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Abstract: Based on the parametric characteristic of the nth-order GFRF (Generalised 

Frequency Response Function) for nonlinear systems described by an NDE (nonlinear 

differential equation) model, a mapping function from the parametric characteristics to 

the GFRFs is established, by which the nth-order GFRF can directly be written into a 

more straightforward and meaningful form in terms of the first order GFRF, i.e., an n-

degree polynomial function of the first order GFRF. The new expression has no recursive 

relationship between different order GFRFs, and demonstrates some new properties of 

the GFRFs which can explicitly unveil the linear and nonlinear factors included in the 

GFRFs, and reveal clearly the relationship between the nth-order GFRF and its 

parametric characteristic, and also the relationship between the nth-order GFRF and the 

first order GFRF. The new results provide a novel and useful insight into the frequency 

domain analysis and design of nonlinear systems based on the GFRFs. Several examples 

are given to illustrate the theoretical results.  

 

Keywords: Generalised Frequency Response Function (GFRF), Nonlinear systems, 

Parametric characteristics, Nonlinear differential equation (NDE), Volterra series 

 

 

1   Introduction 
       

The frequency domain analysis of nonlinear systems has been studied for many years 

(Taylor 1999, Solomou 2002, Pavlov 2007). Nonlinear systems can also be studied in the 

frequency domain based on Volterra series theory (Bedrosian and Rice 1971, Rugh 1981, 

Brilliant 1958, Kotsios 1997, Volterra 1959). It is noted in Boyd and Chua (1985) that 

nonlinear systems, which are causal and have fading memory, can be approximated by 

the Volterra series of finite orders. The existence of a Volterra series expansion for a 

nonlinear system was also studied in Sandberg (1982, 1983). For a Volterra series 

expansion of a nonlinear system, the nth-order Generalized Frequency Response 

Function (GFRF) of the system is defined as the multi-dimensional Fourier transform of 

the nth order Volterra kernel (George 1959). This concept provides a significant basis for 

the analysis of nonlinear systems in the frequency domain. Many significant results 

relating to the estimation and computation of the GFRFs and analysis of output frequency 
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response for a practical nonlinear system have been developed based on this concept 

(Bendat 1990, Billings and Lang 1996, Chua and Ng 1979, Jing et al 2007).  

       

To compute the GFRFs of nonlinear systems, Bedrosian and Rice (1971) introduced the 

�harmonic probing� method, by which the higher order GFRFs of the harmonic 

expansion of the nonlinear system under study can be derived. By applying the probing 

method (Rugh 1981), algorithms to compute the GFRFs for nonlinear Volterra systems 

described by NDE model and NARX (Nonlinear Auto-Regressive model with eXogenous 

input) model were derived, which enable the nth-order GFRF to be recursively obtained 

in terms of the coefficients of the governing NARX or NDE model (Peyton-Jones and 

Billings 1989, Billings and Peyton-Jones 1990, Chen and Billings 1989). Based on the 

GFRFs, frequency response characteristics of nonlinear systems can therefore be 

investigated (Peyton Jones and Billings 1990, Yue et al 2005). These results are 

important extensions of the well known frequency domain methods for linear systems 

such as transfer function or Bode diagram, and provide a method to the analysis of 

nonlinear systems in the frequency domain. Although these progresses have been made 

and the GFRFs of nonlinear systems described by NARX model and NDE model can be 

determined effectively, it can be seen that the GFRF is in fact a multivariate complex 

valued function series in terms of model parameters defined in high dimensional 

frequency space, and consequently the existing recursive algorithms for the computation 

of the GFRFs can not explicitly and simply reveal the analytical relationship between 

system time domain model parameters and system frequency response functions in a 

clear and straightforward manner such that many problems remain unsolved regarding 

the characteristics of the GFRFs and the system output frequency response, including 

how the frequency response functions are influenced by the parameters of the underlying 

system, and the connection to complex non-linear behaviours. These inhibit the practical 

application and understanding of the existing theoretical results to a certain extent. In 

order to solve these problems, the parametric characteristics of the GFRFs were studied 

in Jing et al (2006), which effectively build up a mapping from the GFRF to its 

parametric characteristic and thus provides an explicit expression for the analytical 

relationship between the GFRFs and system time-domain model parameters. The 

significance of the parametric characteristic analysis of the nth-order GFRF is that it can 

clearly reveal what model parameters contribute to and how these parameters affect 

system frequency response functions including the GFRFs and output frequency response 

function. This provides an effective approach to the analysis of the frequency domain 

characteristics of nonlinear systems in terms of system time domain model parameters.  

       

This study is based on our previous results in Jing et al (2006). It is shown in Jing et al 

(2006) that the nth-order GFRF and output spectrum of a nonlinear Volterra system can 

both be written as an explicit and straightforward polynomial function in terms of 

nonlinear model parameters, and this polynomial function is characterized by its 

parametric characteristic and some related complex valued functions which are dependent 

on the frequency variables, system�s linear factors and even system input (for output 

spectrum). The parametric characteristics can be analytically determined by the results in 

Jing et al (2006). In this study, the focus is to analytically determine the complex valued 

functions related to the parametric characteristics. An inverse mapping function from the 
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parametric characteristics of the GFRFs to the GFRFs is studied. By using this new 

mapping function, the nth-order GFRF can directly be recovered from its parametric 

characteristic as an n-degree polynomial function of the first order GFRF, keeping the 

explicit analytical relationship between the GFRF and system time-domain model 

parameters. Compared with the existing recursive algorithm for the computation of the 

GFRFs, the new mapping function enables the nth-order GFRF to be determined in a 

much more straightforward and meaningful structure. Note from the previous results that 

the higher order GFRFs are recursively dependent on the lower order GFRFs. This 

crossing relationship sometimes complicates the qualitative analysis and understanding of 

system frequency characteristics by using the nth-order GFRF. The new results can 

effectively overcome this problem, and unveil the system�s linear and nonlinear factors 

included in the nth-order GFRF more clearly. This provides a novel and useful insight 

into the frequency domain analysis and design of nonlinear systems based on the GFRFs, 

and can be regarded an important extension of the parametric characteristic theory 

established previously. Several examples are given to illustrate these results. 

 

Nomenclature  
 

),,( 1, qpqp kkc +L         A model parameter in the NDE model, ki is the order of the derivative, 

p represents the order of the involved output nonlinearity, q is the 

order of the involved input nonlinearity, and p+q is the nonlinear 

degree of the parameter. 

),,( 1 nn jjH ωω L            The nth-order GFRF 

)],,(,),1,,0(),0,,0([ ,,,, 43421LLLL
mqp

qpqpqpqp KKcccC
=+

=       A parameter vector consisting of all the 

nonlinear parameters of the form ),,( 1, qpqp kkc +L  

CE(.)                           The coefficient extraction operator 

)),,(( 1 nn jjHCE ωω L     The parametric characteristics of the nth-order GFRF 

),,( 1 nn jjf ωω L             The correlative function of )),,(( 1 nn jjHCE ωω L  

⊗                                 The reduced Kronecker product defined in the CE operator 

⊕                                 The reduced vectorized summation defined in the CE operator 

)()()( ,,, 1100
⋅⋅⋅

kk qpqpqp ccc L   A monomial consisting of nonlinear parameters 

pxxx sss L
21

                    A p-partition of a monomial )()()( ,,, 1100
⋅⋅⋅

kk qpqpqp ccc L  

ixs                                A monomial of xi parameters of )}(,),({ ,, 00
⋅⋅

kk qpqp cc L of the involved 

monomial, kxi ≤≤0 ,  and s0=1 

)()(: nSnS fCn →ϕ       A new mapping function from the parametric characteristics to the 

correlative functions, )(nSC  is the set of all the monomials in the 

parametric characteristics and )(nS f is the set of all the involved 

correlative functions in the nth order GFRF.  

))(( ssn x                        The order of the GFRF where the monomial )(ssx  is generated 

),,( 1 nn ωωλ L                The maximum eigenvalue of the frequency characteristic matrix nΘ  

of the nth-order GFRF 
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2   The nth-order GFRF for nonlinear systems and its parametric 
characteristic  
       

A large amount of nonlinear systems can be described by the following nonlinear 

differential equation (NDE) model 
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Consider nonlinear systems which can be approximated by a Volterra series up to 

maximum order N (Boyd and Chua 1985) as 

∑ ∫ ∏∫
=

∞

∞−
=

∞

∞−
−=

N

n

n

i
iinn dtuhty

1 1

1 )(),,()( ττττ LL                                      (2) 

where ),,( 1 nnh ττ L is a real valued function of nττ ,,1 L  called the nth-order Volterra kernel. 

The nth-order GFRF of system (2) is defined as (George 1959) 
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The concept of GFRF provides a basis for the study of nonlinear systems in the frequency 

domain. The GFRF for system (2) described by NDE model (1) can be obtained by the 

probing method (Rugh 1981). An algorithm to compute the nth-order GFRF for NDE 

model (1) was provided in Billings and Peyton-Jone (1990):  
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2.1   A correction for the computation of the nth-order GFRF 
       

In the recursive algorithm for the computation of the GFRFs above, the second term in 

the right side of equation (4), i.e., 
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That is, equation (4) is corrected as 
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This result can be shown by applying the probing method for the cross input-output 

nonlinear terms labelled by nonlinear parameter cpq(.) for 1,1 ≥≥ qp in NDE model (1) as 

demonstrated in Billings and Peyton Jones (1990). 

       

For clarity, consider a simple cross nonlinear term 
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where Cn[.] denote the operation of extracting the coefficient of tj ne )( 1 ωω ++L  (Billings and 

Peyton Jones 1990). By using (5) and (7), (10) is equal to 
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This result is consistent with (8). Following the same method and extending to the more 

general case, (8) and (9) can be achieved. Moreover, for convenience in further derivation, 
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Then (9) can be written for more simplicity as 
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Therefore, the corrected recursive algorithm for the computation of GFRFs is (9 or 12, 11, 

5-7). This will be used in the following sections. Note that the GFRFs here are 

asymmetric and the symmetric GFRFs can be obtained as 
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2.2   The parametric characteristics of the GFRFs 
       

The parametric characteristics were studied in Jing et al (2006) to reveal what model 

parameters contribute to and how these parameters affect system frequency response 

functions. By using the parametric characteristic analysis, some frequency domain 

characteristics of the GFRFs can be obtained, and the explicit relationship between the 

GFRFs and system time domain model parameters can be unveiled. Let 
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where CE(.) is a novel coefficient extraction operator which has two basic operations 

�⊕ � and �⊗ �. For the detailed definition and operation rules for CE(.), the readers can 

refer to Appendix A. Based on the parametric characteristic analysis (Jing et al 2006), the 

nth-order GFRF can be expressed as 

( ) ),,(),,(),,( 111 nnnnnn jjfjjHCEjjH ωωωωωω LLL ⋅=                          (14) 

where ),,( 1 nn jjf ωω L is a complex valued function vector with an appropriate dimension, 

which is referred to as the correlative function of the parametric characteristic 

( )),,( 1 nn jjHCE ωω L  in this paper. 

       

Equation (14) provides an explicit expression for the analytical relationship between the 

GFRFs and the system time-domain model parameters. Based on these results, system 

nonlinear characteristics can be studied in the frequency domain from a novel perspective 

such as frequency characteristics of system output frequency response, nonlinear effect 

from some specific nonlinear parameters, parametric sensitivity analysis and so on, as 

demonstrated in Jing et al (2006, 2007b). In the following sections of this study, an 

algorithm is provided to explicitly determine the correlative function ),,( 1 nn jjf ωω L  in 

(14) directly in terms of the first order GFRF )( 11 ωjH  based on the parametric 

characteristic vector ( )),,( 1 nn jjHCE ωω L . To this objective, a mapping from 

( )),,( 1 nn jjHCE ωω L  to ),,( 1 nn jjH ωω L  is established such that the nth-order GFRF can 

directly be written into the parametric characteristic function (14) in its detailed and 
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analytical form by using this mapping function, and some new properties of the GFRFs 

are developed. These results effectively extend the previous established parametric 

characteristic theory. The GFRFs can directly be determined in a much more 

straightforward and meaningful structure in terms of model parameters and the first order 

GFRF without recursive and crossing relationship between different order GFRFs, and 

the system�s linear and nonlinear factors included in the nth-order GFRF can be unveiled 

more clearly. By using the new results, the analytical OFRF can now be determined 

explicitly. The new results of this study should provide a fundamental basis for the 

frequency domain analysis of nonlinear Volterra systems.  

 

3   Mapping from the parametric characteristic to the nth-order 
GFRF  
       

The parametric characteristic vector ( )),,( 1 nn jjHCE ωω L of the nth-order GFRF can be 

recursively determined by equation (13), which has elements of the form 

kk qpqpqpqp CCCC ,,,, 2211
⊗⊗⊗⊗ L  (n-2 ≥ k ≥0), and each element of which has a corresponding 

complex valued correlative function in vector ),,( 1 nn jjf ωω L .  For example, 

),,( 1,0 nn kkc L corresponds to the complex valued function nk
n

k jj )()( 1

1 ωω L in the nth-order 

GFRF. For further development, ( )),,( 1 nn jjHCE ωω L can also be determined by the 

following result, which allows the direct determination of the parameter characteristic 

vector of the nth-order GFRF without recursive computations and provides a sufficient 

and necessary condition for which nonlinear parameters and how these parameters are 

included in ( )),,( 1 nn jjHCE ωω L .  

 

Lemma 1 (Jing et al 2006). The elements of ( )),,( 1 nn jjHCE ωω L  include and only include 

the nonlinear parameters in C0n and all the nonlinear parameter monomials in 

kk qpqpqpqp CCCC ,,,, 2211
⊗⊗⊗⊗ L for 20 −≤≤ nk , where the subscripts satisfy  
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From Lemma 1, an element in ( )),,( 1 nn jjHCE ωω L  is either a single parameter coming 

from pure input nonlinearity such as c0n(.), or a nonlinear parameter monomial function 

of the form 
kk qpqpqpqp CCCC ,,,, 2211

⊗⊗⊗⊗ L  satisfying (15), and the first parameter of 

kk qpqpqpqp CCCC ,,,, 2211
⊗⊗⊗⊗ L must come from pure output nonlinearity or input-output 

cross nonlinearity, i.e., cpq(.) with 1≥p and p+q>1. For this reason, the following 

definition is given.  

 

Definition 1. A parameter monomial of the form 
kk qpqpqpqp CCCC ,,,, 2211

⊗⊗⊗⊗ L with k≥ 0 

and p+q>1 is said to be effective or an effective combination of the involved nonlinear 

parameters for ( )),,( 1 nn jjHCE ωω L  if p+q=n(>1) for k=0, or (15) is satisfied for k>0. ͙ 
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From Definition 1, it is obvious that all the monomials in ( )),,( 1 nn jjHCE ωω L  are 

effective combinations. The following lemma shows further that what an effective 

monomial should be for certain order GFRF and how it is generated in the GFRF.  

 

Lemma 2. For a monomial )()()( ,,, 1100
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it can be seen that all the nonlinear parameters with p>0 and p+q ≤ n are involved in the 

nth-order GFRF, and each of these parameters must correspond to the initial parameter in 

an effective monomial of ( )),,( 1 nn jjHCE ωω L . Hence, if there are l different parameters 

with pi>0 in the monomial )()()( ,,, 1100
⋅⋅⋅

kk qpqpqp ccc L , then there will  be l different cases in 

which this monomial is produced in the Zth order GFRF. This completes the proof. ͙ 

 

Definition 2. A (p,q)-partition of ),,( 1 nn jjH ωω L  is a combination 

)()()(
2211 pp rrrrrr wHwHwH L  satisfying qnr

p

i

i −=∑
=1

, where 11 +−−≤≤ qpnri , and 
ir

w is a set 

consisting of ri different frequency variables such that { }n

p

i

ri
w ωωω ,,, 21

1

LU =
=

and 

φ=
ji rr ww I for i ≠ j. ͙ 

       

For example, )()()( 5332111 ωωωω LHHH and ),(),()( 54232211 ωωωωω HHH are two (3,0)-

partitions of ),,( 515 ωω jjH L .  

 

Definition 3. A p-partition of an effective monomial )()( ,, 11
⋅⋅

kk qpqp cc L is a combination 

pxxx sss L
21

, where 
ixs is a monomial of xi parameters in )}(,),({ ,, 11

⋅⋅
kk qpqp cc L , kxi ≤≤0 , s0=1, 

and  each non-unitary 
ixs is an effective monomial satisfying kx

p

i
i =∑

=1

and 

pxxx sss L
21

= )()( ,, 11
⋅⋅

kk qpqp cc L . ͙ 
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The sub-monomial 
ixs in a p-partition of an effective monomial )()( ,, 11

⋅⋅
kk qpqp cc L is denoted 

by ))()(( ,, 11
⋅⋅

kki qpqpx ccs L . Suppose that a p-partition for 1 is still 1, i.e., 1111 =⋅ 321L
p

. Obviously 

)()( ,, 11
⋅⋅

kk qpqp cc L = ))()(( ,, 1121
⋅⋅

kkp qpqpxxx ccsss LL = sk( )()( ,, 11
⋅⋅

kk qpqp cc L ). For example, 

))()(())(( 0,31,221,11 ⋅⋅⋅ ccscs  and ))(())()(( 0,311,21,12 ⋅⋅⋅ csccs  are two 2-partitions of )()()( 0,31,21,1 ⋅⋅⋅ ccc . 

Moreover, note that when s0 appear in a p-partition of a monomial, it means that there is a 

H1(.) appearing the corresponding (p,q)-partition for Hn(.).  

       

For an effective monomial )()()( ,,, 11
⋅⋅⋅

kk qpqpqp ccc L  in ( )),,( 1 nn jjHCE ωω L , without speciality, 

suppose the first parameter )(, ⋅qpc  is directly generated in the recursive computation of 

),,( 1 nn jjH ωω L , then the other parameters must be generated from the lower order 

GFRFs that are involved in the recursive computation of ),,( 1 nn jjH ωω L . From Equations 

(4-7)) it can be seen that each parameter in a monomial corresponds to a certain order 

GFRF from which it is generated. The following lemma shows how a monomial is 

generated in ),,( 1 nn jjH ωω L  by using the new concepts defined above. This provides an 

important insight into the mapping from a monomial to its correlative function.  

 

Lemma 3. If a monomial )()()( ,,, 11
⋅⋅⋅

kk qpqpqp ccc L  is effective, and )(, ⋅qpc is the initial 

parameter directly generated in the xth-order GFRF and p>0, then  

(1) )()( ,, 11
⋅⋅

kk qpqp cc L comes from (p,q)-partitions of the xth-order GFRF, where x= 

kqpqp
k

i

ii −+++ ∑
=1

)( ;  

(2) if additionally s0 is supposed to be generated from H1(.), then each p-partition of 

)()( ,, 11
⋅⋅

kk qpqp cc L corresponds to a (p,q)-partition of the xth-order GFRF, and each 

(p,q)-partition of the xth-order GFRF produces at least one p-partition for 

)()( ,, 11
⋅⋅

kk qpqp cc L ; 

(3) the correlative function of )()( ,, 11
⋅⋅

kk qpqp cc L is the summation of the correlative 

functions from all the (p,q)-partitions of the xth-order GFRF which produces 

)()( ,, 11
⋅⋅

kk qpqp cc L , and therefore is the summation of the correlative functions 

corresponding to all the p-partition of )()( ,, 11
⋅⋅

kk qpqp cc L . ͙ 

 
Remark 1.  From Lemma 3, it can be seen that all the (p,q)-partitions of the xth-order 

GFRF which produce )()( ,, 11
⋅⋅

kk qpqp cc L  are all the (p,q)-partitions corresponding to all the 

p-partitions for )()( ,, 11
⋅⋅

kk qpqp cc L . Therefore, to obtain all the (p,q)-partitions of interest, all 

the p-partitions for )()( ,, 11
⋅⋅

kk qpqp cc L  is needed to be determined. ͙ 
       

Based on the results above, in order to determine the mapping between a parameter 

monomial )()()( ,,, 11
⋅⋅⋅

kk qpqpqp ccc L  and its correlative function in ),,( 1 nn jjf ωω L , the following 

operator is defined.  
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Definition 4. Let )(nSC  be a set composed of all the elements in ( )),,( 1 nn jjHCE ωω L , and 

let )(nS f  be a set of the complex-valued functions of the frequency variables njj ωω ,,1 L . 

Then define a mapping 

)()(: nSnS fCn →ϕ                                                      (17a) 

such that in nωω ,,1 L  

( ) ( )∑ ⋅=

},...,2,1{ of
nspermutatio  theall

11!
1

1 )),,((),,(),,(

n

nnnnnnn
sym
n jjHCEjjHCEjjH ωωϕωωωω LLL              (17b) 

͙  

       

The existence of this mapping function is obvious. For example, 
nk

n
k

nnn jjkkc )()()),,(( 1

11,0 ωωϕ LL = . The task is to determine the complex valued correlative 

function ))()()(( ,,, 11
⋅⋅⋅

kk qpqpqpn ccc Lϕ for any nonlinear parameter monomial 

)()()( ,,, 11
⋅⋅⋅

kk qpqpqp ccc L  (0 ≤ k≤ n-2) in ( )),,( 1 nn jjHCE ωω L .  

 

Based on Lemma 2-3, the following result can be obtained. 

 

Proposition 1. For an effective nonlinear parameter monomial )()()( ,,, 1100
⋅⋅⋅

kk qpqpqp ccc L , let 

)()()( ,,, 1100
⋅⋅⋅=

kk qpqpqp cccs L , 1)())((
1

+−+=∑
=

xqpssn
x

i
iix , where x is the number of the 

parameters in xs , ∑
=

+
x

i
ii qp

1

)( is the summation of the subscripts of all the parameters in xs , 

0(.)
1

=∑
=

x

i

 if x<1 and n(1)=1. Then for 0 ≤ k ≤ )(sn -2 

{ [

]} )18());)(((

));)((());(),((

));()()((

1

))))((()(()1)((,)))(((

)(for
partitionsptheall

}s,,{sof
nspermutatio

different  theall

))(()1(,2

0and)()(
satisfyingfor

partitions2theall

))(()1(,1

))(()1(,,,)(

,

px1x

1

,1

1100

acss

csssfsncf

ccc

p

i
cssniXliXlqpxcssn

cs

qsnllqpxxa

pcss
s

snllqp

snllqpqpqpsn

pqixiqpix

pq

p

qp

kk

∏

∑ ∑∑

=
⋅++⋅

⋅
−

−

>⋅=

−

⋅⋅

⋅⋅⋅=

⋅⋅⋅

ωωϕ

ωωωω

ωωϕ

L

LLL

LL

L

 

or simplified as  

{ [

]}∏

∑∑

=
⋅++⋅

⋅
−

−

>⋅=

−

⋅⋅

⋅⋅⋅=

⋅⋅⋅

p

i
cssniXliXlqpxcssn

cs

qsnllqpxxb

pcss
s

snllqp

snllqpqpqpsn

qpixiqpix

qp

p

qp

kk

css

csssfsncf

ccc

1

))))((()(()1)((,)))(((

)(for
partitionsptheall

))(()1(,2

0and)()(
satisfyingfor

partitions2theall

))(()1(,1

))(()1(,,,)(

));)(((

));)((());(),((

));()()((

,,

,

1

,1

1100

ωωϕ

ωωωω

ωωϕ

L

LLL

LL

 (18b) 

the terminating condition is k=0 and )();1( 11 ii jH ωωϕ = , where,  

∑
−

=

⋅=
1

1

)))((()(
i

j
pqx cssniX

j
 or ∑

−

=

⋅=
1

1

)))((()(
i

j
pqx cssniX

j
                                               (19a) 

)()(());(),((

)(

1

)()(

1

))(())(()1(,1 ∑∏
==

+−
+=⋅

sn

i
ilsn

q

i

k
iqsnlsnllqp jLjsncf ip ωωωω L                                (19b) 
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∏
=

⋅++− ++=⋅
p

i

k
cssniXliXlqsnllqpxxa

i

pqixp
jjcsssf

1

))))(/(()(()1)(())(()1(,2 )());)(((
1

ωωωω LLL            (19c) 

∑ ∏
=

⋅++− ++=⋅

},,{of
nspermutatio

different  theall 1

))))(/(()(()1)((*

*

))(()1(,2

1

1
)());)(((

p

i

pqixp

kk

p

i

k
cssniXliXl

k

x
qsnllqpxxb jj

n

n
csssf

L

LLL ωωωω (19d) 

Moreover, },{
1 pxx ss L is a permutation of },{

1 pxx ss L , ))(()1( snll ωω L represents the frequency 

variables involved in the corresponding functions, l(i) for i=1� )(sn  is a positive integer 

representing the index of the frequency variables, 
!!!

!

21

*

c
k nnn

p
n

L
=  , n1+�+nc=p, c is the 

number of distinct differentials ki appearing in the combination, ni is the number of 

repetitions of the ith distinct differential ki, and a similar definition holds for *

xn .͙ 

 

Remark 2. Equation (18) is recursive. The terminating condition is k=0, which is also 

included in (18). For k=0, it can be derived from (18b) that 

)20()()()((

)(

1

);1();111();),((

));1(());1((

);),((

));(());((

1

)(1

1

)(

1

)(

1

)(

1

1)()1(2)()1(,1

1

)))1(()(()1)(())1((

1for
partitionstheall

)()1(2

)()1(,1

)()1(,))(()1(,)(

1

∏∏∏
∑

∏

∏∑

===
++

=
+

=
+

=
++

−
−+

+

++

⋅⋅=

⋅⋅+⋅=

⋅

+⋅=

⋅=⋅

+

p

i
il

p

i

k
il

q

i

k
iplqp

i
ilqp

p

i
ipll

p
bqpllqp

p

i
sniXliXlxsn

p
qqpllxxb

qpllqp

qpllqpqpsnllqpsn

jHjj

jL

fqpcf

sssf

qpcf

cc

iip

ixiixp

ωωω
ω

ωϕωωωω

ωωϕωω

ωω

ωωϕωωϕ

L321LL

LLL

L

LL

 

Note that in this case, p+q= )(sn from (15), and )(, ⋅= qpcs corresponding to a specific 

recursive terminal. Hence, (20) can be written as 

∏∏∏
∑ ===

+

=

⋅⋅=⋅ +

p

i
il

p

i

k
il

q

i

k
iplsn

i
ilsn

snllqpsn jHjj

jL

c iip

1

)(1

1

)(

1

)()(

1

)()(

))(()1(,)( )()()((

)(

1
));(( ωωω

ω
ωωϕ L   (21) 

In order to verify this result, let n= )(sn = p+q, it can be obtained from (12) that for a 

parameter )(, ⋅qpc , its correlative function is 

),,())(

)(

1
1,

1

)(

1

)(

ppp

q

i

k
ipsn

i
isn

jjHj

jL

ip ωωω
ω

L∏
∑ =

+

=

+  

From (7), ∏∏
==

⋅=
p

i

i

p

i

k
ippp jHjjjH i

1

1

1

1, )()(),,( ωωωω L . This is consistent with (21). To further 

understand the results in Proposition 1, the following figure can be referred, which 

demonstrates the recursive process in the new mapping function and the structure of the 

theoretical results above (See Figure 1). ͙  
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Figure 1.  An illustration of the relationships in Proposition 1 

 

To further demonstrate the result in Proposition 1, the following example is given. 

  

Example 1. Consider the 4
th

-order GFRF. The parametric characteristic of the 4
th

-order 

GFRF can be obtained from Lemma 1 that 

( )),,( 414 ωω jjHCE L = C0,4⊕ C1,3⊕ C3,1⊕ C2,2⊕ C4,0⊕ C1,1⊗C0,3⊕ C1,1⊗C1,2 

                                               ⊕ C1,1⊗C2,1⊕ C1,1⊗C3,0⊕ C1,2⊗C0,2⊕ C1,2⊗C2,0 ⊕ C2,0⊗C0,3                                            

                               ⊕  C2,0⊗C2,1⊕ C2,0⊗C3,0⊕  C2,1⊗C0,2⊕ C3,0⊗C0,2 

                               ⊕  C1,1⊗C0,2
2⊕ C1,1

2⊗C0,2⊕ C1,1⊗C0,2⊗C2,0⊕  C1,1
3⊕ C1,1

2⊗C2,0 

                                               ⊕ C1,1⊗C2,0
2⊕ C2,0⊗C0,2

2⊕ C2,0
2⊗C0,2⊕ C2,0

3
                                                      

By using Proposition 1, the correlative function of each term in ( )),,( 414 ωω jjHCE L  can 

all be obtained. For example, for the term c1,1(.)c0,2(.)c2,0(.), it can be derived that 

[ ]

[

]));)(((

));)((());)()(((

));)()(((

));)()((());)()(((

);4),((

));)()((());)()(((

);4),((

));()()(());()()((

)))((()2(1)2(2,01)))(((

)))((()1(1)1(1,11)))(((412,01,1112

)))()((()2(1)2(2,01,12)))()(((

)))()((()1(1)1(2,01,10)))()(((412,01,1202

410,21

)))()((()1(1)1(0,22,02)))()(((310,22,022

411,11

410,22,01,14))(()1(0,22,01,1)(

2,012,01

1,111,11

2,01,122,01,12

2,01,102,01,10

0,22,020,22,02

⋅++⋅

⋅++⋅

⋅⋅++⋅⋅

⋅⋅++⋅⋅

⋅⋅++⋅⋅

⋅⋅

⋅⋅⋅⋅+

⋅⋅⋅

⋅⋅⋅⋅⋅⋅

⋅+

⋅⋅⋅⋅⋅⋅

⋅=

⋅⋅⋅=⋅⋅⋅

csnXXcsn

csnXXcsnb

ccsnXXccsn

ccsnXXccsnb

ccsnXXccsnb

snllsn

cs

csccssf

ccs

ccsccssf

cf

ccsccsf

cf

cccccc

ωωϕ

ωωϕωω

ωωϕ

ωωϕωω
ωω

ωωϕωω

ωω

ωωϕωωϕ

L

LL

L

LL

L

LL

L

LL

 

 

( ) ]),()()([),,( ,,,1 1100
LLL ⋅⋅⋅=

kk qpqpqpnn cccjjHCE ωω

2-nk0for  )()()( ,,, 1100
≤≤⋅⋅⋅

kk qpqpqp ccc L

all the 2-partitions
all the (p0,q0)-partitions of  

which generate monomial  

),,( 1 nn jjH ωω L

)()( ,, 11
⋅⋅

kk qpqp cc L

all the p0-partitions of  

             or 1)(⋅
ii qpcLemma 2 Lemma 3 

Lemma 1 

)()( ⋅=⋅ nnf ϕ

( )∑ ∑ ⋅⋅⋅⋅⋅

=⋅=⋅

⋅ )()()(

)()(

)(21 nb

nn

ff

f

ϕ

ϕ

LLL +⋅⋅⋅⋅⋅= )()()()(),,(
11001 nqpqpqpnn fcccjjH

kk
ωω

)()( ,, 11
⋅⋅

kk qpqp cc L )()( ,, 11
⋅⋅

kk qpqp cc L
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[ ]

[
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[
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432,02211,12412,01,1112

422,01,1311412,01,1202410,21
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)))((()1(1)1(1,12412,01,1112
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⋅++
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c

cccssf
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b

b

b

csnXX

csnXXb

ccnnnccnnnb
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LLL

L
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LLL

L
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To proceed with the recursive computation, it can be derived that 

)()()()();4),((
4

1

44

4

1

4

1

1

3411,11
21 ∑∑∏

===
+ ==⋅ +

i
i

k

i
i

i

k
i jLjjLjcf i ωωωωωω L                             (23a) 

)(1);4),((
4

1

4410,21 ∑
=

=⋅
i

ijLcf ωωω L                                                                               (23b) 

1

1
)());)()((( 31312,00,22

k
xb jjccsf ωωωω ++=⋅⋅ LL                                                              (23c) 

2121

1

)()()()(

)());)()(((

142421

},,{of
nspermutatio

different  theall

2

1

)))(/(()(1)(412,01,1202

kkkk

kk

i

k
cssniXiXb

jjjjjj

jjccssf

p

i

pqix

ωωωωωω

ωωωω

+++++=

++=⋅⋅ ∑ ∏
=

⋅++

LL

LL

L
          (23d) 

( )
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1
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3
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ωωϕωωωω

ωωϕ
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⋅

⋅+++⋅=

⋅⋅⋅⋅=

⋅⋅⋅⋅=

⋅⋅

∑

∏

=

=
⋅++⋅

LL

LLL

L
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2

12,011
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1
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)(

),;)((),;)(();3),((

),);)(((),);)((();3),((

);)()((

32

322
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423

4

322,02322,02421,11

322,0)))(((322,02421,11

422,01,13

kkk
k

b

xcsnxb

jj
jjL

jj
jjL

j

ccfcf

cscsfcf
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x

ωω
ωω

ωω
ωω

ω

ωωϕωωωω

ωωϕωωωω

ωωϕ

+
⋅+⋅

++
=

⋅⋅⋅⋅⋅=

⋅⋅⋅⋅⋅=

⋅⋅

⋅

L

L

L

L

                          (23f) 

 

Using equations (23a-f) in (22) yields 
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b

b

b
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+

⋅
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=
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⋅⋅⋅⋅⋅⋅⋅=

⋅⋅⋅

L

LL
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L

L

L

LLL

LLL

L

 

(24) 

Therefore, the correlative function of the parameter monomial )()()( 0,22,01,1 ⋅⋅⋅ ccc is obtained. 

It can be verified that the same result can be obtained by using the recursive algorithm in 

(12, 5-7, 11). For the sake of brevity, this is omitted. By following the same method, the 

whole correlative function vector ( )( )),,( 4144 ωωϕ jjHCE L  can be determined. Thus the 4
th

-

order GFRF ),,( 414 ωω jjH L can directly be written into a parametric characteristic form 

which can provide a straightforward and meaningful insight into the relationship between 

),,( 414 ωω jjH L and nonlinear parameters, and also between ),,( 414 ωω jjH L and )( 11 ωjH . ͙ 

 

Remark 3. From Example 1, it can be seen that Proposition 1 provides an effective 

method to determine the correlative function for an effective monomial 

)()()( ,,, 1100
⋅⋅⋅

kk qpqpqp ccc L , and the computation process should be able to be carried out 

automatically without manual intervention. Therefore, Proposition 1 provides a 

simplified method to determine the nth-order GFRF directly into a more meaningful form 

as (14) which can demonstrate the parametric characteristic clearly and describe the nth-

order GFRF in terms of the first order GFRF )(1 ωjH and nonlinear parameters without 

crossing effect with the lower order GFRFs. This reveals a more straightforward insight 

into the relationships between ),,( 1 nn jjH ωω L  and nonlinear parameters, and between 

),,( 1 nn jjH ωω L and )(1 ωjH . Note that the high order GFRFs can represent system 

frequency response characteristics (Peyton Jones and Billings 1990, Yue et al 2005) and 

)(1 ωjH  represents the linear part of the system model. Hence, the results in Proposition 1 

not only facilitate the analysis of the connection between system frequency response 

characteristics and model linear and nonlinear parameters, but also provide a new 

perspective on the understanding of the GFRFs and on the analysis of nonlinear systems 

based on the GFRFs. ͙ 

 

4   Some new properties 
       

Based on the mapping function nϕ  established in the last section, some new properties of 

the nth-order GFRF are discussed in this section.   

 

4.1  Determination of FRFs based on parametric characteristics 
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There are several relationships involved in this paper. ),,( 1 nn jjH ωω L is determined from 

the NDE model in terms of the model parameters. Thus there is a bijective mapping 

between ),,( 1 nn jjH ωω L  and the NDE model. The CE operator is a mapping from 

),,( 1 nn jjH ωω L to its parametric characteristic, which can also be regarded as a mapping 

from the nonlinear parameters of the NDE model to the parametric characteristics of 

),,( 1 nn jjH ωω L . The function nϕ  can be regarded as an inverse mapping of the CE 

operator such that the nth-order GFRF can be reconstructed from its parametric 

characteristic, which can also be regarded as a mapping from the nonlinear parameters of 

the NDE model to ),,( 1 nn jjH ωω L . This can refer to Figure 2, where � • � represents the 

point multiplication between the parametric monomial and its correlative function.  

 

 
       

It can be seen from Figure 2 that 

)))((())((),,( 1 ⋅⋅⋅= nnnnn HCEHCEjjH ϕωω L                               (25) 

From (25), the inverse of the operator CE can simply be written as (x= ))(( ⋅nHCE ) 

)()(1 xxxCE nϕ⋅=−  

which constructs a mapping directly from the parametric characteristic of the nth-order 

GFRF to the nth-order GFRF itself. Note that ))(( ⋅nHCE includes all the nonlinear 

parameters of degree from 2 to n of the nonlinear system of interest, and )))((( ⋅nn HCEϕ is a 

complex valued function vector including the effect of the complicated nonlinear 

behaviour and also the effect of the linear part of the nonlinear system. Hence, Equation 

(25) reveals a new perspective on the computation and understanding of the GFRFs as 

discussed in Section 3, and also provides a new insight into the frequency domain 

analysis of nonlinear systems based on the GFRFs. 

       

From the results in Jing et al (2006), the output spectrum for system (1) can now be 

determined as 

( )∑
=

⋅=
N

n
nnn jFjjHCEjY

1

1 )(�),,()( ωωωω L                                   (26a) 

when the input is a general input )( ωjU ,  

));()()(( ))(()1(,,,)( 1100 snllqpqpqpsn kk
ccc ωωϕ LL ⋅⋅⋅)()()( ,,, 1100

⋅⋅⋅
kk qpqpqp ccc L

nϕ

CE
� • �),,( 1 nn jjH ωω L

Figure 2.  Relationship between nϕ  and CE 

The NDE model
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∫ ∏
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ωωω
ωσωωωϕ

π
ω

n

n

i
innnnn djUjjHCE

n
jF

L

L

1
1

11
)())),,(((

)2(

1
)(�         (26b) 

when the input is a multi-tone function ∑
=

∠+=
K

i
iii FtFtu

1

)cos()( ω ,  

∑
=++

⋅=
ωωω

ωωωωϕω
nkk

nn kkkknnnn FFjjHCEjF
L

LL

1

11
)()())),,(((

2

1
)(�               (26c) 

It is obvious that Equation (26a) is an explicitly analytical polynomial functions with 

coefficients in )()1( NSS CC ∪∪L  and the corresponding correlative functions in 

)()1( NSS ff ∪∪L . This demonstrates a direct analytical relationship between system 

output spectrum and system time-domain model parameters. The effects on system output 

spectrum from the linear parameters are included in )()1( NSS ff ∪∪L , and the effects 

from the nonlinear parameters are included in )()1( NSS CC ∪∪L  and also embodied in 

)()1( NSS ff ∪∪L . This will facilitate the analysis of output frequency response 

characteristics of nonlinear systems. For example, for any interested parameters of model 

(1), which may represent some specific physical characteristics, the output spectrum can 

therefore directly be written as a polynomial in terms of these parameters. Then how 

these parameters affect the system output spectrum need only be investigated by studying 

the frequency characteristics of the new mapping functions involved in the polynomial 

and simultaneously optimizing the values of these nonlinear parameters. Further study in 

this topic will be introduced in another publication.  

 

4.2  Magnitude of the nth-order GFRF 
       

Based on Equation (25), magnitude of the nth-order GFRF can be expressed into a novel 

form in terms of its parametric characteristic. 

 

Corollary 1. Let ))(( ⋅= nn HCECE , *)))((()))((( ⋅⋅⋅=Θ nnnnn HCEHCE ϕϕ , )))((( ⋅= nnn HCEϕϕ , and 

))(())(( ⋅⋅=Λ n
T

nn HCEHCE , then  
T
nnnnn CECEjjH Θ=

2

1 ),,( ωω L                                             (27a) 

nnnnn jjH ϕϕωω Λ= *2

1 ),,( L                                                (27b) 

Proof. It can be derived from (25) that 

( ) T
nnn

T
nnnnnn

nnnnnn

nnnnnn

CECEHCEHCEHCEHCE

HCEHCEHCEHCE

jjHjjHjjH

Θ=⋅⋅⋅⋅⋅⋅⋅=

⋅⋅⋅⋅⋅⋅⋅=

⋅=

))(()))((()))((())((

))))((())((()))((())((

),,(),,(),,(

*

*

1

*

1

2

1

ϕϕ

ϕϕ

ωωωωωω LLL

 

The result in equation (27b) can also be achieved by following the same method. This 

completes the proof. ͙ 

 

From Corollary 1, the square of the magnitude of the nth-order GFRF is proportional to a 

quadratic function of the parametric characteristic and also proportional to a quadratic 

function of the corresponding correlative function. Corollary 1 provides a new property 

of the nth-order GFRF, which reveals the relationship between the magnitude of 

),,( 1 nn jjH ωω L  and its nonlinear parametric characteristic, and also the relationship 
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between the magnitude of ),,( 1 nn jjH ωω L  and the correlative functions which include the 

linear and nonlinear behavior. Given a requirement on | ),,( 1 nn jjH ωω L |, the condition on 

model parameters can be derived by using equations (27ab). This may provide a new 

technique for the analysis and design of nonlinear systems based on the nth- order GFRF 

in the frequency domain. 

       

Moreover, it can be seen that the frequency characteristic matrix nΘ is a Hermitian matrix, 

whose eigenvalues are positive real valued functions of linear parameters but invariant to 

the values of the nonlinear parameters in ))(( ⋅nHCE . Thus different nonlinearities may 

result in different frequency characteristic matrix nΘ , but the same nonlinearities will 

have an invariant matrix nΘ . This property of the nth-order GFRF provides a new insight 

into the nonlinear effect on the high order GFRFs from different nonlinearities. For this 

purpose, define a new function  

)(),,( max1 nnn Θ= λωωλ L                                               (28) 

which is the maximum eigenvalue of the frequency characteristic matrix nΘ . As 

mentioned, the frequency spectrum of this function can act as a novel insight into the 

nonlinear effect on the GFRFs from different nonlinearities, since this function is only 

dependent on different nonlinearities but independent of their values. However, the 

frequency response spectrum of the GFRFs will change greatly with different values of 

the involved nonlinear parameters, which can not provide a clear insight into the 

nonlinear effects between different nonlinearities.  

 

4.3  Relationship between ),,( 1 nn jjH ωω L and )( 11 ωjH  
       

As illustrated in Example 1, ),,( 1 nn jjH ωω L can directly be determined in terms of the 

first order GFRF )(1 ωjH  based on the novel mapping function nϕ according to its 

parametric characteristic. The following results can be concluded. 

 

Corollary 2. For an effective parametric monomial )()()( ,,, 1100
⋅⋅⋅

kk qpqpqp ccc L , its correlative 

function is a ρ -degree function of )( )1(1 ljH ω which can be written as a symmetric form  

∑ ∏
=

−
=

⋅⋅⋅

ncombinatiodifferent for is
repetitionwithout)}(,,2,1{fromtaken

},,,{ integers ofnscombinatiotheall 1

)(1))(()1(

))(()1(,,,)(

21

1100

)()(
)!(

!)!)((

));()()((

j
sn

rrr i
ilsnllj

snllqpqpqpsn

jH
sn

sn

ccc
kk

L
L

L

LL

ρρ

ρ

ωωωμρρ

ωωϕ

 

where kpqsn
k

i
i

k

i
i −=−= ∑∑

== 00

)(ρ , ],,,[ 21 ρrrrl L= , and )( ))(()1( snllj ωωμ L can be determined by 

equations (18-19).  Therefore, the nth-order GFRF can be regarded as an n-degree 

polynomial function of )( )1(1 ljH ω . ͙ 

The proof is omitted.   

       

Corollary 2 demonstrates the relationship between ),,( 1 nn jjH ωω L and )(1 ωjH , and 

reveals how the first order GFRF, which represents the linear part of system model, 

affects the higher order GFRFs, together with the nonlinear dynamics. Note that for any 
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specific interested parameters, the polynomial structure of the FRFs is explicitly 

determined in terms of these parameters, thus the property of this polynomial function is 

greatly dependent on the �coefficients� of these parameter monomials in the polynomial, 

which correspond to the correlative functions of the parametric characteristics of the 

polynomial and are determined by the new mapping function. Hence, Corollary 2 is 

important for the qualitative analysis of the connection between ),,( 1 nn jjH ωω L and 

)(1 ωjH , and also between nonlinear parameters and high order GFRFs .  

 

Example 2. To demonstrate the theoretical results above, consider a simple mechanical 

system shown in Figure 2.  

 

 
Figure 2. A mechanical system 

 

The output property of the spring satisfies 3

1 ycKyF += , and the damper 3

2 ycyBF && += . u(t) 

is the external input force. The system dynamics can be described by  

)(3

2

3

1 tuycycyBKyym +−−−−= &&&&                                          (29) 

which can be written into the form of NDE model (1) with M=3, K=2, mc =)2(0,1 , 

Bc =)1(0,1 , Kc =)0(0,1 , 10,3 )000( cc = , 20,3 )111( cc = , 1)0(1,0 −=c , and all the other parameters 

are zero. 

       

There are two nonlinear terms 10,3 )000( cc = and 20,3 )111( cc =  in model (29), which are all 

pure input nonlinearity and can be written as ],[ 210,3 ccC = . The parametric characteristics 

of the GFRFs of model (29) with respect to nonlinear parameter C3,0 can be obtained 

according to equation (13) or Lemma 1 as 

For i=0,1,2,�, CE(H2i+1(.))=C3,0
i
, otherwise CE(H2i(.))=0 for i=1,2,3,� 

Therefore, 

CE(H1(.))=1; 

CE(H3(.))=C3,0 = [c1  c2]; 

CE(H5(.))=C3,0⊗C3,0 = [c1
2
  c1c2  c2

2
]; 

CE(H7(.))=C3,0⊗C3,0⊗C3,0= [c1
3
  c1

2
c2  c1c2

2
  c2

3
]�� 

By using (18-21), it can be obtained that  
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Hence, it can be obtained that 
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By using equation (25), the GFRFs for n=3 and 5 of system (29) can be obtained. 

Proceeding with the computation process above, any higher order of the GFRFs of 

system (29) can be derived and written in a much more meaningful form. It can be seen 
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that, the correlative function of a monomial in the parametric characteristic of the nth-

order GFRF is an n-degree polynomial of the first order GFRF as stated in Corollary 2, 

and so does the nth-order GFRF. Based on equation (25), the first order parametric 

sensitivity of the GFRFs with respect to any nonlinear parameter can be studied as 
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similarly,  
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Similar results can also be obtained for parameter c2. It can be seen that the sensitivity of 

the third order GFRF with respect to the nonlinear spring c1 and nonlinear damping c2 is 

constant which is dependent on linear parameters, but the sensitivity of the higher order 

GFRFs will be a function of these nonlinearities and the linear parameters. Note that for a 

Volterra system, the system output is usually dominated by its first several order GFRFs 

(Boyd and Chua 1985). Hence, in order to make the system less sensitive to these 

nonlinearities, the linear parameters should properly be designed.  

       

Moreover, the magnitude of ),,( 1 nn jjH ωω L  can also be evaluated readily according to 

Corollary 1. For example, for n= 3 
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As mentioned above, instead of studying the Bode diagram of ),,( 313 ωω jjH L , the 

frequency response spectrum of the maximum eigenvalue of the third order frequency 

characteristic matrix defined in Corollary 1 can be investigated. See Figures 3-4. 

Different values of the linear parameters will result in a different view. An increase of the 

linear damping enables the magnitude to increase for higher 321 ωωω ++ along the 

line 031 =+ωω . Note that the system output spectrum (26a-c) involves the computation of 

the GFRFs along a super-plane ωωω =++ nL1 . The frequency response spectra of the 

maximum eigenvalue on the plane ωωω =++ 31 L  with different output frequency ω are 

given in Figures 5-6. The peak and valley in the figures can represent special properties 

of the system. Understanding of these diagrams can follow the method in Yue et al 

(2005), and further results are under study.  
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Figure 3. Frequency response spectrum of the maximum eigenvalue 

when m=24, B=2.96(left) or 29.6(right), K=160 

 
Figure 4. Frequency response spectrum of the maximum eigenvalue 

when m=2.4, B=2.96, K=1.6 and 8.0321 =++ ωωω (left) or 1.5(right) 

 

       

The system output spectrum can also be studied. For example, suppose the system is 

subject to a harmonic input )0()sin()( 0 >= dd FtFtu ω , then the magnitude of the third 

order output spectrum can be evaluated as (Jing et al 2007a) 
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n CEjjjjH 313313 ),,(),,( ωωλωω LL ≤ . Therefore, 

∑∑
=++=++

+=≤
ωωωωωω

ωωλωωλω
3131

),,(
2

),,(
2

)( 13

2

2

2

13

3

3133

3

3

kkkk

n
dT

n
d jjcc

F
CEjj

F
jY

LL

LL  

For ω =0.8 and m=2.4, B=29.6, K=1.6, it can be obtained that ),,( 13 njj ωωλ L  

60.00605589≤ . Hence, in this case 
2

2

2

1

3

3 0.00227096)( ccFjY d +≤ω  

Obviously, given a requirement on the bound of )(3 ωjY , the design restriction on the 

nonlinear parameters c1 and c2 can further be derived. ͙  
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5   Conclusions 
       

A mapping function from the parametric characteristics of the GFRFs to the GFRFs is 

established, such that the nth-order GFRF can directly be written into a more 

straightforward and meaningful form in terms of the first order GFRF and model 

parameters based on the parametric characteristic, which explicitly unveils the linear and 

nonlinear factors included in the GFRFs and can be regarded as an n-degree polynomial 

function of the first order GFRF. The new results demonstrate some new properties of the 

GFRFs, which can reveal clearly the relationship between the nth-order GFRF and its 

parametric characteristic, and also the relationship between the nth-order GFRF and the 

first order GFRF. These provide a novel and useful insight into the frequency domain 

analysis and design of nonlinear systems based on the GFRFs. Note that the results of this 

study are established for nonlinear systems described by the NDE model, further study 

will extend these results to discrete time nonlinear systems described by NARX model. 

The frequency characteristics of system output frequency response of nonlinear systems 

will also be studied by using these new results. Moreover, further study will also focus on 

some detailed issues relating to the application of the theoretical results developed in the 

present study.  
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