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Abstract:  Numerous studies in the literature have shown that the dynamics of many time series 

including observations in foreign exchange markets exhibit scaling behaviours. A novel statistical 

method, derived from the concept of the continuous wavelet transform correlation function (WTCF), 

is proposed for the evaluation of power-law properties from observed data. The new method reveals 

that foreign exchange rates obey power-laws and thus belong to the class of self-similarity processes.  
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1.   Introduction 

The wavelet transform (Daubechies 1992) provides a powerful tool for analyzing and synthesizing 

signals. The wavelet transform has the property of localisation both in time and frequency. In wavelet 

analysis, the scale that can be used to look at data at different resolution levels plays a special role, 

because wavelet algorithms process data at different scales or resolutions. At a coarse resolution level, 

one would notice gross features. Similarly, at a fine resolution level, one would get detailed features. 

This enables us to see both the ‘forest’ and the ‘trees’, so to speak, and makes wavelets very useful 

(Amara 1995) for data modelling and analysis in diverse fields including dynamical system modelling 

(Billings and Wei 2005a, 2005b, Wei and Billings 2004a, 2004b, 2006, 2007), as well as random 

signal processing and analysis for example statistical self-similarity detection and fractal property 

characterization (Argoul 1990, Flandrin 1992, Wornell 1995, Arneodo et al. 1996, Abry and Veitch 

1998, Soltania et al. 2004).   

Numerous studies in the literature have shown that the dynamics of many time series in foreign 

exchange markets exhibit scaling behaviours (Muller et al. 1990, Mantegna and Stanley 1995, 

Dacorogna et al. 1996, Guillaume1 et al. 1997, Vandewallea and Ausloos, 1998, Gopikrishnan et al. 

1999, Mulligan 2000, Gencay et al. 2001, Muniandya et al. 2001, Xu and Gencay 2003, Jiang et al. 

2007).  For example, Muller et al. (1990) and Guillaume1et al. (1997) have shown that the mean 

absolute price changes over certain time intervals for foreign exchange rates obey scaling laws. 

Recently, Xu and Gencay (2003) have shown that US dollar to Deutschemark (USD-DEM) returns 

present scaling and multifractal properties. 

The objective of this paper is to introduce a new wavelet transform based method to detect and 

evaluate the fractal self-similarity properties from observed time series. The new method involves the 

calculation of a continuous wavelet transform correlation function (WTCF), which plays key a role in 

linking the time-domain data with the associated scaling law properties that are explicitly presented by 

the wavelet scale (revolution) parameter. 

2.   The Wavelet Transform Correlation Method 

(A) The wavelet transform 

Let f(t) be a square integrable function defined in )(
2

RL . For a given mother wavelet ψ , the 

continuous wavelet transform (CWT) of the function  f(t) is defined as (Daubechies 1992) 
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+∈ Ra  and Rb ∈ are the dilation (scale) and translation (shift) 

parameters, respectively. The over-bar above the function )(⋅ψ  indicates the complex conjugate. In 
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order to guarantee (1) is invertible so that f can be reconstructed from 
ψ
fW , the following admissible 

condition is required 
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where ψ̂  is the Fourier transform of the function ψ .  

For a stochastic process f(t), the wavelet transform ),( abW f
ψ  can be viewed as a random field on 

the upper (positive) half plane. For a given scale parameter a, the transform ),( abW f
ψ

 contains a piece 

of information of the original process at this given scale. Extensive research has been done to exploit 

the wavelet transform, to analyze and determine the characteristics of random processes (Mallat and 

Hwang 1992, Flandrin 1992, Masry 1993, Wornell 1995, Abry and Veitch 1998). 

(B) The wavelet transform correlation function 

Let )(tx be a wide-sense (weak-sense) stationary random process that is square integrable in 

)(
2

RL . For a chosen wavelet ψ , the wavelet transform correlation function (WTCF) of the 

signal )(tx , with respect to the locations 1b and 2b  at scales 1a and 2a , is defined as below 
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Note that ])()([),( 2121, ττττ xxER xx =  is the correlation function of )(tx . Using the property that 

),( 21, ττxxR  )0,( 12, ττ −= xxR )( 12 ττ −= xR ])()([ 12 ττ −+= txtxE ,  it can be derived from equation (3) 

that 
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where the symbol “∗ ” indicates the convolution of two functions.  

Assume that the power spectrum )(ωxP of the signal )(tx exits. From the Parseval’s theorem, which 

states that the inner product of two functions is equal to the inner product of the Fourier transforms of 

the two individual functions, as well as the convolution theorem that states that under suitable 
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conditions the Fourier transform of a convolution is the pointwise product of the Fourier transforms of 

the two individual functions, it can then be further derived that  
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This shows that for the wide-sense stationary process )(tx , the wavelet transform correlation 

function ),;,( 2121, aabbxx
ψΦ , with respect to the locations 1b  and 2b  at given scales 1a and 2a , is a 

function of 1b  and 2b only through the difference )( 12 bb − . Here, for the first time, we have derived, 

by means of the Parseval’s theorem and the convolution theorem, the relation between the time-

domain signal and the frequency-domain behaviour presented by the spectra of the signal and the 

wavelet. 

 (C) The power-law case 

     As a special case of the wavelet transform correlation function, the wavelet transform 

autocorrelation function (WTAF) of the signal )(tx , at scale a , can be calculated from (5) by letting 

aaa == 21  and bbb == 12 ,  that is,  
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Now assume that the dynamics of the process )(tx  exhibits a power-law behaviour, that is, the power 

spectral density of the process has a power-law dependence in frequency as given below 

βωω −∝ ||)(xP                                                                                                                             (7) 

It can then be obtained from (6) that   
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1
. Equation (8) suggests that for a power-law signal x(t) that obeys 

the power-law given by (7), the wavelet transform autocorrelation function )(ax
ψΦ also obeys a power-

law with respect to the wavelet scale parameter a, and the value of the scaling exponent is exactly the 

same as in the original power-law presentation but with an opposite symbol, that is β− in (7) becomes 

β+  in (8). Therefore, the new introduced formulas (8) can be used to estimate the power-law 

exponent of the signal x(t). Note that the relationship between the power-law exponent β , the Hurst 
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exponent H, and the fractal dimension D is given by DH 2512 −=+=β (Voss 1988). For a self-affine 

process, 10 ≤≤ H , 21 ≤≤ D  and 31 << β  (Malamud and Turcotte 1999a). For a Brownian 

motion, 5.0=H , 5.1=D  and 2=β  (Malamud and Turcotte 1999b).  

3.   Results for foreign exchange rates  

Monthly average dollar exchange rates, taken from the Federal Reserve Bank of St. Louis for a 

selection of twenty countries, were considered in this study, and these are shown in Table 1. Monthly 

average exchange rates are of more interest than daily exchange rates for at least four groups of 

investors (Mulligan 2000): program traders, investors who follow deterministic rules, investors who 

routinely accept exposure approximately one month or longer, and currency hedgers.  

 

 

Table 1  The power-law exponents estimated using the wavelet transform correlation function for the  

monthly average dollar exchange rates of twenty countries. The data came from the Federal  

Reserve Bank of St. Louis.  

 

Country Observation period of the foreign 

exchange rates (dd/mm/yy) 

Data length Lowest and 

highest rates 

Power-law 

exponent β  

Austria / U.S.  01/01/1971—01/12/2001 372 9.72 / 25.873 2.0113 

Belgium / U.S. 01/01/1971—01/12/2001 372 27.96 / 66.31 2.1235 

Brazil / U.S. 01/01/1995—01/12/2007 156 0.8412 / 3.7966 2.4642 

Canada / U.S. 01/01/1971—01/12/2007 444 0.9623 / 1.5997 2.0544 

Denmark / U.S. 01/01/1971—01/12/2007 444 5.0766 / 11.8071 2.0630 

Finland / U.S. 01/01/1971—01/12/2001 372 3.4926 / 6.9645 2.2413 

France / U.S. 01/01/1971—01/12/2001 372 4.0048 / 10.0933 2.2331 

Germany / U.S. 01/01/1971—01/12/2001 372 1.3812 / 3.637 2.0137 

Greece / U.S. 01/01/1981—01/12/2000 237 53.18 / 398.29 2.8873 

India / U.S. 01/01/1973—01/12/2007 420 7.27 / 49.02 2.5634 

Italy / U.S. 01/01/1971—01/12/2001 372 265.26 / 2271.28 2.5347 

Japan / U.S. 01/01/1971—01/12/2007 444 83.69 / 358.02 2.0193 

Mexico / U.S. 01/01/1993—01/12/2007 170 3.108 / 11.52 2.3566 

Netherlands / U.S. 01/01/1971—01/12/2001 372 1.5474 / 3.7387 2.0589 

Norway / U.S. 01/01/1971—01/12/2007 444 4.8167 / 9.4695 2.1079 

Portugal / U.S. 01/01/1973—01/12/2001 348 22.41 / 235.17 2.6922 

Spain / U.S. 01/01/1973—01/12/2001 348 55.8 / 195.17 2.4333 

Sweden / U.S. 01/01/1971—01/12/2007 444 3.9166 / 10.793 2.2444 

Switzerland / U.S. 01/01/1971—01/12/2007 444 1.1233 / 4.3053 1.9271 

U.S. / U.K. 01/01/1971—01/12/2007 444 1.0931 / 2.6181 2.0470 
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The proposed wavelet transform auto correlation function was used to analyze the twenty datasets. 

The calculation procedure is as below: 

•   For each dataset, apply the continuous wavelet transform to calculate the wavelet coefficient 

),( abWx
ψ , where the Daubechies’ wavelet of order 20 (‘db20’) was used; the scale parameter a 

was allowed to vary from 1 to 16, and the shift parameter b was  allowed to vary from 1 to N (N is 

the data length). 

•   For each single value of the scale (or resolution level) parameter a, calculate the expectation 

]|),([|)(
2

abWEa xx
ψψ =Φ )],(var[ abWx

ψ= 2
),( ><+ abWx

ψ , where ‘var’ indicates calculating the 

variance and ‘< >’ indicates taking the average of the relevant signal; )(ax
ψΦ  is a function of the 

scale parameter a.  

•    Plot the graph of )]([log2 ax
ψΦ  (vertical axis) versus )(log2 a (horizontal axis).  

•    Calculate the slope of the plot formed by )]([log2 ax
ψΦ  and )(log2 a ; the value of the slope can be 

viewed as an estimate of the power-law exponent β .  

The graphs for the twenty datasets are shown in Figure 1, where graphs are displayed, from left to 

right and from top to bottom, in the order that is exactly the same as in Table 1. Values of the 

estimated power-law exponent β are given in Table 1. The above calculation procedure was also 

performed over some daily average dollar exchange rates for some countries and it has been observed 

that results are very similar to those that were obtained for the associated monthly average cases. 

Note that in the above calculation the original datasets were directly used to test and evaluate the 

power-law properties of the foreign exchange rates; no data pre-processing procedure has been 

performed. Data normalization for example mean-removal might very slightly affect the estimation 

results. 

4.   Conclusions 

The proposed wavelet transform correlation analysis method can be used to detect and evaluate the 

fractal scaling-law behaviours from observed time series. Compared with existing approaches, the new 

method has several advantages, for example, it is not necessary for this method to use a large number 

of observations to obtain accurate estimates of the power-law exponent; unlike traditional power 

spectral density estimation methods which require data smoothing (windowing) and which are 

sensitive to the window ‘shapes’, the new method does not need any windowing techniques. Moreover, 

this new non-parametric method can be performed speedily and efficiently using existing tools for 

continuous wavelet transform calculation in Matlab. The presented results have shown that the foreign 

exchange rates, for the twenty countries considered, exhibit power-laws and thus belong to the class of 

fractal self-similarity processes. 
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Figure 1  Graphs of the wavelet transform correlation function defined by (8) for the twenty datasets of foreign 

exchange rates listed in Table 1. From left to right and from top to bottom, these are displayed in order that is 

exactly the same as in Table 1. In these graphs, the vertical axis is )]([log2 ax
ψΦ  and the horizontal axis is )(log 2 a . 
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