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Abstract: A new timevarying autoregressive TYAR) modelling approach isgproposed for
nonstationary signal processitgnd analysiswith application to EG data modelling anghower
spectral estimatianin the new parametric modelling framework, the tuependent coefficientsf
the TVAR model are represented using a nawelti-wavelet decomposition scheme. The time
varying modding problem is therredu@d toregression selection and parameter estimatidnmch
can beeffectivdy resolvedby usinga forward orthogonal regression algorithifwo examples, one
for an artificial signal and another for an EEG sigrak given to show the effectiveness and

applicability of the new TVAR modelling method.
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1. Introduction

ElectroencephalographEG) is an importantnoninvasive technique for medit diagnosis in
clinical neurophysiologyas wellasfor scientific study of brain functiom cognitive neuroscience.
Electroencephalographiecords,or electroencephalograncontain rich informatiorof some aspects
of brain activity associated with gicularly mental procegs during certainactivities and task
processing. Compared with other riomasive techniques, for exampfEsitron emission tomography
(PET) and functional magnetic resonance imaging (fMRBG has two main advantageésrstly,

EEG signals typically have very high temporal resolution that cam b#eat a level ofa single
millisecond; the temporal resolution of PET and fMRI, however, is ofemwden seconds and
minutes Secondly, EEG directly measures cortical activity; while PET and fMRI record changes in
blood flow or metabolic activity that are indirect measuremenigofal activity.The main drawback

of EEG, compared with fMRI, is perhafhe poor spatial resolution.

Conventionally EEG analysis mostly relies on visuaspection of relevant EEG signals.many
cases, however, visual inspectisfEEG signals may bsubjective and insufficient because statistical
information contained in EEG signals may not be adequatgiioited andutilised To obtainmore
relatively objective andeliableanalysis results, several methods have been proposed for quantitative
analysis of EEG signals. Among thef& Fourier transforrhased algorithms atbe most commonly
used toolfor reveaing the frequency components of EEG signdlse Fourier transform, however,
has somealisadvantage$or dealing with norstationary EEG signals. Therefore, otparametric and
non{parametricspectralestimationmethodshave been proposddr EEG signal analysi€ersch and
Yonemoto, 1977lsaksson1981;Pascualmarguet al., 1988Tsenget al., 1995Pardeyet al., 1996;
Muthuswamy and Thakor, 199Quiroga et al.1997, 2002Guler et al., 2001Panzica et al., 2003;
Subasi, 2007; Zhou et al., 2008).

Autoregressive (AR) modglhave been succesdfulapplied tothe analysis ofEEG signad
including simulation (Charbonnieet al., 1987; Kaipio and Karjalained99%), spectral estimation
(Madhavanet al., 1991 Medvedevand Willoughby 1999; Guller et al., 2001; Moller et al., 2001,
Subasi, 2007), eksification {Wadaet al. 1996 Subasi et al., 2005), and synchronizatibrafaszczuk
and Bergey 1999) A common routine for dealing with nestationary EEG signals usingme-
invariant AR models is to partition a long timeurseof data into several genents and then apply an
AR modelling approach to each of these segmentations that can be treated as stationags process
(Praetoriuset al., 1977 Michael and Houchin1979 Barlow, 1985; Amir and Gath, 1989Time-
invariant AR modelsestimated from segenteddatathat are treatedsstationaryprocessesanoften
reveal the main uradlying features of EEG signaln many cases, howeveAR models may not
work well for nonstationary EEG signalsyhere either the dateannotsimply be partitioned into
several stationary time seriesr the segments turn out to be too short that the estimates may be

unreliable due to the fact that some segments contain too few data points (Kaipio araln€arjal



1997b).This has led to a growing interest in nonstatioragyal processingiethods for EEGlata
analysis(Krystal et al., 1999; Prado and Huerta, 200&yvainenet al., 2004, 200&achori and Sircar,
2008).

One solutionwhen dealing with nonstationary signals is temploy time-varying parametric
models wherethe associated model parameters are allowed to bevéingeng or timedependent.
Methods for parametric modelling of nonstationary signals can robghtategorizedto two classes
adaptive recursive estimatiamd deterministibasis function expaitn and regressiorBphlin, 1977;
Barlow, 1985. The adaptive recursive estimation methods astochasticapproah, where the
coefficients of the assot¢éd models are treated eendomprocessesvith some stochastic model
structure; the most popularehods to deal with this class of model® the recursive least squares
leastmean squareand Kalman filteringalgorithms(Bohlin, 1977; Barlow, 1985Hayes, 1995 The
basis function expansion and regression meibaa deterministic parametricodelling approach,
wherethe associatedime-varying coefficientsare expanded as a finiteequenceof pre-determined
basis functionsgenerally, these coefficients are expressed using a linear or nonlinear combination of a
finite number of such basis functionshel problem then becomes time invarjard the unknown
newadjustablenodel parameterarethose involved in the expansionidencetheinitial time-varying
modelling problenis reduced taleterministic regression selection and parameter estimation

This paperaims tointroducea newtime-varying AR (TVAR) modelling approackwhere the time
dependent coefficients are approximated using a finite number of-wavélet basis functions.
Wavelets have excellent approximatigmoperties that outperform many other approximasgicimemes
and are well suited for approximating generahlinear signals, even those with sharp discontinuities
Wei and Billings, 2007)Wavelets havébeensuccessfully applied to EEG signal processing and
analysis, see for examp&ehiff et al.(1994), Kalayci and Ozdamar (199BJanco et al. (1998)and
Adeli et al. (2003)as well as have beeavidely used inmany other fields including nonlinear signal
processing and system identificatisee 6r exampleBillings and Coca (1999).iu et al. (2002,
Billings and Wei(2005a, 2005 Wei and Billings(2004a, 2004b, 200Baand Wei, Billings and
Balikhin (2004).However,not much work has been done on exploiting the attractive properties of
wavelets andapplying themin time-varying systemidentification. Basedupon a multi-wavelet
expansion schemeje propose a newapproach for timelependent parameter estimatidhe meaning
of the term'multi-wavelet here is twofold.Frstly, the timevarying coefficients of the AR model are
approximatedusing severatypes of wavelet basis functions, that tise time-dependent parameter
estimatio involves multiple wavelets. Secondly, these wavelet basis functions are comtanfednm
of multiresolutionwaveletdecompositionsCompared with decompositions involving only a single
type of wavelets, the multvavelet expansion schemerimuch more flexible in that itexploits the
properties of both smooth and nemooth wavelet basis functions and tleas effectively track the
variations of timevarying ®efficients. As will be illustratedlater, in comparisorwith traditional

power spectral estimation methods asidssicaltime-invariant AR models, the new timarying



modelling framework using multvavelet expansions anmsoreeffective for nonstationaigEG signal

modeling.

2. TheTime-Varying AR Model

Thep-th ordertime-varying AR model TVAR(p), is formulated as below
p
y(t) =2 a )yt —k)+e(t) 1)
i=1

wheret is the time instant or sampling index of the sigr{8l e(t) is the model residughat canoften
be treated as a stationary white naésguence with zero mean and variance anda, (t) are the

time-varying coeficients.
One solution to the timearying estimation problem (1) is to approximate the tiagying

coefficientsy, (t) using a set obasis functiongz,,,(t): m=12,---, L} , wherer,,(t) are scalar functions,

as below
L
a(t)= 2 G nrm(t) ()
m=1
Substituting(2) into (3),yields

YO =3 36 Y —K) +e(t) @)

i=1lm=1

Denote
n(t) =[m (), 70, 7 (O],
X (1) = y(t-K)=(t),
X(t) =[x, (1), X5 (1), -+, X, (V)]
G =[G1G2Gml
c=[c;, ¢y, Cp]

Equation (3) can then be written as

y(t) =x(t)c” +elt) 4
wherethe upper scriptT’ indicatesthe tranposeof avector ora matrix.

Equation (4) is a standard linear regression model that can be ssivedinear least squares
algorithms.Let ¢ be the estimate af, & (t) be the estimates & (t) , and 52 be the estimate of?.
Thetime-dependengpectral function retave to theTVAR model (1) is then given by

~2

O
i=1

H(f,t)=



where j = J-1 andfis the sampling frequencilote thathe spectral function §5s continuousvith

respect to thérequencyf and thusanbe used to producspectral estimagaat any desired frequencies

up to the Nyquist frequendy /2. However, the frequency resoluti@primarily not infinite, kut is

determined by the underlying model ordedthe associated parameters

Two basicissues arencountered when ghbasis function expansion and regressipproach is
applied togeneraltime-varying parametric modelling problems, namehow to chooseahe basis
functions and how to select the significant ofies the poolof the basis functions. For the first issue,
while there are a number of choices and alternatives, for example, Fourier (sinusoidalMadstes,
and Haar functionsyavelets,discrée prolate spheroidal sequences, different typegobfnomials
(including the Chebyshev ardegendretypes)(Niedzwiecki 1988 Wei and Billings, 2002Chonet
al., 2005 Pachori and Sircar, 2008), there is no a guideline on how to choose the appromsat
from these available basis functions fosgecific modelling problemin fact, eachfamily of basis
functionsposseséts own unique tractability and accuracy, for example, polynomial andd¥dasis
functions work well for most smoothly and slowarying coefficients; Walsh and Haar functions,
however, perform well for timgarying coefficients that have sharp variationpiecewise changes.

The second issue involves regression selection and model refinement.higr dimensional
parametric regession modéihg problem, the initial full regression model, produced by a basis
function expansion approach, often involves a great number of regressors brtanode whatever
types of basis functions are employed. Experiencesamdlationresults hag shown that in most
cases thanitial full regression model may beedundantor ill-posed meaning that many of the
candidate regressors in the initial full regression equatienlinearly depsdenton the others and
thereforecan be removettom the moel, and the resultant parsimonious model with just a relatively
small number of regressors can often produce satisfactory results (Wei and Billings, 2002).

Biomedical signals including EEG records often invdbe¢h fast and slowlyariations In order
to alleviate thedilemmathat the choice of basis functions has to be highly dependeat priori
information on the signals to be studied, and also to make the modelling algmattarilexible and
able to track both fast and slowly varyitignds we propse a new TVAR modelling approach using
a multiwavelet basis function expansion scheme, where properties of different types of wavelets are

exploited and combined in a form of multiresolution decompositions.

3. TheMulti-Wavdet Basis Functions

From wavéet theory (Mallat 1989 Chui, 1993, asquare integrablscalarfunctionf € L?(R)can

be arbitrarily approximated usinige multiresolution wavelet decomposititwelow

f(x)zzk:ajo,k¢jo,k(x)+ > Zﬂj,k%’/,‘,k(x) (6)

jzjo k



wherethe wavelet familyy , (X) =2'"%y (2' x—k) andg, , (X) =2'"?¢ (2’ x= k) , with j, ke Z (Zis a
set consisting of whole integersye thedilatedand shifted versionsf the mother waveley and the
associated scale functign, «; , and 3;, are the wavelet decomposition coefficienig,is an
arbitrary integer representing the coarsesoluti®n or scale level. Also, from the propest of
multiresolution analysis theory, any square integrable funttwam be arbitrarily approximated using
the basic scale functions;, (x)=2'"?¢(2' x—k) by setting the resolution scale level to be

sufficiently large, that is, there exists an integiesuch that

f(X)ZZk:aJ,k¢J,k(X) (7)

Cardinal Bsplines are an important class of basis functions that can form multiresolution wavelet
decompositions (Chui, 1992)he first order cardinal Bpline isvery the weltkknown Haar function
defined as

x e [02),
) otherwise.

B9 760~ g ®

The second third and fourthorder cardinal BsplinesB,(x), B;(x) and B,(x) are given in Table 1

(Wei and Billings, 200B). For detailed discussions on cardinagfdines and the associated whets,
see Chui (1992).

One attractive feature of cardinalsBlinesis thatthese functions are completely supported, and
this property enablesthe operation of the multiresolution decompositiof) o be muchmore

convenient. Foexample the mth orderB-splineis defined on [0m], thus,the scale and shifbdices
j andk for the family of the functiong, (x)=2'"?B (2'x—k) should satisfy0<2'x—k<m.
Assume that the functioffx) that is to be approximategith decompositions (6) or (7) is defined
within [0, 1], thenfor any given scalendex(resolution levelj, the effective values for the shift index
k, arerestricted to theollection{k:-m<k<2! -1} .

Note that while the first and second ordesginesB,(x) and B,(x) are noasmooth piecewise

functions, which would perform well for signals with sharp trartsi@md burstike spikes, Bsplines

of higher order would work well on smoothly changing signals. Motivated by éhisideration, ttg
study proposesasingmulti-wavelet basis functions for TVAR model identification. An example of the
new multi-wavelet based algorithm is given in the following.

Take the Bsplines of order from 1 to 5 as an example, and consider the decompositiort (7). Le
[, ={k:-m<k<2’ -1}, withm=1,2, ..., 5; letg{™ (x) = 2"?B_ (2’ x—k) , with keT,,. The time
varying coefficients, (t) in (1) can then be approximated using a combination of functions from the

families{¢l§”‘) :m=1.-.-5kel,}. For example, one such combination can be chosen as,



Table 1 Cardinal Bplines of order from 1 to 4.

B,(X) B,(X) 2B;(x) 6B,(X)
0<x<1 1 X x? x3
1< x<2 0 2-X —2x%2 +6x-3 —3+12x% —12x+ 4
2<x<3 0 0 (x—3)2 3x® —24x* + 60x— 44
3<x<4 0 0 0 —x3+12x% - 48x+ 64

o

elsewhere 0

a(t) = ZC(Q)¢|§Q)( ) zq(w(r)( j 3o (s)( j )

kelg kel kel
wherel<g<r<s<5,t=1,2, ...,N, andNis nunber of observations of the signgimulation results

haveshown that for mogime-varyingproblems, the choice @fF3, r=4 ands=5 work well to recover
the timevarying coefficients. If, however, there is strong evidence that tiime-dependent
coefficientshavesharp changeshen the inclusion of the firsindsecond order Bplines wouldvork

well. The decomposition (9¢an easily beconverted into the form of (2where the collection

{7n():m=12,- L} is replacedby the union of the three farigb: {#{¥ (t):k e T}, {4 (t):k e T}}

and{g® (t): k eI} . Further derivation can then lead to the standard linear regression equation (4).

As mentioned earliethe initial full regression equatiof@) may involve a great numbef &ree
parameters; the associated regressors may be highly correlated, and the ordinary least squares
algorithm may fail to produce reliable results for suclpdsed problems. These problems, however,
can easily be overcome by performing an effective model refinement procedure whedreantgni

modelterms or regressors can be selected one byRiliags et al., 1989; Chen et al., 1989).

4. Modd ldentification and Parameter Estimation

The weltknown orthogonal least squares (OLS) type of algorithms (Billings et al. T893 et
al., 1989; Aguirre and Billings, 1995; Zhu and Billings, 1996; Wei et al. 2004; Billings and?06:4
Wei and Billings, 2008 have been proven to be very effective to deal with multiple dynamical
regression problems, which involve a great number of candidate model terms or regressors that may be
highly correlated. In the present studye OLS algorithngiven in Billings et al. (2007)is used to
solve theregression equation (4yhis includes a model refinement proceduneliuing the selection
of significant regressors and model parameter estimatioa rdsultant estimates will then be used to

recover the timevarying coefficients, (t) in the TVAR malel (1).

As to the model order determination issue, this can be sdlyedsing some model order



determination criteria including the wédhown Akaike information criterion (AIC)YAkaike, 1974)

andBayesiannformation criterion (BIC)Schwarz 1978;Efron and Tibshirani, 1993)elow:

AIC(p) = In(&§)+%ln(N) (10)

BIC(p) = N p’EI'”(N)‘l] InG?) (11)

where &,2) is the variance of the model residuals calculated from the assopititestder model.

5. Artificial Data Modelling

Prior to applying theproposedl'VAR modelling approach to real EEG data analysis, a benchmark

on an artificiatime-varyingsignal was considered. The signal was defined as below:

2|t|* sin(2af,t), te[0,2),
[t]* sin@Af,t), te[24),
2|t) sin@At), te[48],
0, ortherwise

y() = (12)

wherea =0.5, 5 =0.25, f,=3Hz, f,=8Hz, f;=15Hz. The above signal was sampled with a sampling

interval 0.01, and thus a total of 600 observations were obtain€hulsian white noisgequence,
with meanzeroandvarianceof 0.04, was then added to the &Qda points.

A second order TVAR model wastimatedo describe the timearying signal The third, fourth
and fifthorder B-splines, as shown by (@here the scale index (resolution levklyas chosen to be 3,
were employed to approximate the tiveeying parameters, (t) with i=1,2andn=1,2, ..., 600 An
OLS algorithm (Billingset al, 2007) was then applied &stimate andefine the model including
significant regress selection and model parameter estimation.

The estimatef the two timevarying coefficieng g, (t) and a,(t) are shown in igure 1. The

topographical map of the tirdependent spectrum estimated from the TVAR masledhown in
Figure 2, andthe 2D image of the timelependent spectruproduced from the -B topographical
mapis shown in Figur&. Thetransienpower spectra, calculated at different time instants trairto
t=600, were overlapped and these are shown in Fijureom theseesults it is very clear that the

second ordef VAR model can characterize the relevant signal very well.
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Figure 1 The estimates of the two timarying coefficientsa, (t) and a,(t) for the artifigal signalpresented
by (12).
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Figure2 The 3D topographicamap of the timedependent spectrum estimated from TWAR(2) model for
the signalpresented by (12).
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Figure3 The 2D image of the timelependent spectrum produced from thB Bpographical map showin

Figure2.
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Figure4 Theoverlap ofthetransientpower spectra calculated at different time instants frabtot

problem described by (12).
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6. EEG Data Modeling and Analysis

The proposed TVAR modelling framewohas been applied to the analysisnoimerousEEG
recordngs. As an example nithe following,an EEGrecading given and described ilindrzejaket al.
(2001) was consideredto illustrate the application of thproposedmulti-wavelet based TVAR
modelling ajproach.Figure 5shows theeEG sequence of 1048 data points, recorded during 6 seconds,
with an sampling rate of 173.61 HEkhis recording is for a sort of seizure activity of a patiént.
detailed description can be foundAndrzejaket al. (2001).

Similar to the example given in the previous sectibe, third, fourth and fifth order Bplines
with the resolution level (scale inde3}3, were employed t@onstruct TVAR modelfor the EEG
data. Several TVAR models with different model ordevere estimaed using the OLS algorithm
(Billings et al., 2007)and loth the AIC and BIC criteria suggesithat the modebrdercan be chosen
to be 4 when using thesedplines as building blocks tepresenthe timevarying coefficients in the
TVAR model.

The esimates of thdour time-varying coefficients, (t) with i=1,2,3,4are shown in Figuré. The

recovered signal, calculatddom the TVAR model using these two timarying coefficients is
shown in Figure7, where only part of the datare presented for a clear visualizatioihe
topographical map of the tirgependent spectrum estimated from the TVAR masleshown in
Figure8, and he 2D imageand the contour plaif the timedependent spectrum produced from the 3-
D topographical mapreshown in Figure 9.

From Figures8 and 9 thepowerspectrum of the EEG signal considiteere is mainly distributed
in the range from zero to 17 Hz, and three frequency beawlde obviously observed the low
frequency bandless tharR.5Hz); ii) the frequency band that is cerizad around 6Hz; andthe high
frequency band that is ceritzed around 17HzThe 2D imageand the associated contour plot of the
time-dependent spectrugiven in Figured clearlyreflectshow these frequencies are distriltlisdong
the time course of the signal. In other worill& variations of the time course signal can clearly be
observed in thi2-D image oftransientspectrum For exampleduring the period from 2.7 to 3.9se
power spectrum is dominated by a high frequency compdabout 17 Hz)and during the period
from 4 to 5s the spectrum is dominated bfrejuency componentabout &1z), while during the
period from 5 to 6s, thiéme course is determined hyw frequency component (about 3Hz), but with
higherfrequency(17Hz) activity superposed to it. These properties, possessed by the proposed TVAR
model, cannot be obtained using any timeariant parametric modelling framework including the

commonly used AR models.
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Figure5 The EEGsignal, for a sort of seizure activity of a patierecorded during 6 seconds, with an sampling
rate of 173.61 Hz.
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Figure6 The estimates of theur time-varying coefficientsa, (t) (i=1,2,3,4)for theEEG signal
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Figure 7 A comparison of the recovered signal from the identified secoder TVAR@) model and the
original observations for thEEG signal Solid (blue) line indicates the observations and the dashed (red) line
indicates the signal recoverémm the TVAR@) model.For a clear visualization only the data points of the
period from 4.5 to 6s are displayed.
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Figure8 The 3D topographical map of the tirependent spectrum estimated from TWAR(4) model for
the EEG signal
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Figure 9 The 2D image and thecontour plotof the timedependent spectrum produced from th® 3
topographical map shown in Figude (a) the 2D image; (b) the contour plot.

7. Conclusions

A new timevarying parametric modellingp@roachhas been developed in this stueshere the
associated timéependent coefficients are approximated using muatielet basis functionsThe
realization of theime-varying AR (TVAR) model here is distinguished from existing tinaying
parametrionodelswhere the relevant timdependent coefficients are represented using basis function
expansions. In mogxisting timevarying parametrienodels, the basis functions used for representing
the timedependent coefficients are global, while the basigtions involved in the new proposed
modelling approach are locally defineitte multiwavelet and multiscale expansion scheme enables
the timevarying models to banuch more flexible and adaptable fdracking the variations of
nonstationary signalascluding EEG recordings

The timedependent spectryncalculated fromthe multi-wavelet basedl'VAR model has a
capability thatnot only reveals the global frequency behaviour of the signal but alsasefiedocal
variations of the signal along the time course. In this resghecproposed TVAR modelutperforms
thetraditional timeinvariant AR models.

A further study in this direction is to extract more features of Ef@aks using thenulti-wavelet
based TVAR modelling method, so that these can paiedl for EEG signal classification,
synchronization and othedragnostic tasks.
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