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Abstract

This paper introduces a new residual-based recursive parameter estimation algorithm
for linear partial differential equations. The main idea is to replace unmeasurable noise
variables by noise estimates and to compute recursively both the model parameter and
noise estimates. It is proven that under some mild assumptions the estimated parameters
converge to the true values with probability one. Numerical examples that demonstrate the
effectiveness of the proposed approach are also provided.

1 Introduction

The identification problem for partial differential equation models which is often described un-
der several different names including spatially extended systems, distributed parameter systems,
and spatio-temporal dynamical systems, has been extensively studied for the past three decades.
There are plenty of identification methods in the literature including statistical methods (Banks
and Kunisch 1989, Fitzpatrick 1991), least squares methods (Yin and Fitzpatrick 1992, Coca and
Billings 2000), finite dimensional approximation(Mao, Reich, Rosen 1994), singuler value decom-
position (Gay and Ray 1995), neural networks (Gonzalez-Garcia, Rico-Martinez, and Kevrekidis
1998), orthogonal feedforward least squares method (Coca and Billings 2002, Guo and Billings
2006), maximal correlation method (Voss, Bunner, and Abel 1998), and some papers on practical
issues (Point, Wouwer, and Remy 1996). One of the key issues in the identification of partial
differential equations is the convergence and consistency of the estimator which has been studied
by several authors (Banks and Kunisch 1989 and the references therein, Fitzpatrick 1991, Yin
and Fitzpatrick 1992, Mao, Reich, Rosen 1994, Coca and Billings 2002). In this paper, a new
residual based recursive identification algorithm for partial differential equation models is pro-
posed, which can be implemented online easily. The basic idea behind the recursive algorithm
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is that the unmeasurable noises contained in the observations are replaced by their estimates
or innovations at each time step in the algorithm. Unlike other methods, the proposed method
considers the effects of both time and space sampling sizes on the convergence of the parameter
estimates. Specifically, motivated by (Soderstrom, Fan, Carlsson, and Bigi 1997), the derivatives
with respect to both time and space are approximated by a set of noisy samples rather than in
a standard difference method such as Euler backword and forward schemes. It turns out that if
the approximation parameters to the derivatives are selected with care under the constriants of
natural conditions (Soderstrom, Fan, Carlsson,and Bigi 1997) and passive conditions, then the
recursive algorithm will be consistently convergent under some mild conditions compared with
the standard stationary and ergodic assumptions.

The paper is organised as follows. Section 2 defines the system identification problem which is
studied in this paper. The residual based recursive algorithm is presented and consistency issues
are discussed in section 3. Section 4 illustrates the proposed approach using some examples.
Finally conclusions are drawn in section 5.

2 Problem statement

Consider the continuous spatio-temporal dynamical systems which can be described as the fol-
lowing linear partial differential equations

D(n,0)u(t, x) +
n−1
∑

i=0

∑

|j|≤|m|

ai,jD
(i,j)u(t, x) = f(t, x) (1)

where u(x, t) ∈ Rnu is the dependent variable of the system, t ∈ [0,∞) denotes time and
x = (x1, x2, · · · , xnx

) ∈ Ω ⊂ Rnx denotes the spatial variable, ai,j , i = 0, 1, · · · , n, |j| ≤ |m| are
the unknown constant parameters. j = (j1, j2, · · · , jnx

) ∈ Nnx is an nx-dimensional multi-index
with |j| =

∑nx

l=1 jl. D(i,j)u(t, x) is defined as Di
tD

j
x where Di

t = ∂i/∂ti and Dj
x = Dj1

x1
Dj2

x2
· · ·Djnx

xnx
,

Djl

xl
= ∂jl/∂xjl

l , l = 1, 2, · · · , nx, i = 0, 1, · · · , n, |j| ≤ |m|. f(t, x) is the external input to the
system. The boundary and initial conditions are assumed to be

B(u(t, x)) = ub(t, x), x ∈ ∂Ω; T (u(0, x)) = u(x), x ∈ Ω (2)

where B is the differential operator which operates on the boundary ∂Ω of the spatial domain
and T is a differential operator evaluated at time t = 0, providing the initial conditions of u and
of time derivatives of u. For the sake of simplicity and without loss of generality, only the one
dimensional case is considered in this paper, that is, nx = 1 and nu = 1.

For the purpose of identification, the system is observed in discrete-time at t = 0, 1, 2, · · · with
a sampling interval h and in discrete-space at xk = xk−1 + H, k = 1, · · · , K with a grid size H
with the following observation function
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y(t, xk) = u(t, xk) + e(t, xk), k = 0, 1, · · · , K (3)

where the e(t, xk) is the measurement noise. This paper is concerned with the parameter iden-
tification problem from the sampled solution y(t, x) and the external input f(t, x), therefore
here the solution of (1) is assumed to exist and to be unique, and the system is assumed to be
input-output uniformly bounded.

The model (1) to (3) contributes a general representation for a large class of linear spatio-
temporal systems such as wave, heat, and vibrating membrance systems. In order to identify a
continuous model directly from nosiy data, the derivatives in (1) should be approximated with
some difference operators. A general linear approximation of the differential operators by using
the samples can be considered as

D(i,j)u(t, x) ≈ D̂(i,j)u(t, x) =
∑

p,q

βi,j(p, q)y(t + ph, x + qH) (4)

where βi,j(p, q) are the weighting parameters. Assume that u(t, x) is sufficiently differentiable so
that a Taylor expansion of u(t, x) yields

D̂(i,j)u(t, x) =
∑

p,q

βi,j(p, q)(u(t + ph, x + qH) + e(t + ph, x + qH)) (5)

=
∑

p,q

βi,j(p, q)u(t + ph, x + qH) +
∑

p,q

βi,j(p, q)e(t + ph, x + qH))

=
∑

p,q

βi,j(p, q)(
∑

0≤α+ν≤i+j

D(α,ν)u(t, x)

α!ν!
(ph)α(qH)ν + O(h̄))

+
∑

p,q

βi,j(p, q)e(t + ph, x + qH))

with h̄ = max{h, H}, then

D̂(i,j)u(t, x) = D(i,j)u(t, x) + O(h̄) +
∑

p,q

βi,j(p, q)e(t + ph, x + qH) (6)

providing βi,j(p, q) satisfies the following conditions

∑

p,q

βi,j(p, q)(ph)α(qH)ν =

{

0, 0 ≤ α + ν ≤ i + j but α 6= i, ν 6= j
i!j!, α = i, ν = j

(7)

which is referred to as the natural conditons by Soderstrom et al. (1997).

Remark 1 The minimal lengths of the indexes p and q in (β) are i + 1 and j + 1 respectively.
For identification algorithms without iteration, the range of time index p can be set to be any
integer whilst it must be negative for any iterative algorithm, that is only the time history data
are available. In this paper, an iterative algorithm will be presented so that it is assumed that
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p is negative. Generally, the range of the spatial index q will not be restricted. However it will
be clear later on that the proposed algorithm in this paper requires the range of q to span to the
boundary in order to estimate the noise around the spatial domain.

Remark 2 The introduction of the parameters βi,j(p, q) in (7) provides extra degrees of freedom
which can be adjusted to produce desirable performance.

With these two remarks, for given sampling point (t, xk) (4) is rewitten as

D̂(n,0)u(t, xk) = βn,0(0, 0)y(t, xk) +
P

∑

p=1

Q
∑

q=−Q

βn,0(p, q)y(t− p, xk+q) (8)

D̂(i,j)u(t, xk) =
P

∑

p=1

Q
∑

q=−Q

βi,j(p, q)y(t− p, xk+q) for 0 ≤ i < n, 0 ≤ j ≤ m

where y(t− p, xk+q) denotes y(t − ph, xk + qH) for the sake of symbol simplicity. Note that the
weights β have been chosen to be the same for all (t, x) in this paper. Actually they could be
chosen differrently with different (t, x), which might be used to deal with uneven sampled data
or multiscale data.

Combining (6), (8) and (1) yields

D̂(n,0)u(t, xk) = −
n−1
∑

i=0

m
∑

j=0

ai,jD̂
(i,j)u(t, xk) (9)

+βn,0(0, 0)e(t, xk)

+
P

∑

p=1

bp,−Qe(t − p, xk−Q) + · · ·+
P

∑

p=1

bp,Qe(t − p, xk+Q)

+f(t, xk) + O(h̄)

where bp,q =
∑n

i=0

∑m
j=0 ai,jβi,j(p, q).

Assume that βn,0(0, 0) 6= 0 and let ε(t, xk) = βn,0(0, 0)e(t, xk), it then follows

D̂(n,0)u(t, xk) = −
n−1
∑

i=0

m
∑

j=0

ai,jD̂
(i,j)u(t, xk) (10)

+
P

∑

p=1

dp,−Qε(t − p, xk−Q) + · · ·+
P

∑

p=1

dp,Qε(t − p, xk+Q)

+f(t, xk)

+ε(t, xk)

+O(h̄)
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with dp,q = bp,q/βn,0(0, 0). Then the following discrete-time and discrete-space linear regression

w(t) = Φ0(t)θ + ε(t) + O(h̄)1 (11)

can then be constructed, where

w(t) =













w(t, x0)
w(t, x1)

...
w(t, xK)













(12)

and

Φ0(t) =













φT
0 (t, x0)

φT
0 (t, x1)

...
φT

0 (t, xK)













(13)

and

ε(t) =













ε(t, x0)
ε(t, x1)

...
ε(t, xK)













(14)

where

w(t, xk) = D̂(n,0)u(t, xk) (15)

φT
0 (t, xk) = [−D̂(0,0)u(t, x) − D̂(0,1)u(t, x) · · · − D̂(0,m)u(t, x);

−D̂(1,0)u(t, x) − D̂(1,1)u(t, x) · · · − D̂(1,m)u(t, x); · · · ;

−D̂(n−1,0)u(t, x) − D̂(n−1,1)u(t, x) · · · − D̂(n−1,m)u(t, x);

ε(t − 1, xk−Q), ε(t− 2, xk−Q), · · · , ε(t− P, xk−Q);
...

ε(t − 1, xk+Q), ε(t− 2, xk+Q), · · · , ε(t− P, xk+Q); f(t, x)]

and the parameters are

θT = [a0,0, a0,1, · · · , a0,m; a1,0, a1,1, · · · , a1,m; · · · ; (16)

an−1,0, an−1,1, · · · , an−1,m; d1,−Q, · · · , dP,−Q; · · · , d1,Q, · · · , dP,Q; 1]
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Note that when x reaches or goes beyond the boundary of the spatial domain the corresonding
samples will be replaced either by the boundary conditions or zeros. The objective of this paper
is to develop an algorithm to estimate the parameter vector θ by using the noisy observations
y(t, x) and to show under what conditions the estimated parameters consistently converge to the
true parameters when both time t → ∞ and the spatial sampling size h̄ → 0.

From (2) and (15) it can be observed that w(t, x) is not only affected by the noise from the
spatial location but also from other neighbouring spatial locations. These noise sequences are
not measurable, instead, a recursive algorithm will be used and they will be estimated by the
estimated residuals or the innovations.

3 The residual based recursive algorithm

Let θ̂(t) be the estimate of θ at time instant t, the proposed residual based iterative algorithm
can be stated as follows

θ̂(t) = θ̂(t − 1) + P (t)ΦT (t)(w(t) − Φ(t)θ̂(t − 1)) (17)

P−1(t) = P−1(t − 1) + ΦT (t)Φ(t), P (0) = p0I (18)

Φ(t) =













φT (t, x0)
φT (t, x1)

...
φT (t, xK)













(19)

where

φT (t, xk) = [−D̂(0,0)u(t, xk) − D̂(0,1)u(t, xk) · · · − D̂(0,m)u(t, xk); (20)

−D̂(1,0)u(t, xk) − D̂(1,1)u(t, xk) · · · − D̂(1,m)u(t, xk); · · · ;

−D̂(n−1,0)u(t, xk) − D̂(n−1,1)u(t, xk) · · · − D̂(n−1,m)u(t, xk);

ε̂(t − 1, xk−Q), · · · , ε̂(t − P, xk−Q);
...

ε̂(t − 1, xk+Q), · · · , ε̂(t − P, xk+Q);

f(t, xk)]

ε̂(t) = w(t) − Φ(t)θ̂(t). (21)

To initialise the algorithm, θ(0) will be set to be a small real vector, ε̂(τ, x) = 0 for τ ≤ 0.

To show the consistency of the algorithm, some assumptions have to be made.

• (A1) It is assumed that {ε(t), Ft} is a martingale difference sequence defined on a proba-
bility space with Ft is the σ algebra sequence generated by ε(t) up to t.
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• (A2) E[ε(t)|Ft−1] = 0, a.s.

• (A3) E[εT (t)ε(t − 1)|Ft] = σ2(t) ≤ σ̄2 < ∞, a.s.

• (A4) η1I ≤ 1
t

∫ t
0 Φ0(τ)ΦT

0 (τ)dτ ≤ η2I, a.s. .

The assumptions (A1) to (A3) indicate that the noise ε(t, x) is zero-mean with bounded time and
spatial-varying variances which shows the system concerned may not be stationary. Assumption
(A4) is the persistent excitation condition. It is worth noting that with (A4) the trace tr(P−1(t))
of P−1(t) is a strictly increasing function of t.

Now define the parameter estimation error θ̃(t) and the innovation ε̃(t) as

θ̃(t) = θ̂(t) − θ (22)

ε̃(t) = w(t) − Φ(t)θ̂(t − 1)

It follows that

ε̂(t) = (I − Φ(t)P (t)ΦT (t))ε̃(t) = (I + Φ(t)P (t − 1)ΦT (t))−1ε̃(t) (23)

Define

w̃(t) =: −Φ(t)θ̃(t) (24)

= −Φ(t)(θ̂(t) − θ)

= ε̂(t) − w(t) + Φ(t)θ

= D(z)(ε̂(t) − ε(t)) + O(h̄)1

where

D(z) =













1 + D0(z) D1(z) · · · DQ(z) 0 · · · 0
D0(z) 1 + D1(z) · · · DQ(z) DQ+1(z) · · · 0

...
0 · · · D−Q+K(z) · · · · · · · · · 1 + DK(z)













(25)

with
Dl(z) = d1,lz

−1 + · · ·+ dP,lz
−P , l = −Q, · · · , Q. (26)

It is interesting to see that w̃(t) may be considered as the output of the multi-input multi-
output linear systems D(z) driven by the signals (ε̂(t) − ε(t)), which are from different spatial
locations. Consider the coefficients of Dl(z) which are composed of a and β, it is assumed that
the underlying system is such that the βi,j(p, q) can be chosen such that the above linear system
(24) is passive in the sense given in the following assumption. Define
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S(t) =:
t

∑

i=1

2(−w̃T (i)(
1

2
w̃(i) + (ε̂(i) − ε(i))) (27)

then from (24) it is easy to see that for ρ > 0

S(t) = 2
t

∑

i=1

w̃T (i)(D−1(z) −
1 + ρ

2
I)w̃(i) + ρ

t
∑

i=1

w̃T (i)w̃(i) + O(h̄). (28)

Assumption (A5) The linear system (24) is finite gain stable and there exists a positive constant
ρ such that

2
t

∑

i=1

w̃T (i)(D−1(z) −
1 + ρ

2
I)w̃(i) ≥ 0, a.s. (29)

S(t) ≥ 0, a.s.

Now, the main result in this paper can be stated as the following theorem.

Theorem 1 For the given system (2) and the algorithm in (17) to (21), if the Assumptions (A1)
to (A5) hold, then for any δ > 1, we have

‖θ̂(t) − θ‖2 = O(
(ln tr(P−1

0 (t)))δ

λmin(P−1
0 (t))

) + O(h̄), a.s. (30)

where λmin is the minimal eigenvalue of the matrix, and

lim
t→∞

‖θ̂(t) − θ‖2 = O(h̄), a.s. (31)

Proof. Let V (t) = θ̃T (t)P−1(t)θ̃(t). From (18), it follows that

V (t) = θ̃T (t)P−1(t − 1)θ̃(t) + θ̃T (t)ΦT (t)Φ(t)θ̃(t) (32)

Then from (22), (23) and the matrix inversion lemma, it has

V (t) = θ̃T (t)P−1(t − 1)θ̃(t) + θ̃T (t)ΦT (t)Φ(t)θ̃(t) (33)

= V (t − 1) + θ̃T (t − 1)ΦT (t)ε̂(t) + θ̃T (t)ΦT (t)ε̂(t) + θ̃T (t)ΦT (t)Φ(t)θ̃(t)

= V (t − 1) + 2θ̃T (t)ΦT (t)ε̂(t) − ε̃T (t)Φ(t)P (t)ΦT (t)ε̂(t) + θ̃T (t)ΦT (t)Φ(t)θ̃(t)

= V (t − 1) + 2θ̃T (t)ΦT (t)ε̂(t) − ε̃T (t)Φ(t)P (t)ΦT (t)(I − Φ(t)P (t − 1)ΦT (t))−1ε̃(t)

+θ̃T (t)ΦT (t)Φ(t)θ̃(t)

≤ V (t − 1) + 2θ̃T (t)ΦT (t)ε̂(t) + θ̃T (t)ΦT (t)Φ(t)θ̃(t)
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= V (t − 1) − 2(w̃T (t))(−
1

2
w̃(t) + (ε̂(t) − ε(t))) + 2θ̃T (t − 1)ΦT (t)ε(t)

+2(εT (t) − ε̂T (t))Φ(t)P (t)ΦT (t)ε(t) + 2εT (t)Φ(t)P (t)ΦT (t)ε(t)

Since S(t−1), θ̃T (t−1)ΦT (t), and ε(t)− ε̂(t) are uncorrelated with ε(t) and are Ft−1 measurable,
taking the conditional expectation on both side of (V (t) + S(t))/(ln tr(P−1(t)))δ with respect to
Ft−1 and using (A1) to (A2) yields

E[
V (t) + S(t)

(ln tr(P−1(t)))δ
|Ft−1] ≤

V (t − 1) + S(t − 1)

(ln tr(P−1(t)))δ
+

2εT (t)Φ(t)P (t)ΦT (t)ε(t)

(ln tr(P−1(t)))δ
(34)

To apply the martigale convergence theorem (Goodwin and Sin 1984) to the above equation, we
need to show the sum of the last term on the right-hand side for t from 1 to ∞ is finite. In fact,
noting that P−1(t) is a strictly increasing function of t,

∞
∑

t=1

εT (t)Φ(t)P (t)ΦT (t)ε(t)

(ln tr(P−1(t)))δ
≤

∞
∑

t=1

εT (t)tr(Φ(t)P (t)ΦT (t))ε(t)

(ln tr(P−1(t)))δ
(35)

≤ σ̄2
∞
∑

t=1

tr(Φ(t)P (t)ΦT (t))

(ln tr(P−1(t)))δ

≤ σ̄2
∞
∑

t=1

(K + 1) · tr(P−1(t)) − tr(P−1(t − 1))

tr(P−1(t))((ln tr(P−1(t)))δ

= σ̄2
∞
∑

t=1

tr(P−1(t)) − tr(P−1(t − 1))

tr(P−1(t))((ln tr(P−1(t)))δ
+ Kσ̄2

∞
∑

t=1

1

(ln tr(P−1(t)))δ

= σ̄2
∞
∑

t=1

∫ tr(P−1(t))

tr(P−1(t−1))

dx

tr(P−1(t))(ln tr(P−1(t)))δ
+ Kσ̄2

∞
∑

t=1

1

(ln tr(P−1(t)))δ

≤ σ̄2
∞
∑

t=1

∫ tr(P−1(t))

tr(P−1(t−1))

dx

x(ln x)β
+ Kσ̄2

∞
∑

t=1

1

(ln tr(P−1(t)))δ

= σ̄2

∫ tr(P−1(∞))

tr(P−1(0))

dx

x(ln x)β
+ Kσ̄2

∞
∑

t=1

1

(ln tr(P−1(t)))δ

=
σ̄2

δ − 1
(

1

(ln tr(P−1(0)))δ−1
−

1

(ln tr(P−1(∞)))δ−1
)

+Kσ̄2
∞
∑

t=1

1

(ln tr(P−1(t)))δ

< ∞

It follows that (V (t) + S(t))/(ln tr(P−1(t)))δ converges a.s. to a finite random variable, which
means

V (t) = O((ln tr(P−1(t)))δ), a.s., (36)

S(t) = O((ln tr(P−1(t)))δ), a.s.

and
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‖θ̃(t)‖2 = ‖θ̂(t) − θ‖2 = O(
(ln tr(P−1(t)))δ

λmin(P−1(t))
), a.s. (37)

According to assumption (A5) and (24), one has

t
∑

i=1

‖w̃(i)‖2 =
t

∑

i=1

w̃T (i)w̃(i) ≤ O((ln tr(P−1(t)))δ) + O(h̄), a.s. (38)

and there exist constants k1 > 0, k2 > 0 such that

t
∑

i=1

‖ε̂(t) − ε(t)‖2 ≤ k1

t
∑

i=1

‖w̃(i)‖2 + k2 ≤ O((ln tr(P−1(t)))δ) + O(h̄), a.s. (39)

Let Φ̃(t) =: Φ(t) − Φ0(t), then it follows that

tr(Φ̃(t)Φ̃T (t)) =
K

∑

k=0

‖φ(t, xk) − φ0(t, xk)‖
2 (40)

=
K

∑

k=0

P
∑

p=1

(ε̂(t − p, xk) − ε(t − p, xk))
2

= O(
t

∑

i=1

‖ε̂(t) − ε(t)‖2)

≤ O((ln tr(P−1(t)))δ) + O(h̄), a.s.

so that

tr(ΦT (t)Φ(t)) ≤ tr(ΦT
0 (t)Φ0(t)) + tr(Φ̃(t)Φ̃T (t)) (41)

≤ tr(ΦT
0 (t)Φ0(t)) + O((ln tr(P−1(t)))δ) + O(h̄), a.s.

which yields

tr(P−1(t)) = O(tr(P−1
0 (t))) + O(h̄), a.s. (42)

where P−1
0 (t) = P−1

0 (t − 1) + ΦT
0 (t)Φ0(t). Similarly, it is easy to see

λmin(P−1(t)) = O(λmin(P
−1
0 (t)) + O(h̄), a.s. (43)

Combining (37) with (42) and (43) yields

‖θ̂(t) − θ‖2 = O(
(ln tr(P−1

0 (t)))δ

λmin(P−1
0 (t))

) + O(h̄), a.s. (44)
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Then by the persistent excitation assumption (A4), one can conclude that

lim
t→∞

‖θ̂(t) − θ‖2 = O(h̄), a.s. (45)

Q.E.D

Remark 3 The passive conditions for the parameters β depends on the unknown model para-
meters which is difficult to validate. However such assumptions are often found in convengence
and consistency analysis in parameter identification problems for conventional dynamic systems.
How to determine these conditions is a problem under study. A possible way to deal with this
problem is to include a method to estimate the β’s following the estimated model parameters at
each time step.

4 Numerical example - Shell-and-tube heat exchanger

process

A fluid with constant density ρ and heat capacity Cp flows through the tube of a shell-and-tube
heat exchanger with velocity v, as shown in Fig. (1). The fluid enters the tube at temperature u0

and is heated from the shell side by condensing steam at temperature f . Assume that the tube
has a uniform cross-section area S, length L and volumn V = SL. The surface area which are
available for heat exchange is Sw, with a heat transfer coefficient δ. According to Ogunnaike and
Ray(Ogunnaike and Ray 1994), the process composing of a convection term and a heat-exchange
term can be model by the following PDE

∂u(t, x)

∂t
= a1

∂u(t, x)

∂x
+ a2u(t, x) + a3f(t, x) (46)

where u(t, x) denotes the fluid temperture at time t and position x, a1 = −v, and a2 =
−δSw/ρV Cp. The boundary condition is specified at x = 0 since the inlet conditions can be
assumed known

u(t, 0) = u0(t) (47)

and the initial condition is some given initial temperature profile as

u(0, x) = ui(x). (48)

For the purpose of this numerical study, the values for the process parameters were chosen as
L = 1, a1 = −1ms−1, a2 = −2.92s−1, and a3 = 2.92s−1 . The initial and boundary conditions
were set to be u0(t) = 25◦C and ui(x) = 25◦C. For the sake of simplicity, the control input
f(t, x) = f(t) was assumed to be independent of the spatial variable x and taken as the output
of a second-order process

11



Figure 1: The shell-tube heat exchanger

p2f(t) + 3pf(t) + 3f(t) = 20v(t) (49)

where v(t) is a continuous-time white process with zero mean and unit variance. The above heat
equation (46) was numerically solved with the above settings by a fourth-order Runge-Kutta
method. For the purpose of simulation, the solution was sampled with a time-interval of h = 0.01
and a spatial-interval of H = 0.01. To apply the proposed recursive algorithm, those β’s in the
approximation to the derivatives ∂u(t, x)/∂t and ∂u(t, x)/∂x need to be determined according
to the natural conditions (7) and passive assumptions (29). Let y(t, x) = u(t, x) + e(t, x) be the
measurements at the position x and time instant t and the approximations to the derivatives in
this example be

∂u(t, x)

∂t
= β1,0(0, 0)y(t, x) + β1,0(1, 0)y(t − 1, x) + β1,0(2, 0)y(t − 2, x) + · · · + β1,0(Pt, 0)y(t − Pt, x) (50)

∂u(t, x)

∂u
= β0,1(1, 0)y(t − 1, x) + β0,1(2, 0)y(t − 2, x) + · · · + β0,1(Px, 0)y(t − Px, x)

+ β0,1(1, 1)y(t − 1, x − 1) + β0,1(2, 1)y(t − 2, x − 1) + · · · + β0,1(Px, 1)y(t − Px, x − 1)

...

+ β0,1(1, Qx)y(t − 1, x − Qx) + β0,1(2, Qx)y(t − 2, x − Qx) + · · · + β0,1(Px, Qx)y(t − Px, x − Qx)

then the natural conditions are

[

1 1 · · · 1
0 1 · · · Pt

]













β1,0(0, 0)
β1,0(1, 0)

...
β1,0(Pt, 0)













=

[

0
− 1

h

]

(51)

for ∂u(t, x)/∂t, and
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Data Size a1 = −1 a2 = −2.92 a3 = 2.92

SNR = 62

100 -3.35681 -8.07232 6.83338
200 -2.35638 -6.66493 4.25968
300 -1.71453 -5.22033 4.63909
500 -1.39853 -3.96606 3.66518
1000 -1.10333 -3.22524 2.90212

SNR = 48

100 -2.50930 -7.23002 5.00316
200 -1.79061 -5.97266 3.97501
300 -1.23798 -4.73361 4.26565
500 -1.00949 -3.39527 3.18026
1000 -0.97321 -2.56083 2.34338

Table 1: The parameter estimates using β1,0(0, 0) = −β1,0(1, 0) = 1/h and β0,1(1, 0) =
−β0,1(1, 1) = 1/H







1 1 · · · 1 1 1 · · · 1 · · · 1 1 · · · 1
1 2 · · · Px 1 2 · · · Px · · · 1 2 · · · Px

0 0 · · · 0 1 1 · · · 1 · · · Qx Qx · · · Qx



































































β0,1(1, 0)
β0,1(2, 0)

...
β0,1(Px, 0)
β0,1(1, 1)
β0,1(2, 1)

...
β0,1(Px, 1)

...
β0,1(1, Qx)
β0,1(2, Qx)

...
β0,1(Px, Qx)





























































=







0
0

− 1
H





 (52)

for ∂u(t, x)/∂u. It is clear that for Pt = 1 and Px = 1, Qx = 1 this becomes the Euler method,
that is β1,0(0, 0) = −β1,0(1, 0) = 1/h and β0,1(1, 0) = −β0,1(1, 1) = 1/H and for Pt > 1 or
Px > 1, Qx > 1, these parameters can be determined according to the passive conditions (29)
subject to the above natural conditions. In this paper, the simulation were conducted with
two sets of β’s: (1) β1,0(0, 0) = −β1,0(1, 0) = 1/h and β0,1(1, 1) = −β0,1(1, 2) = 1/H and (2)
β1,0(0, 0) = −β1,0(1, 0) = 1/h and β0,1(1, 0) = 3

2H
, β0,1(2, 0) = − 1

2H
, β0,1(1, 1) = − 3

2H
, β0,1(2, 1) =

1
2H

. The simulation results with different signal-to-noise ratios (SNR) and different data sizes
are listed in Tables (1) and (2).

From Tables (1) and (2) it can be observed that the errors of parameter esimates generally
decrease as the data size increases, and the proposed method can work well with different levels
of measurement noises.

13



Data Size a1 = −1 a2 = −2.92 a3 = 2.92

SNR = 62

100 -2.72233 -7.31312 5.52180
200 -1.98843 -6.08481 4.04081
300 -1.42064 -4.78006 4.29439
500 -1.17389 -3.56129 3.31975
1000 -0.94437 -2.86561 2.60291

SNR = 48

100 -1.77896 -5.72410 3.54736
200 -1.23817 -4.60814 3.18878
300 -0.83351 -3.67647 3.35002
500 -0.64943 -2.49243 2.36227
1000 -0.96299 -2.72609 2.60826

Table 2: The parameter estimates using β1,0(0, 0) = −β1,0(1, 0) = 1/h and β0,1(1, 0) =
3

2H
, β0,1(2, 0) = − 1

2H
, β0,1(1, 1) = − 3

2H
, β0,1(2, 1) = 1

2H

5 Conclusions

A recursive algorithm has been presented for the identification problem of continuous linear
partial differential equation models. The analysis given in the paper has shown that the proposed
method can produce a consistent parameter estimation. Because the selection of the design
parameter β’s is not very easy further studies are needed to develop new method to determine
these parameters. Also it will be interesting to extend the proposed method to deal with the
identification problem of nonlinear PDEs.
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