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Abstract

A new method of identifying the spatio-temporal transition rule of crystal

growth is introduced based on the connection between growth kinetics and dentritic

morphology. Using a modified three-point-method, curvatures of the considered

crystal branch are calculated and curvature direction is used to measure growth

velocity. A polynomial model is then produced based on a curvature-velocity rela-

tionship to represent the spatio-temporal growth process. A very simple simulation

example is used initially to clearly explain the methodology. The results of iden-

tifying a model from a real crystal growth experiment show that the proposed

method can produce a good representation of crystal growth.

1 Introduction

Considerable theoretical and experimental effort has been expended in an attempt to

develop a better understanding of growth processes that are controlled by the energetics

of the curved phase boundary. One of the most common examples of these processes is

the growth of crystals, which starts from the nucleation stage and grows following spe-

cific laws. Patterns generated by growth processes can be partially represented in terms

of characteristic length, such as the thickness of a branch, the distance between two

branches and the curvature of the branch tips. The investigation of these characteristic

∗Department of Automatic Control and System Engineering, University of Sheffield, UK.
†Department of Chemical and Process Engineering, University of Sheffield, UK.
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lengths and the laws on which they depend for growth, using experimental, theoretical

and computer simulation methods, have played an important role in understanding these

important and little understood natural phenomena.

A wide range of mathematical models have now been developed to simulate the growth

dynamics of crystals. The Eden model [1],[2], initially developed to investigate the

growth of biological cell colonies, and the diffusion-limited aggregation (DLA) model [3],

one of the most striking examples of the generation of a complex disorderly pattern by

a simple model, have been widely used in biology, colloid science and materials science

[4]-[7]. However, very few authors have studied the inverse problem of how to extract or

identify simple mathematical descriptions directly from observed experimental growth

data. A Cellular Automata model has been used to identify crystal growth based on

neighbourhood detection and parameter estimation of a polynomial model in [9], where

the results are encouraging. But it is not easy to link the terms of the model with the

physical variables in the experiment, such as solution concentration and temperature etc.

Ideally, the identified mathematical representation should be a function of the physical

variables. The model obtained can then easily be used to predict the crystal pattern

for a given set of particular physical variables at a particular time. In this paper, the

focus is on developing an identification algorithm using a polynomial model based on the

relationship between kinetics and morphology of dendritic crystals.

This approach has been shown to be correct for a few well characterized material sys-

tems, where all the thermochemical constants are accurately known, and where the basic

relationship that controls the kinetics and morphology of dendritic crystals can be shown

to be of the form [10]

V R2 = 2αcT/δ∗L (1)

where V is the tip speed; R is the tip radius of curvature; α is the thermal diffusivity; c

and L are the specific and latent heat respectively; δ∗ is the stability parameter. In prac-

tice, although some parameters in Eqn.(1) are not easy to be measured quantitatively. It

should be possible to determine a relationship between tip speed and curvature assuming

all the other physical variables are fixed. By repeating the experiment and identification

with different physical conditions, the connection between terms and coefficients of the

identified model and the physical variables can be finally linked.

The study begins in Sec.2 with a description of how to identify the underlying relation-
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ship between kinetics and morphology assisted by a simple example. In Sec.3 methods

to identify a model from a real crystal growth experiment using the new method is

introduced. Finally, conclusions are give in Sec.4.

2 Identification based on Curvature and Growth Ve-

locity

This section describes the procedure to identify a polynomial model based on curvature

and growth velocity associated with boundary prediction based on the generated model.

To assist the explanation of the methodology, a simple example will be used to illustrate

the procedure. The identification method can easily be extended to other more complex

cases.

2.1 Curvature Calculation

Curvature can be defined as the amount of the degree of bending of a mathematical

curve, or the tendency at any point to depart from a tangent drawn to the curve at that

point. Traditionally, curvature of a point on a curve can be obtained by finding a circle

that ”fits” the curve at that point. The reciprocal of the radius of that circle is defined

as the curvature of the considered point. For example, the curvature value k of each

point on a circle with radius r is 1
r
.

Consider a continuous system which can be expressed by y = f(x). In mathematics, the

curvature function of this system can be expressed as [14]

k(x) = f
′′

(x)

(1+f
′
(x)2)3/2

(2)

If the mathematical expression of the considered curve is known, it is easy to calculate

the curvature at each point by Eqn.(2). However, the objective which is the focus in this

paper is the boundary of a crystal, which is composed of a group of discrete pixels in a

captured two-dimensional image. It is therefore not easy to find a continuous mathemat-

ical model to represent the considered boundary before the curvature calculation. Based

on the properties of a crystal boundary in a digital image, such as data limitations and

boundary discontinuities etc., this paper will employ a modified three-point-method to
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calculate the curvature of each pixel on a boundary.

Initially, pixels on the considered boundary are sorted into an array {bi = (xi, yi) : i =

1, 2, ..., n} based on a boundary walk, which means that bi, bi+1 are adjacent. The sym-

bol n denotes the total number of pixels on the boundary, and (xi, yi) denotes the pixel

position in the image. Because boundary of a crystal is closed, b1, bn are adjacent as

well, which makes the array a circle chain.

Consider the pixel bi, whose curvature, denoted by ki, can be determined by collecting

three pixels {bi−h, bi, bi+h} and then finding a circle which goes through all three pixels

according to the three-point-method. The symbol h, which is a very important parame-

ter, denotes the sampling interval. Assume that the radius of the circle is ri, if h → 0,

ki can be expressed as

ki = 1
ri

(3)

In practice, 1
ri

is an approximate value for the curvature because the condition h → 0 will

never be satisfied. Theoretically, the closer h is to 0, the more accurate ki is. Figure 1

shows an example, where different sampling intervals are used to calculate the curvature

at point (0, 1) on y = cos(x). According to Eqn.(2), the curvature at point (0, 1) is 1.

Inspection of Figure 1 shows that the top-left graph, which uses the smallest h, produces

the best result. However, any noise, such as a small bump, can easily and dramatically

effect the result using a small h. Hence, it is very important to find an appropriate

sampling interval which can not only effectively reduce noise interference, but also can

generate a relatively accurate curvature.

Consider the boundary shown in Figure 2. According to the above discussion, to

calculate the curvature at position A accurately, a large h should be chosen to reduce

the effects of small amounts of noise , whereas to calculate the curvature at position C a

small h should be chosen because of the rapidly changing curvature at that point. Hence,

a variable sampling interval is introduced in this paper. Basically, this is a coarse-to-fine

method, where the curvature at each pixel is calculated twice. Initially, the curvature

of the considered pixel is calculated roughly using a fixed h. A new sampling interval,

which is used in the second calculation, is re-assigned based on a nonlinear model to

provide the best h for each specific curvature. Finally, the curvature is refined by using

the new h in the second calculation.

Consider the example shown in Figure 2. The array of boundary pixels starts from
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Figure 1: Curvature calculation using three-point-method with different sampling interval.

Figure 2: A simulation example for crystal boundary evolution

pixel A in a clockwise direction. Figure 4(a) shows the calculated curvature values using

a fixed sampling interval (h = 31), which can be viewed as a coarse curvature choice, or

the result from the traditional method. A simple non-linear model, which is illustrated

in Figure 3(a), was used to re-assign h. A comparison of the initial h and the re-assigned

h for all pixels in the array is shown in Figure 3(b). Figure 3(b) clearly demonstrates

that pixels with large curvature were assigned a small h and pixels with small curvature

were assigned a relatively large h. Figure 4(b) shows the calculated curvature values

using the re-assigned h. Inspection of the curvature comparison when using a fixed h

and a variable h, illustrated by Figure 4(c), clearly shows the variable sampling interval

can produce a smoother and more accurate estimation of curvature. A two-dimensional

form for Figure 4(b) is shown in Figure 4(d), where the length and direction of the

arrows denote the value and direction of the curvature respectively. Note that in a
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(b)

Figure 3: (a) A non-linear model to re-assign the sampling interval; (b)Sampling interval of all pixels

on the boundary where the red line denotes the initial h and the black curve denotes re-assigned h.

a real crystal growth experiment, concave boundaries with large curvature are almost

motionless. In the contrast, convex boundaries with the same curvature lead to grow

fast. To accommodate these effects in this paper, the curvature of convex pixels on

the boundary will be calculated as normal, but the curvature of concave pixels will be

assigned as zero. The concepts of convex pixel and concave pixel boundaries only exist

for close boundaries.

2.2 Growth Speed Calculation

In Figure 2, B(t) and B(t + 3) denote the boundary of a crystal at time t and t + 3

respectively. Consider a pixel C on boundary B(t). Assume that the calculated curvature

at pixel C = (cx, cy) is kc and the center of the fitted circle is at the position CR =

(crx, cry), determined by the method above. Obviously,

kc = ((cx − crx)
2 + (cy − cry)

2)−1/2 (4)

In this paper, the direction of evolution at pixel C, θC , is defined as the direction from

CR to C. The mathematical form of θC can be expressed as

θC = arctan( cy−cry

cx−crx
) (5)

As illustrated in Figure 2, a line was drawn starting from pixel C in the direction θC

eventually crossing B(t + 3) at point D. Point D can be viewed as the next position of
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Figure 4: (a) Calculated curvature using a fixed sampling interval; (b) Calculated curvature using a

variable sampling interval; (c) Comparison of curvatures using the fixed and variable sampling interval;

(d) Curvature illustration using a variable sampling interval in two-dimension

pixel C at time t + 3. Therefore, the velocity of C, denoted by ~vC ,can be described as

| ~vC | =

√
(cx−crx)2+(cy−cry)2

4

∠ ~vC = arctg( cy−cry

cx−crx
)

(6)

The calculated velocity of the boundary is shown in Figure 5, where the left and right

boundaries grow much faster than the top and bottom parts, which is consistent with

the curvature illustration, shown in Figure 4.(d).
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Figure 5: Calculated velocity for the example in Figure 2

2.3 Model Estimation

As shown in Eqn.(1), the rate of variation in crystal size is related to the local curvature of

a branch. Inspired by the similarity between Figure 4(d) and Figure 5, the present study

attempts to use a polynomial model to represent the underlying connection between

curvature and growth speed. The structure of the polynomial model can be expressed as

v = a0 + a1k + a2k
2 + ... + adk

d (7)

where v denotes growth speed, k denotes curvature and d is the order of the polynomial

model. The coefficients {a0, a1, ..., ad} can be estimated by orthogonal least squares [12]

from collected training data pairs. Both second and the third order polynomial models

were estimated and given in Eqn.(8) below. Figure 6, which compares the collected

training data pairs with the second and third order polynomial models shows that both

models fit the training data well.

v = 34.88528 − 74.4495k + 29286.5635k2

v = 26.49301 + 1736.43603k − 53143.91017k2 + 980621.179k3
(8)
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Figure 6: Estimated polynomial models using orthogonal least squares

2.4 Boundary Prediction

To evaluate the goodness of the generated model, a common solution is to compare the

original pattern with the prediction from the model.

Consider a pixel Et = (xEt , yEt) on a boundary at time t for example, the onetime-step-

ahead(OSA) prediction of Et is only determined by the estimated speed ~vEt , which can

be obtained by Eqn.(6) and Eqn.(7) according to the curvature of Et. Assuming the

growth speed of each pixel at time t is the same as that at time t−1, the OSA prediction

of pixel Et at time t + 1 can then be expressed as

xEt+1
= xEt + | ~vEt| × cos(∠ ~vEt)

yEt+1
= yEt + | ~vEt| × sin(∠ ~vEt)

(9)

Based on Eqn.(9), the OSA prediction can be produced for every pixel on the boundary

at time tto form a new boundary for time t+1. However, the new boundary will not be a

closed boundary because gaps may exist between Et+1 and Ft+1 if Et and Ft are connected

together. As shown in Figure ??, the red pixels represent the predicted boundary, which

is cut into lots of small sections and this is likely to bring problems at the next time
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step. Hence, before producing the OSA prediction for time t + 2 based on the predicted

boundary at time t + 1, the broken boundary must be connected together. The simplest

way is to connect adjacent pixels with a smallest distance using a line. However, any

slight noise can make the connected boundary zigzag. There are many methods which

can be used to smooth the boundary, such as polynomial fitting, parabola fitting and

B-splines. In this paper, the discrete boundary is divided into several parts and each

part is interpolated by an estimated polynomial model.

To demonstrate the effectiveness of the sampling interval and the polynomial model

order, several one-step-ahead predictions of At in Figure 2 using different h and d values

are shown in Figure 7, where the red pixels denote the predicted position for the boundary

at time t+1. The inner black part is the boundary at time t and the outer black part is the

boundary at time t+1. The selection of sampling interval however can dramatically affect

the prediction result. Too small a value for h, as shown in Figure 7(a), or too large a value

of h, as shown in Figure 7(d), will produce poor predictions. Figure 7(c), the prediction

produced by a variable h, obviously demonstrates better performance than those of fixed

h. Therefore, the proposed method to choose a self-adaptive sampling interval is very

important for achieving a good representation of boundary growth. Inspection of Figure

7(c) and 7(d) shows the polynomial model order has much less influence on the prediction

compared with the sampling interval.

(a) h = 10, d = 3 (b) h = 51, d = 3

(c) variable h, d = 3 (d) variable h, d = 2

Figure 7: OSA predictions using different sampling intervals and polynomial orders for the example.
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3 Example

To evaluate the efficiency of the proposed method when applied to real systems, a NH4Br

crystal growth experiment was conducted. Crystal size changes in the spatio and tem-

poral dimensions are shown in Figure 8, which includes three original image snapshots

and the preprocessed images respectively extracted from a group of experiment data.

Details regarding the experimental setup and preprocessing of the captured images can

be found in [11]. The purpose of this study is to generate a mathematical model which

can quantitatively define the relationship between the curvature of a boundary and the

speed of growth. OSA predictions can then be produced and compared with the origi-

nal images, to validate the model. To illustrate the growth of such a slow system, the

(a) the 1st original image (b) the 20th original image (c) the 40th original image

(d) the 1st preprocessed image (e) the 20th preprocessed image (f) the 40th preprocessed image

Figure 8: Three snapshots and preprocessed images

overlay of the 1st and the 22nd original sampled frame is shown in Figure 9(a), where

the black part denotes the 1st frame and the red part denotes the 22nd frame. Ideally,

the proposed method should generate a global mathematical model by sampling all the

data. However, there are always some inevitable factors that effect different regions so

that locally the growth patterns may be different. Noise, for example, caused by image

aberrance, which always happens in a normal lens of image acquisition equipment, will
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have an influence on the four corners of the image, but has much less influence on the

central part. This could slightly change the rule of the regions near the boundary. Hence,

it is reasonable to focus on a specific branch of the crystal instead of the whole image

during identification. A large image can be viewed as a composition of several regions,

each of which can be identified separately. The whole pattern can then be reconstructed

by combining the prediction of each part.

Consider therefore just the bottom-right branch in Figure 9(a), shown in Figure

Figure 9: (a) Overlay of the 1st and 22nd whole sampled frame; (b) Overlay of the 1st and 22nd of the

focused region.

9(b), which clearly demonstrates the characteristic of crystal growth in this experiment.

Bumps with large curvature grow faster than flat or concave boundaries, which suggested

the use of the method proposed in this paper to identify the underlying laws. First 22

frames were sampled and the calculated curvature of the 22nd frame using a variable sam-

pling interval is shown in Figure 10(a). Figure 10(b) shows the growth velocity based

on the growth direction derived from the previous step. A polynomial model was then

identified by fitting the collected data pairs of curvature and growth speed, which can

be expressed as:

v = 1.2105 + 129.34k − 954.85k2 (10)

To validate if this simple model can represent such a relatively complex system, the 42th

frame was predicted based on the OSA. Figure 11(a) shows an overlay of the predicted

42th frame (red boundary) and the original 42th frame (black boundary), and shows that

the predicted boundary is very close to the original one. Although the prediction is not

exactly the same as the original this is to be expected because of the presence of noise
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Figure 10: (a) Calculated curvature for the focused region ; (b) Detected speed for the focused region.

introduced by the equipment and image preprocessing. However, the prediction does

capture the main growth characteristics in this real example, which indicates that the

identified model is a good representation of the considered region.

The identified model from the right-bottom branch was also used to predict growth over

the whole crystal. The predicted 42nd frame, the original data for the whole crystal are

shown in Figure 11(b). The results clearly demonstrate that the prediction of the left

branch is much worse than for other parts, which indicates that the rule for the left

branch may be different. Further investigations will focus on how to identify a single

crystal growth model composed of regions with different rules.

Figure 11: (a) Overlay of the predicted 42th frame and the original 42th frame of the focused region;

(b) Overlay of the predicted 42th frame and the original 42th frame of the whole crystal.
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4 Conclusions

A new identification method for crystal growth based on a tip curvature-velocity re-

lationship has been introduced. Before modelling, it is very important to accurately

calculate curvature for each pixel along the considered boundary. The well known three-

point method was modified in this paper by introducing a variable sampling interval to

calculate curvature. The results shown in Figure 1 clearly indicate this method has a

better performance than for boundaries whose the curvature is considerably changed in

the spatio dimension. A multi-order polynomial was then identified to represent the rela-

tionship between curvature and velocity. The model is consistent with the model shown

in Eqn.(1), which provides the possibility of linking the identified model with physical

variables that affect the morphology of the crystal.

A real NH4Br crystal growth experiment was conducted and the acquired data were

analysed using the proposed method. Although it is impossible to predict crystal growth

exactly, the results shown in Figure 10 are very encouraging. The prediction from a

relatively simple model captures the characteristics of boundaries with large curvature

growths.

Identification of real systems is often very difficult because of the many factors involved.

In this paper, one small branch was sampled and modelled initially. When the generated

model was used for other branches, the predictions were not all perfect. This may due

to the rotation of the crystal, aberrations in the lens or other equipment factors. Many

more experiments need to be conducted and the link between the identified model and

the environmental and control parameters needs to be investigated in further studies.
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