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Abstract: Based on the parametric characteristic of the nth-order GFRF (Generalised
Frequency Response Function) for nonlinear systems described by an NDE (nonlinear
differential equation) model, a mapping function from the parametric characteristics to
the GFRFs is established, by which the nth-order GFRF can directly be written into a
more straightforward and meaningful form in terms of the first order GFREF, i.e., an n-
degree polynomial function of the first order GFRF. The new expression has no recursive
relationship between different order GFRFs, and demonstrates some new properties of
the GFRFs which can explicitly unveil the linear and nonlinear factors included in the
GFRFs, and reveal clearly the relationship between the nth-order GFRF and its
parametric characteristic, and also the relationship between the nth-order GFRF and the
first order GFRF. The new results provide a novel and useful insight into the frequency
domain analysis and design of nonlinear systems based on the GFRFs. Several examples
are given to illustrate the theoretical results.

Keywords: Generalised Frequency Response Function (GFRF), Nonlinear systems,
Parametric characteristics, Nonlinear differential equation (NDE), Volterra series

1 Introduction

The frequency domain analysis of nonlinear systems has been studied for many years
(Taylor 1999, Solomou 2002, Pavlov 2007). Nonlinear systems can also be studied in the
frequency domain based on Volterra series theory (Bedrosian and Rice 1971, Rugh 1981,
Brilliant 1958, Kotsios 1997, Volterra 1959). It is noted in Boyd and Chua (1985) that
nonlinear systems, which are causal and have fading memory, can be approximated by
the Volterra series of finite orders. The existence of a Volterra series expansion for a
nonlinear system was also studied in Sandberg (1982, 1983). For a Volterra series
expansion of a nonlinear system, the nth-order Generalized Frequency Response
Function (GFRF) of the system is defined as the multi-dimensional Fourier transform of
the nth order Volterra kernel (George 1959). This concept provides a significant basis for
the analysis of nonlinear systems in the frequency domain. Many significant results
relating to the estimation and computation of the GFRFs and analysis of output frequency



response for a practical nonlinear system have been developed based on this concept
(Bendat 1990, Billings and Lang 1996, Chua and Ng 1979, Jing et al 2007).

To compute the GFRFs of nonlinear systems, Bedrosian and Rice (1971) introduced the
“harmonic probing” method, by which the higher order GFRFs of the harmonic
expansion of the nonlinear system under study can be derived. By applying the probing
method (Rugh 1981), algorithms to compute the GFRFs for nonlinear Volterra systems
described by NDE model and NARX (Nonlinear Auto-Regressive model with eXogenous
input) model were derived, which enable the nth-order GFRF to be recursively obtained
in terms of the coefficients of the governing NARX or NDE model (Peyton-Jones and
Billings 1989, Billings and Peyton-Jones 1990, Chen and Billings 1989). Based on the
GFRFs, frequency response characteristics of nonlinear systems can therefore be
investigated (Peyton Jones and Billings 1990, Yue et al 2005). These results are
important extensions of the well known frequency domain methods for linear systems
such as transfer function or Bode diagram, and provide a method to the analysis of
nonlinear systems in the frequency domain. Although these progresses have been made
and the GFRFs of nonlinear systems described by NARX model and NDE model can be
determined effectively, it can be seen that the GFRF is in fact a multivariate complex
valued function series in terms of model parameters defined in high dimensional
frequency space, and consequently the existing recursive algorithms for the computation
of the GFRFs can not explicitly and simply reveal the analytical relationship between
system time domain model parameters and system frequency response functions in a
clear and straightforward manner such that many problems remain unsolved regarding
the characteristics of the GFRFs and the system output frequency response, including
how the frequency response functions are influenced by the parameters of the underlying
system, and the connection to complex non-linear behaviours. These inhibit the practical
application and understanding of the existing theoretical results to a certain extent. In
order to solve these problems, the parametric characteristics of the GFRFs were studied
in Jing et al (2006), which effectively build up a mapping from the GFRF to its
parametric characteristic and thus provides an explicit expression for the analytical
relationship between the GFRFs and system time-domain model parameters. The
significance of the parametric characteristic analysis of the nth-order GFRF is that it can
clearly reveal what model parameters contribute to and how these parameters affect
system frequency response functions including the GFRFs and output frequency response
function. This provides an effective approach to the analysis of the frequency domain
characteristics of nonlinear systems in terms of system time domain model parameters.

This study is based on our previous results in Jing et al (2006). It is shown in Jing et al
(2006) that the nth-order GFRF and output spectrum of a nonlinear Volterra system can
both be written as an explicit and straightforward polynomial function in terms of
nonlinear model parameters, and this polynomial function is characterized by its
parametric characteristic and some related complex valued functions which are dependent
on the frequency variables, system’s linear factors and even system input (for output
spectrum). The parametric characteristics can be analytically determined by the results in
Jing et al (2006). In this study, the focus is to analytically determine the complex valued
functions related to the parametric characteristics. An inverse mapping function from the



parametric characteristics of the GFRFs to the GFRFs is studied. By using this new
mapping function, the nth-order GFRF can directly be recovered from its parametric
characteristic as an Nn-degree polynomial function of the first order GFRF, keeping the
explicit analytical relationship between the GFRF and system time-domain model
parameters. Compared with the existing recursive algorithm for the computation of the
GFRFs, the new mapping function enables the nth-order GFRF to be determined in a
much more straightforward and meaningful structure. Note from the previous results that
the higher order GFRFs are recursively dependent on the lower order GFRFs. This
crossing relationship sometimes complicates the qualitative analysis and understanding of
system frequency characteristics by using the nth-order GFRF. The new results can
effectively overcome this problem, and unveil the system’s linear and nonlinear factors
included in the nth-order GFRF more clearly. This provides a novel and useful insight
into the frequency domain analysis and design of nonlinear systems based on the GFRFs,
and can be regarded an important extension of the parametric characteristic theory
established previously. Several examples are given to illustrate these results.

Nomenclature

Coq(Kps Ko g) A model parameter in the NDE model, k; is the order of the derivative,

P,q(
p represents the order of the involved output nonlinearity, q is the
order of the involved input nonlinearity, and p+q is the nonlinear
degree of the parameter.

H.(jo, " jw,) The nth-order GFRF

Coq =[Cpq(0,--:,0),C, 0 (0,---,1),-,Cp 4 (K, K] A parameter vector consisting of all the
p+g=m
nonlinear parameters of the form ¢, ,(k,---,k,.,)
CE() The coefficient extraction operator
CE(H,(jw,,---, jom,)) The parametric characteristics of the nth-order GFRF
f.(jo, -, jo,) The correlative function of CE(H ,(jo,, -, jo,))
® The reduced Kronecker product defined in the CE operator
® The reduced vectorized summation defined in the CE operator

Cpoa, ()Cp 4 )-C, o () A monomial consisting of nonlinear parameters

S, Sy Sy, A p-partition of a monomial c, , ()¢, . ()---C, 4 ()

S, A monomial of X; parameters of {c, , ().--,c, , ()} of the involved
monomial, 0<x <k, and sp=1

®, :Sc(n) = S, (n) A new mapping function from the parametric characteristics to the
correlative functions, S.(n) is the set of all the monomials in the
parametric characteristics and S, (n)is the set of all the involved
correlative functions in the nth order GFRF.

n(s, (5)) The order of the GFRF where the monomial s,(5) is generated

(@, 0,) The maximum eigenvalue of the frequency characteristic matrix @,

of the nth-order GFRF



2 The nth-order GFRF for nonlinear systems and its parametric
characteristic

A large amount of nonlinear systems can be described by the following nonlinear
differential equation (NDE) model

M _m ki p+q 4k
PP IEHTSE) § B § ErCS ®

m=1 p=0 k; K, =0 i=p+l

where

k
d Xk(t) =x(t) , ptg=m, Z('):Z(')'" Z(-) , M is the maximum degree of
k=0 KiKpeg=0 k=0 Kpeq=0
nonlinearity in terms of y(t) and u(t), and K is the maximum order of the derivative. In

this model, the parameters such as Cy;(.) and C; o(.) are linear parameters corresponding to

the linear terms in the model, i.e., ddyk(t) and dd:(t) for k=0,1,...,.L, and c,,() for p+g>1
are referred to as the nonlinear parameters corresponding to nonlinear terms in the model

k; p+q
of the form H d- y(t) H d u(t) , €0., y(t) u®)?. ptqis referred to as the nonlinear degree

i=p+l

of parameterc, ().

Consider nonlinear systems which can be approximated by a Volterra series up to
maximum order N (Boyd and Chua 1985) as

N - - n
yo =2 [ h e Jut-z)dz, (2)
n=1 i=1
where h,(z,,---,7,) is a real valued function of ¢,,---,z, called the nth-order Volterra kernel.
The nth-order GFRF of system (2) is defined as (George 1959)

Hn(ja)la"'a jwn)zj.jo "'J.:Ohn(fla"'arn)exp(_j(wlrl +'“+wnrn))drl "'dTn (3)

The concept of GFRF provides a basis for the study of nonlinear systems in the frequency
domain. The GFRF for system (2) described by NDE model (1) can be obtained by the
probing method (Rugh 1981). An algorithm to compute the nth-order GFRF for NDE
model (1) was provided in Billings and Peyton-Jone (1990):

K
Ln(ja)l tet Ja)n) Hn(ja)]a"'a ja)n): Zco,n(kla"'akn)(ja)l)kI “'(ja)n)kn

ki k,=1
n-1 n-q K
+ZZ Zcpq(kl’ ) p+q)(Ja)n q+1) S (Ja)p+q) fora n qp(]wl’” ’ja)n—q) (4)
G-l p=l K Ky q=0
n K
+ Z pO(klz“'zkp)Hn,p(jwla"'zjwn)
p=2 k;,k,=0
n—p+1 ‘
an() H, (Ja)l’ : ’ja)i)Hn—i,p—l(ja)iHs"'aja)n)(ja)l+"'+jwi) ? (5)
Hn,l(]a)lﬂ'”’Ja)n):Hn(ja)l"":ja)n)(ja)1+"'+ja)n)k‘ (6)
K
where Ln( jo, +---+ ja, ):—Z:cw(kl)(jco1 +--+ jo,)" . Moreover, H, (j, -, ja,) in (6) can also

k=0
be written as



n-p+l

P
Hn,p(ja)ls'“a ja)n): Z HHr‘(ijH’.“a ij+r, )(ijﬂ R ijn,)kl (7)
neerp=li=l

>r=n
i1
where X = er .

x=1

2.1 A correction for the computation of the nth-order GFRF

In the recursive algorithm for the computation of the GFRFs above, the second term in
the right side of equation (4), i.e.,

n-1 n—-q K

ZZ Zcp,q(kla"'akp+q)(ja)n—q+1)kniq” ”'(jwmq)kmq Hn—q,p(jwla”'a ja)n—q)

g=1 p=1 K ,Ky.4=0
should be
K q
Z Cp,q(kl""a kp+q)(H(ja)n—q+i )kp+I )H n—q,p(ja)ls"'s ja)n—q) (8)
i=1
That is, equation (4) is corrected as

K
Ln(ja)l +ee-t Ja)n) Hn(ja)la"'a Ja)n) = Zco,n(kl’“"kn)(ja)l)k‘ '“(ja)n)kn

K ko=l
n-1 n—q K q ) ‘ ] )

+ Z Cp,q(kla"':kp+q)(H(Ja)n—q+i) erI)Hn—q,p(Ja)I:v"':vJa)n—q) (9)
g=1 p=1 Kk ,Ky.q=0 i=l
n K

+ Zcp,o(kl"”’k )Hn,p(Ja)la""Ja)n)
p=2 k; k=0

This result can be shown by applying the probing method for the cross input-output
nonlinear terms labelled by nonlinear parameter Cpq(.) for p>1,g=1in NDE model (1) as

demonstrated in Billings and Peyton Jones (1990).

K k, ks

d {(t) d L:(t) d uk(t) The
dt®  dt® dt®

contribution to the asymmetric nth-order GFRF from this specific term is

For clarity, consider a simple cross nonlinear term c,,(k;,k,,k;)

Co| Do H, (o jo Yo+ + jo, ) e N (jo ) et ) (jo)o el
n=1

r=1 r=1
= Hn—z(ja)l ja)n—z)(ja)l teeet ja)n—2)k] ej(w1+~-+wn,2)t : (ja)n—l)k2 ejwn,.t : (ja)n)k3 ejw"t (10)
= Hn—z(jwl ja)n—z)(ja)l teet ja)n—z)kl '(ja)n—l)k2 '(ja)n)kx .ej(w,+---+wn)t

where C,[.] denote the operation of extracting the coefficient of e/ (Billings and
Peyton Jones 1990). By using (5) and (7), (10) is equal to

2
(1_[(].5%72”)'(IH )Hn—2,l(ja)1"“’ jo,,)
i=1

This result is consistent with (8). Following the same method and extending to the more
general case, (8) and (9) can be achieved. Moreover, for convenience in further derivation,
let

1 g=0,p>1

11
0 g=0,p<1 (1)

q
Hoo() =1, H,o()=0forn>0, H,,()=0for n<p,and [ [()= {



Then (9) can be written for more simplicity as
n n-q K

, : 1 o , ,
Hn(Ja)h”"Ja)n):—nzz Z Cp,q(kh”"kp+q)(H(Ja)n—q+i)kpﬂ)Hn—q,p(Ja)h”"Ja)n—q)
Ln(] wi) g=0 p=0 kj,kp.4=0 i=1
2

(12)
Therefore, the corrected recursive algorithm for the computation of GFRFs is (9 or 12, 11,
5-7). This will be used in the following sections. Note that the GFRFs here are
asymmetric and the symmetric GFRFs can be obtained as
Hnwm(ja)la"'rja)n):# ZHn(ja)l""’jwn)

all the permutations
of {1,2,....n}

2.2 Theparametric characteristics of the GFRFs

The parametric characteristics were studied in Jing et al (2006) to reveal what model
parameters contribute to and how these parameters affect system frequency response
functions. By using the parametric characteristic analysis, some frequency domain
characteristics of the GFRFs can be obtained, and the explicit relationship between the
GFRFs and system time domain model parameters can be unveiled. Let
Cp,q :[Cp,q(oﬁ.'.ﬁo)ﬁcpyq(oﬂ'.'91)9..'9cp!q(KD..'9K)]
p+g=m

From the results in Jing et al (2006), the parametric characteristic of the nth-order GFRF
in (4) can be computed as

n-1n-q

CE(Hn(jwla"'a ]wn)) = Co,n @(q®_1 p®:lcp,q ®CE(anp+l(')))@(§ch,0 ®C:E(Hn—pﬂ ())j (13)

where CE(.) is a novel coefficient extraction operator which has two basic operations
“@” and “®”. For the detailed definition and operation rules for CE(.), the readers can
refer to Appendix A. Based on the parametric characteristic analysis (Jing et al 2006), the
nth-order GFRF can be expressed as

Hy(jo, . jo,) = CE(H,(jay, . joy)) fu(jo. -, jo,) (14)
where . (jo,, -, jw,)1s a complex valued function vector with an appropriate dimension,
which is referred to as the correlative function of the parametric characteristic
CE(H,(jw,, -, jo,)) in this paper.

Equation (14) provides an explicit expression for the analytical relationship between the
GFRFs and the system time-domain model parameters. Based on these results, system
nonlinear characteristics can be studied in the frequency domain from a novel perspective
such as frequency characteristics of system output frequency response, nonlinear effect
from some specific nonlinear parameters, parametric sensitivity analysis and so on, as
demonstrated in Jing et al (2006, 2007b). In the following sections of this study, an
algorithm is provided to explicitly determine the correlative function f. (jw,, -, jw,) in

(14) directly in terms of the first order GFRF H, (jw,) based on the parametric
characteristic vector CE(H,(jw,, -, j®,)) . To this objective, a mapping from
CE(H,(jo,, - jm,)) to H,(jo, -, jw,) is established such that the nth-order GFRF can
directly be written into the parametric characteristic function (14) in its detailed and



analytical form by using this mapping function, and some new properties of the GFRFs
are developed. These results effectively extend the previous established parametric
characteristic theory. The GFRFs can directly be determined in a much more
straightforward and meaningful structure in terms of model parameters and the first order
GFRF without recursive and crossing relationship between different order GFRFs, and
the system’s linear and nonlinear factors included in the nth-order GFRF can be unveiled
more clearly. By using the new results, the analytical OFRF can now be determined
explicitly. The new results of this study should provide a fundamental basis for the
frequency domain analysis of nonlinear Volterra systems.

3 Mapping from the parametric characteristic to the nth-order
GFRF

The parametric characteristic vector CE(H,(jw,, -, jw,)) of the nth-order GFRF can be

recursively determined by equation (13), which has elements of the form
C,q®C,, ®C,  ®--®C, , (N-2>k=0), and each element of which has a corresponding

complex valued correlative function in vector f (jo, -, jw,) .  For example,

P,

Con(k,, k) corresponds to the complex valued function(jw,)" - (jw,)" in the nth-order
GFRF. For further development, CE(H,(jo,, -, jw,)) can also be determined by the

following result, which allows the direct determination of the parameter characteristic
vector of the nth-order GFRF without recursive computations and provides a sufficient
and necessary condition for which nonlinear parameters and how these parameters are
included inCE(H,(jo,, -, j@,)).

Lemma 1 (Jing et al 2006). The elements of CE(H,(j,, -, jw,)) include and only include

the nonlinear parameters in Cp, and all the nonlinear parameter monomials in
c,,®C,,®C, ®--®C, for 0<k<n-2,where the subscripts satisfy

k
p+q+;(pi+qi):n+k (15)

I<psn-k,2<p+gsn-k2<p +q <n-KkK

From Lemma 1, an element in CE(H,(jw,, -, j®,)) is either a single parameter coming
from pure input nonlinearity such as Cyn(.), or a nonlinear parameter monomial function
of the form C,,®C, , ®C,  ®---®C, . satisfying (15), and the first parameter of

C,,®C,,®C, ,  ®--®C, must come from pure output nonlinearity or input-output

PG P> G

cross nonlinearity, i.€., Cy(.) with p>1and p+o>1. For this reason, the following
definition is given.

Definition 1. A parameter monomial of the form C,, ®C, , ®C, , ®---®C, , with k>0

and p+g>1 is said to be effective or an effective combination of the involved nonlinear
parameters for CE(H,(jo,,-, jo,)) if prg=n(>1) for k=0, or (15) is satisfied for k>0. [



From Definition 1, it is obvious that all the monomials in CE(H,(j@,, -, jw,)) are

effective combinations. The following lemma shows further that what an effective
monomial should be for certain order GFRF and how it is generated in the GFRF.

Lemma 2. For a monomial ¢, , ()c, , ()---c, , () with k>0, the following statements hold:

(1) it is effective for the Z"-order GFREF if and only if there is at least one parameter

PO (

k
Cpq(.) with p>0, where Z="(p, +,) k.

(2) if there are | different parameters with p>0, then there are | different cases in
which this monomial is produced by the recursive computation of the Z"-order
GFREF.

Proof. (1) This is directly from Definition 1. Z can be computed according to Lemma 1,

k k
i€, p,+q,+ Y (p +)=2Z+k, which yields ZZZ:(pi +q)—k. (2) From the second and
i=0

i=l

third terms in the recursive algorithm of Equation (9), i.e.,

n-1 n—q K q
z Cp,q(klﬂ""kp+q)(H(ja)n7q+i)kpil)anq,p(ja)lf'" ja)n—q)
g=1 p=I k;.k,.q=0 i=1
n K ) ) (16)
+ Cp,()(kla"'akp)Hn,p(]wlo"'a ]wn)
p=2k; ,k,=0

it can be seen that all the nonlinear parameters with p>0 and p+g<n are involved in the
nth-order GFRF, and each of these parameters must correspond to the initial parameter in
an effective monomial of CE(H,(jw,, -, jo,)). Hence, if there are | different parameters

with p>0 in the monomial ¢, ., ()c, , ()---C, 4 (), then there will be | different cases in

which this monomial is produced in the Zth order GFRF. This completes the proof. [

Definition 2. A (p,g)-partition of H (jo,.,--,jw,) is a combination

P
H, (W )H, (w, ) H, (W, ) satisfying Zri =n-q, where 1<r, <n-p-qg+1, and w, is a set

i=l
p
consisting of r; different frequency variables such that Uwri ={w,0,,,0,} and

i=l

w, Nw, =gfori=j. [

For example, H,(w)H,(»,)H,(®,-w;) and H, (o)H,(o,,0,)H, (o, o;) are two (3,0)-
partitions of H,(jo,, -, jo,).

Definition 3. A p-partition of an effective monomial c, , ()---c, , ()is a combination

S, S

% %,

---s, , where s, is a monomial of X; parameters in {c, , ().---.C, 4 ()}, 0<% <k, sp=1,

Xp 2

p
and each non-unitary s, is an effective monomial satisfying ZXi =k and

i=l

sxl sxz .stp =Cp1sq1 (.)'-'Cpksqk () ° D



The sub-monomial s, in a p-partition of an effective monomial ¢, , ()---c, , () is denoted

by s, (c, 4 ()-C, o () . Suppose that a p-partition for 1 is still 1, 1.e., 1-1---1=1. Obviously
p

Cpl,q1 (')"'Cpk,qk () = le sz ‘”Sxp (Cpl,q1 (')‘”Cpk,qk ()) = S(( Cpl,ql (')'“Cpk,qk () ) For example5
S (Cl,l ())52 (Cz,l (')Cs,o ()) and S, (Cl,l (')Cz,l ())51 (C3,o ()) are two 2—partiti0ns Of C1,1 (')Cz,l (')03,0 () .

Moreover, note that when sy appear in a p-partition of a monomial, it means that there is a
H;(.) appearing the corresponding (p,q)-partition for Hy(.).

For an effective monomial c,,(-)c, , ():-C, o () In CE(H,(jo,, - jm,)), without speciality,

Pi Gk
suppose the first parameter c_,() is directly generated in the recursive computation of
H.(jo,,-, jw,) , then the other parameters must be generated from the lower order
GFRFs that are involved in the recursive computation of H,(jw,,- -, jo,) . From Equations

(4-7)) it can be seen that each parameter in a monomial corresponds to a certain order
GFRF from which it is generated. The following lemma shows how a monomial is
generated in H,(jw,, -, jw,) by using the new concepts defined above. This provides an

important insight into the mapping from a monomial to its correlative function.

Lemma 3. If a monomial c,,()c,,()---c, () is effective, and c,,() is the initial

parameter directly generated in the Xth-order GFRF and p>0, then
(1) ¢, ¢, o () comes from (p,q)-partitions of the xth-order GFRF, where X=

k
p+q+2(pi +0g)-k;
i=1
(2) if additionally S is supposed to be generated from H,(.), then each p-partition of
Cpq ()-Cpq () cOTTESPONds to a (P,g)-partition of the xth-order GFRF, and each

(p,g)-partition of the Xxth-order GFRF produces at least one p-partition for
Cp1>q1 (.).”Cpk’qk (.) ;
(3) the correlative function of c, . ()---c, , () i1s the summation of the correlative

functions from all the (p,q)-partitions of the xth-order GFRF which produces
Cpq()Cpq (), and therefore is the summation of the correlative functions

corresponding to all the p-partition of ¢, , ()---c, o (). [

Remark 1. From Lemma 3, it can be seen that all the (p,q)-partitions of the Xxth-order
GFRF which producec, , ()---c, , () are all the (p,q)-partitions corresponding to all the

p-partitions for c, , ()---c, 4 (). Therefore, to obtain all the (p,q)-partitions of interest, all

the p-partitions for ¢, , ()---c, 4 () is needed to be determined. [
Based on the results above, in order to determine the mapping between a parameter

monomialc, ()¢, , ()---c, o () and its correlative function in f (jo,, -, je,), the following

operator is defined.

10



Definition 4. Let S.(n) be a set composed of all the elements inCE(H,(jo,,--, jo,)), and
let S, (n) be a set of the complex-valued functions of the frequency variables jo,, -, jo,.

Then define a mapping
?n 1S (M) > S; (n) (17a)
such that inw,, -, ®,
HY"(jo, o) =% D CE(H,(jo, - jo,) ¢,(CE(H,(jo,,-, jo,)) (17b)
all the permutations

of {1,2....n}

0

The existence of this mapping function 1is obvious. For example,
Pn(Con(k, k) =(j@)" - (jo,)' . The task is to determine the complex valued correlative

function ¢, (c,,()c, ,()-:c, o () for any nonlinear  parameter = monomial
Coq()Cp 4 ()7:Cp o ) (0<k<n-2) in CE(H, (jo,, . j,)).

Based on Lemma 2-3, the following result can be obtained.

Proposition 1. For an effective nonlinear parameter monomialc, . ()c, ., ()---C, 4 (), let

§=Cpq()Chq () Cpoa() s n(sx(§))=le(pi+qi)—x+1 , wWhere X is the number of the
i=l

parameters in s, , Z( p, +q,) is the summation of the subscripts of all the parameters in s, ,
i=1

ZX;(.) =0 if X<1 and n(1)=1. Then for 0 <k< n(s)-2
i=l

q)”(g) (C Po-%o ()C PG () o CPka ()’ C()|(1) o, (n(§)))

= Z{fl(cp,q (')»n(§)§wl(1) "'a)l(n(g)))' Z Z[fza(sx Sy (§/Cp,q ('))§w|(1) “'a)l(n(§)—q))

all the 2—partitions all the p—partitions  all the different
for S satisfying for §/(:pq ) permutations
§/(8)=Cp () and p>0 of {55, }

P
'Hwn(%‘ (E/cp.q«)))(si (§/Cp,q ('));wui(i)u) ”.a)l(i(i)Jrn(s;I (§/cm(z)))))]} (18a)
i=1
or simplified as
Pn (Cpyq, (ICpq () Cp g, (@10 Dyngs))

= Z{fl(cp,q (')’n(§)§w|(1) "'a)l(n@)))' Z[fzb (Sx, Sy (§/Cp,q ('))§a)|(1) "'a)l(n(§)—q)) (lgb)

all the 2—partitions all the p—partitions
for § satisfying for §/cp_q(4)
S (5)=Cy q(-) and p>0

p
'H‘/’n(sx‘ &y 0 (S (3/Cpa (D3 @y xiyany O xiyens, <§/cp,q<->))>)]}

i=1
the terminating condition is k=0 and ¢, (1;@,) = H,(jw;) , Where,

X(i) = Y (s, (§/C,a(0) O X() = (s, (/0 () (19a)
j=1 j=1
q n(s)
f1 (Cp’q (), n(§);6¢)|(1) "'a)l(n(§))) = (H( ] (0|(n(§)7q+i))k'm /Ln(s) ( J Zwm)) (l 9b)
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p
_ . _ : ; ki
F2a(sy Sy, (§/Coq(: @) Dins)q) = H(le(i(i)m T 1O iy, (§/cm(-))))) (19¢)
i=1
f s/c.. () D It | < (19d
2b(5x, "'Sxp (S/Cp,q('))aa)m) ”'a)l(n(§)—q)) iy Z H(]wI(X(i)H) teet Ja)I(X(iHn(sxl (§/cm(«))))) ( )
k allthe different i=1

permutations
of (ki Ky}

Moreover, {s;,--s; }is a permutation of {s,,-'S_}, @, @), represents the frequency

variables involved in the corresponding functions, I(i) for i=1...n(5) is a positive integer

. . . . ! .
representing the index of the frequency variables, n, :+' , Nj+...+N=p, C is the
n!n,!---n.!

number of distinct differentials ki appearing in the combination, n; is the number of
repetitions of the ith distinct differential ki, and a similar definition holds for n,.[

Remark 2. Equation (18) is recursive. The terminating condition is k=0, which is also
included in (18). For k=0, it can be derived from (18b) that

Dns) (Cp,q (')?wm) "'a)l(n(é))) =@piq (Cp,q ) 2 "'a)l(p+q))

= H(Coq) P+ A D) Bl pi))

p
Z fl (Sx, Sy (1)5@(1) O (prg-q) )H Prs, (1))(Sxi (1);a)|(xa)+1) T O (X (iyen(s, (1))))

all the p—partitions i=1
for 1

P
= fl(cp,q(')s P+Q o, "'a)l(p+q))' f(l Loy, "'wl(p))'H¢1(1§wi)
P i=

q p p
- ([ Gop)™ TTGae) TIH (e 20)
Lp+q(jza)l(i)) i=1 i=1 i=1

Note that in this case, p+q=n(5) from (15), and s§=c, () corresponding to a specific
recursive terminal. Hence, (20) can be written as

1 a . P P .
(pn(g)(cp,q(');a)l(l)”.a)l(n(§))):T(H(Ja)l(pﬂ))kw 'H(Ja)m))k‘ 'HH1(J@|(i)) (21)
Ln(§)(jzwl(i)) = = =
i

In order to verify this result, let n=n(5)= p+q, it can be obtained from (12) that for a
parameterc, ,(-), its correlative function is

1 4. . .
——— [ [G@p) " H, (o o)
Ln(§)(jza)i) =

i=1

P P
From (7), H, ,(jo,,-, jo,) = J(i@)" -] [H.(i@). This is consistent with (21). To further

i=1 i=1
understand the results in Proposition 1, the following figure can be referred, which
demonstrates the recursive process in the new mapping function and the structure of the
theoretical results above (See Figure 1). []

12



CE(H n(jwl PR an)) = [Cpo,qU (')Cp],qI (')“'cpk,qk ()9 ]
Lemma 1 4 ................................ l
Cposqo (.)Cp]!ql (.)”.Cpksqk () for 0 S k S n- 2 4 .Fn() = ¢n ()

all the (po,qo)-partitions of H,(jo,, -, j@,)
which generate monomial Coq () Cp g ©)

v
Co..a (')”'Cpk,qk ) —— | allthe po-partitions of Cp, g, (')"’Cpk,qk ©)

1
1
1
1
1
i
1
7'} !
1
1
1
T
1
1
1
1

! L_ _____________________________________ g v
i - - \ f.0=0,0)=

Figure 1. An illustration of the relationships in Proposition 1
To further demonstrate the result in Proposition 1, the following example is given.

Example 1. Consider the 4™-order GFRF. The parametric characteristic of the 4"-order
GFRF can be obtained from Lemma 1 that
CE(H4(]'C¢)1 o, jw4))= C0,4@ C1,3 ® C3,1 @ Cz,z ® C4,0 ® C1’1 ® C0,3 ® C1’1 ® C1,2
@ C1’1 ®C2’1 @ Cl,l ®C3’0@ Cl’z ®C0’2 @ Cl’z ®C2’0 @ Cz’() ®C0’3
® Cpo®Cr1®Cro®C30® Cp1®Cp2® C30®Co2
® C11®Coa"@®C112®Cor®C11®Cor®Crp® Ci°@Cpi°®Cayp
® C1,1 ® C2,02 ® Cz,o ® Co’z2 ® C2,02 ® C(),z @ C2’03
By using Proposition 1, the correlative function of each term in CE(H,(jo,, -, jo,)) can
all be obtained. For example, for the term C; 1(.)Co2(.)C2.0(.), it can be derived that
Pos) (1 (IC 2 (ICo0 () @) =+ By () ) = @4 (Cy (ICy L (NCo 6 () 0y - 0)
=f(c,O)4 0 - 0,)
(S, (Co,z (')Cz,o ()0, @,)- Pn(s, (6 ()60 (1)) (s (Co,z (')Cz,o s Dx1y+1 " OX(1)4n(s, (S5 () 0())) )]
+f, (Cz,o 4o w,)
: [fzb (88, (Cl,l (')Co,z ()0, w,)- Pn(s, (1 ()6 (s (Cl,l (')Co,z )); Ox 1y " w)((l)+n(so(c,‘,(-)cov2(~))))
“Dnisy 6, (602 () (S2(CL1()C0 2 () Ox 241 @ (2yin(s, (61, (160 > ()
+ fu(ss (€L ()C, ), wy) - Pn(s (e, () (s (¢, (s DOx 1y+1 " Px1y+n(s (¢, ()) )

*Pn(s (6o, (1)) (8¢, (s Dy 2)1 """ a)X(Z)Jrn(sl(covz(j)))
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= f(c, (&0, a,)
1Fap(Co2 ()Cr 0 (s @, - 3) - Pricy. (16,0 (€02 (ICo0 (s By *** Bne, , (ye, s () )]
+f(c 40 - 0,)
: [be (508, (€1 ()Cy, ()); @) - ) - Py Lo, - @Oy )(on(cl.l(-)co.z(-)) (€, ()€, () Oniy = wna)m(cl.l(-)co.z(-)))
+ f(sS (¢, (')Co,z O @, @) @, (C, () Dx1y+1 " Ox1yn(s (¢, () )
0 (Con () @x 211 " Dx2yinis (6,0
=, O, +0,) [F2(€1 (O, (5@, +0)) - 03 (€0, ()3 (0, - @,)]
+f(C 0 O4 0 0,) [f(s05, (Ci()CL ()0 -+~ @) - @y (10 )5 (Cyy ()C 5 (s @, - 0)
+ f,0(85 (€, (CL O, @,) 9,(C () @, @,) @, (Cy 5 (); @5, 0, )] (22)
To proceed with the recursive computation, it can be derived that

f1<cl,1<->,4;w1-~-w4)=H(jw3+i)kw/LA(ijo=<jw4>kz/L4<iji) (23a)

4
f, (Cz,o(')>4;wl @) = 1/'—4(]2@) (23b)
i=1
fzb(sx, (Cz,o ()C2 )@, 0;) = (jo, +---+ jws)k' (23C)
2
fzb(sosz (01,1 (')Co,z ('));0)1 604) = Z H(ja)x(i)ﬂ +et ja)x(i)m(sx‘ (g/CW(A))))k'
emmtatons (23d)
of {ky, Ky}

:(jwl)kl(jwz +eeet ja)4)k2 t(jo, +--+ J-C‘)zt)kl(jwl)k2
D3 (00,2 ()Cy 0 (); 0, - @)

2
= fl (Cz,o (')»3; 2 a)s) fzb(sx, sz (Co,z ('));a)l Ty )H wn(sx‘ (§/cm(-)))(sxi (Co,z ('));a)X(i)H "'Q)X(i)afn(sx‘ (c(,vz(-))))
i=1

=f, (Cz,o ()30, wy)- Ty (Sx, Sy, (Co,z )0, 03)p, (L 0,)p, (Co,z (), 0,, ;)
1

L3(]Zwi)

(o) G, + jo)* +(joy + o) (jo)* ) H, (jo)

1
L(jo,+ o)
@5(C,,()Cy, ()@, -+~ 0,)

=f, €030, w0,)- fl (Sx, (o, ()); ,,05)- Pr(s, (62 (Sx, (€, ()); @,,5)

(ja)z)kl(ja%)k2 (23e)

= fl(cl,l(')»3; @, @y) fzb(co,z (), @0,,@3) - 0,(Cy, (-); @y, 03) (23D
(jo,)" o AN 1 Cok Ak
= L(jo, -+ joy) (jo, + jwy) L (jo, +_ja)3)(1w2) (joy)

Using equations (23a-f) in (22) yields
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0,(€., (080, ()C0 (0, - @,)
= 1,0, (0, @,) [F25(Cor (0,0 (10, -+ 03) - 03 (€, (Vs (0, 0]
+1(Cy Od 0, @) - [110(8,5 (€, O ()0, @) -9, (1:0)05 (€, (€, (N 0, -+ @)
+ £35(88,(C (080, ()0, @) 0, (€, (5 @y, @, ) 0, (€, (s 03, 0,)]
_ (05 (o +-+ jo)  (jo) (o, + j0,) + (o, + j0)" (o) Kjoy)* (0,
L(joo, +---+ jw4)|-3(jw1 +jo, + jws)l-z(jwz + sz)

o) Go, -+ jop® +(i0,++ j0)" (o) kie)" (j0, + j0)* (i0)* (i0)

‘H (jo)

k,

- - - - - - - H (jo)
L4(Ja)1 teet ]a)4)|-3(]a)2 +eeet Ja)4)|-2(]a)2 + j603)
Mo+ jo) o, jo)* + (ot o) (o +jo) Koo (o) (o) (o) o
Li(jo, ++ jo,)L,(jo, + jo,)L,(jo, + jo,) 1 1
(24)

Therefore, the correlative function of the parameter monomial c,,(-)c,,(-)c, () is obtained.

It can be verified that the same result can be obtained by using the recursive algorithm in
(12, 5-7, 11). For the sake of brevity, this is omitted. By following the same method, the
whole correlative function vector ¢,(CE(H,(ja,., ja,))) can be determined. Thus the 4™-
order GFRF H,(jo,, -, jo,) can directly be written into a parametric characteristic form
which can provide a straightforward and meaningful insight into the relationship between
H,(jo,, -, jo,) and nonlinear parameters, and also between H,(jw,, -, jo,) andH,(jw,) . []

Remark 3. From Example 1, it can be seen that Proposition 1 provides an effective
method to determine the correlative function for an effective monomial
Cpq (0Cpq ()-C, o (), and the computation process should be able to be carried out
automatically without manual intervention. Therefore, Proposition 1 provides a
simplified method to determine the nth-order GFRF directly into a more meaningful form
as (14) which can demonstrate the parametric characteristic clearly and describe the nth-
order GFRF in terms of the first order GFRF H,(jw)and nonlinear parameters without

crossing effect with the lower order GFRFs. This reveals a more straightforward insight
into the relationships between H,(jw,,---, jo,) and nonlinear parameters, and between

H.,(jw,, -, jo,) and H,(jo) . Note that the high order GFRFs can represent system

frequency response characteristics (Peyton Jones and Billings 1990, Yue et al 2005) and
H,(jw) represents the linear part of the system model. Hence, the results in Proposition 1

not only facilitate the analysis of the connection between system frequency response
characteristics and model linear and nonlinear parameters, but also provide a new
perspective on the understanding of the GFRFs and on the analysis of nonlinear systems
based on the GFRFs. [

4 Somenew properties

Based on the mapping function ¢, established in the last section, some new properties of
the nth-order GFRF are discussed in this section.

4.1 Determination of FRFsbased on parametric characteristics
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There are several relationships involved in this paper. H, (jo,, -, jo,) is determined from

the NDE model in terms of the model parameters. Thus there is a bijective mapping
between H, (jo,,,jo,) and the NDE model. The CE operator is a mapping from

H.(jo,, -, jw,) to its parametric characteristic, which can also be regarded as a mapping
from the nonlinear parameters of the NDE model to the parametric characteristics of
H,(j@,, -, jo,) . The function ¢, can be regarded as an inverse mapping of the CE
operator such that the nth-order GFRF can be reconstructed from its parametric
characteristic, which can also be regarded as a mapping from the nonlinear parameters of

3 2

the NDE model to H,(j®,,--, jw,) . This can refer to Figure 2, where “e” represents the
point multiplication between the parametric monomial and its correlative function.

The NDE model

ot

CE H,(jo, -, jo,)

Cpo’% (')Cpl -G () o CPkﬂk () > ¢n(§) (Cpm% (.)CP| -4y () h .Cpk »Ok ()’ a)l(l) o a)|(n(§)))

®n

Figure 2. Relationship between ¢, and CE

It can be seen from Figure 2 that

Ho(jo,, -, jo,) = CE(H,()) ¢,(CE(H,())) (25)
From (25), the inverse of the operator CE can simply be written as (Xx=CE(H, (") )

CE™'(X) = X ¢,(X)

which constructs a mapping directly from the parametric characteristic of the nth-order
GFRF to the nth-order GFRF itself. Note that CE(H,(-) includes all the nonlinear
parameters of degree from 2 to n of the nonlinear system of interest, and ¢,(CE(H,(-))is a
complex valued function vector including the effect of the complicated nonlinear
behaviour and also the effect of the linear part of the nonlinear system. Hence, Equation
(25) reveals a new perspective on the computation and understanding of the GFRFs as
discussed in Section 3, and also provides a new insight into the frequency domain
analysis of nonlinear systems based on the GFRFs.

From the results in Jing et al (2006), the output spectrum for system (1) can now be
determined as

Y(jw) =Y CE(H,(jo,. -, jo,))-F(jo) (26a)

n=1

when the input is a general input U(jw),
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1

F.(jo) :WW..J‘ Pn(CE(H, (jooy,--, ja)n)))'];[u(ja)i )do, (26b)

A+, =0

K
when the input is a multi-tone function u(t) = Z|Fi |cos(mt+ £F)),
i=1

Fn(ja»:zin Y 0u(CEH, (joy .. [y ) F (@) F(ay ) (26¢)

O+t O =0

It is obvious that Equation (26a) is an explicitly analytical polynomial functions with
coefficients in S.()u-—-uUS.(N) and the corresponding correlative functions in

S;()u---uUS,;(N). This demonstrates a direct analytical relationship between system
output spectrum and system time-domain model parameters. The effects on system output
spectrum from the linear parameters are included in S,(l)u---US,(N), and the effects
from the nonlinear parameters are included in S (I)u---uS.(N) and also embodied in
S;(Hu--uS,(N) . This will facilitate the analysis of output frequency response

characteristics of nonlinear systems. For example, for any interested parameters of model
(1), which may represent some specific physical characteristics, the output spectrum can
therefore directly be written as a polynomial in terms of these parameters. Then how
these parameters affect the system output spectrum need only be investigated by studying
the frequency characteristics of the new mapping functions involved in the polynomial
and simultaneously optimizing the values of these nonlinear parameters. Further study in
this topic will be introduced in another publication.

4.2 Magnitude of thenth-order GFRF

Based on Equation (25), magnitude of the nth-order GFRF can be expressed into a novel
form in terms of its parametric characteristic.

Corollary 1. Let CE,=CEH,(), O, :gz)n(CE(Hn(-)))-wn(CE(Hn(-)))*, o, =9,(CE(H,()), and
A, =CE(H n(~))T CEH,(), then
H.(jo, ", jo,)|" =CE,®,CE] (27a)
H, (o, jo,) = pah e, (27b)
Proof. It can be derived from (25) that
Ho(o, - jo,) =Ho(jon - jo,) Ha(j, -, jo,)
= CE(H, () ,(CE(H,, (1)) - (CE(H () 9, (CE(H ,(-2)))
= CE(H,())- (¢, (CE(H,()))- ¢, (CE(H,,()) )- CE(H ,())" = CE,©,CE]

The result in equation (27b) can also be achieved by following the same method. This
completes the proof. [

From Corollary 1, the square of the magnitude of the nth-order GFRF is proportional to a
quadratic function of the parametric characteristic and also proportional to a quadratic
function of the corresponding correlative function. Corollary 1 provides a new property
of the nth-order GFRF, which reveals the relationship between the magnitude of
H.(jo,,-, jw,) and its nonlinear parametric characteristic, and also the relationship
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between the magnitude of H,(jw,, -, jw,) and the correlative functions which include the
linear and nonlinear behavior. Given a requirement on |H,(jw,, -, jw,) |, the condition on

model parameters can be derived by using equations (27ab). This may provide a new
technique for the analysis and design of nonlinear systems based on the nth- order GFRF
in the frequency domain.

Moreover, it can be seen that the frequency characteristic matrix ©,is a Hermitian matrix,

whose eigenvalues are positive real valued functions of linear parameters but invariant to
the values of the nonlinear parameters in CE(H,(-)) . Thus different nonlinearities may

result in different frequency characteristic matrix ®,, but the same nonlinearities will
have an invariant matrix ® . This property of the nth-order GFRF provides a new insight
into the nonlinear effect on the high order GFRFs from different nonlinearities. For this
purpose, define a new function

In(@,5+,0,) = A (©) (28)
which is the maximum eigenvalue of the frequency characteristic matrix ®,. As

mentioned, the frequency spectrum of this function can act as a novel insight into the
nonlinear effect on the GFRFs from different nonlinearities, since this function is only
dependent on different nonlinearities but independent of their values. However, the
frequency response spectrum of the GFRFs will change greatly with different values of
the involved nonlinear parameters, which can not provide a clear insight into the
nonlinear effects between different nonlinearities.

4.3 Relationship between H, (jw,, -, jw,)and H,(jo,)

As illustrated in Example 1, H,(j®,,-, jw,) can directly be determined in terms of the
first order GFRF H,(jw) based on the novel mapping function ¢, according to its
parametric characteristic. The following results can be concluded.

Corollary 2. For an effective parametric monomialc, , ()¢, , ()---C, 4 (), its correlative
function is a p -degree function of H,(je,,)which can be written as a symmetric form

Pns) (Cpo,qo (')Cp,,q1 () Co. .a. ) Oy wl(n(g)))

n(s) - p)!p! ) .
:% Z '”i(a’l(l)'”a’un(g)))HHl(wa(i))

all the combinations of p integers {r;,r,, - ~,rp}
taken from{l,2,---,n(S)} without repetition
] is for different combination

K K _
where p=n(8)- > q =Y p -k, [ =[r.r,.+.1,1, and u (@, @,s)) can be determined by

i=0 i=0
equations (18-19). Therefore, the nth-order GFRF can be regarded as an n-degree
polynomial function of H,(ja,,). [

The proof is omitted.
Corollary 2 demonstrates the relationship between H,(jw,, -, jw,) and H,(jw), and

reveals how the first order GFRF, which represents the linear part of system model,
affects the higher order GFRFs, together with the nonlinear dynamics. Note that for any
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specific interested parameters, the polynomial structure of the FRFs is explicitly
determined in terms of these parameters, thus the property of this polynomial function is
greatly dependent on the “coefficients” of these parameter monomials in the polynomial,
which correspond to the correlative functions of the parametric characteristics of the
polynomial and are determined by the new mapping function. Hence, Corollary 2 is
important for the qualitative analysis of the connection between H, (jw,, -, jw,) and

H,(jw), and also between nonlinear parameters and high order GFRFs .

Example 2. To demonstrate the theoretical results above, consider a simple mechanical
system shown in Figure 2.
u(t) l

m

L L e
L‘J

Figure 2. A mechanical system

The output property of the spring satisfies F = Ky +c,y’, and the damperF = By +c,y’. U(t)
is the external input force. The system dynamics can be described by

my = -Ky-By-c,y’ —¢,y’ +u(t) (29)
which can be written into the form of NDE model (1) with M=3, K=2, ¢ (2)=m,
co()=B, ¢,(0)=K, c,,(000)=c,, c,,(111)=c,,c,,(0)=-1, and all the other parameters

arc zero.

There are two nonlinear terms c,,(000) =c,and c,,(111) =c, in model (29), which are all
pure input nonlinearity and can be written asC,, =[c,,c,]. The parametric characteristics

of the GFRFs of model (29) with respect to nonlinear parameter Cs can be obtained
according to equation (13) or Lemma 1 as
Fori=0,1,2,..., CE(H,i+1(.))=Cs,', otherwise CE(Hy(.))=0 for i=1,2,3,...

Therefore,

CE(Hi())=1;

CE(H3(.))=Cs0 = [c1 c2;

CE(Hs(.))=Cs0®Cso = [c1* cicy ¢2’];

CE(H7(.))=C3,0® C3’0 ® C3’()= [Cl3 012C2 C1022 C23] ......
By using (18-21), it can be obtained that

01(C40 (000%:0,,03,0,) = ———— T [ (j@)" - T [H, (@) =———— T [ Hi (i)

L3(jza)i) = = L3(jza)i) =
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H(Jw) .

,(Cyo(111); 0, 0,, 0,) H(Jw) HH (jo)=—"——JH (o)

L(]Zw) i=1 i=1 L(JZ[{)) i=1

®5(Cs (000)03’0 (000); @, -+, 5)

= f,(¢,,(000),5;,, -, ;) - Z Z[fm(si, 85 (G5 (000)):, -+ ;)
all the 3—partitions all the different
for ¢; , (000) permutations of {0,0,1}

3
'H‘/’m% o (5% (C3,0 (000013 @, 51,1y Oy Kiyumis, 516, 00
i=1

f1a (80501 (C3,4(000)); @, -+ @5) @, (1; 0, ), (1, @, )5 (€5, (000); @, -+ @5)
= f, (c3,0 (000),5;@,,++,05) - | + T,,(5,5S, (C3,o (000)); @, -+~ @5) @, (1; @, ), (Cs,o (000); @, --- @), (1; w5)
+ £,.(59,5) (G, 0 (000)); @, - @5)p, (C3,0 (000); @, - ;) (L, @, ), (1; @)

H,(@)H, (wz)HH (Jw)/L (,zw)
S S (a)])HH (jo)H, (@, /L UZQ’)
Ls(jza)i)
= +HH (jo)H, (@)H  (@5) /L “Z“’i)

L TR G

L(JZw) L<JZw) L(JZw) L(JZw) -

s (Cs,o 11 1)03,0 (111); @+, w5)

= £, (1IDS; 0, 05) - Y Z[fza(sz.--sxp(cw(ln));wl-.-ws)
all the 3—partitions  all the different
for ¢; o (111) permutations of {0,0,1}

3
H Prcs, (510,000 (S CooMIDB g11) ) %y ams, 5/, o))
i=1

fra(SSS: (Cs,o (I1D); @, -+~ w5)p, (L o), (1; @, )y (Cs,o A11); 0, -+ w5)
=f, (C3,0 A1D),5 @, 05) | + T,,(5,SS, (03,0 (A1D); @, - w5), (1, @, ), (C3,0 (1)@, - 0,)p,(1; 05)
+ £,4(558) (C (11 1)); @, -+~ 05) 5 (Cyy (11 1); @, -+ @3)p, (1; 0,)p, (1; 5)

<12w>]‘[(1w> (JZw)H(Jw) (JZw)H(Jw) .
1 0 :
= 5 3 HHI(Jwi)
Ls(iji) L (JZw) L (JZCU) L (IZw)
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05(C;,(000)c, (111); 0,5+, @5)

= £,(C;,(000).5: 0, 005) - Y Z[fza(si] w8 (Cyp (1)) 0, -+ 5)
all the 3—partitions  all the different
for ¢; o (111) permutations of {0,0,1}

3
'H(/’N% &fenaem (52 (Coo LIDN 0y g0y Oy gy, (§/cp_q<->))>)]
i=1

F IS0, Y 3 [faa(s, 55 (€10 (000));0, -+ 0,)

all the 3—partitions  all the different
for ¢; 4 (000) permutations of {0,0,1}

3
'Hq’n(%‘ 5/c,.a0 (S5 (C3,0(000)); 0, O Xiyencs; (é/cp,q(-»)))]
i=1

f1a(S)SS, (Cs,o (11D); @, -+ w5)p, (1, @)@, (1; @, ), (C3,0 (1110, - w5)
= 1,(C;0(000),5; 0, -+, 05) - | + £,,(8,58,)(C; (11 D); 0, - 05)py (L@, )ps (C3 (1 11); @, - @, )y (1; 05)
+ f.(855S (Co(1D); 0, - w5) 5 (C5 (1 11); 0, -+ w50, (1, 0,) @, (1; 05)

f12(505)S(C;0(000)); @, -+ @5) @, (1; @), (I; @, )5 (€5 (000); @5 -~ @5 )
+1, (c3,0 U1DS;0,,-,05) | + ,,(5,SS, (C3,o (000)); @, -+~ @5) @, (1; @, ), (Cs,o (000); @, --- ), (1; @)
+ £,2(85)5 (€50 (000)); @, -+ @) (C; 4 (000); @, -+~ 05 ), (1; 0, )y (1 05 )

1 HuZw[ymn HuZw[ﬁmn HUZwIﬂm) s
=— = JH o)
uuZ@) LUZw) LuZw) LuZw) b

Hence, it can be obtamed that
1
1 - .
¢, (CE(H,()) = [TH Ge)

LUZw)IF"‘ﬂ

@s(CE(H (@), 05))) =

1 1 1

gui@;gui@;gui@>
| HuZwJBmw HuZwﬂkwn HuZwﬂkm)
guga) LuZw) LUZw) LuZw)
uZwﬂIww uZwﬂ]ww uZwﬂ]wm
LUZw) LuZw) LUZw)

HHl(ja)i)

By using equation (25), the GFRFs for n=3 and 5 of system (29) can be obtained.
Proceeding with the computation process above, any higher order of the GFRFs of
system (29) can be derived and written in a much more meaningful form. It can be seen
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that, the correlative function of a monomial in the parametric characteristic of the nth-
order GFRF is an n-degree polynomial of the first order GFRF as stated in Corollary 2,
and so does the nth-order GFRF. Based on equation (25), the first order parametric
sensitivity of the GFRFs with respect to any nonlinear parameter can be studied as
aH”(ngm’jw") = aCE(H"(.))'clJn(CE(l‘ln(')))
c oc

For example,
H,(jo,, -, jo,) _ 0CE(H;()) )
oc, oc,
similarly,

95 (CE(H,())) = [10]- 9, (CE(H, ())) = H H (jo) L3(jza)i)

H;(jo, -, jos) _ O0CE(H; () )
oc, oc,

Similar results can also be obtained for parameter c,. It can be seen that the sensitivity of
the third order GFRF with respect to the nonlinear spring c¢; and nonlinear damping c; is
constant which is dependent on linear parameters, but the sensitivity of the higher order
GFRFs will be a function of these nonlinearities and the linear parameters. Note that for a
Volterra system, the system output is usually dominated by its first several order GFRFs
(Boyd and Chua 1985). Hence, in order to make the system less sensitive to these
nonlinearities, the linear parameters should properly be designed.

¢s(CE(H;(0)) =[2¢,,¢,,0]- 05 (CE(H (1)) -

Moreover, the magnitude of H (jw,, -, jw,) can also be evaluated readily according to
Corollary 1. For example, for n=3

HHl(jwi) |:C1:|T 1 1;[(]‘0.) |:C1:|

|H3(ja)1,'-~,ja)3)|2 =CE3®3CE; = 3 3
_H(ja)i) H(a)iz)
i=l i=1

3
L) @)

i=1
As mentioned above, instead of studying the Bode diagram of H,(jw,, -, jw,) , the
frequency response spectrum of the maximum eigenvalue of the third order frequency
characteristic matrix defined in Corollary 1 can be investigated. See Figures 3-4.

Different values of the linear parameters will result in a different view. An increase of the
linear damping enables the magnitude to increase for higher o, + w, + @, along the

G,

line @, + w, =0 . Note that the system output spectrum (26a-c) involves the computation of
the GFRFs along a super-plane o, +---+®, =w. The frequency response spectra of the
maximum eigenvalue on the plane o, +---+ @, = @ with different output frequency w are

given in Figures 5-6. The peak and valley in the figures can represent special properties
of the system. Understanding of these diagrams can follow the method in Yue et al
(2005), and further results are under study.
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Figure 3. Frequency response spectrum of the maximum eigenvalue
when m=24, B=2.96(left) or 29.6(right), K=160
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Figure 4. Frequency response spectrum of the maximum eigenvalue
when m=2.4, B=2.96, K=1.6 and o, + @, + ®, = 0.8 (left) or 1.5(right)

The system output spectrum can also be studied. For example, suppose the system is
subject to a harmonic input u(t) = F, sin(w,t) (F, >0), then the magnitude of the third

order output spectrum can be evaluated as (Jing et al 2007a)

3
|Y3(ia))|£2—13 ZIH;(jww-uka3)||F(wkl)-~-F(wkz>|si—i Y HiGog s ioy)

O+ H O =0 O+t O =0

From corollary 1, [H,(je,,, jo,)| <4 (jo,, -, jo,)
: F; - . Fy - -
Y.(jo) <=4 Y JhGo. - je)|CE =24y +¢ D (o, jo,)
2 2

O+t O, =0 O+t =0

CE; || . Therefore,

For » =0.8 and m=2.4, B=29.6, K=1.6, it can be obtained that /i (jo,, -, |®,)
<0.006055896 . Hence, in this case

¥, (jo) < 0.00227096F; y/c} +c;
Obviously, given a requirement on the bound of |Y,(jw)|, the design restriction on the
nonlinear parameters C; and C, can further be derived. [
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5 Conclusions

A mapping function from the parametric characteristics of the GFRFs to the GFRFs is
established, such that the nth-order GFRF can directly be written into a more
straightforward and meaningful form in terms of the first order GFRF and model
parameters based on the parametric characteristic, which explicitly unveils the linear and
nonlinear factors included in the GFRFs and can be regarded as an n-degree polynomial
function of the first order GFRF. The new results demonstrate some new properties of the
GFRFs, which can reveal clearly the relationship between the nth-order GFRF and its
parametric characteristic, and also the relationship between the nth-order GFRF and the
first order GFRF. These provide a novel and useful insight into the frequency domain
analysis and design of nonlinear systems based on the GFRFs. Note that the results of this
study are established for nonlinear systems described by the NDE model, further study
will extend these results to discrete time nonlinear systems described by NARX model.
The frequency characteristics of system output frequency response of nonlinear systems
will also be studied by using these new results. Moreover, further study will also focus on
some detailed issues relating to the application of the theoretical results developed in the
present study.
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