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Abstract: In order that the nth-order Generalized Frequency Response Function (GFRF) 

for nonlinear systems described by a NARX model can be directly written into a more 

straightforward and meaningful form in terms of the first order GFRF and model 

parameters, the nth-order GFRF is now determined by a new mapping function based on 

a parametric characteristic. This can explicitly unveil the linear and nonlinear factors 

included in the GFRFs, reveal clearly the relationship between the nth-order GFRF and 

the model parameters, and also the relationship between the nth-order GFRF and the first 

order GFRF. Some new properties of the GFRFs can consequently be developed. These 

new results provide a novel and useful insight into the frequency domain analysis of 

nonlinear systems. 

Keywords: Generalized frequency response functions, Parametric characteristics, 

Nonlinear systems, NARX 

 

1. Introduction 
 

It was showed by Boyd and Chua (1985) that nonlinear systems, which are causal and 

have fading memory, can be approximated in the neighbourhood of the zero equilibrium 

by a Volterra series of finite order. Based on a Volterra series approximation, the 

frequency domain analysis of nonlinear systems can be conducted (Bedrosian and Rice 

1971, Brilliant 1958, Kotsios 1997, Rugh 1981, Volterra 1959).The nth-order 

Generalized Frequency Response Function (GFRF) of nonlinear Volterra systems was 

defined in George (1959). By applying the probing method (Rugh 1981), a recursive 

algorithm to compute the GFRFs for nonlinear Volterra systems described by a NARX 

model was derived in Peyton-Jones and S. A. Billings (1989). These results play a 

fundamental role in many important results achieved latterly for the frequency domain 

analysis of nonlinear Volterra systems such as those in Billings and Lang (1996), Jing, et 

al (2007, 2008). Although significant results have been achieved, many problems still 

remain unsolved regarding how the frequency response functions are influenced by the 

parameters of the underlying system, and the connection to complex non-linear 

behaviours. The existing recursive algorithms in Peyton-Jones and Billings (1989) for the 
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computation of the GFRFs can not explicitly reveal the analytical relationship between 

system time domain model parameters and system frequency response functions in a 

straightforward manner. In order to solve these problems, the parametric characteristics 

of the GFRFs for nonlinear Volterra systems described by a NARX model were studied 

in Jing et al (2006), which effectively builds up a mapping from the model parameters to 

the parametric characteristics of the GFRFs and provides an explicit expression for the 

analytical relationship between the GFRFs and the system time-domain model 

parameters. Based on the results in Jing et al (2006), an inverse mapping function from 

the parametric characteristics of the GFRF to the GFRF itself is established for nonlinear 

Volterra systems described by a NARX model in this study. The nth-order GFRF can 

directly be determined as an n-degree polynomial function of the first order GFRF 

according to its parametric characteristic by using this new mapping function. Compared 

with the existing recursive algorithm for the computation of the GFRFs, the new mapping 

function enables the nth-order GFRF for a NARX model to be determined in a more 

straightforward and meaningful structure in terms of the first order GFRF and model 

parameters without recursive relationship with the lower order GFRFs, and unveils some 

new properties of the nth-order GFRF. These results facilitate the frequency domain 

analysis and design of nonlinear systems based on the GFRFs.  

 

2.  Background 
 

Nonlinear systems can be approximated by a Volterra series up to a maximum order N 

under certain conditions (Boyd and Chua, 1985). Consider nonlinear Volterra systems 

described by the following NARX model  
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where ym(t) is the mth-order output of the NARX model, p+q=m, ki=1,�, K, M is the 

maximum degree of nonlinearity in terms of y(t) and u(t), and . p+q 
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parameters. A recursive algorithm to compute the nth-order GFRF for nonlinear Volterra 

systems described by A NARX model (1) is given in Peyton-Jones and Billings (1989). 
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Then the recursive algorithm can be written as 

[ ]),,(),,(
)(

1
),,( 1,

)(

0 0 0,

1,

1

1
1

1

qnpqn

kjn

q

qn

p

K

kk
qpqp

nn
nn jjHekkc

L
jjH

q

i
ipiqn

qp

−−

−

=

−

= =
+

∑
⋅= =

++−

+

∑∑ ∑ ωω
ωω

ωω
ω

LL
L

L  (4) 

where,  

( )))(exp(),,(),,()( 111,

1

1

1, pinipin

pn

i
iipn kjjjHjjHH ωωωωωω ++−⋅=⋅ +−−

+−

=
∑ LLL                (5) 

))(exp(),,(),,( 11111, kjjjHjjH nnnnn ωωωωωω ++−= LLL                      (6) 

),,( 1 nn jjH ωω L is the nth-order GFRF for NARX model (1). Note that the terms for cross 

input-output nonlinearities in (4) are corrected (This should be compared with the 

original results in Peyton-Jones and Billings (1989)). From (2-6), it can be seen that, 

although ),,( 1 nn jjH ωω L can be effectively computed by this recursive algorithm, the 

relationship between ),,( 1 nn jjH ωω L and the model parameters is not straightforward, and 

it is not clear about how the nonlinear parameters, which define the system nonlinearity, 

and the linear parameters, which define the first order GFRF of the NARX model, affect 

the GFRFs. This inhibits the understanding of the frequency domain characteristics of the 

GFRFs, and their connection to complex nonlinear behaviours. To solve this problem, the 

parametric characteristic analysis of the GFRFs for NARX models was studied by the 

authors (Jing et al 2006). Thus the nth-order GFRF can be expressed into a polynomial 

form as 

( ) ),,(),,(),,( 111 nnnnnn jjjjHCEjjH ωωϕωωωω LLL ⋅=                           (7) 

where ),,( 1 nn jj ωωϕ L is a complex valued function vector with an appropriate dimension, 

which is a function of the frequency variables and )( 11 ωjH , and referred to as the 

correlative function of  in this paper; ( ),,( 1 nn jjHCE ωω L ) ( )),,( 1 nn jjHCE ωω L is referred to 

as the parametric characteristic of ),,( 1 nn jjH ωω L , which can be recursively determined by 
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where  , CE(.) is a novel coefficient 

extraction operator which has two basic operations �

=qpC , )],,(,),1,,0(),0,,0([ ,,, 43421LLLL
mqp

qpqpqp KKccc
=+

⊕ � and �⊗�.The detailed definition 

and operation rules for CE(.) can be referred to Jing et al (2006, 2008). Note that from 

(8), elements of are monomial functions of the nonlinear parameters 

of degree from 2 to n.  

( ),,( 1 nn jjHCE ωω L )

 

Equation (7) provides a straightforward insight into the analytical relationship between 

the GFRFs and the system time-domain model parameters, and facilitates the frequency 

domain analysis of the nonlinear system characteristics (Jing et al 2006). In this study, a 

mapping function from  to is established in order to 

completely determine equation (7). Therefore, the complex valued correlative function 

( )),,( 1 nn jjHCE ωω L ),,( 1 nn jjH ωω L

),,( 1 nn jj ωωϕ L  in (7) can directly be determined in terms of the first order GFRF  )( 11 ωjH
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based on the parametric characteristic vector ( )),,( 1 nn jjHCE ωω L . That is, the nth-order 

GFRF can directly be written into the parametric characteristic function (7) in its detailed 

and analytical form by using this mapping function, and consequently some new 

properties of the GFRFs are revealed. For further derivations, the following result is 

needed. 

 

Lemma 1 (Jing et al 2006). The elements of ( )),,( 1 nn jjHCE ωω L  include and only include 

the nonlinear parameters in C0n and all the nonlinear parameter monomial functions in 

for , where the subscripts satisfy  
kk qpqpqppq CCCC ⊗⊗⊗⊗ L

2211
20 −≤≤ nk

⎪
⎪
⎭

⎪⎪
⎬

⎫

−≤+≤−≤+≤

+=+++

−≤≤

∑
=

knqpknqp

knqpqp

knp

ii

k

i
ii

2,2

)(

1

1

                                            (9) 

Lemma 1 provides a sufficient and necessary condition for which nonlinear parameters 

and how these parameters are included in ( )),,( 1 nn jjHCE ωω L .  in (5) can 

also be written as  
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3. A new mapping function 
 
Definition 1. Let  be a set composed of all the elements in)(nSC ( )),,( 1 nn jjHCE ωω L , and 

let  be a set composed of all the elements in . Then there is a mapping  )(nS f ),,( 1 nn jjf ωω L

)()(: nSnS fCn →ϕ                                                  (11a) 

such that in ,  njωω ,,1 L

( ) ),,()),,(( 11 nnnnn jjjjHCE ωωϕωωϕ LL =                               (11b) 

(11ab) define a new mapping function in the parametric characteristics of the nth-order 

GFRF, which will be determined in this section. From Lemma 1, a monomial in 

( ),,( 1 nn jjHCE )ωω L  is either a single parameter coming from a pure input nonlinearity 

e.g. c0n(.), or a nonlinear parameter function of the form  

satisfying (9), and the first parameter of 

kk qpqpqppq CCCC ⊗⊗⊗⊗ L
2211

kk qpqpqppq CCCC ⊗⊗⊗⊗ L
2211

must come from a 

pure output nonlinearity or input-output cross nonlinearity, i.e., cpq(.) with and 

p+q>1.  

1≥p

 

Definition 2. A parameter monomial of the form with k 0 

and p+q>1 is effective for 

kk qpqpqppq CCCC ⊗⊗⊗⊗ L
2211

≥

( )),,( 1 nn jjHCE ωω L  if the involved nonlinear parameters 

satisfy p+q=n(>1) for k=0, or (9) is satisfied for k>0. ͙ 
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All the parameter monomials in ( )),,( 1 nn jjHCE ωω L  are effective for ( )),,( 1 nn jjHCE ωω L .  
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From (10), it can be obtained that 
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The parameter is the coefficient of  in (4). From Definition 

3, a (p,q)-partition of 
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Definition 4. A p-partition of an effective monomial is a combination 

of the involved parameters such that 
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Proof. The results follow from Lemma 2 and Definition 3. The proof is omitted. ͙ 
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where x is the number of the parameters in , is the summation of the 

subscripts of all the parameters in , and  let  if x<1 and n(1)=1. Then for 
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variables involved in the corresponding functions, l(i) for i=1� )(sn  is a positive integer 

representing the index of the frequency variables. 

 

Proof. The recursive structure in (13) is directly followed from Lemma 3 and Lemma 5 

based on the recursive Equation (4). The correlative function of are the 

summation of the correlative functions with respect to all the cases by which this 

monomial is produced in the same 
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L of the monomial )(⋅pqcs which corresponds to 

a (p,q)-partition for the )(sn th-order GFRF, and it is followed from (12). This completes 

the proof. ͙ 
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Remark 1. Equation (13) is recursive. The terminating condition is k=0, which is also 

included in (13). For k=0, it can be derived from (13) that 
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Let if p=0 in (15). Note that in the derivation above, 1)(
1
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Remark 2. Consider the three summation operations in (13). ∑
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Lemma 3, which includes l cases for a parameter monomial having l different parameters 

satisfying p>0. For example, for c1,1(.)c2,0(.)c1,1(.), this summation includes the following 
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Example 1. For a monomial c1,1(.)c0,2(.)c2,0(.) which is an effective monomial for the 4
th

-

order GFRF, it can be obtained from Proposition 1 that  
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4. Some properties  

4.1 Properties of the mapping function nϕ  

));()()(( ))(()1()( 1100 snllqpqpqpsn kk
ccc ωωϕ LL ⋅⋅⋅ in Proposition 1 is asymmetric. Different 

permutation of ))(()1( snll ωω L may result in different value. The symmetric result can be 

obtained by 

∑ ⋅⋅⋅=⋅⋅⋅

}{ of
 nspermutatio  theall
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Corollary 1. For an effective parametric monomial , its correlative 

function is a 

)()()(
1100

⋅⋅⋅
kk qpqpqp ccc L

ρ -degree function of )( )1(1 ljH ω which can be written as  

∑ ∏
=

=⋅⋅⋅

ncombinatiodifferent for is
repetitionwithout

)}(,,2,1{fromtaken},,,{ 
integers ofnscombinatiotheall 1

)(1))(()1()())(()1()(

21

1100
)()());()()((

j

snrrr
i

ilsnlljsnsnllqpqpqpsn
sym jHCccc

kk

LL

LLL

ρ

ρ

ρ
ρ ωωωμωωϕ

                                                                                        (17a) 

The magnitude bound of (22a) can be evaluated by 

∑ ∏
=

+
⋅⋅

⋅⋅⋅ℵ
=

⋅⋅⋅

repetitionwithout)}(,,2,1{

fromtaken},,,{integers
 ofnscombinatiotheall 1

)(1)(1

))(()1()(

))(()1()(

21

1100

1100

)(
)));()()(((

));()()((

sn
rrr

i
ilsnk

snllqpqpqpsn

snllqpqpqpsn
sym

jHC
L

ccc

ccc

kk

kk

L
L

LL

LL

ρρ

ρ
ρ ω

ωωϕ

ωωϕ

   (17b) 

where kpqsn
k

i
i

k

i
i −=−= ∑∑

== 00

)(ρ , ],,,[ 21 ρrrrl L= , 
)!(

!)!)((
)( sn

sn
C sn

ρρρ −
= , )( ))(()1( snllj ωωμ L  can 

be determined by equations (13-14), ))((inf ω
ω

LL = and 

)));()()((( ))(()1()( 1100 snllqpqpqpsn kk
ccc ωωϕ LL ⋅⋅⋅ℵ  is a positive integer which can be determined by 

 10



⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅ℵ=

⋅⋅⋅ℵ

∏∑ ∑ ∑
=

⋅

>⋅=

−
⋅

−

p

i
pqxcssn

pcss
s scs

s

snllqpqpqpsn

Wcss

ccc

ipqix

pq

pq

kk

1

*

)))(((

0and)()(
satisfyingfor

partitions2theall
s:)(for

partitionsptheall

sof
nspermutatio

different  theall

))(()1()(

)));)((((

)));()()(((

1

px1x

px1x

1100

ϕ

ωωϕ

L
L

LL
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Proof. The proof is omitted. ͙  

 

Recalling Equation (7), Corollary 2 shows that, the nth-order GFRF ),,( 1 nn jjH ωω L  can 

be expressed as an n-degree polynomial function of the first order GFRF   )(1 ijH ω

( ) ),,(),,(),,( 111 nn
sym

nnnn
sym jjjjHCEjjH ωωϕωωωω LLL ⋅=  

and its magnitude bound can be simply evaluated by  

( ) ),,(),,(),,( 111 nn
sym

nnnn
sym jjjjHCEjjH ωωϕωωωω LLL ⋅≤  

These results reveal how the first order GFRF, which represents the linear part of system 

model, affects the higher order GFRFs, together with the nonlinear dynamics. The 

conclusion in Corollary 2 can also be verified by Example 1.  

4.2 Magnitude characteristic of the nth-order GFRF  

By using Lemma 1 and Proposition 1, Equation (7) can now be determined definitely. Let 
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Similarly, it also holds that  

nnnnn jjH ϕϕωω Λ= *2

1 ),,( L                                                       (18b) 

Denote )(AMλ to be the maximum eigenvalue of matrix A. The following result can be 

obtained.  

 

Proposition 2.  
2
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)(sup)(),,(),,(sup
2
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∞
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Proof. The proof is omitted. ͙  

 

From Equations (18-19), it can be seen that the squared magnitude of the nth-order GFRF 

is proportional to a quadratic function of the parametric characteristic and also 
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proportional to a quadratic function of the corresponding correlative function. These 

results demonstrate a new property of the nth-order GFRF, which reveals the relationship 

between the magnitude of ),,( 1 nn jjH ωω L  and its nonlinear parametric characteristic, and 

also the relationship between the magnitude of ),,( 1 nn jjH ωω L  and the correlative 

functions which include the linear (the first order GFRF) and the nonlinear behaviour. 

Proposition 2 also shows that the absolute integral of the nth-order Volterra kernel 

function in the time domain is bounded by a quadratic function of the parameter 

characteristic.  

 

5.  Conclusions 
 

A mapping function from the parametric characteristics of the GFRFs to the GFRFs is 

established, such that the nth-order GFRF can directly be written into a more 

straightforward and meaningful form in terms of the first order GFRF and the model 

parameters. The new mapping function enables the linear and nonlinear factors included 

in the GFRFs to be unveiled explicitly, thus some new properties of the GFRFs can be 

obtained, which reveals clearly the relationship between the nth-order GFRF and its 

parametric characteristic, and also the relationship between the nth-order GFRF and the 

first order GFRF. These results provide a novel insight into the frequency domain 

analysis and design of nonlinear Volterra systems described by a NARX model based on 

the GFRFs. 
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