the relationship between the changes of cerebral 

blood flow and cerebral blood volume during brain activity. The associated modelling procedure 

involves several aspects, two of which focus on the following issues: how to determine the model 

structure and how to obtain accurate estimates of the model parameters by reducing the effects of the 

measurement errors that are inevitable in any real biomedical experiments. Following Occam�s Razor 

(also known as the parsimonious principle) and by applying model structure detection and model 

validity test methods for example the orthogonal least squares and statistical model validity test 

algorithms (Billings and Voon, 1983, 1986, 1987; Leontaritis and Billings, 1987a, 1987b; Chen et al., 

1989b; Billings and Fung, 1995; Billings and Zhu, 1994, 1995; Aguirre and Billings, 1995; Wei et al., 

2004; Billings and Wei, 2008; Wei and Billings, 2008a; Wei et al., 2008), the model structure can be 

determined effectively. As for the parameter estimation issue, as was discussed in the previous 

paragraph, the ordinary least squares algorithm may produce biased estimates when it is directly 

applied to highly noisy experimental measurements. With this consideration, a regularized total least 

squares (RTLS) method (Sima et al., 2004), implemented by using a simplex direct search 

optimization algorithm, proposed by Nelder and Mead (1965), is developed and adapted for model 

parameter estimation. By combining the parsimonious principle, the well-established model structure 

selection and model validity test methods, the regularized total least squares algorithm and a priori 

information on the associated cerebral hemodynamics, parsimonious but effective models relating 

CBF and CBV can be obtained. 
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2.   The Data-Based Modelling Framework 

2.1  The NARX model 

It has been proved that under some mild conditions a discrete-time or discretized continuous-time 

dynamical system can be described by the following difference equation model (Leontaritis and 

Billings 1985a, 1985b) 

)())(,),1(),(,),1(()( neqnunupnynyfny +−−−−= LL                                                        (1) 

where , ) and  are the system input, output and noise variables; p and q are the maximum 

lags in the input and output, respectively; and f is some unknown linear or nonlinear mapping. It is 

generally assumed that  is an independent identical distributed noise sequence. A commonly 

employed form of model (1) is the well-known nonlinear autoregressive with exogenous inputs 

(NARX) model, which was introduced by Billings and colleagues (Billings and Leontaritis, 1981; 

Leontaritis and Billings, 1985a, 1985b; Chen and Billings, 1989a), and which can describe a wide 

range of nonlinear dynamic systems and includes several other linear and nonlinear model types, 

including the classical Volterra, Hammerstein, Wiener, AR, and ARX models as special cases 

(Pearson, 1995). 
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Practical applications have shown that NARX models, with a nonlinear degree order , can often 

provide satisfactory approximations for most dynamical systems. The widely used autoregressive with 

exogenous input (ARX) model (Astrom, 1970; Ljung, 1987; Söderström and Stoica, 1989), as a 

special case of the NARX model (2) where =1 and 

3≤l

00 =c , is explicitly given by l
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The initial full linear-in-the-parameters model (2) contains a total of M= ])!(!/[])![( qpqp +++ ll  

model terms, where the symbol �(p+q)!� indicates the factorial of the number (p+q). Note that for large 
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maximum lags p and q, the initial full model (2) may involve a great number of candidate model terms. 

However, experience shows that in most cases only a small number of significant model terms are 

necessary and thus should not be included in the final model to represent the underlying dynamics. 

Most candidate model terms are either redundant or make very little contribution to the system output 

and can therefore be removed from the model. Several efficient model structure determination and 

model validity test methods have been developed over the last two decades ((Billings and Voon, 1983, 

1986, 1987; Leontaritis and Billings, 1987a, 1987b; Chen et al., 1989b; Billings and Fung, 1995; 

Billings and Zhu, 1994, 1995; Aguirre and Billings, 1995; Wei et al., 2004; Billings and Wei, 2008; 

Wei and Billings, 2008a; Wei et al., 2008). 

Assume that a total of m significant model terms, denoted by { )(,),(),( 21 nnn mφφφ L }, have been 

selected from the library consisting of all the M candidate model terms. The selected m model terms 

can be used to form a parsimonious model 

)()()()( 2211 nnnny mmφθφθφθ +++= L )(ne+                                                                             (5) 

where )(nkφ are a combination of the lagged versions of the input and output variables 

and (the constant may also be included). For example, for a NARX model with a nonlinear 

degree order , 

)(nu )(ny

)(nkφ }1:)({}1{ dinxL i ≤≤= U are then selected from the library  3=l

},1:)()({ djinxnx ji ≤≤U },,1:)()()({ dkjinxnxnx kji ≤≤U ,where  are defined by (3). Classical 

linear least squares type of algorithms may be applied to estimate the associated model parameters.  

)(nxk

2.2  Regularized Total Least Squares 

It is known that the classical least squares algorithms and the standard statistical analysis for these 

algorithms require certain assumptions: the �input� (independent) variables say )(nkφ in (5) are 

measured without errors; or the errors imposed on the �input� variables are much smaller than those 

imposed on the �output� variables (dependent variables) say y(n) in (5) and can therefore be ignored. 

For many cases, this assumption may not be satisfied, and the ordinary least squares method will not 

work well. To solve this kind of errors-in-variables (EIV) problem, Golub and Van Loan (1973, 1980) 

developed the total least squares method (TLS). Over the last three decades, TLS methods have been 

successfully applied to solve a variety of EIV problems (Van Huffel and Vandewalle, 1991; Van 

Huffel, 1997; Van Huffel and Lemmerling, 2002; Markovsky and Van Huffel, 2007), including the 

applications to biomedical data modelling (Chen, 2000; Shou et al., 2008). In some cases, the TLS 

method alone, however, may not be effectively immune to the amplification effects of the noise for an 

ill-conditioned problem. To solve this problem, the regularized total least squares (RTLS) method was 

proposed by combining the well-known Tikhonov regularization (Tikhonov and Arsenin, 1977) and 

TLS methods, see for example Mesarovic et al. (1995), Golub et al. (1999) and Siam et al. (2004). 

Taking the linear regression (linear-in-the-parameters regression) model (5) as an example, the 
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RTLS estimate is stated as 
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μ and λ  are two adjustable parameters. 

Clearly, whilst the ordinary least squares minimizes a sum of squared residuals, total least-squares 

minimizes a sum of weighted squared residuals with a penalized term formed by the square of the 

parameters. If μ =0, (6) reduces to the case of the Tikhonov regularization; if μ =1 and λ =0, (6) 

reduces to TLS. In the present study the adjustable parameter μ  will be set to be unity, that is μ =1, 

and the regulation parameterλ  will be chosen by trial-and-error (see the example below for more 

details). 

mθθθ ,,, 21 LNote that the solution to RTLS (6), with respect to the unknown parameters  , involves 

nonlinear optimization. In the literature many nonlinear optimization approaches are available to solve 

such a nonlinear optimization problem. In this study, however, a simplex direct search optimization 

algorithm, proposed by Nelder and Mead (1965), is applied to solve the nonlinear optimization 

problem here. The Nelder-Mead method, first introduced by Nelder and Mead in 1965 and recently 

enhanced theoretically by Lagarias et al. (1998), is a powerful direct �derivative-free� search algorithm, 

where neither the computation nor the approximation of derivatives or gradients are needed. The 

Nelder-Mead method has enjoyed enduring popularity. Of all the direct search methods, the Nelder-

Mead simplex algorithm is the one most often found in numerical software package (Lewis et al., 

2000).  

2.3  Choosing the Regularization Parameter 

λThe determination of the regularization parameter  in RTLS (6) is a significant but difficult issue, 

and there is no universal criterion on how to select the parameter for general dynamical modelling 

problems. Some empirical or ad hoc methods, however, may work quite well when choosing such 

regulation parameters (Wei and Billings, 2008b). This study suggests using a trial-and-error approach 

and the basic idea is as follows. Let be the LS estimate for the model parameter vector ș  and 

 be the normalized mean-square-errors (NMSE) calculated from the model with the LS estimate. 

A rule of thumb from our experience is to initially choose a number  
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where y is the mean of the output vector y ,  and  are the model prediction (one-step-ahead 

prediction) and the model residual vector, produced by the model with LS estimate . Using the 

number

(LS)�e(LS)�y

(LS)�ș

0λ , define a set: Γ  for k=0,1,2,3,4,5. The 

regulation parameter

}10:{ 0
k }105.0:{ 0

k
kk

−×=βλβUk =k
−= αλα

λ will be chosen from the set Γ , where each element is set to be the candidate as 

the regulation parameter and the RTLS procedure is then performed. This will lead to a set of models 

with different RTLS estimates. The criterion for selecting the regularization parameter is to inspect the 

predictive capability of the resultant models. For a dynamical modelling problem, the resultant model 

should possess a satisfactory predicative ability in terms of model predicted output (MPO), which is an 

extreme case of long-term prediction and which is the most stringent test for dynamical models. The 

value in Γ that produces the model with the best performance (in the sense that minimizes the errors 

between the model predicted output and the corresponding measurements) will be selected as the 

regulation parameterλ . 

As an example, consider two nonlinear systems described by the models below 
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where the model parameter vector =[1.8, -2.0, 1.5, -0.5, 0.5, -0.25, -0.1] for 

both of the two models above, and the input u(n) was chosen to be a stochastic process  

],,,,,,[ 3214321 bbbaaaaT =ș

)2(98.0)1(96.1)()( −+−−= nwnwnwnu                                                                              (10) 

where w(n) was a Gaussian white noise sequence with zero mean and unit variance. The models were 

simulated and two hundred input-output data pairs were collected for both of the two models; a noise 

signal was then deliberately added to the data points, and these noisy data were then used for model 

parameter estimation using the RTLS algorithm. 

A comparison of the results produced by LS, TLS and RTLS, for the two systems given by models 

(8) and (9), are shown in Tables 1 and 2, respectively. While the three methods produce almost exactly 

the same parameter estimates when the noise level is low (with a high signal-to-noise ratio), for the 

case with high level noise (with a low signal-to-noise ratio), however, the results are significantly 

different: the RTLS estimates, which are slightly better than TLS, significantly outperform LS, this 

can obviously be observed in Table 2. 
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Table 1. A comparison of the parameter estimates produced by LS, TLS and RTLS, for the model given by (8). 

a a a a b b b Noise level and the 

regularization 

parameter in RTLS 

 1 2 3 4 1 2 3

True 1.8 -2.0 1.5 -0.5 0.5 -0.25 -0.1  

LS 1.7958 -1.9938 1.4934 -0.4947 0.4942 -0.2489 -0.0982 SNR=40dB (for input) 

TLS 1.7988 -1.9981 1.4978 -0.4984 0.5015 -0.2498 -0.1034 SNR=40dB (for output) 

λ =3.3704  810−×RTLS 1.8005 -2.0011 1.5005 -0.4991 0.4956 -0.2484 -0.0984 

LS 1.5291 -1.5649 1.1044 -0.2943 0.4583 -0.2817 -0.1095 SNR=20dB (for input) 

TLS 1.7736 -1.9637 1.4529 -0.4650 0.4894 -0.2471 -0.0566 SNR=20dB (for output) 

λ =4.0654  610−×RTLS 1.7919 -2.0191 1.5311 -0.5125 0.5365 -0.2553 -0.1225 

 

Table 2. A comparison of the parameter estimates produced by LS, TLS and RTLS, for the model given by (9). 

a a a a b b b Noise level and the 

regularization parameter 

in RTLS 

 1 2 3 4 1 2 3

True 1.8 -2.0 1.5 -0.5 0.5 -0.25 -0.1  

LS 1.7844 -1.9834 1.4810 -0.4918 0.5011 -0.2463 -0.0963 SNR=40dB (for input) 

TLS 1.7945 -2.0021 1.4965 -0.5022 0.5078 -0.2577 -0.0887 SNR=40dB (for output) 

λ =2.2730  610−×RTLS 1.7962 -1.9979 1.4964 -0.4995 0.5018 -0.2515 -0.0962 

LS 0.8128 -1.0370 0.3794 -0.0201 0.4123 0.2756 0.0058 SNR=20dB (for input) 

TLS 1.8084 -1.9874 1.5115 -0.4899 0.4295 -0.1565 -0.1721 SNR=20dB (for output) 

λ =0.0011 RTLS 1.7978 -2.0024 1.5013 -0.5063 0.4837 -0.2313 -0.0980 

 

3.   Data Modelling Between CBF and CBV 

3.1  The Datasets 

In this work, changes in CBF were measured using laser-Doppler flowmetry (LDF), with a 

sampling rate of 30Hz, while changes in CBV were measured using optical imaging spectroscopy 

(OIS), with a sampling rate of 7.5Hz. For convenience of data modelling, the CBF data were then 

downsampled at 7.5Hz. Brief 2s stimuli of 1, 2, 3, 4, and 5Hz were randomly interleaved and applied 

within a single experimental run with stimulus intensity of 1.2mA and a pulse width of 0.3ms. Thirty 

trials were obtained for each stimulus condition with each trial lasting 23s (with stimulus onset at 8s), 

and an inter-trial-interval of 25s to avoid hemodynamic refractory period. A more detailed description 

of the experiments and the associated data sets can be found in Martindale et al (2003) and Kong et al. 

(2004).  

In the following, the measurement of changes in CBF is treated as the input, denoted by u(n), and 

the measurement of changes in CBV is treated as the output, denoted by y(n). The objective is to learn, 

from available measurements of the five cases (1,2,3,4, and 5Hz), a common model structure that is 

suitable for describing the hemodynamics between CBF and CBV. A total of 172 data input-output 

data points are involved in each of the data sets for the five cases, and these are shown in Fig. 1.  
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Fig. 1.   Measurements of changes in CBF and CBV. From top to bottom, the plots are for the cases of 1, 2, 3, 4, 

and 5Hz.    

3.2  Model Identification 

A model term and variable selection algorithm (Wei et al., 2004) was performed over each of the 

five datasets, and the significant model variables were determined to be x1(t)=y(t-1), x2(t)=y(t-2), 

x (t)=u(t), x3 4(t)=u(t-1), and x5(t)=u(t-2). Three types of NARX models were considered: i) An ARX 

model given by (4); ii) A NARX model with a nonlinear degree order =2; and iii) A NARX model 

with a nonlinear degree order =3. The initial full models of all the three types were formed using the 

five selected significant model variables. Each of the three initial full models was then used to 

generate a parsimonious model that fits all the five data sets, and this was implemented by using a 

common model structure selection algorithm (Wei et al., 2008) over the five datasets. By comparing 

the resultant model performance and by following the parsimonious principle, the common model 

structure that fits all the five datasets was determined to be 

l

l

)2()1()()2()1()( 21021 −+−++−+−= nubnubnubnyanyany                                                  (11) 

where the estimates of the coefficients (i=1,2) and (j=0,1,2) using LS, TLS, and RTLS, for the 

five cases of 1, 2, 3, 4, and 5Hz, are shown in Table 3. 

ia jb
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Table 3. The parameter estimates produced by LS, TLS and RTLS, for the CBF and CBV modelling problem. 

a a b b b Normalized 

MSE(MPO) 

Dataset and the regularization 

parameter for RTLS 
 1 2 0 1 2

LS 1.4819 -0.6017 0.0063 0.0494 -0.0232 0.0269 

TLS 2.0100 -0.9631 -0.0152 0.0397 -0.0358 (*) 
λ =7.3165  510−×1Hz, 

RTLS 0.2814 0.1411 0.0529 0.0460 0.0196 0.0132 

LS 1.6368 -0.6544 0.0139 0.0293 -0.0400 0.1083 

TLS 1.9449 -0.9183 -0.0050 0.0298 -0.0325 (*) 
λ =3.1252  410−×2Hz, 

RTLS 0.3243 0.2813 0.0757 0.0353 -0.0188 0.0354 

LS 1.8200 -0.8247 -0.0051 0.0450 -0.0424 7.3215 

TLS 1.9977 -0.9765 -0.0186 0.0477 -0.0363 (*) 
λ =1.1499  410−×3Hz, 

RTLS 0.6073 0.2664 0.0833 0.0268 -0.0751 0.0417 

LS 1.7724 -0.7736 -0.0084 0.0495 -0.0415 0.9283 

TLS 2.0908 -1.0461 -0.0266 0.0541 -0.0382 (*) 
λ =1.5689  410−×4Hz, 

RTLS 0.4889 0.2847 0.0598 0.0329 -0.0440 0.0235 

LS 1.7673 -0.7627 -0.0032 0.0534 -0.0519 7.1514 

TLS 1.9558 -0.9386 -0.0199 0.0574 -0.0428 (*) 
λ =5.9245  510−×5Hz, 

RTLS 0.7642 0.1665 0.0843 0.0318 -0.0970 0.0163 

(*): the model produced by TLS is instable and the associated model predicted output (MPO) is divergent; 

MSE(MPO): the normalized mean-square error was calculated for the associated model predicted output (that is 

different from short-term predictions).  

 

By setting the first two observations of CBV (the output) as the initial condition and by using the 

observations of the CBF as the inputs, the models produced by the LS and RTLS algorithms were 

simulated. The associated model predicted outputs (MPO) are shown in Fig. 2. Note that MPO here is 

different from short-term (or multi-step) ahead predictions, and is a far more severe test than the often 

used one-step ahead (OSA) predictions since the latter can often look good even for very poor models.  

From Table 3 and Fig. 2, the following conclusions can be drawn: i) For the given real datasets, 

where the associated measurements of changes in CBF and CBV may be contaminated by noise, the 

ordinary LS method does not work well; neither does the TLS method; ii) The RTLS method 

significantly outperforms both the LS and TLS methods, in that it can very effectively handle the 

errors-in-variables problems here; iii) The proposed empirical choice of the regularization parameter 

λ  given by (7) works very well for the RTLS algorithm.  

3.3  Data Filtering 

From the results presented in the previous sections, these are significant differences between the 

LS and RTLS estimates. This implies that there may be some noise in the associated input and output 

observations, because if the measurements are �clean� then the LS and RTLS algorithms should in 

theory produce almost exactly the same parameter estimates. By visually inspecting the measurements 

of changes in CBF shown in Fig.1, it can be observed that the CBF data are quite noisy compared with 

the CBV data. As a trial-and-error approach, the CBF data were then filtered by using wavelet filtering 

methods. As will be illustrated, filtering the original CBF data is useful for further improving the 

identified model performance.  
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Fig. 2.   Comparisons of the model predicted outputs (MPO) from the LS and RTLS related models (given in 

Table 3) and the associated measurements, for the five cases of 1, 2, 3, 4, and 5Hz. In each figure, the thin-solid 

line indicates the measurement, the thick-solid line indicates the MPO produced by the RTLS related model,  and 

the thick-dashed line indicates the MPO produced by the LS related model.    

 

The original CBF data in all the five datasets were filtered with Daubechies� wavelets (Daubechies, 

1992). The filtered data, along with the relevant original data for the first four cases of 1, 2, 3, and 4 

Hz, are shown in Fig. 3 (the 5Hz case was omitted here to save space). Using the filtered CBF data as 

the input and the associated CBV data (unfiltered) as the output, the coefficients of the ARX model of 

the form (11) were then re-estimated using the RTLS method, and the associated parameter estimates 

are shown in Table 4. 

The five models given in Table 4 were simulated; for each case, the original CBF data (unfiltered) 

was used as the model input, and the associated model predicted output was then compared with the 
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original CBV data. Comparisons between the model predicted outputs and the corresponding original 

observations are shown in Fig. 4. From Table 4 and Fig. 4, it is quite clear that models estimated from 

the filtered CBF data are much better than those estimated from the original CBF data. While Fig. 4. 

only provides some visual perception, the values of the normalized MSE listed in Table 4 and Table 3 

gives a quantitative comparision. As can be noticed, the normalized MSE for the model predicted 

output given in Table 4 is much smaller than that given in Table 3, for all the five cases.  

Table 4. The RTLS estimates for CBF and CBV modeling problem, where the filtered CBF data as the input and 

the original CBV data (unfiltered) as the output. 

a a b b b Normalized 

MSE(MPO) 

Dataset and the regularization 

parameter for RTLS 
 1 2 0 1 2

RTLS 0.2948 0.1929 0.0901 0.0134 0.0023 0.0133 λ =5.2565  510−×1Hz, 

RTLS 1.0085 -0.0273 0.0093 0.1775 -0.1816 0.0157 λ =1.0357  610−×2Hz, 

RTLS 0.9872 -0.0164 0.1024 -0.0018 -0.0910 0.0086 λ =2.2285  610−×3Hz, 

RTLS 0.8348 0.1180 0.0258 0.1395 -0.1540 0.0059 λ =2.8804  610−×4Hz, 

RTLS 0.6617 0.3001 0.1153 0.0308 -0.1343 0.0027 λ =5.9841  610−×5Hz, 

Model predicted output (MPO) was calculated by simulating the associated model where the original CBF data 

(unfiltered) was set to be the input, and the model predicted output was then compared with the original real 

measurement.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.  Comparisons between the original CBF data and the filtered data for the cases of 1, 2, 3, and 4Hz. The 

thin-solid lines indicate the measurements, and the thick-dashed lines indicate the filtered data.  
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Fig. 4.  Comparisons between the measurements and the associated model predicted outputs produced by the 

models estimated from the filtered CBF data using the proposed RTLS algorithm. The thin-solid lines indicate 

the measurements, and the thick-dashed lines indicate the associated model predicted outputs.  

 

3.4  Continuous-Time Models 

In some cases it may be desirable to identify continuous-time models. From linear systems and 

signal processing theory, the linear discrete-time model (11) can easily be converted into a continuous 

model. First, the discrete-time (z-domain) transfer function of (11) is given by  
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By applying the well-known Tustin transform (also called the bilinear transform), that is, by letting 
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where is the sampling interval, the z-domain transfer function can then be converted into the s-sT
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domain. Taking the case of 5Hz as an example, where =2/15s, and the associated coefficients are 

listed by Table 4, the s-domain transfer function is given by 

sT

316.665.28

965.1501.503654.0
)(

2

2

5 ++
++−

=
ss

ss
sG                                                                                        (14) 

The transfer function (14) can further be converted into a differential equation model below 
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Driven by the input (measurement of changes in CBF) in the associated dataset of the 5Hz case, the 

continuous-time model (14) was simulated by using an extrapolation method in the Runge-Kutta 

family of ordinary differential equation (ODE) solvers provide by Matlab in the ordinary differential 

equation toolbox, and a comparison of the output produced by the continuous-time model (14) and that 

produced by the discrete-time model given in Table 4 is shown in Fig. 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.  A comparison of the output produced by the continuous-time model (14) and that produced by the 

discrete-time model given in Table 4, for the 5Hz case.     
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4.   Discussion and Conclusions 

The focus of the work has been on the development of a data-based modelling approach for the 

identification of models that can be used to describe the dynamical relationship of changes in CBF and 

CBV during neural activity. This is a complicated black-box system where the true model structure is 

unknown and thus needs to be identified from available experimental data. The central task of data-

based modelling of such a structure-unknown system involves several aspects including model 

variable selection, model structure specification and detection, parameter estimation, and model 

validation. In this study, a nonlinear autoregressive with exogenous input model (NARX), which has 

been widely used for nonlinear system identification, was chosen as the initial candidate model 

structure. Compared with many other model structures for example typical neural networks, the 

NARX model structure possesses several advantages, some of which are:  

   A wide range of nonlinear systems can be described using the NARX model.  •

  Over the last two decades the NARX model has been systematically studied and a series of 

excellent algorithms have been developed for the identification such models. This means that 

model structure detection and parameter estimation for such a model can be performed speedily 

and efficiently using existing algorithms. 

•

   The NARX model is transparent and thus can easily be related back to the underlying system. •

  Algorithms that exist can directly map the NARX model and continuous-time nonlinear differential 

equation (ODE) models into the frequency domain (Peyton-Jones and Billings, 1989, 1990; Lang 

and Billings, 1996); this allows the user to reveal the explicit link from the time-domain model 

parameters to the frequency-domain properties. 

•

For the model parameter estimation problem it has been illustrated that neither the ordinary least 

squares (LS) method nor the classical total least squares (TLS) method can produce reliable estimates 

from the available CBF and CBV data, which were contaminated by noise. The regularized total least 

squares (RTLS) method, however, works very well when applied to the error-in-variables problem 

here. Note that the application of RTLS involves nonlinear optimization and the need to estimate the 

value of the regularization parameter. The Nelder-Mead simplex direct search optimization algorithm 

was introduced to solve the RTLS equation (6), where the initial value of the unknown parameters was 

chosen to be the LS estimates. While the Nelder-Mead algorithm, coupled with the rule of thumb (Eq. 

(7)) for choosing the regularization parameter, can work very well for model parameter estimation, 

there still exists a space to further optimize the choice of the regularization parameter, as well as the 

initial value for the free parameters to be optimized. 

It can be believed that the basic ideas and algorithms developed in this work can be directly 

applied or extended to other biomedical modelling problems, where limited a priori information is 

available and the true model structure of the underlying dynamics is unknown. 
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