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Complex Robot Training Tasks through Bootstrapping System

Identification

Otar Akanyeti1, Ulrich Nehmzow2, and Steve Billings3

Abstract— Many sensor-motor competences in mobile
robotics applications exhibit complex, non-linear characteris-
tics. Previous research has shown that polynomial NARMAX
models can learn such complex tasks. However as the complex-
ity of the task under investigation increases, representing the
whole relationship in one single model using only raw sensory
inputs would lead to large models. Training such models is
extremely difficult, and, furthermore, obtained models often
exhibit poor performances.

This paper presents a bootsrapping method of generating
complex robot training tasks using simple NARMAX models.
We model the desired task by combining predefined low level
sensor motor controllers.

The viability of the proposed method is demonstrated by
teaching a Scitos G5 autonomous robot to achieve complex route
learning tasks in the real world robotics experiments.

I. INTRODUCTION

One approach to generating controllers for robotics sensor-

motor tasks, using non-linear mapping techniques, can be

summarized as follows: The programmer demonstrates the

desired behaviour to the robot by driving it manually in

the target environment. During this run, the sensor pre-

ception and the desired velocity commands of the robot

are logged. Having thus obtained training data, the sensor

based control models — which link the perception of the

robot to the desired motor commands to achieve the de-

sired task — are obtained using non-linear mapping tech-

niques ([Demiris and Hayes, 1996] [Nehmzow et al., 2005],

[Akanyeti et al., 2007a]) (see figure 1). Single model is usu-

ally enough to identify the whole relationship successfully.

Desired
Output

Raw 
Sensor

Perception
Modelling
Non−linear

Fig. 1. The general approach to generate controllers for sensor-motor tasks.

This approach has been extensively used by the mo-

bile robotics community and some good results have

been achieved in many different mobile robotics ap-

plications ([Nguyen and Widrow, 1990], [Pomerleau, 1993],

[Akanyeti et al., 2007b]). However as the complexity of the

task under investigation increases, trying to represent the

task in a single model, using only raw sensory inputs would

lead to large models with many parameters to fit. Obtaining

such models is difficult and usually such models exhibit poor

performances.
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Therefore it is common that the raw input readings are

pre-processed with the aid of the programmer in order to

decrease the dimensionality of the input space, and to extract

higher level information from the sensory data in order

to simplify the problem to certain extent. However pre-

processing tenders the system identification process program-

mer dependent, which can result in brittle models.

A. Generating Complex Tasks by Bootstrapping

We argue that it is important to have a formal, algorithmic

method to extract high level input information, minimizing

the use of human knowledge. In this paper we therefore

propose a bootstrapping behaviour generation method which

uses low level behaviours to generate more complex ones.

The method has three phases:

Phase 1: For obtaining simple sensor-motor controllers,

we use the main modelling approach given in (figure 1)

[Akanyeti et al., 2007a]. Some examples of such low level

reactive-controllers are obstacle-avoidance, door traversal,

wall-following, etc.

Phase 2: The controllers obtained at phase 1 are loaded

to the robot in order to form a behaviour repertoire in the

robot’s memory. For more complex tasks, we obtain a model

using the NARMAX system identification methodology,

which models the new task as a function of these previously

acquired behaviours. Here, the composition of behaviours is

done using state variables which contain information about

the state of the environment and the robot (see figure 2).
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Fig. 2. The bootstrapping method of generating complex robot training
tasks.

Phase 3: Once we obtain the model, we test it on the

robot in order to validate performance. If the new controller

is successfull it is added to the repertoire so that it can be

used to generate even higher level controllers in the future.

II. ARMAX/NARMAX MODELLING AND

EXPERIMENTAL SETUP

a) Modelling Procedure: ARMAX (Auto-Regressive

Moving Average models with eXogenous inputs)

[Eykhoff, 1974], [Eykhoff, 1981] and NARMAX

(Nonlinear ARMAX) [Chen and Billings, 1989],

[Billings and Chen, 1998] modelling approaches are



supervised parameter estimation methodologies for

identifying both the important model terms and the

parameters of unknown non-linear dynamic systems. These

produce linear or nonlinear polynomial functions that model

the relationship between some input and some output,

both pertaining to the robot’s behaviour. A more detailed

discussion of about the modelling technique is presented in

[Korenberg et al., 1988], [Billings and Voon, 1986].

b) Experimental Setup: The experiments described in

this paper were conducted in the 100 square meter circular

robotics arena of the University of Essex, using a Scitos

G5 mobile robot called FOX. The robot is equipped with a

HOKUYO laser range finder. This sensor has a 4 m distance

range, 240◦ angular range and approximately 0.36◦ angular

resolution. The robot also incorporates a colour video camera

with 640× 480 pixels resolution which can deliver colour

images up to 60Hz.

III. SIMPLE BEHAVIOUR 1: OBSTACLE AVOIDANCE

In the first experiment, we trained FOX, to avoid obstacles

towards the “obvious” side as shown in figure 3; if robot has

more space on the right side, it turns to right, and if there is

more space on the left, it turns to left.

OBSTACLE

ROBOT

OBSTACLE

ROBOT

(a) (b)

Fig. 3. Experiment 1. The desired obstacle avoidance behaviour. The
robot must choose the “obvious” side to avoid the obstacle in front. While
approaching to the boxes if robot has more space on the right side, it turns
right (b) and if there is more space on the left, it turns to the left (b).

In order to teach the desired behaviour to FOX, the

programmer drove the robot in the training environment

(figure 4) avoiding obstacles by turning the robot to the

side having more space. During the experiments, the robot

was started from the initial position S and stopped at the

destination point F for 16 times. During each run, laser

readings and the motor commands of the robot were logged

in every 250 ms.

Having obtained the training data, we coarse coded laser

readings into 11 sectors by averaging 62 readings for each

22◦ intervals. Coarse coded laser readings were clipped at

1.5m to avoid models taking far-away obstacles into account

that are irrelevant to obstacle avoidance.

We then modelled the angular velocity ωo of the robot

as a function of coarse coded laser readings (u1 − u11)

using ARMAX system identification methodology where the

initial training parameters were Nu = 0, Ny = 0 and l = 1.

The obtained model was a linear polynomial with 6 terms

(table I).

Fig. 4. Experiment 1. The trajectory of the robot guided by the programmer.
The robot was started from point S and avoided boxes along the route until
it reaches the destination point F. The experiment was repeated 16 times and
for each run the laser readings and the motor commands of the robot were
logged in every 250ms. Note that trajectories of the robot was obtained using
a Vicon motion tracking system mounted in the arena which can deliver 3D
data upto 100Hz with an accuracy better than 1mm.

ωo(n) = +0.183−0.187 ·u4(n)−0.137 ·u5(n)

−0.021 ·u6(n)−0.045 ·u7(n)+0.265 ·u8(n)

TABLE I

EXPERIMENT 1. THE ARMAX MODEL LINKING THE LASER

PERCEPTION TO THE ANGULAR VELOCITY OF THE ROBOT FOR

AVOIDANCE BEHAVIOUR.

c) Model validation: We tested the steering speed

model on the robot in three different test environments.

During the experiments the linear speed of the robot was

clamped to 0.1m/s.

In the first test environment, the robot was started from

20 different initial positions in front of two boxes put next

to each other and was expected to avoid them from the

“obvious” side where the robot had more space. The results

(figure 5(a)) confirmed the expectation where the robot was

able to avoid obstacles as desired.
1

(a) (b) (c)

Fig. 5. Experiment 1. The three environments where the obtained angular
speed model ωo given in table I was tested for obstacle avoidance behaviour.
The results show that ωo was captured the general relationship between the
laser perception and the motor commands of the robot to achieve the obstacle
avoidance behaviour.

In the second (figure 5(b)) and third (figure 5(b)) test

1In three runs out of 20, when the robot was started from the mid-point
of the two boxes facing towards them, the robot was not able to choose
a side and failed to escape from the boxes. One possible solution to this
problem would be to train a linear speed model as well which exponentially
decreases as the robot comes closer to the boxes, but for the purpose of the
work described in this paper the achieved results were enough.



environments, we tested if the obtained angular speed model

captured the real essence of obstacle avoidance behaviour.

The robot was started in front of the boxes arranged to

simulate a right and a left corner and in both cases the robot

was successfull to avoid the corners by turning the “obvious”

side. Note that for both environment the robot was started

from 16 different initial positions.

IV. SIMPLE BEHAVIOUR 2: LEFT/RIGHT TURNING

ACCORDING TO THE COLOUR OF THE OBSTACLE

In the second experiment, we trained FOX in such a

way that it determined the turning direction according to

the colour of the obstacle rather than choosing the “obvi-

ous” side. The experimental scenario here is: while FOX

approaches to an obstacle, it identifies the colour of the

obstacle by a simple colour filtering algorithm, then i) if the

colour of the obstacle is red, the robot avoids the obstacle

by turning to right, and ii) if the colour of the obstacle is

green, the robot escapes the obstacle by turning to left.

In order to obtain the training data set, we drove the robot

in two environments: i) the first one contained boxes of red

colour, where the robot was avoiding them by turning to

right (figure 6(a)) and ii) the second environment contained

green boxes where the robot was avoiding them by turning

to left (figure 6(b)). In each environment, we conducted the

experiments 10 times starting the robot from initial point S,

stopping at the final point F.

(a) (b)

Fig. 6. Experiment 2. The trajectories of the robot in two training
environments; i) the first one contained boxes with red colour where
the robot was avoiding them by turning to right (a) and ii) the second
environment contained green boxes where the robot was avoiding them by
turning to left (b))

During the experiments, we logged the coarse coded laser

readings and the motor responses of the robot as well as the

colour index ci (ci = 1 for green, ci = 2 for red boxes) of the

closest obstacle to the robot every 250 ms.

After logging this perception-action data, we modelled

the angular speed ωt of the robot using NARMAX system

identification methodology as a function of the coarse coded

laser readings (u1−u11) and the colour index of the detected

obstacle (ci). The initial training parameters were Nu =
0, Ny = 0 and l = 2 and the resultant NARMAX model

contained 21 terms (table II).

The resultant polynomial model ωt is essentially the

combination of two polynomials, where each polynomial

turns the robot to a different direction, and the transition

between the two is performed using the terms including state

variable ci (the last two rows in table II).

ωt(n) = +3.839−0.661 ·u4(n)−0.212 ·u5(n)

+0.650 ·u7(n)−2.413 ·u8(n)−0.093 ·u4(n)2

+0.150 ·u5(n)2
−0.002 ·u7(n)2 +0.050 ·u8(n)2

−0.202 ·u4(n) ·u5(n)−0.098 ·u4(n) ·u6(n)

−0.546 ·u4(n) ·u7(n)+1.121 ·u4(n) ·u8(n)

−0.249 ·u5(n) ·u6(n)+0.076 ·u5(n) ·u7(n)

−0.129 ·u6(n) ·u7(n)+0.130 ·u6(n) ·u8(n)

−1.469 · ci(n)+0.263 · ci(n) ·u5(n)

+0.369 · ci(n) ·u6(n)+0.280 · ci(n)∗u7(n)

TABLE II

EXPERIMENT 2. THE NARMAX MODEL FOR THE ANGULAR SPEED OF

THE ROBOT. THE MODEL IS A SECOND ORDER POLYNOMIAL INCLUDING

18 TERMS. THE LAST TWO ROWS SHOW THE TERMS INCLUDING STATE

VARIABLE ci .

d) Model validation: As before we validated the per-

formance of the obtained angular speed model by testing it

on the robot. We put the robot in front of red and green boxes

and let the model drive the robot. For each coloured box, the

model was tested 16 times and the resultant trajectories of

the robot are given in figure 7. They confirm that the model

given in table II achieves the desired behaviour.

(a) (b)

Fig. 7. Experiment 2. The resultant trajectories of the robot guided by the
angular speed model ωt when it is confronting the: (a) red coloured boxes
and (b) green coloured boxes. The results show that the obtained angular
speed model was successful making the robot to turn the right direction
according to the colour of the detected obstacle.

In order to quantify the performance of the angular speed

model ωt , we computed the strength of the association be-

tween the colour of the detected obstacle and the direction of

the corresponding turning speed of the robot using Cramer’s

V test. To do so, we checked the sign of the resultant turning

speed according to the colour of the detected obstacle during

the test runs. When the robot detected a green obstacle, the

resultant ωt > 0 (indicating to turn left) 97.651% of the time,

and when the detected obstacle is red, ωt < 0 (indicating to

turn right) 98.837% of the time. The results showed that

there is a significant correlation where V = 0.96. Note that

V varies between 0 and 1 corresponding to no association

and perfect association respectively.

V. COMPLEX BEHAVIOUR 1: ROUTE LEARNING

The previous experiment demonstrates how different be-

haviours can be embodied in a single polynomial where the



transition between behaviours is done using state variables

containing information about the current state of the envi-

ronment. We will now show that this can be used to achieve

more complex tasks.

Scaling up from the first two experiments, the third task

was to generate a polynomial which can guide FOX to follow

a particular route in order to reach a desired object. The

experimental scenario is given in figure 8, the environment

is populated with red and green boxes in order to guide the

robot to the destination point F , where the target object, blue

pillar, is present.

60 cm 
100 cm

ROBOT

PILLAR
RED BOX

GREEN BOX
GREEN BOX

RED BOX

GREEN BOX

F

S

Fig. 8. Experiment 3. The experimental scenario where the desired task
is to teach the robot to follow a particular route in order to reach the blue
pillar. Note that the environment is populated with red and green boxes to
indicate the right direction to the robot to follow.

To collect the training data, the programmer drove the

robot manually in the target environment (figure 9) 10 times

starting the robot from the initial position S and stopping the

robot in front of the blue pillar (destination point F). During

the training, laser readings, camera images and the motor

commands of the robot were logged in every 250 ms.

Fig. 9. Experiment 3. The trajectories of the robot guided manually by
the human operator in order to obtain the training data.

A. Bootstrapping from Low-Level Controllers

After logging the training data, as discussed in section I-

A, we processed the laser readings and the raw images to

extract three low level controllers which will then be fed to

polynomial NARMAX models as inputs. These controllers

are:

• Obstacle avoidance controller The first controller in

the behaviour repertoire guides the robot to avoid ob-

stacles. Here we used the polynomial model ωo given

in table I obtained in experiment 1 (section III).

• Colour encoded turning controller The second one

turns the robot to right if the colour of the detected

object is red and it turns the robot to left if the colour

is green. Here we used the polynomial model ωt given

in table II, obtained during experiment 2 (section IV).

• Object seeking controller: We also implemented a

simple object seeking controller which looks for the

nearest object in front of the robot and guides the robot

towards it.

Having identified the controllers, we also obtained three

state variables which will help the system identification

process to link the low level controllers in order to achieve

the desired task:

• di defines if the target object is detected or not; d =
0 represents target object is not detected, and di = 1

represents target object is detected.

• oi defines if there is an obstacle close to the robot; oi =
0 represents there is no obstacle detected, and oi = 1

represents the presence of an obstacle.

• ci states the colour of the detected obstacle; ci = 1

represents green, ci = 2 represents red, and ci = 0

represents all other colours.

e) Obtaining Polynomial Models: We then obtained

two polynomial models; one for the linear speed vr and one

for the angular speed ωr of the robot — as a function of the

predefined behaviours (ωo, ωt and ωw) and the state variables

(di, oi and ci). The obtained models are given in table III.

vr(n) = +0.100−0.100 ·di(n)

ωr(n) = +0.100 ·d(n)+1.000 ·ωw(n)

−1.000 ·oi(n) ·ωw(n)+1.000 ·oi(n) ·ωo(n)

−1.000 ·oi(n) · ci(n) ·ωo(n)+1.000 ·oi(n) · ci(n) ·ωt(n)

+1.000 ·di(n) ·oi(n) ·ωw(n)−1.000 ·di(n) ·oi(n) ·ωo(n)

+1.000 ·di(n) ·oi(n) · ci(n) ·ωo(n)

−1.000 ·di(n) ·oi(n) · ci(n) ·ωt(n)

TABLE III

EXPERIMENT 3. THE POLYNOMIAL MODELS FOR THE LINEAR vr AND

ANGULAR SPEED ωr OF THE ROBOT.

f) Models Validation: Having obtained the perception

models vr and ωr, we tested them on the robot. We let the

models drive the robot in the target environment 10 times.

Figure 10 shows the resultant trajectories, where in each run

the robot was successful to reach the target object.

VI. EXTENDED BOOTSRAPPING METHOD

In experiment 3 we have demonstrated how simple NAR-

MAX models can be used to achieve more complex tasks.

One interesting question here is “what happens if the low

level controllers found in the behaviour repertoire are not

adequate to generate the desired task?”

To address this question, we extended the proposed

method by adding raw sensory perception to the modelling

process. In this way, we let the polynomial model combine

raw sensory data with the low-level controllers automatically.

Again, transition between the controllers and the raw sensory



Fig. 10. Experiment 3. The trajectories of the robot under the control of
the perception models given in table III. The results show that the robot
successfully reached the target object in each run.

data is controlled according to the state of the environment

and the robot (figure 11).

Behaviour
Repertoire

Perception
Sensor
Raw

Model
NARMAX
Polynomial 

Variables
State

Desired
Output

Fig. 11. The extended bootstrapping method of generating complex robot
training tasks. In the extended version we also give raw sensory data as
inputs to the system.

A. Complex Behaviour 2: Modelling Complex Route Learn-

ing Task

To demonstrate the extended method, we taught FOX to

follow a complex route of different stages (figure 12). First,

the robot has to reach a blue pillar by correctly following

the coloured objects. Once it reaches the pillar, it has to

wait with zero linear and angular speeds until the pillar is

removed from the environment (stage 2). Once the pillar is

removed, the robot must complete the route by traversing the

two consecutive door-like openings with 1 m wide each to

reach the destination point F.

GREEN BOX

RED BOX

PILLAR1m

1m

2m2m

ROBOT 

S

F

W

BOX

BOX

BOX

BOX

Fig. 12. Experiment 4. The experimental scenario for the desired complex
route learning task.

As before we obtained the training data by driving the

robot manually in the target environment shown in figure 13.

Starting the robot at initial position S, first we drove the robot

to point W. Then the robot was stopped in front of the pillar

until the pillar was removed by the human operator. We then

continued driving the robot to pass through two consecutive

door-like openings. The experiments were repeated 10 times

and for each run we logged the laser perception, camera

images and the motor commands of the robot in every

250 ms.

Fig. 13. Experiment 4. The trajectories of the robot under the manual
control of the human operator training data collection.

g) Obtaining Sensor Based Models: After logging the

training data, we fed the raw perception data to low-level

controllers present in the behaviour repertoire of the robot

to generate higher level inputs for the desired task. But this

time we also coarse coded the laser readings into 11 sectors

(u1 to u11) by averaging 62 readings for each 22◦ in order

to enrich the system inputs, since there is no ready door

traversing controller in the behaviour repertoire of the robot.

Also for the transition between the behaviours, we computed

a state flag si which indicates if the blue pillar is removed

from the front of the robot (si = 1) or not (si = 0 ).

We then obtained two polynomial models vc and ωc using

NARMAX system identification methodology as a function

coarse coded laser readings (u1 −u11), route following con-

trollers vr and ωr obtained in section V, and state variable

si. The obtained models are given in table IV.

vc(n) = vr +0.1 · si(n)

ωc(n) = −0.033+1.016 ·ωr(n)+0.144 ·u4(n)

−0.088 ·u5(n)+0.004 ·u6(n)−0.131 ·u7(n)

+0.014 ·u8(n)+0.208 ·ω2
r (n)−0.026 ·u2

4(n)

+0.029 ·u2
5(n)+0.062 ·u2

7(n)2
−0.025 ·u4(n) ·u8(n)

+0.394 · si(n)−1.051 · si(n) ·ωr(n)

−0.145 · si(n) ·u4(n)−0.060 · si(n) ·u5(n)

−0.040 · si(n) ·u6(n)+0.026 · si(n) ·u7(n)

TABLE IV

EXPERIMENT 4. THE POLYNOMIAL MODELS FOR THE LINEAR AND

ANGULAR SPEED OF THE ROBOT FOR COMPLEX ROUTE LEARNING

BEHAVIOUR. THE LAST THREE ROWS SHOW THE TERMS INCLUDING

STATE VARIABLE si .

h) Models Analysis and Validation: Once we obtained

the sensor based models, we used them drive the robot in

the target environment in order to validate the performance.

Figure 14 shows the trajectories of the robot for 10 runs,



where the robot completed the track successfully in each

attempt.

Fig. 14. Experiment 4. The trajectory of the robot under the control of
the perception models given in table IV. The experiments were repeated 10
times and for each run the robot completed the track successfully to reach
the destination point F without bumping into the boxes in each attempt.

Transparent Models: Having transparent models like

the ones given in table IV has a number of advantages,

for example the possibility to analyse the robot behaviour

formally. Here, for instance, one can see that the model

of table IV ωc has two components. The first one is the

colour based route following behaviour which was previously

obtained in section V, taking the control of the robot when

state flag si equals 0. The second behaviour is a door traversal

controller activated when si = 1.

The separability of the behaviours enabled us to add door

traversal controller to the behaviour repertoire of the robot.

In this way we do not only obtain models to achieve the

desired task, but we also extract new low level controllers

from the polynomial model in order to enrich the behaviour

repertoire of the robot.

VII. CONCLUSION AND FUTURE WORK

This paper introduces a bootstrapping method of gener-

ating complex robot training tasks using polynomial NAR-

MAX structures. The method is based on obtaining hierar-

chical polynomial models which model the desired task by

combining predefined low level sensor motor controllers and

raw sensory data in a judicious way.

The method uses the advantage of polynomial models

being truly linear in the parameters [Chen et al., 1990]. This

allows us to combine different low level controllers in a

single polynomial in order to achieve more complex tasks.

The transition between these controllers is done using state

variables which contain information about the state of the

environment.
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