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Abstract: In order that the nth-order Generalized Frequency Response Function (GFRF)
for nonlinear systems described by a NARX model can be directly written into a more
straightforward and meaningful form in terms of the first order GFRF and model
parameters, the nth-order GFRF is now determined by a new mapping function based on
a parametric characteristic. This can explicitly unveil the linear and nonlinear factors
included in the GFRFs, reveal clearly the relationship between the nth-order GFRF and
the model parameters, and also the relationship between the nth-order GFRF and the first
order GFRF. Some new properties of the GFRFs can consequently be developed. These
new results provide a novel and useful insight into the frequency domain analysis of
nonlinear systems.

Keywords: Generalized frequency response functions, Parametric characteristics,
Nonlinear systems, NARX

1. Introduction

It was showed by Boyd and Chua (1985) that nonlinear systems, which are causal and
have fading memory, can be approximated in the neighbourhood of the zero equilibrium
by a Volterra series of finite order. Based on a Volterra series approximation, the
frequency domain analysis of nonlinear systems can be conducted (Bedrosian and Rice
1971, Brilliant 1958, Kotsios 1997, Rugh 1981, Volterra 1959).The nth-order
Generalized Frequency Response Function (GFRF) of nonlinear Volterra systems was
defined in George (1959). By applying the probing method (Rugh 1981), a recursive
algorithm to compute the GFRFs for nonlinear Volterra systems described by a NARX
model was derived in Peyton-Jones and S. A. Billings (1989). These results play a
fundamental role in many important results achieved latterly for the frequency domain
analysis of nonlinear Volterra systems such as those in Billings and Lang (1996), Jing, et
al (2007, 2008). Although significant results have been achieved, many problems still
remain unsolved regarding how the frequency response functions are influenced by the
parameters of the underlying system, and the connection to complex non-linear
behaviours. The existing recursive algorithms in Peyton-Jones and Billings (1989) for the



computation of the GFRFs can not explicitly reveal the analytical relationship between
system time domain model parameters and system frequency response functions in a
straightforward manner. In order to solve these problems, the parametric characteristics
of the GFRFs for nonlinear Volterra systems described by a NARX model were studied
in Jing et al (2006), which effectively builds up a mapping from the model parameters to
the parametric characteristics of the GFRFs and provides an explicit expression for the
analytical relationship between the GFRFs and the system time-domain model
parameters. Based on the results in Jing et al (2006), an inverse mapping function from
the parametric characteristics of the GFRF to the GFREF itself is established for nonlinear
Volterra systems described by a NARX model in this study. The nth-order GFRF can
directly be determined as an n-degree polynomial function of the first order GFRF
according to its parametric characteristic by using this new mapping function. Compared
with the existing recursive algorithm for the computation of the GFRFs, the new mapping
function enables the nth-order GFRF for a NARX model to be determined in a more
straightforward and meaningful structure in terms of the first order GFRF and model
parameters without recursive relationship with the lower order GFRFs, and unveils some
new properties of the nth-order GFRF. These results facilitate the frequency domain
analysis and design of nonlinear systems based on the GFRFs.

2. Background

Nonlinear systems can be approximated by a Volterra series up to a maximum order N
under certain conditions (Boyd and Chua, 1985). Consider nonlinear Volterra systems
described by the following NARX model

YO =D Ym(®)
T« (D

p
Yn®=2" D Cpalkikp )] yt-k)[Tut-k)

p=0 ky.kp, =1 i=p+l

where Ym(t) is the mth-order output of the NARX model, ptg=m, k=1,..., K, M is the
K K K
maximum degree of nonlinearity in terms of y(t) and u(t), and > ()=>>()- >_(). ptq

KiKpeg=l k=1 Kp.q=1

is referred to as the nonlinear degree of parameterc (), which corresponds to the (p+q)-
P p+q

degree nonlinear terms [ [yt—k)] Jutt-k). cou(.) and €1 o(.) of degree 1 are referred to
i=1 i=p+l

as linear parameters, and all the other model parameters are referred to as nonlinear

parameters. A recursive algorithm to compute the nth-order GFRF for nonlinear Volterra

systems described by A NARX model (1) is given in Peyton-Jones and Billings (1989).

Let

Hoo(=1, H (()=0forn>0, H () =0{for n<p (2a)
a 1 g=0,p>1
exp()_ (P = {0 ‘;: . ‘;; (2b)

and let



Lo(@, .o, )=1- Zcm(k)exp( j(@, ++o,)k) (3)

k=1

Then the recursive algorithm can be written as

n ngq K —ii(con,wkpm
Ho(jop . joy) = L(wl ZZ[c(kk)e Hogp (i@ jo, )] (4)
where,
Hn,p(-)=nil(Hi(jwl,---,iwi>-Hn_i,p_1<iwi+l,~~,Jw»exp(—j(wl+---+wi>k,,)) (5)
Ho(J@y, jo) =Ho(jo,, jo,) exp (o, +--+o,)K) (6)

H,(jo,,, jo,)1s the nth-order GFRF for NARX model (1). Note that the terms for cross
input-output nonlinearities in (4) are corrected (This should be compared with the
original results in Peyton-Jones and Billings (1989)). From (2-6), it can be seen that,
although H (jo,, -, jw,) can be effectively computed by this recursive algorithm, the
relationship between H (jo,, -, jw,) and the model parameters is not straightforward, and
it is not clear about how the nonlinear parameters, which define the system nonlinearity,
and the linear parameters, which define the first order GFRF of the NARX model, affect
the GFRFs. This inhibits the understanding of the frequency domain characteristics of the
GFRFs, and their connection to complex nonlinear behaviours. To solve this problem, the
parametric characteristic analysis of the GFRFs for NARX models was studied by the
authors (Jing et al 2006). Thus the nth-order GFRF can be expressed into a polynomial
form as

Ho(oy . jo,) =CE(H (jor, . jo))- @y (jo o, joy,) 7
where ¢, (jo,, -, jw,) 1s a complex valued function vector with an appropriate dimension,
which is a function of the frequency variables and H,(je,), and referred to as the
correlative function of CE(H, (jw,,--, jo,)) in this paper; CE(H,(jo,, -, jo,))is referred to
as the parametric characteristic of H, (jo,, -, jo,) , Which can be recursively determined by

n-1n-q

CE(Hn(jwla T Ja) )) COn (—D(@ @C p.q ®CE(Hn q- p+l())j (éch,() ®CE(an+l())j (8)

g=1 p=1

where C, = [c,,(0,--,0),c 4 (0,---1),--,c . (K,---,K)] , CE(.) is a novel coefficient
’ %,_/
p+g=m
extraction operator which has two basic operations “® ” and “®”.The detailed definition
and operation rules for CE(.) can be referred to Jing et al (2006, 2008). Note that from

(8), elements of CE(H,(jw,, -, jw,))are monomial functions of the nonlinear parameters
of degree from 2 to n.

>7p.q

Equation (7) provides a straightforward insight into the analytical relationship between
the GFRFs and the system time-domain model parameters, and facilitates the frequency
domain analysis of the nonlinear system characteristics (Jing et al 2006). In this study, a
mapping function from CE(H,(jw,, -, jo,)) to H (jo,.--,jw,)is established in order to

completely determine equation (7). Therefore, the complex valued correlative function
?.(jo,,-, jw,) in (7) can directly be determined in terms of the first order GFRF H, (jo,)



based on the parametric characteristic vector CE(H, (jw,, -, j®,)). That is, the nth-order

GFREF can directly be written into the parametric characteristic function (7) in its detailed
and analytical form by using this mapping function, and consequently some new
properties of the GFRFs are revealed. For further derivations, the following result is
needed.

Lemma 1 (Jing et al 2006). The elements of CE(H,(jo,,--, jo,)) include and only include

the nonlinear parameters in Cp, and all the nonlinear parameter monomial functions in
C,®C,, ®C,, ®---®C,, for 0<k<n-2, where the subscripts satisfy

1<p<n-k
K
p+q+2(pi+qi):n+k )

i=1

2<p+g<n-k,2<p +q £n-k

Lemma 1 provides a sufficient and necessary condition for which nonlinear parameters

and how these parameters are included inCE(H,(jo,, -, j@,)). H,,(jo, - jo,) in (5) can
also be written as
. . &R . . . 10
Hop(opjog) = D [TH, (.. jox, ) exp-j(@y., ++ oy, k) (10)
rerp=li=l
Yor=n

where X = Z ry .

x=1

3. A new mapping function

Definition 1. Let S.(n) be a set composed of all the elements inCE(H,(jo,, -, j»,)), and

let S;(n) be a set composed of all the elements in f, (jo,, -, jo,). Then there is a mapping
@n 1 Sc (M) = S¢(n) (11a)

such thatin w,, -, jo,,
wn(CE(Hn(jwla"'a jwn))):an(jwlr"'a ]wn) (llb)

(11ab) define a new mapping function in the parametric characteristics of the nth-order
GFRF, which will be determined in this section. From Lemma 1, a monomial in

CE(H,(jo,,, jw,)) is either a single parameter coming from a pure input nonlinearity
€.g. Con(.), or a nonlinear parameter function of the form C,®C,, ®C,, K ®---®C,

satisfying (9), and the first parameter of C,, ®C,, ®C  ®---®C,, must come from a

pure output nonlinearity or input-output cross nonlinearity, i.€., Cpy(.) with p>1and

pro>1.

Definition 2. A parameter monomial of the form C,®C,, ®C,, ®--®C,, with k>0

and ptg>1 is effective for CE(H,(jo,,--, jw,)) if the involved nonlinear parameters
satisfy ptg=n(>1) for k=0, or (9) is satisfied for k>0. [



All the parameter monomials in CE(H ,(ja,, -, jw,)) are effective for CE(H, (jo,, -, jo,)).

Lemma 2. For a monomial c,, ()c,, ()---C,, () with k>0, then it is effective for the z"h-

order GFRF if and only if there is at least one parameter cpq(.) with p>0, where

K
ZZZ(pi +0)-k.

Proof. This follows directly from Definition 2. Z can be computed from Lemma 1. This
completes the proof. []

Lemma 3. For a monomial c,, ()c,, ()--C,, () With k>0, if there are | different

parameters with p;>0, then there are | different cases in which this monomial is produced

k
in the recursive computation of the (Z( p, +0,)—k)"-order GFREF.

i=0

Proof. This can be concluded from the recursive algorithm (4). The proof is omitted. []

Definition 3. A (p,q)-partition of H.(jo, ", jo,) is a

p
combination H, (w,)H, (w,)--H, (w, )satisfying Zri =n-q, where 1<r, <n-p-q+1, and
i=1

P
w, is a set consisting of r; different frequency variables such that an ={w,,0,,,0,}and
i=1

w, Nw, =gfori=j. [

From (10), it can be obtained that

. . e P . . . 12
anq,p(Ja)l"”’Ja)n): Z HHr‘(Ja)XH"”aJa)XH.)exp(_J(a)XH+”'+a))<+rl)ki) ( )

reerp=l =l

Zr‘:n—q

The parameterc, ,(k,--.k,.,) is the coefficient of H,_, (jo. -, jo,) in (4). From Definition

p+q
3, a (p,g)-partition of H,(jo,,jo,) corresponds to a combination of
H, (W )H. (W, )-H_(w ) in (12), which also corresponds to an effective parameter
monomial initialized by the parameter ¢, (k,---.k,,,) . Note that H_ (j@,,, je,) includes
all the possible permutations ofH, (w,)H, (w,)---H, (w, ), hence it includes all the (p,q)-

partitions.



Definition 4. A p-partition of an effective monomial c,, ()---c,, () is a combination

S, S, S, of the involved parameters such that s,s, --s

X Xy

=Cpq ()Cpq (), Where s, is a

Xp

monomial of X; parameters in c,, ():---C,, (), 0< X <k, sg=1, and each non-unitary s, is

Pk
an effective monomial.[]

Suppose that a p-partition for 1 is 1-1---1=1. The sub-monomial s, in a p-partition of an
p

effective monomial c,,()---c,, () is denoted by s, (c,,()---c,,()) . Obviously,
Cpg () Cpg () =S Cpg () Cpg ) ).

Lemma 4. If a monomial c,,()c,, ()---c,, () is effective, and c,() is the initial parameter

directly produced in the Zth-order GFRF and p>0, then (l)c,,()---c,, () comes from
k

(p,q)-partitions of the Zth-order GFRF, where Z= p+q+ Z( p, +q)—k; (2) if additionally
i=1

S comes from Hi(.), then each p-partition of ¢, ()---c,, () corresponds to a (p,q)-

partition of the Zth-order GFRF, and each (p,q)-partition of the Zth-order GFRF produces

at least one p-partition for c,, ()---c,, ().

Proof. The results follow from Lemma 2 and Definition 3. The proof is omitted. [

Lemma 5. ¢, ()c,, ()., () is an effective monomial for the Zth-order GFRF, and
C,() 1s the initial parameter satisfying p>0, then the correlative function of
Cpq ()°+-Cpq () are the summation of the correlative functions from all the (p,g)-partitions
of the Zth-order GFRF which produces c,, ()---c,, (), and therefore are the summation

of the correlative functions corresponding to all the p-partition of ¢, ()---c,, ().

Proof. It follows from Lemma 4. The detailed is omitted. [J

From Lemma 5, all the (p,g)-partitions of the Zth-order GFRF which
producec,, ()---c,, () are all the (p,q)-partitions corresponding to all the p-partitions for

Cpa, (')"'Cpqu ©)-

Proposition 1. For an effective nonlinear parameter monomialc,, ()¢,  ():+-C,q4 (), let

S=Cpq (IChq () Cpg (). N(S,(3))= D (P +G)—X+1,

i=l



where X is the number of the parameters in s, Z:(pi +q,) is the summation of the
i=1

subscripts of all the parameters in s, and let Z(.):O if Xx<1 and n(1)=1. Then for
i=l

X 9

0<k<n(s)-2,

Pns) (Cpyg, (ICpq () Cpg (@) By ns))

- Z{fl(cp,q()’ N(S); @) - Dynesy) Z Z[fz (S, S, (S/Cpq())’wl(l) D\ (n(s)-q))
all the 2—partitions all the p—partitions all the different
for S satisfying for §/(:pq ():8y, S, permutations
5,(8)=Cpq (") and p>0 "oof s s,

p
Hwn(%, (§/Cpq(~)))(si (g/cpq('));wl(imu) “'wl()?(i)m(%‘ (§/cm(-)))))]}
i=1
(13)
The recursive computation stops at k=0 and ¢, (@) =H,(j®,) OF @,.4(Coq ;@) B(prgy) »
where,

i1
X(i)= ) n(sy (5/cyq())) (14a)
=1
q
f, (Cp,q ), n(§);a)l(1) ”'a)l(n(§))) = exp(_jzwl(n(é)—q+i)kp+i )/Ln(s) (a)l(l) "'a)l<n(§))) (14b)
i=1
p
f2 (Sil T Sip (g/cpq ())7 a)l(l) T (ol(n(§)—q)) = exp(_JZ I(i (w|()?(i)+1) teeet w|()?(i)+n(%l (5/Cpq () )) (140)
i=1

Moreover, s, ---s; is a permutation of s, ---s

X

,, > @) O Tepresents the frequency

variables involved in the corresponding functions, I(i) for i=1...n(5) is a positive integer
representing the index of the frequency variables.

Proof. The recursive structure in (13) is directly followed from Lemma 3 and Lemma 5
based on the recursive Equation (4). The correlative function of ¢, ()---c,, () are the

summation of the correlative functions with respect to all the cases by which this
monomial is produced in the same n(3S) th-order GFRF. In each case it should include all

the correlative functions corresponding to all the p-partition for ¢, ()---c,, (), and for
each p-partition of c,, ()---c,, (), the correlative function should include all the different
permutations of Sx1Sx2.- - - Sxp» since the correlative function
f2(Sg Sk, (§/Cpq (D) @) -+ @y n(s-q)) 18 different with each different permutation which can
be verified by Equation (12). f,(c,,().n(S);@ @ ,s,) 18 a part of the correlative

function for c, (k. ---,k,,,) except for H, g . (jo. -, jo,g ), Wwhich directly follows from

n(s)-q
(4). f,(55 8¢ (5/Coq (s @1y @ n5)q)) 18 @ part of the correlative function with respect to a
permutation of a p-partition s, 8, (§/Chq () of the monomial §/c,(-) which corresponds to
a (p,q)-partition for the n(S)th-order GFRF, and it is followed from (12). This completes

the proof. [



Remark 1. Equation (13) is recursive. The terminating condition is k=0, which is also
included in (13). For k=0, it can be derived from (13) that

¢n(§)(cp,q ()s @1y " Oyn(sy))

P
= (g ()N @) @53 - z Z[fz(l§a)l<1> O n(s)-q) H%(l) LDy ) " Dk renay)
i=1

all the p—partitions  all the different
for 1 permutations
of {0,---,0}

p
= f,(Cog() P+ U@y - By ns))) - To (g, "'a’l(p))'H§9n(1)(1§a’|(i))
i1
& L
eXp(_JZa’l(p+i)kp+i)exp(_lzkia’l(i)) b
= = =L HHl(jwl(i)) 15
i1

Losi-pra (@) - @i piqy)

P
Let H(-) =11f p=0 in (15). Note that in the derivation above, n(S)=p+q, and s=c_ (). [

Remark 2. Consider the three summation operations in (13). Z{} follows from

all the 2—partitions

for § satisfying

S (5)=Cyq(+) and p>0
Lemma 3, which includes | cases for a parameter monomial having | different parameters
satisfying p>0. For example, for C; ;(.)c2,0(.)c1.1(.), this summation includes the following
cases:

Si(CL1(.)%(C2,0()C11()), Si(C20(-))S2(Cr1()Cr1(.))
> and )'[] follow from Lemma 5. > includes all the cases of the p-

all the p—partitions all the different all the p—partitions
for §/Cpq(‘)35x1 Y permutations for §/(;pq(A):sXl 8,
P of 5,8, P

partitions denoted by s, s, for the monomial §/c,() , and in a p-partition

Z[~] includes all the different permutations of the involved parameters

all the different permutations
of s, S,

satisfying the p-partition. [

Example 1. For a monomial C; ;(.)co2(.)c2,0(.) which is an effective monomial for the 4.
order GFREF, it can be obtained from Proposition 1 that



?0,(C (), ()C, (s @, -+ @,)

e*j(kﬂ”l +Ky (0, +@y)) e*j(“’zkﬁmzkz)

H,(jo;)
N N 1o,
_ e J’UAkze sk, |_2 (a)2ﬂw3)
L4 (wl ...[{)4)|_3 (w] w3) e—j(k1((Ul‘*wz)*kz")x)e*j(wykﬁ“’zkz) .
+ H,(jo,)
L 1 3
2 (@, 0,)
e*J'(k1w1+kz(102+"‘+0)4))e*1104kz e—jk, (w2+w3)e—j(wzk,+w‘k2)
H,(jo))
1 1
Ly(@, - o,)L, (@,, 05)
e*j(kl(”l*"'*ws)*kz”ﬂe*jw}kz e*jkl(ﬂ)ﬁ’”z)e*j(’”lkﬁwzkz)
+ H (jo,)
+ 1 ) Ly(@, - o)L, (0, 0,)
L4 (a)] a)4) e*j(k|(‘Ul*Wz)+kz(a’z+w4))e*j(w|k|*’Uzkz)e’jﬂhkz e’jklws .
+ H (joy)
L, (o, »,)L, (05, 0,) (16)
e—j(kl(wl"'wz )+k2(w:+w4))e_j("):k|‘*'(‘)Akz)e*jw:kz e’jkla’l
+ H (jo,)
Ly (@), 0,)L, (05, 0,)

0
4. Some properties

4.1 Properties of the mapping function ¢,

Do) Cpa OCpq ()-Cpq ()0, @ nsy) 10 Proposition 1 is asymmetric. Different
permutation of @, ---@,,, may result in different value. The symmetric result can be

obtained by
z("n(é)(cpoqo ()Cpg () Cpq (@) Dyns)))

all the permutations
of {1y @ (nsy }

Wm . o). o) e — = —
(Dn(g) (Cpo% ( )Cplql ( ) Ckak ( )’ wl(l) a)l(n(s))) n(g)'

Corollary 1. For an effective parametric monomial c,, ()c,, ()---C,4 (), its correlative

Pi Ok

function is a p -degree function of H,(ja,,,) which can be written as

P
7005 (Cpq, (VCpg () Cpq (i @)+ @y ) = Clg) Z Hi (@) Oy s, )H H (joy)
i=1

all the combinations of p integers
{11y, r, jtaken from{1,2,---,n(8)}
without repetition

j is for different combination

(17a)
The magnitude bound of (22a) can be evaluated by

sym .
Pz (Cpyg, (OCpq ()" Cpq (01 -+ Dyns)))

N(@nes) (Cpyq, (ICpq () Cpq (301 =~ By sy ) £
() \“pyg, \/¥pig, pea V> iy 1(n(5)) P : 17b
p Cis > H‘Hl(le(i))‘ (170)
L all the combinations of i=1
p integers{r,r, I, }taken from
{1,2,---,n(S)} without repetition

S_% . r (n(S) - p)!p!
where p=n(-> g =D p -k, I =[r,n,-r,1, Ci T e Hi (@) Byps)) CAN
i=0 i=0 .
be determined by equations (13-14), L =inf(|L(e))) and

R(@ns) (Cpq (VCpq ()Cpa (i@ B nsy)) 18 @ positive integer which can be determined by

10



R(@n(s) (Cpq, (ICpq () Cp g (N @11y Dys))))

p
= X > > {H NP, e, (S (§/cpq(-));W*))J

all the 2—partitions  all the p—partitions all the different \_i=1
for S satisfying for §/cpq (-):8y, 'S, permutations
5,(8)=Cpq (-) and p>0 "oofs s,

and  N(@s) (Cpq (VChe ()Chq (i) @ ns))) =1 when k=0 or n@E)=1 , where
W' =& 3600 B Rayancs;, Genon *

Proof. The proof is omitted. [

Recalling Equation (7), Corollary 2 shows that, the nth-order GFRFH (jo,, -, jw,) can
be expressed as an n-degree polynomial function of the first order GFRF H, (jw,)

"H(jor. . jo,) =CE(H, (o, j@,)) ™" gy (jay. . joy)
and its magnitude bound can be simply evaluated by
|an(]wl$sjwn) SCE(Hn(Ja)lss an))|w¢n(1w1,$1wn)

These results reveal how the first order GFRF, which represents the linear part of system
model, affects the higher order GFRFs, together with the nonlinear dynamics. The
conclusion in Corollary 2 can also be verified by Example 1.

4.2 Magnitude characteristic of the nth-order GFRF

By using Lemma 1 and Proposition 1, Equation (7) can now be determined definitely. Let
CE,=CE(H,()) , ©,=¢,(CE(H,()-¢,(CEH,() , @,=¢,(CE(H,()) , and
A, =CE(H,())"CE(H,(-), it can be derived that

|Hn(ja)17'”’ ja)n)|2 = Hn(jwla”'a ]wn) H:(jwla'”’ Ja)n)

=CE(H (1) ¢, (CE(H,()))- (CE(H, () - ¢, (CE(H ,(-)))’

=CE(H,()- (€0n (CE(H, () ¢, (CE(H, ()’ ) CE(H,()" =CE,0,CE, (18a)
Similarly, it also holds that
|Hn(jw19”'7jwn)|2 :¢;An¢n (lgb)

Denote 1, (A to be the maximum eigenvalue of matrix A. The following result can be
obtained.

Proposition 2.
sup [H (o, jo) < [ (27 lde, - dr, < sup (2, ©,)-[CE,|" (192)

sup [H, (jo,.-w-, Jop)| < [-[ by (2.7 lde, - dry <2, (M) sup (o) (19b)

Proof. The proof is omitted. [

From Equations (18-19), it can be seen that the squared magnitude of the nth-order GFRF
is proportional to a quadratic function of the parametric characteristic and also

11



proportional to a quadratic function of the corresponding correlative function. These
results demonstrate a new property of the nth-order GFRF, which reveals the relationship
between the magnitude of H (jw,, -, jo,) and its nonlinear parametric characteristic, and

also the relationship between the magnitude of H,(jw,,-,jw,) and the correlative

functions which include the linear (the first order GFRF) and the nonlinear behaviour.
Proposition 2 also shows that the absolute integral of the nth-order Volterra kernel
function in the time domain is bounded by a quadratic function of the parameter
characteristic.

5. Conclusions

A mapping function from the parametric characteristics of the GFRFs to the GFRFs is
established, such that the nth-order GFRF can directly be written into a more
straightforward and meaningful form in terms of the first order GFRF and the model
parameters. The new mapping function enables the linear and nonlinear factors included
in the GFRFs to be unveiled explicitly, thus some new properties of the GFRFs can be
obtained, which reveals clearly the relationship between the nth-order GFRF and its
parametric characteristic, and also the relationship between the nth-order GFRF and the
first order GFRF. These results provide a novel insight into the frequency domain
analysis and design of nonlinear Volterra systems described by a NARX model based on
the GFRFs.
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